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ABSTRACT 

 

In this paper, a quantitative evaluation and ranking of commonly used volatility 

forecasting models and metrics is presented. The models and metrics included are Generalized 

Autoregressive Heteroscedasticity (GARCH), Exponentially-Weighted Moving Average 

(EWMA), Implied Volatility, long-term historical mean volatility, and a moving average 

volatility. The metrics were tested on a randomly-selected sample of US equities, international 

equity indices, currencies, and commodities on both historical data and in real-time, making this 

study unique. Models are ranked and compared via various statistical loss functions.  
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Chapter 1  
 

Introduction 

In this paper, a quantitative evaluation and ranking of commonly used volatility 

forecasting models and metrics is presented. The models and metrics included are Generalized 

Autoregressive Heteroscedasticity (GARCH), Exponentially-Weighted Moving Average 

(EWMA), Implied Volatility, long-term historical mean volatility, and a moving average 

volatility. The metrics were tested on a randomly-selected sample of US equities, international 

equity indices, currencies, and commodities on both historical data and in real-time, making this 

study unique. Models are ranked and compared via various statistical loss functions.  

In the late 80s and early 90s, finance and economics journals exploded with literature 

regarding volatility forecasting. Following the Black Monday crash of October 1987, in which 

there was a five-standard-deviation change in the value of the overall market instantaneously (an 

event which should occur approximately only every five billion years), substantial research was 

devoted towards finding empirical evidence explaining large swings in asset prices, as well as 

how to forecast these swings. The research has yielded numerous methods of measuring and 

forecasting volatility. Forecasting volatility is an important function of academics and finance 

professionals from day-traders to portfolio managers and thus has a wide range of applications 

and consequences. For example, future volatility is the most important input in the Black-

Scholes Option Pricing Model (as the other inputs to the model are exogenous/given); in this 

instance, knowing which volatility forecasting model is “best” would allow traders to price 

options more accurately and with more certainty. Volatility also has important applications to 
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Value-at-Risk (VaR) projections, which is typically done for a longer time horizon, and thus 

knowing how to best forecast volatility would allow portfolio managers to more efficiently 

manage their VaR. 

Chapter 2 contains a review of the literature both theoretical and empirical on the subject 

of volatility forecasting. Chapter 3 goes into further detail about the statistical properties and 

features of the models which are tested, and explains why these models and metrics were chosen 

for this study. Chapter 4 describes the methodology used for analyzing and ranking the models. 

Chapter 5 analyzes and interprets the data and presents a quantitative ranking of the tested 

models and metrics. Chapter 6 summarizes the main points of this paper and presents a few 

suggestions for further research.  
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Chapter 2  
 

Literature Review 

In the seminal paper The Pricing of Options and Corporate Liabilities (1973), Fischer 

Black and Myron Scholes laid the foundation for modern option pricing theory when they 

presented the first quantitative method of pricing vanilla European-style options based on five 

underlying variables: the current stock price, the strike price, the time to maturity, the interest 

rate, and most importantly the expected volatility. While the first four variables are known and 

exogenous to the Black Scholes Model, the future volatility over the expected life of the option is 

unknown and must be forecasted; in other words, volatility is an endogenous input to the Black 

Scholes Model and thus will have the largest impact on determining the price of a given option. 

This means practitioners and traders have a vested interest in obtaining accurate measures of 

future volatility over a given time horizon, as more accurate forecasts of volatility will enable 

traders to determine whether a given option is currently over or under priced in the market.  

The GARCH-Family Models 

After the introduction of the Black Scholes model, practitioners often relied on simple 

rolling one-month standard deviations for the next month’s volatility, thereby applying equal 

weights to all individual observations of volatility and leaving out observations older than one 

month. In 1982, Robert Engle published a paper in Econometrica which introduced a new 

method of forecasting volatility, which essentially let the weights applied to each observation of 



4 

volatility be parameters which need to be estimated. Engle argued that previous econometric 

models relied on faulty assumptions about the behavior of volatility, thus inhibiting those 

models’ accuracy and predictive power. Engle went on to say that error terms in time series 

processes are not necessarily homoscedastic. He further argued that due the empirically proven 

phenomena of autocorrelation in volatility (also known as volatility clustering; Mandelbrot, 

1963) present in financial time series that a new model should be built. In this paper, Engle 

introduced an autoregressive conditional heteroscedastic (ARCH) process and model. In these 

processes, recent volatility informs one-period ahead forecasts of volatility. Of important note is 

that a feature of this model is that Engle allowed for unconditional (long-term) variance to stay 

constant while allowing for changes in conditional variance to change over time.  

In his 1986 paper titled “Generalized Autoregressive Conditional Heteroscedasticity,” 

Tim Bollerslev generalized Engle’s ARCH process to a GARCH process. Bollerslev claimed that 

there was an issue with Engle’s simple ARCH process as it has an arbitrary strictly linear 

declining lag structure in the conditional variance equation which allows only for past in-sample 

variances. The GARCH, however, process allows for lagged conditional variances to enter the 

process as well. In simpler terms, this means that although the GARCH model is intended to 

forecast one-period ahead, it can produce a two-period ahead forecast by considering the initial 

first-period GARCH forecast (and so on for n-periods), thus allowing for longer time horizon 

forecasts than the initial ARCH model. As forecasts are made further into the future, the 

GARCH predicted volatility will converge toward the long-run unconditional variance. These 

properties of the model, in addition to its inherent simplicity, have made GARCH one of the 

most commonly used volatility forecasting models today.  
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Following up on the original GARCH model, numerous academics proposed extensions 

of the GARCH model which attempted to incorporate factors which accounted for additional 

properties of volatility, resulting in an alphabet soup of GARCH models. While explaining all of 

these GARCH-family models and their properties is beyond the scope of this paper, there is one 

that is particularly worth mentioning. One of the most commonly used GARCH extensions is the 

exponential-GARCH (EGARCH) model introduced by David Nelson in 1991. Nelson cited 

Fischer Black’s 1976 paper which found a negative correlation between stock returns and 

changes in the returns volatility. Black demonstrated that volatility rises in response to bad news 

and falls in response to good news; Nelson points out that this implies an asymmetric distribution 

of changes in conditional volatility and that GARCH fails to account for this empirical 

observation. He claims that a GARCH process which also accounts for asymmetry in residuals 

should more accurately forecast volatility. Nelson develops a model which accounts for this and 

which has a few other unique properties as well. The EGARCH functions similarly to the 

canonical GARCH model. The EGARCH model, while more complex than the orginal GARCH 

model, is still simple enough for everyday use and is commonly used amongst practitioners to 

forecast volatility and price options.  

Implied Volatility 

Another way of measuring future volatility is through implied volatility. As previously 

mentioned, the Black Scholes model is typically used to determine the price of an option, and the 

model takes volatility as an input. However, the Black Scholes model can be rewritten, taking the 

market price of an option as given, to solve instead for the volatility implied by the market. In 
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other words, this is the measure of volatility, that when put into the Black Scholes Model, will 

give as an output the current market price of the option.  

The reason implied volatility can be used as a forecast of future volatility is that it is the 

volatility that is expected over the remainder of the life of the given option. In this sense, it is 

also an extension of the Efficient Market Hypothesis. Because the EMH would argue that the 

market price of the option reflects all available information of that option, the implied volatility 

consists of all available information with respect to the volatility of that option for the remainder 

of its life. In other words, implied volatility theoretically consists of all available forecasts of 

future volatility in the market which are used to price the option, including forecasts as simple as 

historical volatility and those as complicated as the GARCH-family models. Therefore, implied 

volatility is also considered “the market’s view” of volatility.  

The main issue with using implied volatility as a forecast of future volatility is that there 

may be multiple implied volatilities on the same underlying asset. Options on the same 

underlying asset which have different strike prices may offer different implied volatilities. 

Similarly, options with different times to maturity and identical strike prices will offer different 

implied volatilities as well (however, this makes more sense as the volatility can be expected to 

be different for differing periods of time). Naturally, these two features can be combined to 

create what is known as an implied volatility surface in three-dimensional space, with time to 

maturity on the x-axis, implied volatility on the y-axis, and strike prices on the z-axis. If the 

Black Scholes Model could accurately determine the price of all options, such a surface would be 

flat. However, this is not the case since we know some of the assumptions underlying Black 

Scholes are empirically untrue (explained in the next paragraph). In an attempt to simplify this, 
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we will use the time-scaled average of the implied volatilities of at-the-money call and put 

options for each randomly selected stock as a forecast for future volatility.  

A second weaknesses of using implied volatility as a forecast of future volatility (and 

therefore a weakness of the papers which empirically test its forecasting accuracy) is that 

volatility implied by the Black Scholes Model does not necessarily lend itself well to describing 

the true nature of volatility or option prices. In other words, using volatility implied by the Black 

Scholes Model implies that all the assumptions underlying Black Scholes are true. However, we 

know empirically that this simply isn’t the case. For example, papers by both Hull and White 

(1987) and Heston (1993) demonstrate that price patterns of options exhibit stochastic (non-

constant) volatility; each of these papers present new stochastic volatility models for pricing 

options. One could derive implied volatilities from stochastic volatility option pricing models, 

and thus we should be more precise in specifying which implied volatility we are measuring. 

However, deriving implied volatilities from stochastic volatility models is incredibly 

mathematically complex and is not easily done by the average practitioner or trader.1  

Since stochastic volatility models, such as the Heston Model, more accurately reflect 

empirically-proven characteristics of volatility, one would reasonably expect them to forecast 

volatility more accurately than simple Black Scholes implied volatility. However, due to the 

mathematical complexity involved in these models, I will limit our tests to Black Scholes 

implied volatility while conceding that further research should seek to test stochastic volatility 

models’ implied volatilities.  

                                                      
1 Those truly interested in seeing derivations of implied volatility from stochastic volatility models should 

consult “Computing the Implied Volatility in Stochastic Volatility Models” (Berestycki, 2004), and “Asymptotic 

Formulae for Implied Volatility in the Heston Model” (Forde, 2010).  
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Empirical Studies 

After the proliferation of the GARCH family models in the late 80s and early 90s, 

theoretical literature on volatility models slowed down. For the most part, the literature generally 

shifted from theory towards empirical tests of the models’ predictive accuracy. The first such 

empirical paper was published in 1990 by Pagan and Schwert. In this paper, the authors laid the 

groundwork for all empirical tests of volatility models to follow. The authors tested the 

predictive accuracy of a selection of volatility models on monthly stock return data from the 

period 1835-1925. The authors include GARCH and EGARCH in their test, in addition to 

nonparametric Fourier Form model and a Markov regime-switching model. After fitting their 

models to and testing on in-sample data, the authors test the same set of models against monthly 

return data using an out-of-sample forecast for the period of 1925-1937. The in-sample tests and 

out-of-sample tests reach contradictory conclusions: the nonparametric models (such as the 

Fourier Form and Markov Chain model) performed better in-sample, while the parametric 

models (GARCH and EGARCH) performed better on the out-of-sample tests. From this, the 

authors argued that the parametric and nonparametric schools of volatility forecasting needed to 

be unified to have the most predictive accuracy; this is in part what led to the further 

development of more mathematically complex GARCH-family models in the early 90s.  

The largest issue with the Pagan and Schwert paper is the reliability of the data. How 

reliable is monthly return data from the 19th Century? Pagan and Schwert do not indicate their 

source for this data, further calling into question the reliability of the data and the authenticity of 

their results. The age of the data also calls into light the issue of liquidity. With the proliferation 

of high frequency trading, financial markets are now more liquid than ever and react to news 

significantly faster than they had in the 19th and early 20th Century. Different levels of liquidity 
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may imply different levels of volatility (the causality can also run in the reverse direction) and 

thus the authors’ results may not as valid in today’s markets. Another issue with this paper is that 

the authors tested volatility forecasting models which are almost never used by practitioners, 

namely the Fourier Form models and the Markov Chain regime-switching models. Although 

GARCH and EGARCH were included in the test, the study would have benefited from including 

more traditional methods of forecasting volatility, such as simply using historical volatility. 

In 1993, Theodore Day and Craig Lewis published a paper which tested the accuracy of 

GARCH-family models and implied volatilities on daily prices for call options on crude oil 

futures. Like Pagan and Schwert before them, Day and Craig test the models on both in-sample 

and out-of-sample data. However, the authors expanded on what Pagan and Schwert did by 

testing the models against different time horizons. The authors test the models for both the 

shortest time to maturity and longest time to maturity options; this is important because certain 

models may be better at forecasting on shorter time horizons, while other models may be more 

accurate at forecasting for longer time periods. The authors conclude that implied volatility 

performs better on average to forecast the volatility of crude oil futures, both on the shorter and 

longer time horizon. One of the largest issues with this paper, however, is that the authors chose 

to test their models on a time series which experienced a large exogenous shock to the oil 

markets: the US’ invasion of Kuwait and the Gulf War from 1990-1991. During this time, oil 

prices were extremely volatile, rising from about $31 before the invasion to a peak of about $72 

during the invasion. The issue in doing this is that the accuracy of these results are only valid for 

periods of heightened volatility for a single asset class and thus may not be applicable in times of 

lower volatility or for other asset classes. 
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Other tests have examined volatility forecasting metrics individually by simply 

comparing them to realized volatility, an approach more in-line with the methodology of this 

paper.  

One of the most widely-cited empirical papers testing volatility models is “A Comparison 

of Volatility Models: Does Anything Beat GARCH (1, 1)” (Hansen & Lunde, 2005). In this 

paper, the authors attempt to compare out-of-sample forecast accuracy of 330 volatility models, 

including almost all the GARCH-family models with lags different than the traditional (1, 1), on 

intra-day exchange rate data and a single stock price. The authors chose to test the models on 

high-frequency intra-day data due to an argument put forth by Andersen and Bollerslev in 1998 

that high-frequency data will yield improved forecast performance (one would think this is a 

trivial observation as a larger sample should result in a better fit). The authors then rank the 

models on seven different criteria, including MSE and mean absolute deviation. The authors 

found that no other models significantly outperform the GARCH (1, 1) benchmark model on the 

exchange rate data. However, the results were less robust for the equity data, as some models 

yielded p-values as high as 0.10, which the authors claim signals that a better forecasting model 

should exist. Of equal importance is that each model tested ranks differently by each loss 

function tested (in other words a given model may have one of the lowest MSEs but a very high 

Akaike Information Criterion [AIC]), emphasizing the importance of choosing the best loss 

function on which to rank models. Unfortunately, defining what is the “best” loss function is still 

a measure of intense debate within statistics and econometrics. Hansen and Lunde concede the 

faults of their paper in their final chapter. The authors admit that different models may perform 

differently on different assets, and that further tests should be done on longer-term volatility 

using lower frequency data than intra-day. This paper attempts to address a few of the concerns 
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of Hansen and Lunde by testing a few volatility models’ longer-term forecast performance on 

daily returns data for a broader sample of equities.  

Over the past decade, empirical work on volatility forecasting has slowed. The research 

that has been done has shifted towards using high-frequency data to predict intra-day volatility. 

Papers such as “A Tale of Two Time Scales: Determining Integrated Volatility With Noisy 

High-Frequency Data” (Zhang et al, 2005) and “A Fourier Transform Method for Nonparametric 

Estimation of Multivariate Volatility” (Mallavian and Mancino, 2009) have laid the theoretical 

groundwork for modeling such high frequency data, and developed a model known as the 

Integrated Volatility via Fourier Transformation (IVFT) model. Empirical papers such as 

“Return Distributions and Volatility Forecasting in Metal Futures Markets: Evidence from Gold, 

Silver, and Copper” (Khalifa et. al, 2010) have tested these high frequency models. Although this 

is clearly of interest to the high-frequency trader academics, we will ignore these models as they 

are needlessly mathematically complex. We will simply concede that future research should test 

these models against those tested in this paper.  

However, there have been a few recent studies which followed the traditional method of 

testing simpler volatility models. One paper published in 2013 tested univariate and multivariate 

GARCH models on oil, natural gas, and electricity data (Efimova & Serletis, 2014). Like others 

before them, the authors found that univariate GARCH models perform better than their 

mathematically-complex multivariate peers.  

In late December of 2015, Stephen Marra, a Portfolio Manager at Lazard Asset 

Management, published a report on forecasting volatility that is similar in vein to this paper. In 

the report, titled “Predicting Volatility,” Marra weighs the pros and cons of the very same 

volatility models which will be tested in this paper, and uses a MSE ranking of their predictive 
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accuracy. Based on his tests, ARMA and GARCH produce the lowest MSE, while the simple 

historical mean had the highest MSE. Unfortunately, this paper was already in the works when 

this report was published. However, there are quite a few issues with Marra’s report. First, Marra 

does not offer any explanation to his methodology outside of mentioning that the models were 

tested out-of-sample on monthly returns for the period of 1988 to 2015; we do not know if this 

was on simply S&P 500 returns, multiple equities or indices, or currencies. We also do not know 

if he used a rolling out-of-sample forecast, how many periods ahead he forecasted (one, two, ten, 

or one hundred), or the size of his out-of-sample relative to in-sample data. Because of the lack 

of description of methodology, the report lacks credibility. In this paper, methodology will be 

explicitly detailed so that the results are easily replicable. Additionally, it does not seem as if 

Marra tested his selected metrics in real-time on live data. The methodology of this paper will 

include such tests, as this will reduce the issue of overfitting with out-of-sample predictions, in 

addition to being the most comparable to what traders do when forecasting volatility for pricing 

options. 

The biggest problem with the recent literature on volatility forecasting is too much 

emphasis has been put on developing increasingly complex and obtuse models which attempt to 

“better” explain the behavior of volatility relative to the amount of effort that has been put into 

empirical studies of various models’ predictive power. Furthermore, the empirical studies that 

have been done are flawed as described above, and almost all of them rely on out-of-sample 

methodology which is prone to overfitting data. Since the introduction of the GARCH model, 

volatility models have become so complex that one needs a graduate-level understanding of 

mathematics and statistics to have the ability to use these models. The implication of this is that 
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these newer models are too complex for the average trader to use in forecasting volatility and are 

accessible only to academics who have little practical use for such models.  

This paper’s goal to present an easy to understand comparison of the most widely-used 

and most broadly applicable models of volatility forecasting, with the hypothesis that GARCH 

(1, 1) will be the best performer. We will offer forecasts and loss-function rankings for different 

time periods, as some models may be better on shorter time horizons while others are better at 

forecasting over a longer period. This will enable readers to choose the model most appropriate 

for their needs.  
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Chapter 3  
 

Overview of the Properties of the Tested Forecasting Models 

 This chapter will provide a detailed mathematical description of the statistical metrics 

used throughout this paper. 

Using similar notation as Hull in Options, Futures, and Other Derivatives, Eighth Edition (2009), 

we will define returns for an individual asset, S, from time t-1 to time t as 

𝑟𝑡 = ln(
𝑆𝑡

𝑆𝑡−1
)  

Therefore, the mean return over t periods of an asset S can be expressed as 

𝑟̅ =
1

𝑡
∑ 𝑟𝑡−𝑖

𝑡

𝑖=1

 

The sample variance of this asset S, using a total of t observations, can be expressed as 

𝜎𝑡
2 =

1

𝑡 − 1
∑(𝑟𝑡−𝑖 − 𝑟̅)2

𝑡

𝑖=1

 

It follows that the volatility of an asset at time t is simply the square root of this variance. We 

will define this as “Long Term Historical Average Volatility” for the remainder of the paper.  

 

An n-day moving average volatility will be defined as a subsample of the long-run historical 

average volatility for t periods taken over the last n days, or 

𝜎𝑛 = √
∑ (𝑟𝑖 − 𝑟̅)𝑡

𝑖=𝑡−𝑛

𝑛
 

This paper will evaluate a 50 Day Moving Average and a 200 Day Moving Average, as these are 

the two of the most frequently used time periods in practice. 
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Alternatively, as we will be monitoring the daily level of volatility in this paper, it is often 

helpful to write these equations as follows: 

𝑟𝑡 =
𝑆𝑡 − 𝑆𝑡−1

𝑆𝑡−1
 

for the return of an asset, and  

𝜎𝑡
2 =

1

𝑡
∑ 𝑟𝑡−𝑖

2

𝑡

𝑖=1

 

for the variance. Again, it follows that the daily volatility of an asset at day t is simply the square 

root of this variance.  

 Long Term Historical Average Volatility applies equal weighting to each individual 

observation of volatility by design, regardless of how long ago that observation occurred. As 

previously discussed in Chapter 2, the EWMA and ARCH/GARCH models attempt to estimate 

optimal weights to apply to each observation of volatility. Naturally, each of these models give 

more recent observations more weight than older observations. We can then define a weighted 

model of volatility as 

𝜎𝑡
2 = ∑ 𝛼𝑖𝑟𝑡−𝑖

2

𝑡

𝑖=1

 

where the term 𝛼𝑡 is a strictly positive weight given to the observation i periods before. By 

definition, the weights must sum to 1 

∑ 𝛼𝑖 = 1

𝑡

𝑖=1

 

 Recall our previous definition of Long Term Historical Average Volatility. By squaring 

this term to get the long term historical average variance, we can define the long term historical 

average variance, 𝑉𝐿, as the sum of the squared log returns of asset S: 
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𝑉𝐿 =
1

𝑡
∑ 𝑟𝑖

2

𝑡

𝑖=1

 

 An ARCH process, as defined by Engle (1982), assigns a unique weight, 𝛾, to this long 

run average variance while applying individual weights to individual observations.  The older the 

observation, the less weight it is given. This can be formally expressed as 

𝜎𝑡
2 = 𝛾𝑉𝐿 + ∑ 𝛼𝑖𝑟𝑡−𝑖

2

𝑡

𝑖=1

 

 Traditionally, we let 

𝜔 = 𝛾𝑉𝐿 

so that the ARCH process can be rewritten as 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝑟𝑡−𝑖

2

𝑡

𝑖=1

 

 

 We can express GARCH (1, 1) as 

𝜎𝑡
2 = 𝜔 + 𝛼𝑟𝑡−1

2 + 𝛽𝜎𝑡−1
2  

with γ being the weight assigned to the long run historical average variance, 𝛼 being the weight 

assigned to the previous period’s return, and 𝛽 being the weight assigned to the long-term 

average sample variance. By design, 

𝛾 + 𝛼 +  𝛽 = 1 

Additionally, GARCH (1, 1) processes always have the constraint that 

𝛼 +  𝛽 < 1 

where 𝛼 𝑎𝑛𝑑 𝛽 are parameters estimated by finding values for those parameters which maximize 

the value of the function 
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∏
1

√2𝜋𝜎𝑖
2

exp
−𝑟𝑖

2

2𝜎𝑖
2

𝑛

𝑖=1

 

or, by taking logs, equivalently 

∑ − ln 𝜎𝑖
2 −

𝑟𝑖
2

𝜎𝑖
2

𝑛

𝑖=1

 

 There are two important features of the GARCH (1, 1) process which have been 

mentioned in Chapter 2. First, the GARCH (1, 1) weights decay exponentially at rate 𝛽. We can 

show this by substituting the previous period’s GARCH process in for 𝜎𝑡−1
2  

𝜎𝑡
2 = 𝜔 + 𝛼𝑟𝑡−1

2 + 𝛽(𝜔 + 𝛼𝑟𝑡−2
2 + 𝛽𝜎𝑡−2

2 ) 

Substituting in another period back yields 

𝜎𝑡
2 = 𝜔 + 𝛼𝑟𝑡−1

2 + 𝛽(𝜔 + 𝛼𝑟𝑡−2
2 + 𝛽(𝜔 + 𝛼𝑟𝑡−3

2 + 𝛽𝜎𝑡−3
2 )) 

Therefore, we can continue this process for n periods. The second important feature of GARCH 

(1, 1) is that as we forecast further into the future, the GARCH forecast converges towards the 

long run historical average variance 𝑉𝐿. 

 Notably, this GARCH model only gives us the next period t volatility forecast. This 

GARCH model can be rewritten using a similar substitution process as above to produce t+i 

period forecasts. This can be done as follows: 

𝜎𝑡+𝑖
2 = (𝑉𝐿 + (𝛼 + 𝛽)𝑖) ∗ (𝜎𝑡+𝑖−1

2 − 𝑉𝐿) 

This is the GARCH forecast we will use in forecasting volatility.  

 The EWMA Model we use for forecasting is a special case of GARCH (1, 1), where  

𝜔 = 0, 𝛽 = 𝜆 𝑎𝑛𝑑 𝛼 = 1 − 𝜆.  

Therefore, we can write this process as 

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡−1
2  
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Where 

0 ≤ 𝜆 ≤ 1 

Using recursive substitution as we did for GARCH for this EWMA process will yield 

𝜎𝑡
2 = (1 − 𝜆) ∑ 𝜆𝑖−1𝑟𝑛−𝑖

2 + 𝜆𝑛𝜎𝑡−𝑛
2

𝑛

𝑖=1

 

or equivalently 

𝜎𝑡 = √∑ [
(1 − 𝜆)𝜆𝑖−1

∑ (1 − 𝜆)𝜆𝑗−1𝑛
𝑗=1

] (𝑟𝑡−𝑖 − 𝑟̅)2

𝑛

𝑖=1

 

This is the number we will use for the EWMA Volatility for forecasting. We use 𝜆 = 0.94 for all 

forecasts, which is consistent with both common practice and empirical research compiled by JP 

Morgan’s RiskMetrics software (JP Morgan, 1995).  
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Chapter 4  
 

Description of Methodology 

The previous chapter outlined the main volatility forecasting models which are being 

tested. For the analysis, these models are tested on a random selection of stocks, equity indices, 

exchange rates, and commodities. Assets for which GARCH (1, 1) or EWMA could not 

converge were excluded from the process. A list of all current S&P 500 company tickers as of 

1/31/17 was downloaded from FactSet. From this, 50 companies were randomly selected. 

GARCH and EWMA did not converge for 8 of these companies, resulting in a usable sample of 

42 randomly selected companies. A similar process was done for 10 randomly selected major 

currency exchange rates; five of these exchange rates remained after discarding non-convergent 

datasets. This was done again for a set of 5 indices, 3 of which did not converge, leaving us with 

two equity indices (S&P 500 and Nikkei 225). Finally, five commodities were randomly 

selected, and again three did not converge to a feasible solution, leaving us with Gold and Silver. 

Overall, this yields us a sample of 51 randomly selected assets for forecasting. 

For each of these assets, five years of historical price data from the period 1/27/2012 to 

1/27/2017 was downloaded from FactSet. Each model was individually fit to this historical time 

series for each asset, except implied volatility. Implied volatility was measured as the average of 

the implied volatilities of at-the-money call and put options with a time to maturity closest to one 

month from 1/27/2017 from FactSet. Implied volatilities were used only for equities and thus 

were not tested on currencies, commodities, and the two indices. However, implied volatility was 

tested on a large enough sample of equities for results to be significant with the caveat that it is 
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only significant for that asset class. Each model was tested in real-time for the month of February 

as new data came in, just as a trader and/or portfolio manager would forecast volatility in 

practice. This avoids overfitting and bias in the forecasting models. 

Forecasts are specified and tested further in three ways, presenting three distinct time 

horizons: non-rolling, weekly rolling, and daily rolling. The non-rolling forecasts were done 

using only the original five years of historical data for each asset. In other words, the models 

were not re-specified or updated as new data came in during the month of February. This is 

equivalent to saying the non-rolling set is a one-month forecasted data set on all 51 assets. The 

models forecast volatility for each trading day in the month of February and March 1st, resulting 

in 23 individual daily forecasts for each of the six models for each asset, or 138 total forecasts 

for each asset and 7038 forecasts in total. The non-rolling set is the largest data set.  

The weekly-rolling data set was updated at the end of each trading week for a random 

selection of 10 assets from the 51 randomly selected assets because of computational intensity. 

These assets are SPY, ADP, DIS, VZ, MET, OXY, USDEUR, EURGBP, Nikkei 225, and Gold. 

In other words, this set would include five years of historical data plus the first week data from 

February for the second week’s forecasts; the second week’s data would be added to produce the 

third week’s forecasts, and so forth. This data set is saying we are forecasting daily volatilities 

re-specified weekly for a period of one month, with 1380 individual forecast observations total.  

Finally, the daily-rolling data set contains the same 10 assets used for the weekly-rolling 

set. Instead of being tested during the month of February, these daily forecasts were made in 

real-time for the week of 2/27/17 to 3/3/17. Each model included the original five years of 

historical data plus the data for the month of February for the daily-rolling set. These models 

were re-specified at the end of each day incorporating that day’s data to produce the next day’s 
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volatility forecast. This is the same as saying we are producing daily volatility forecasts for a 

period of one week, or five daily forecasts across six models for ten assets for a total of 300 

individual observations of volatility.  

Importantly, the 50 Day Moving Average and 200 Day Moving Average volatility 

forecasts were rolled daily across all rolling frequencies (otherwise they wouldn’t be considered 

moving averages, which is what we want to test). Implied volatility was not rolled at all because 

of computational intensity.  

Once the forecast periods were over, realized volatility for each individual day for the 

forecast period was calculated. Despite tedious academic disagreement over how to calculate 

realized volatility, the simple approach to calculating realized volatility most often used in 

practice was used. Mathematically, realized volatility for an individual observation was 

calculated as 

𝜎𝑡 = √𝜎𝑡
2 = √(𝑟𝑡 − 𝑟̅)2 

where 𝑟𝑡 is the asset’s return for that day and 𝑟̅ is the long-run average return for that asset, 

where the long-run average was also updated in accordance with the rolling frequency.   

 Each model’s accuracy was measured using a variety of statistical loss functions. Since 

there is no single best loss function, a variety of widely used loss functions was used to assess 

the models. The loss functions were Mean Square Error (MSE), Mean Absolute Percentage Error 

(MAPE), Root Mean Square Error (RMSE), Absolute Value of Mean Forecast Error (Abs MFE), 

and Log Loss Function (LLF). These are defined as follows: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝜎̂𝑡 − 𝜎𝑡)2

𝑛

𝑖=1
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𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝜎𝑡 − 𝜎̂𝑡

𝜎𝑡
|

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 

𝐴𝑏𝑠 𝑀𝐹𝐸 = |
1

𝑛
∑(𝜎𝑡 − 𝜎̂𝑡)

𝑛

𝑖=1

|  

𝐿𝐿𝐹 =  
1

𝑛
∑(ln 𝜎𝑡 − ln 𝜎̂𝑡)2

𝑛

𝑖=1

 

 The closer each of these loss functions are to 0, the more accurate the model. Therefore, a 

model is defined as “best” for a given loss function and given asset if said model has the loss 

function closest to 0. Each of these loss functions were individually calculated and then ranked 

for each model for each asset and for each rolling frequency.  

 Additionally, once each forecast period was over and the loss functions were calculated 

for each model and each individual asset, each rolling methodology’s data and forecasts were 

pooled and aggregated into a single series upon which loss functions for the models were also 

calculated. In other words, each individual asset’s forecasts and realized values were 

concatenated into a single series rendering time irrelevant, and thus there is a total of three 

aggregated series, one for each rolling frequency. The reason for doing this is it allows us to 

compile a large enough sample to see which model performed best on average across the loss 

functions. Although our results will include which models ranked the best via a counting scheme 

for each individual asset, aggregating the data into a single series allows us to provide more 

context as opposed to simply saying one model was the most accurate x times.  
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 Unfortunately, the chosen forecast methodology prevents us from performing a Diebold 

Mariano test of the statistical significance between the loss functions’ values for each 

methodology except for the daily rolling frequency. Diebold Mariano requires a large sample of 

error terms for each forecast period, where for Diebold Mariano, a forecast period is defined as 

the total number of periods a head a forecast is made for (e.g. 23 for our non-rolling 

methodology, 5 for our weekly methodology, and 1 for our daily rolling methodology). In other 

words, the DM test would only consider of the errors of each t=23 term for our non-rolling 

frequency and would disregard the errors of the t=1,2,3, … ,22 forecasts. A multivariate Diebold 

Mariano adaptation is possible in theory; however, it has not been successfully implemented in 

any statistical software for practical application and empirical work. Therefore, we will simply 

define a model as best according to a given loss function if it has the value closest to 0 for that 

loss function as previously mentioned, with the nontrivial caveat that the results have not been 

tested for statistical significance.  

 The Diebold Mariano test (DM test) of statistical significance will be used for the daily-

rolling frequency methodology’s aggregated series. We will use the R programming language 

and the “dm.test” function from the “forecast” package to perform the Diebold Mariano test on 

the errors produced from the models, where the errors are the difference between the realized 

volatility and forecast volatility for a given model. Notably, this function takes as arguments two 

vectors of error terms (one per model for comparison), the alternative hypothesis to be tested (we 

will test that the difference in loss function values between models is different from 0), the 

forecast horizon (which for our daily-rolling methodology is always 1 as we are producing 1-step 

ahead forecasts), and the power of the loss function, where the power of the loss function is 

either 1 (as is the case for linear loss functions, such as for MAPE and Abs MFE) or 2 (as is the 
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case for quadratic loss functions such as MSE, RMSE, and LLF). Therefore, the DM test will 

return equivalent test statistic values for loss functions of equivalent power. The DM test will be 

performed across all combinations of models and will thus produce two matrices of DM test 

statistics (one for each power of loss functions). Using the parenthetically aforementioned null 

hypothesis and a critical value of α=0.05, any DM test statistics greater in absolute value than 

1.96 will be considered statistically significant. 
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Chapter 5  
 

Empirical Results and Analysis 

In this chapter, we will break down the results by rolling frequency and analyze which 

model was the best at forecasting volatility over the forecast period. At the end of the chapter, we 

will also detail the overall market environment for the forecast period to provide broader context 

in which to evaluate the reliability and/or potential bias of the results. 

Non-Rolling Forecast 

 Table 1 below shows the number of times a model had the lowest value for a given loss 

function out of the total 51 assets for the non-rolling forecast. 

Table 1: Number of Times Lowest Loss Function Value for Individual Assets (Non-Rolling) 

 

 The table shows that both EWMA and the 50 Day Moving Average faired substantially 

better than the other models across all loss functions. EWMA was best across three of the loss 

functions, while the 50 Day Moving Average was best for Abs MFE, with EWMA and the 50 

Day Moving Average tying for the number of times they had the lowest LLF value. Surprisingly, 

GARCH (1, 1) performed the worst out of all models across all loss functions.  

GARCH EWMA
Historical 

Mean

Implied 

Vol.

50 Day 

MA

200 Day 

MA
Best

MSE 1 24 5 4 13 4 EWMA

MAPE 0 19 6 4 18 4 EWMA

RMSE 1 24 5 4 13 4 EWMA

Abs of MFE 1 17 5 4 20 4 50 Day MA

LLF 0 19 5 4 19 4 EWMA/50DayMA
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 Table 2 below shows the raw values for each of the loss functions for the aggregated 

series. 

Table 2: Loss Function Values for Aggregated Non-Rolling Series 

 

 Table 2 shows that for the aggregated non-rolling series, the 50 Day Moving Average had 

the lowest values across all loss functions. It is safe to conclude that the 50 Day Moving Average 

was best at forecasting volatility from t=0 through t=23 on average, with all forecasts made at 

t=0 for each of the models except the two Moving Average models. As previously noted, the 50 

and 200 Day Moving Averages do roll after each t (day) through each of the frequencies 

(otherwise they would not be moving averages). It is also apparent that the non-rolling EWMA 

performed only slightly worse across all loss functions than did the 50 Day Moving Average, and 

was thus clearly the second-best model for forecasting volatility on a non-rolling basis at t=0. 

The closeness in loss function values between EWMA and the 50 Day Moving Average is likely 

due to the similarity in the way in which the values for those models are calculated, as both are 

skewed towards favoring more recent data. 

Weekly-Rolling Forecast 

 Table 3 below shows the number of times a model had the lowest value for a given loss 

function out of the total 10 assets for the weekly-rolling forecast. 

 

GARCH EWMA
Historical 

Mean

Implied 

Vol.

50 Day 

MA

200 Day 

MA
Best

MSE 0.00994% 0.00852% 0.00981% 0.01243% 0.00830% 0.00961% 50 Day MA

MAPE 1271.55 1096.98 1277.05 1525.32 1091.51 1291.78 50 Day MA

RMSE 0.9971% 0.9230% 0.9902% 1.1150% 0.9112% 0.9804% 50 Day MA

Abs of MFE 0.5443% 0.3670% 0.5374% 0.6550% 0.3485% 0.5068% 50 Day MA

LLF 3.0934 2.7065 3.0844 3.1911 2.6701 2.9795 50 Day MA
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Table 3: Number of Times Lowest Loss Function Value for Individual Assets (Weekly-Rolling) 

 

 The table shows that EWMA had the lowest loss function four times for each loss 

function, with the long-run Mean and the 50 Day Moving Average tying for second place in all 

loss functions except MAPE. Again, GARCH (1, 1) performed the worst across the models. We 

are working with an admittedly low sample size for this rolling frequency due to computational 

limitations, which is why we aggregate the data into an individual series and evaluate the raw 

values of the loss functions for the aggregated series below.  

 Table 4 below shows the raw values for the loss functions for the aggregated series for 

the weekly-rolling forecasts. 

Table 4: Loss Function Values for Aggregated Weekly-Rolling Series 

 

 The table shows that the 50 Day Moving Average had the lowest values for three loss 

functions (MSE, RMSE, and Abs MFE) and that Implied Volatility had the lowest value for two 

(MAPE and LLF). Notably, for the loss functions for which the 50 Day Moving Average had the 

lowest value, EWMA was again the second-best performer, performing only slightly worse than 

the 50 Day Moving Average; this is again likely due to the similarity in how these models are 

calculated.  

GARCH EWMA Mean
Implied 

Vol.

50 Day 

MA

200 Day 

MA
Best

MSE 0 4 2 1 2 1 EWMA

MAPE 1 4 1 1 2 1 EWMA

RMSE 0 4 2 1 2 1 EWMA

Abs of MFE 0 4 2 1 2 1 EWMA

LLF 0 4 2 1 2 1 EWMA

GARCH EWMA Mean
Implied 

Vol.

50 Day 

MA

200 Day 

MA
Best

MSE 0.00650% 0.00593% 0.00720% 0.00804% 0.00553% 0.00677% 50 Day  MA

MAPE 1139.54 1054.57 1284.82 868.29 1072.10 1286.62 Implied  Vol.

RMSE 0.8060% 0.7700% 0.8483% 0.8969% 0.7439% 0.8231% 50 Day  MA

Abs of MFE 0.4003% 0.2856% 0.4773% 0.3980% 0.2766% 0.4325% 50 Day  MA

LLF 2.8772 2.5873 3.0757 2.5826 2.5937 2.9436 Implied  Vol.
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Daily-Rolling Forecast 

Table 5 below shows the number of times a model had the lowest value for a given loss 

function out of the total 10 assets for the weekly-rolling forecast. 

Table 5: Number of Times Lowest Loss Function Value for Individual Assets (Daily-Rolling) 

 

Again, as we are working with a small sample size of only 10 assets, these rankings 

should be taken with a grain of salt. However, the table does demonstrate that the 50 Day 

Moving Average had the lowest value for each loss function the most times for every loss 

function except MAPE. GARCH (1, 1) improved noticeably relative to other forecast frequencies 

when producing 1-step ahead forecasts. 

Table 6 below shows the raw values for the loss functions for the aggregated series for 

the daily-rolling forecasts. 

Table 6: Loss Function Values for Aggregated Daily-Rolling Series 

 

 The table shows that again the 50 Day Moving Average had the lowest loss function 

values for three of the loss functions, while both EWMA and Implied Volatility had the lowest 

GARCH EWMA Mean
Implied 

Vol.

50 Day 

MA

200 Day 

MA
Best

MSE 1 0 1 2 5 1 50 Day  MA

MAPE 0 9 0 0 1 0 EWMA

RMSE 1 0 1 2 5 1 50 Day  MA

Abs of MFE 3 0 0 2 4 1 50 Day  MA

LLF 2 0 1 1 6 0 50 Day  MA

GARCH EWMA Mean
Implied 

Vol.

50 Day 

MA

200 Day 

MA
Best

MSE 0.00480% 0.01027% 0.00577% 0.00684% 0.00471% 0.00489% 50 Day  MA

MAPE 56194.97 186.01 78706.51 312.03 52129.04 75069.76 EWMA

RMSE 0.6927% 1.0134% 0.7596% 0.8269% 0.6862% 0.6996% 50 Day  MA

Abs of MFE 0.2404% 0.6706% 0.3602% 0.2546% 0.1125% 0.3001% 50 Day  MA

LLF 3.5360 79.2766 3.8376 1.6756 3.3497 3.6787 Implied  Vol.
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value for one loss function each. GARCH (1, 1) had the second lowest values for MSE, RMSE, 

and Abs MFE, again a notable improvement from its performance on longer-horizon forecasts.  

 Table 7 presents the DM test statistics for the linear loss functions (MAPE and Abs 

MFE), with the statistically significant statistics boldfaced (recall a DM test statistic is significant 

if it is greater in absolute value than 1.96). 

Table 7: Diebold Mariano Test Statistics Matrix for Linear Loss Functions 

 

 The DM test statistics of the linear loss functions are clearly inconclusive. The table does 

not show that any single model has a consistently statistically significant difference in linear loss 

function values. Importantly, the 50 Day Moving Average has significantly different linear loss 

function values only between itself and EWMA and the long-term Mean.  

 Table 8 presents the DM test statistics of the quadratic loss functions (MSE, RMSE, and 

LLF), with the statistically significant statistics again boldfaced. 

Table 8: Diebold Mariano Test Statistics Matrix for Quadratic Loss Functions 

 

GARCH EWMA Mean
Implied 

Vol.

50 Day 

MA

200 Day 

MA

GARCH -1.6276 -4.0033 -2.4845 0.4189 -1.0083

EWMA -1.6276 0.6599 1.2241 2.0324 1.2847

Mean -4.0033 0.6599 2.3489 2.7274 2.9030

Implied Vol. -2.4845 1.2241 2.3489 1.7570 2.0065

50 Day MA 0.4189 2.0324 2.7274 1.7570 -1.0706

200 Day MA -1.0083 1.2847 2.9030 2.0065 -1.0706

GARCH EWMA Mean
Implied 

Vol.

50 Day 

MA

200 Day 

MA

GARCH -2.0563 -2.3527 -0.9189 0.2187 -0.1614

EWMA -2.0563 1.5592 2.1743 2.2923 1.7400

Mean -2.3527 1.5592 1.5169 1.6825 2.1339

Implied Vol. -0.9189 2.1743 1.5169 0.4740 1.1130

50 Day MA 0.2187 2.2923 1.6825 0.4740 -0.2390

200 Day MA -0.1614 1.7400 2.1339 1.1130 -0.2390



30 

 The DM test statistics of the quadratic loss functions are also inconclusive. EWMA, 

however, does have statistically significantly different loss function values amongst itself and 

GARCH, Implied Volatility, and the 50 Day Moving Average (the 200 Day Moving Average 

would be accepted with a lower critical value).  

Market Context and Analysis 

US equities are currently in the second longest bull market in history, spanning a period 

of over eight years. Since the election of President Donald Trump on November 8, 2017, 

developed-economy market indices around the world have rallied, with the S&P 500 climbing 

just shy of 10% from the election to March 8, 2017. The index also traded in a sub-1% range for 

50 consecutive days, one of the least volatile streaks in its history. Even more relevant to the 

purposes and results of this paper, the volatility index (VIX) is at a decade low, as shown below 

in Figure 1. 
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Figure 1: VIX 10 Year Historical Chart 

 Figure 2 below zooms in on Figure 1 to highlight the volatility of the overall market over 

the last year (up through 3/9/2017). 

 

Figure 2: VIX 1 Year Historical Chart 
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 Figure 2 highlights the fact that the VIX was at a decade low during the month of 

February, our forecast period. In other words, our forecast period was a period of abnormally low 

volatility and all-time stock market highs. With this in mind, the results of the study and the 

values of the loss functions are not very surprising. Specifically, the 50 Day Moving Average 

was likely the best performer because it incorporated only data from this period of abnormally 

low volatility, and similarly, EWMA was also a good performer because it gives more weight to 

the most recent observations of volatility. Unlike the 50 Day Moving Average, the 200 Day 

Moving Average considers data pre “Trump Rally,” which clearly diminished the model’s 

efficacy as an accurate predictor of volatility for the forecast period. This also offers a potential 

explanation as to why GARCH (1, 1) performed much more poorly than expected: one of the 

largest assumptions of GARCH is reversion to a long-term mean level of volatility, which did 

not happen at all, even for individual assets, in this forecast period.  

 Given the context of the broader market and the lack of clear statistical significance in the 

results, it is best to say that we can still not conclude which of the chosen models is the best 

forecaster of volatility. However, that does not mean that this study was unfruitful. We can 

conclude that 50 Day Moving Averages and EWMA volatility measures produce the better 

forecasts as measured by loss function values across differing time horizons than the other 

models in the study during periods of abnormally low volatility. We can also conclude that 

GARCH (1, 1) is relatively ineffective at predicting volatility during periods of low volatility for 

longer forecast horizons.  

 Interestingly, the results of this study were abnormal relative to the empirical studies 

reviewed in Chapter 2. Many of these studies produced results where GARCH or a GARCH-

family model were the most accurate predictor of future volatility. However, it is important to 
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note that few empirical studies incorporated moving averages in their tests. This could easily 

lead one to conclude that the criticism presented in Chapter 2 that mathematically complex 

models offer little value relative to simpler models is validated by the results of this study. 

Again, however, one should bear in mind the broader market context and ex-post realization of 

abnormally low volatility and one should also recognize the differences in methodology and 

forecast window/rolling frequency among this paper and others. The results did show a slight 

improvement for GARCH (1, 1) with the daily-rolling frequency, suggesting that GARCH 

performs better on shorter time horizons (although it still was not the best forecaster). Other 

empirical studies which have tested models on frequencies such as intra-day have shown that 

GARCH is the most accurate predictor of volatility on such frequencies. Although this study did 

not look at intra-day data, due to the overwhelmingly supportive empirical data from other 

studies such as those reviewed in Chapter 2, practitioners looking to forecast volatility on intra-

day data should use GARCH (1, 1). 
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Chapter 6  
 

Summary and Conclusion 

In this paper, we reviewed a sampling of the vast literature on the subject of volatility 

forecasting. We then selected models which are accessible to the average trader and portfolio 

manager to test over various forecast horizons and rolling methodologies. We tested these 

models on a sample of assets from various asset classes. We then ranked the performance of 

these models via commonly used statistical loss functions and tested the statistical significance 

of the difference in loss functions between models for the daily-rolling forecast frequency.  

We conclude that the results are relatively inconclusive and do not inform us as to which 

model is the best at predicting volatility due to the lack of clear statistical significance and 

outperformance amongst the models. We consider the broader market dynamics for the month of 

February, the chosen forecast period, and note that the broader market was in a period of 

historically low volatility during the period of study. We reason that given the market context 

allows us to conclude that models which favor recent observations of volatility are better 

predictors of future volatility than models such as GARCH (1, 1) which have an underlying 

assumption of mean reversion during periods of abnormally low volatility. Thus, the results 

suggest that practitioners use simple moving averages such as the 50 Day Moving Average 

volatility during prolonged periods of abnormally low volatility if they believe markets are likely 

to stay generally calm for their forecast period. 

Further research should seek to replicate and improve upon the methodology of this 

paper. Namely, future studies should forecast in real-time as opposed to out of sample and 
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should use different rolling frequencies to determine the efficacy of models across various 

forecast horizons. More specifically, other studies should seek to extend the methodology of this 

paper over a longer time horizon (such as for an in-sample period of one year as opposed to one 

month as was the case in this paper) and over various levels of general market volatility. In other 

words, future studies should test across multiple estimation windows and various market 

environments in order to produce more reliable results. Future studies, while also including the 

models tested in this paper, should seek to include other volatility models which were not 

included in this study, such as Autoregressive Moving Averages (ARMA), E-GARCH, or other 

n-day moving averages which may be better forecasters of volatility than those chosen for this 

study. Other studies should attempt to perform Diebold Mariano tests of statistical significance 

on loss functions between models for all rolling frequencies, assuming one can successfully 

implement a multivariate DM test which accounts for all error terms. 
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