DEPARTMENT OF FINANCE

A REPRESENTATION OF INVESTOR LEARNING BEHAVIOR THROUGH CELLULAR GENETIC ALGORITHMS

ALVARO RAMIRO PEREDO CENTELLAS
 SPRING 2017

A thesis
submitted in partial fulfillment
of the requirements for a baccalaureate degree
in Finance
with honors in Finance

Reviewed and approved* by the following:
Jingzhi Huang
Professor of Finance, McKinley Professor of Business and Professor of Mathematics
Thesis Supervisor
Brian Davis
Clinical Associate Professor of Finance
Honors Advisor

* Signatures are on file in the Schreyer Honors College.

Abstract

This paper implements a Cellular Genetic Algorithm (CGA) to compare key statistics on the earnings of a population of investors with different learning and innovation rates, defined as crossover and mutation rate, respectively. The data used was the adjusted closing price for the S\&P Index 500, 'INX', from two low volatility periods-from 2004 to 2007, and from 2014 to 2017- and a relatively high volatility period-from 2008 to 2011-. This study concluded that there exists a significant difference when investors learn from performing peers and that optimal learning rates may vary between high and low volatility periods, being particularly beneficial in the former ones.

TABLE OF CONTENTS

LIST OF FIGURES iv
LIST OF TABLES v
ACKNOWLEDGEMENTS vi
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
Chapter 3 About Genetic Algorithms 8
What is a Genetic Algorithm? 8
Gene transfer, fitness and convergence 9
Main steps of a traditional Genetic Algorithm 10
Model adaptations for this paper 12
Chapter 4 Methodology 13
Language, environment and data Sourcing 13
The "Investor" Class 14
The "DataCollector" Class 15
Creating a population of investors and a genetic pool 16
Generating the chromosomes 17
Translating an investor's chromosome 18
Calculating fitness and subset of elite investors. 21
Population breeding and mutation 23
A new population and moving onward 25
Summary diagram of the main steps 26
Chapter 5 Results 27
General parameters in the algorithm 27
Results for January 1, 2004 - January 1, 2007 27
Results for January 1, 2008 - January 1, 2011 29
Results for January 1, 2014 - January 1, 2017 30
Chapter 6 Conclusion 32
Appendix A Average data obtained from the GA for the period 2004-2007 35
A. 1 Average population capital for 30 iterations 35
A. 2 Minimum capital in the population for 30 iterations. 36
A. 3 Maximum capital in the population for 30 iterations 37
A. 4 Count of investors with overall negative return 38
A. 5 Count of investors with no earnings or losses from initial capital 39
A. 6 Count of investors with overall positive return 40
Appendix B Average data obtained from the GA for the period 2008-2011 41
B. 1 Average population capital for 30 iterations 41
B. 2 Minimum capital in the population for 30 iterations 42
B. 3 Maximum capital in the population for 30 iterations 43
B. 4 Count of investors with overall negative return 44
B. 5 Count of investors with no earnings or losses from initial capital 45
B. 6 Count of investors with overall positive return 46
Appendix C Average data obtained from the GA for the period 2014-2017 47
C. 1 Average population capital for 30 iterations 47
C. 2 Minimum capital in the population for 30 iterations 48
C. 3 Maximum capital in the population for 30 iterations 49
C. 4 Count of investors with overall negative return 50
C. 5 Count of investors with no earnings or losses from initial capital 51
C. 6 Count of investors with overall positive return 52
Appendix D Student's t-test for paired means for the data from 2004-2007. 53
D. 1 T-test for population average capital 53
D. 2 T-test for population minimum capital 54
D. 3 T-test for population maximum capital 55
D. 4 T-test for number of investors with overall negative return 56
D. 5 T-test for count of investors with no losses or earnings from initial capital 57
D. 6 T-test for number of investors with overall positive return. 58
Appendix E Student's t-test for paired means for the data from 2008-2011 59
E. 1 T-test for population average capital 59
E. 2 T-test for population minimum capital 61
E. 3 T-test for population maximum capital 62
E. 4 T-test for number of investors with overall negative return 63
E. 5 T-test for count of investors with no losses or earnings from initial capital. 64
E. 6 T-test for number of investors with overall positive return 65
Appendix F Student's t-test for paired means for the data from 2014-2017 66
F. 1 T-test for population average capital 66
F. 2 T-test for population minimum capital 67
F. 3 T-test for population maximum capital 68
F. 4 T-test for number of investors with overall negative return 69
F. 5 T-test for count of investors with no losses or earnings from initial capital 70
F. 6 T-test for number of investors with overall positive return 71
BIBLIOGRAPHY 72

LIST OF FIGURES

Figure 1: A Torus Generated in Python 16
Figure 10: Color coded example of single-point crossover 24
Figure 11:Steps of the Cellular Genetic Algorithm 26

LIST OF TABLES

Table 1 Chromosome of length $2 n-1$ 17
Table 2: Example of chromosome translation 18
Table 3: List of strategies along with their output 19
Table 4: List of operators along their translated gene. 19
Table 5: Strategy and operator list from the original chromosome. 20
Table 6: Two iterations of the translating mechanism. 20
Table 7: 2004 to 2007 statistical analysis versus the base case 28
Table 8: 2008 to 20011 statistical analysis versus the base case 30
Table 9: 2014 to 2017 statistical analysis versus the base case 31

ACKNOWLEDGEMENTS

I would like to thank Dr. Jingzhi Huang for his support and guidance during the creation of my honor thesis. I want to thank Dr. Brian Davis for his assistance and for encouraging me to follow a topic of my passion. Finally, I want to thank the faculty of the Finance, Mathematics and Computer Science departments at Penn State for providing me with all the tools that made this thesis possible.

Chapter 1

Introduction

This paper establishes a link between the behavior parameters of a population of investors and the mechanisms found in a Cellular Genetic Algorithm (CGA) over two low volatility periods (2004-2007, 2014-2017) and one high volatility period (2008-2011). Genetic Algorithms (GA) are well known for their capacity to imitate the evolutionary processes of natural selection and lead to efficient answers for non-linear or complex problems. They are particularly useful in cases when timing is as important as optimality. It is with no surprise that GAs have been implemented in the world of Finance, particularly in the search for investment strategies and sources of arbitrage. Several models have been designed in search for the most effective implementation of this type of algorithms such as the one designed by Papadamou and Stephanides (2007) and Dempster (2001).

Rather than focusing in the solution and convergence aspect of the GA, this paper will focus in how the crossover rate and mutation rate, two key parameters in the evolutionary nature of the algorithm, can be used as proper representations of the ability of investors to learn and innovate in the markets. By systematically changing these two parameters we hope to gain insight into how learning and innovative behavior in a population of investors may lead to better or worse returns in different market conditions.

To improve the representative capacity of our GA several choices regarding form and data input were made. In the interest to capture the financial markets, the model uses adjusted closing prices from the S\&P Index 500 (quote: INX). In addition, rather than using a general
form GA, a Cellular Genetic Algorithm (CGA) was implemented. The main difference between a traditional GA and a CGA is that the latter one sets the population into a grid- much like cells in an organism- and individuals are only able to breed and cross "genes" with members in nearby cells. This study found that there exists significant difference in earnings of a population of investors when changing the learning rate, primarily in high volatility periods. The study also found that optimal learning behavior is harder to achieve in low volatility periods and also is less effective in recent times compared to the past.

The rest of this thesis will provide detail to the characteristics of the model along with the results. Chapter 2 is a literature review of previous work related to the use of GAs in Finance. Chapter 3 will hold a brief description of some properties of GAs along with specifics about the model created for this paper. Chapter 4 will set the methodology, particularly with the operations of the CGA. Chapter 5 will present the results extracted from the data collected from the algorithm. Finally, Chapter 6 will provide a conclusion along with insight for future improvements and areas of research.

Chapter 2

Literature Review

Genetic Algorithms were originally created to solve optimization problems in the world of physics and engineering, outside the scope of finance. Due to their capacity to achieve acceptable answers with speed, they were particularly useful in non-linear and time sensitive problems. One of the firs published papers linking genetic algorithms to finance was Bauer and Leipins in 1994 with their book "Genetic Algorithms and Investment Strategies" in which they provided practical guidance about how genetic algorithms could develop profitable trading strategies based on fundamental analysis. It is after them that researchers in the financial markets discovered the applicability of genetic algorithms, specifically as a valid approach towards developing and choosing technical trading strategies.

One of the most cited papers regarding the use of GAs in developing trading strategies is Michael Dempster's "A Real-Time Adaptive Trading System Using Genetic Programming" published in 2001. As a professor in the University of Cambridge with a specialty in Mathematical and Computational Finance and Economics with non-linear analysis, he has published several papers in search of creating efficient trading strategies based on technical indicators. His paper on genetic algorithms concluded that a majority of indicator-based rules generate losses when used individually or collectively. However, his research also shows that it is possible to profit from entry signals resulting from combining indicators, similar to the way a technical trader would behave in the markets. Even thought, Dempster's research led up to losses
when applying the algorithm, he acknowledged the possibility of creating a GA that could be profitable in the future.

Dempster opened the door for researchers to elaborate variations of his algorithm focused in technical trading. Most studies coming after Dempster focused in optimizing his model either by changing its underlying methodologies and programming tools, or by increasing the type and quantity of inputs. One such case is "Adaptive Systems for Foreign Exchange Trading" published in 2004 by Mark Austin. According to this paper, making sensible indicators is relatively straightforward, but the real challenge relies in identifying genuinely useful combinations of such indicators. With his research, Austin was able to prove that foreign exchange markets had become more efficient over the last years by comparing the profitability thresholds of his GA over two different periods (1994-1998 vs 1999-2002). This hypothesis was also confirmed by Allen and Karjalainen (1999), where they showed that it is not possible to make money after transaction costs for highly traded stocks. An extension to Dempster's model was Austin's incorporation of indicators based on market orders and price limit orders into the algorithm, tested on the USD/JPY, EUR/USD, GBP/USD, and EUR/GBP between 2002 and 2003. However, this data is only available to market makers and it can't be attributed to information an average investor would possess. Austin concluded that incorporating flow and order data was indeed useful to generate better returns in the GA.

New and more complex tools where incorporated in Hryshko and Downs's paper "System of Foreign Exchange Trading Using Genetic Algorithms and Reinforcement Learning", published in 2004. In their research, the authors implemented previous studies on Reinforcement Learning - namely RL and Q-Learning- and decided to create a hybrid approach in which reinforcement learning mechanisms grant positive or negative feedback to the genetic algorithm.

The feedback directly affected the algorithm by changing the probability of crossing or extending certain "genes" to next generations. Results revealed that the hybrid led to improved profitability with a cyclical behavior. Due to the ever-changing nature of the markets, indicators selected loosed their applicability through time and the learning mechanism lagged to push the algorithm into a new optimum. Hryshko and Down's research led to further questions about optimality in the markets, and the use of reinforcement learning pushed the boundaries for computer programs to be able to model investor behavior and their capacity of learning from environmental cues.

Dempster's algorithm was further improved by Zhang and Ren's model, which implemented about nine different indicators. In their paper "High Frequency Foreign Exchange Trading Strategies Based on Genetic Algorithms" published in 2010, the authors included a significant upgrade by creating a neutral position in the algorithm, rather than forcing the members of the population to buy or sell. This change leads to substantial improvements in profitability of 3.7% in the span of the research, compared to Dempster's model which generated losses.

Rather than focusing on the algorithm itself, Papadamou and Stephanides in "Improving Technical Trading Systems by using a new MATLAB-Based Genetic Algorithm Procedure" (2015), focused on the effect of using different programs for the genetic algorithm, as well as proving the declared optimal parameters of population size, crossing and mutation rate. The authors point the optimal parameters from the book "Genetic Algorithms in Search, Optimization, and Machine Learning" by Goldberg. Per the authors' research, average solutions improved with population size, however the marginal benefits of increasing population size decreased drastically after size 30 . Further analysis on computation costs and returns determined
that the best value was 20. Analysis on crossover rates revealed that a change in this parameter did not critically affect the algorithm if the population size was appropriate.

Nowadays, there is still strong interest in the applicability of Genetic Algorithm in the world of financial markets. In 2014 a patent was filled for "Distributed Evolutionary Algorithm for Asset Management and Trading" by Hodjat, Shahrzad, Blondeau, Cheyer and Harrigan. The authors devised a variation of a GA which implements separate processing units that handle multiple tasks. An innovation within this system was that indicators and specific "genes" where periodically analyzed for fitness. If a strategy was set as dominant, then it would be constantly tested for a threshold, which if trespassed, would direct the algorithm to drop the strategy and proceed with one that was performing. Parallel processing units would exchange strings of chromosomes between each other to increase the subspace of optimization.

From the papers reviewed and mentioned earlier in this chapter, most, if not all, of the experiments conducted focused in developing a profit generating GA by managing the inputs and processing style of the algorithm. A dialogue was initiated by Dempster and followed several other analysts that resulted in the development of better and accurate ways of incorporating market data and mirror the decision-making process of a rational investor. From all this papers, the model seems to improve as their actions start matching more closely to the behavior of an investor. It is particularly interesting the capacity that GAs have to learn from the markets, a quality that leads the algorithm to mimic investor's behavior. Based on this, it is possible for a genetic algorithm to model investors of different learning behaviors toward incorporating successful strategies from their peers. Certainly, in the markets, not all individuals are willing to accept other's strategies just because they have been successful in recent times. Thus, we can use genetic algorithms to represent the willingness to learn of an investor and analyze which degree
of flexibility is most profitability given certain market conditions. The model used in this paper, based greatly on the simple model introduced by Dempster, systematically changes the crossover rate and mutation rate to portray such willingness to learn.

Chapter 3

About Genetic Algorithms

What is a Genetic Algorithm?

Goldberg, a professor from the University of Alabama who dedicated several of his papers toward Genetic Algorithms, defined them as "search algorithms based on the mechanics of natural selection and natural genetics" (Goldberg, 1989). The main theme within Genetic Algorithms (GAs) is the idea of robustness, the balance between efficacy and efficiency and their capacity of finding solutions in complex spaces.

Unlike other optimizations and search procedures GAs differ in four main aspects. First, GAs work with a coding of the parameter set, not the parameter itself. In other words, rather than tweaking with the parameter in small steps until a local optimal is reached, the algorithm requires to code the parameter set as a finite length string. Second, GAs search from a population of points rather than a single point. Third, GA's use the payoff from the objective function for information, not relying on derivatives or other knowledge. Finally, GA's are probabilistic in nature, without deterministic behavior.

Gene transfer, fitness and convergence

As mentioned in the previous section, GAs search for solutions by replicating the process of evolution and natural selection. Organisms that are better adapted to an environment have better chances of producing offspring and thus, passing on their genes to the next generation. The algorithm behaves similarly: instances which perform better at the objective function relative to other instances will have a higher chance of passing their "genes" to the next population. In nature if the environment changes drastically then it may happen that other organisms who were not adapted to the previous environment are now better adapted and can pass their genes to the next generation. In the algorithm, when the objective function changes there is a change in the performance of the instances and the "genes" passed over to the next population may differ.

The performance of an instance in a GA is defined as its fitness. Because the characteristics of an objective function can be varied in a GA, the way fitness is calculated is specific to the problem. In our case, fitness is calculated as the return of an investor, and the greater the return, the higher the fitness value of that instance.

In problems where the objective function does not change, or changes slightly, the GA is expected to reach convergence. Convergence can be defined in several ways:

$$
\left|F_{n+1}-F_{n}\right|<\varepsilon
$$

Where:
$-F_{n}$ is the fitness or performance of generation n
$-\varepsilon$ is a small enough threshold
Note that in this case F_{n} can be the maximum fitness of the population, or the average fitness of the population.

$$
F_{n}>\alpha
$$

Where:
$-\alpha$ is a minimum desired level of fitness
For problems with changing objective function, or where neither of the previous criteria is reached. It is typical to establish a stopping criterion:

$$
n \geq K
$$

Where:
-n is the number of generations
-K is the maximum number of generations permitted by the algorithm

Main steps of a traditional Genetic Algorithm

Since a GA is based on the mechanics found in nature, it is no surprise that the steps of such GA also share similar logic to those processes in nature related to breeding and evolution.

First step in a GA involves creating a population. The parameters found in the objective function are programmed in a set of binary strings - which are the genes- and combined into a larger string -identified as the chromosomes. The chromosome is generated randomly, making sure that the population has a proper genetic diversity, fundamental for the success of the algorithm. The solution for the algorithm is present in the initial population as a combination of their chromosomes plus some mutations.

After creating a population, the algorithm translates the gene into parameters which are evaluated in the objective function. The objective function will produce a value which then may be manipulated (comparatively with the values produced by others in the population) to provide
a fitness value. The algorithm then selects the subset of the population with highest fitness values. With that subset, the algorithm will perform one of the following operations:

- Delete all members of the population which are not in the subset and fill the empty places with the offspring of members of the subset.
- Preserve the subset, and create a roulette, in which the genes of a member are present more often the higher the fitness value. Note that in this case, instances with low fitness values still have a chance of passing their genes onward.
- Preserve the subset and cross the genes of each member not in the subset with one randomly selected member from the subset.

Producing offspring involves the concepts of crossing and mutation. The probability that a pair of instances produce offspring is defined as the crossover rate. Similarly, the probability that an offspring has a gene (bit) changed to another value different from the parent is defined as the mutation rate. Once a pair has been chosen to breed, the chromosomes are combined into a child chromosome. This new chromosome can be created in different manners. The typical method is a single point crossover (explained in further detail in the Methodology), however other frequent methods involve k-point crossover and uniform crossover.

Once the algorithm finishes creating the new population, the program evaluates the new fitness of each instance and repeats the process of selecting those with the highest fitness, breeding and mutating. This loop runs until one of the stopping criteria is reached, and the solution is provided as the genetic code of the instance with the highest fitness value.

Model adaptations for this paper

The goal of this paper is to use the mechanisms of GAs to grasp an understanding of how the learning behavior of a population of investors influence in their capacity to generate returns. Instead of looking for the "optimal" solution as a combination of trading strategies, we seek to compare how the population behaves under different crossover and mutation rates. We draw a relationship between the crossover rate and the willingness to learn from a population of investors. Similarly, we draw a relationship between the mutation rate and the capacity of innovation of a population.

Some changes were made to the algorithm to facilitate our analysis and help us portray the reality of financial markets. The population is set into a square grid shaped in the form of a torus to allow information to be transmitted with equal chance to all individuals. The mechanism that selects the pairs of instances that will breed has also been changed so to represent the way information spreads faster between members close to each other. All significant changes are detailed in the following chapter.

Chapter 4

Methodology

Language, environment and data Sourcing

The Genetic Algorithm was implemented in Python 3.5.2 with Spyder 3.0.0 as an environment. Python and particularly Spyder, were selected, because of the pre-installed packets, which permitted easy access and manipulation of data. The coding for the algorithm was based in the structure provided by David Adler (2016) for a genetic algorithm which looked for a list of integers and operators that when evaluated approached a target value.

The data used for this research was the Adjusted Closing price of the $\mathrm{S} \& \mathrm{P} 500$ Index 'INX' extracted from Yahoo! Finance through pandas library. Pandas allows direct access to financial data coming from Yahoo, Google or other sources, which is incorporated into Python and can be easily manipulated as a time series.

Information about 'INX' will be extracted from three different time periods:

1. Jan 1, 2004 - Jan 1,2007: Low volatility period with a Volatility S\&P 500 (VIX) average value of 13.7
2. Jan 1, 2008 - Jan 1,2011: High Volatility period, with a VIX average value of 28.91
3. Jan 1, 2014 - Jan 1, 2017: Low volatility period, post Great Recession, with a VIX average value of 15.56.

The "Investor" Class

To create a population capable of representing the quantitative and qualitative characteristics of an investor, it is useful to create a data structure within the program which stores such values and is readily able to be updated with each iteration of the genetic algorithm. A class in python is a good structure to perform this functions. The class "Investor" holds the following attributes:

- Chromosome: A finite binary list which codes for the strategies that will be considered for an investor and the AND/OR operands.
- Position: A binary digit $\{0,1\}$ which results from translating an investor's chromosome into a buy $\{1\}$ or neutral $\{0\}$ position.
- Earnings: Holds the earnings (or losses) generated by an investor in a time interval.
- Total Profits: A value indicating the difference between current capital and initial capital ,allocated at the beginning of the algorithm.
- Location: A set of coordinates $\{\mathrm{x}, \mathrm{y}\}$ which save the location of the investor in the grid.
- Capital: Starts with current capital and is updated with each period's earnings. Shows the total capital available to an investor.
- List of Returns: List which holds the k most recent returns of an investor. If the position by an investor is 1 then the rate of return for that period is the same as the one of the stock or asset, else it is 0 .
- Return to Date: Stores the total return on investment of an investor through the following formula:

$$
\text { Return To Date }=\ln \left(\frac{\text { Capital }_{T}}{\text { Capital }_{0}}\right)
$$

- Return Memory: Stores the average of the elements found in List of Returns for an investor

The "DataCollector" Class

This data structure will hold the population statistics for each period. Allowing us to retrieve this data and use it during our final analysis. The class "DataCollector" holds the following elements:

- Period: A list of integers [0, T] to reiterate the period in which data is collected.
- Maximum Capital: A list of elements which will store the capital of the investor in the population with the highest capital for that period.
- Minimum Capital: A list of elements which will store the capital of the investor in the population with the lowest capital for that period.
- Average Capital: A list of values which will store the average capital of the entire population of investors for that period.
- Investors in the money: Counts the number of individuals from the population that have generated a positive return from the initial capital
- Investors off the money: Counts the number of individuals from the population that have generated losses compared to the initial capital
- Neutral Investors: Counts the number of individuals from the population that have not generated losses or gains compared to the initial capital

Creating a population of investors and a genetic pool

In accordance to the CGA, a population of n^{2} investors is created and each instance is allocated into an $n \times n$ grid. During breeding period, instances will only be able to cross with investors located within a radius, representing how in the markets information may spread unevenly. Furthermore, to prevent isolation of investors located in the corners or sides of the population, the grid will represent relative locations of each instance in a torus. Whitley in his book "A genetic algorithm tutorial" (1994), observes that with this cellular structure, we expect small local pockets of similar string to form, which then compete with other pockets, resulting in fewer and larger "neighborhoods".

Figure 1: A Torus Generated in Python

Keeping in mind the goal of this paper, it is only necessary to select a few trading strategies that can be easily implemented in our algorithm and have low cost in terms of time and processing power. The trading strategies included into the genetic algorithm are the following:

- Simple moving average for 50 days, 100 days and 200 days
- Comparison of moving average 50 vs 100 days, 50 vs 200 days, 100 vs 200 days
- Momentum Oscillator (10 days)
- Slow Stochastic

Further detail about these strategies can be found in Hryshko and Downs (2004). A total of 8 strategies will make up the genetic pool, along with AND/OR links that will assure a proper diversity in the genetic makeup the population. The operands AND/OR will be represented as 1 and 0 respectively in the binary string.

Generating the chromosomes

For each instance of our "Investor" class the algorithm will randomly generate a binary string of length $2 n-1$, where n corresponds to the number of trading strategies in the genetic pool. In the case of our algorithm, with 8 strategies the program will generate a string of 15 elements.

Location	0	1	2	3	4	5		$2 n-2$
Binary Code	1	0	1	1	0	1	\ldots	1

Table 1 Chromosome of length 2n-1
In the figure above the top row represents the location of each character in the binary string (note that gene location is set in basis 0 , thus the last location is $2 n-1$). Strategies are set to
even locations including zeros, whereas AND/OR operands are allocated to odd locations. The binary string will determine whether a strategy is active $\{1\}$ or inactive $\{0\}$ and whether an AND $\{1\}$ or $\operatorname{OR}\{0\}$ operand will be used between such strategies.

Only with 15 elements the number of different chromosomes is large. Since each location is binary, the total number of possibilities is $2^{15}=32768$. In general, given n strategies, the number of possible different chromosomes is $2^{2 n-1}$

Translating an investor's chromosome

The genes found within a chromosome of an investor are read from left to right and operators are compared with the next immediate active strategy. The algorithm breaks down each chromosome into two lists: one holding the outcomes of the active strategies, and another one holding the list of operators.

Consider the following interpretation:

Location	0	1	2	3	4	5	6	\cdots	$2 n-4$	$2 \mathrm{n}-3$	$2 \mathrm{n}-2$
Binary Code	1	0	1	1	0	1	1	\cdots	1	1	0
Translation	Active	OR	Active	AND	Inactive	AND	Active	\ldots	Active	AND	Inactive

Table 2: Example of chromosome translation
This list will be split into two, and only the operators found to the immediate right of an Active gene is included in the operator list. Furthermore, if the last gene of the chromosome is inactive, then the operator to the right of the last active strategy is ignored.

The active strategy list will hold the expressed genes which will be evaluated for a Buy $\{1\}$ or Hold $\{0\}$.

Strategy List					
Active Strategies	Strategy 0	Strategy 2	Strategy 6	\ldots	Strategy 2n-4
Evaluation	1	0	1	\ldots	1
	Buy	Hold	Buy		Buy

Table 3: List of strategies along with their output
The operator list will hold the operators to the immediate right of an active strategy. Where operand $\mathrm{k} \leq 2 \mathrm{n}-5$, in this case.

Operand List					
Active Operands	Operand 1	Operand 3	Operand 7	\ldots	Operand k
Interpretation	OR	AND	\ldots	\ldots	\ldots

Table 4: List of operators along their translated gene
Finally, lists are evaluated by grabbing the first two elements of the strategy list, and using the first operand to determine if the resulting value is a 1 or 0 . The algorithm grabs the following strategy and uses the operand and the previous result to obtain a new result $\{0.1\}$. This result is further compared with the following strategy and operand and so on, until the end of both lists is reached and a position is set $\{0,1\}$.

Strategy 0	Strategy 2	Strategy 6	\ldots	Strategy 2n-4
1	0	1	\cdots	1
Buy	Hold	Buy		Buy

Operand 1	Operand 3	Operand 7	\ldots	Operand k
OR	AND	\ldots	\ldots	\ldots

Table 5: Strategy and operator list from the original chromosome
Example two iterations of the evaluation process:

First	Strategy 0	Operand 1	Strategy 2	$=$	Result
	1	OR	0	$=$	1
	Second	Operand 3	Strategy 6	$=$	Result
	1	AND	1	$=$	1

Table 6: Two iterations of the translating mechanism

Calculating fitness and subset of elite investors

After evaluating the chromosome, the investor will take a position S_{t}, such that:

$$
S_{t}=\left\{\begin{array}{l}
1 \text { if position is a buy } \\
0 \text { if no position is taken }
\end{array}\right.
$$

Starting from t , the algorithm will proceed to the next period, $\mathrm{t}+\delta$, and calculates the returns corresponding to owning the asset for such period. Thus, the return for an investor is the following:

$$
\mathrm{R}_{\mathrm{i}, \mathrm{t}+\delta}= \begin{cases}\ln \frac{\mathrm{P}_{\mathrm{t}+\delta}}{\mathrm{P}_{\mathrm{t}}}, & \mathrm{~S}_{\mathrm{t}, \mathrm{i}}=1 \\ 0, & \mathrm{~S}_{\mathrm{t}, \mathrm{i}}=0\end{cases}
$$

Where:
$-\mathrm{R}_{\mathrm{i}, \mathrm{t}+\delta}$ is the return for an investor i at time $\mathrm{t}+\delta$
$-P_{t}$ is the price of the asset at time t
$-S_{t, i}$ is the position taken by an investor i at time t

This return will be appended to an Investor.ListofReturns structure, so to be used later as a fitness indicator. Returns are independent from each other thus a new return is calculated at every new δ step. The GA developed does not provide any penalties or rewards when a significant group of investors enter or exit the market, thus we assume that investors have marginally no effect on the price of assets.

Once returns are extracted the current capital is calculated as follows:

$$
\mathrm{C}_{\mathrm{i}, \mathrm{t}+\delta}=\mathrm{C}_{\mathrm{i}, \mathrm{t}} \times\left(1+\mathrm{R}_{\mathrm{i}, \mathrm{t}+\delta}\right) \times \mathrm{I}
$$

Where:
$-\mathrm{C}_{\mathrm{i}, \mathrm{t}+\delta}$ is the total capital of investor i at time $\mathrm{t}+\delta$

- I is the investment rate, which remains constant $0<\mathrm{I} \leq 1$

Capital is dependent on previous levels of capital for an investor, thus good and bad "decisions" compound through time. In mathematical terms, for a time $\mathrm{T} \geq \mathrm{t}+3 \delta$

$$
\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{t}} \times\left(1+\mathrm{R}_{\mathrm{i}, \mathrm{t}+\delta}\right) \times\left(1+\mathrm{R}_{\mathrm{i}, \mathrm{t}+2 \delta}\right) \ldots \times\left(1+\mathrm{R}_{\mathrm{i}, \mathrm{t}+\mathrm{n} \delta}\right)
$$

Earnings for a period can be easily calculated through the following formula:

$$
E_{t+\delta}=C_{t+\delta}-C_{t}
$$

The algorithm can implement different types of fitness measures. The most direct method involves sorting the population and selecting those investors with highest capital or which generated the highest amount of earnings during the period. Under this fitness measure, we can draw the scenario where investors tend to learn from those with highest reputation, which can generate higher earnings per period due to substantial levels of capital.

A second method utilizes the list of last k returns and calculates either a simple or a weighted average of such returns. For example, the simple average can be calculated as follows:

$$
\overline{\mathrm{R}}_{1}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}+\cdots+\mathrm{R}_{\mathrm{k}}}{\mathrm{k}}
$$

Under this fitness measure, we can draw the scenario where investors tend to learn from those who report recent higher returns, independently of their level of success prior to the past k periods.

Population breeding and mutation

Once the initial population has been generated with their respective chromosomes, the genetic algorithm will run through an "accommodation" period where no crossover happens. During this time, defined to be a year before the actual analysis period, investors in the population will take a position and generate profits or losses. Differences between members of the population will increase during that year, which will allow to create an elite list of individuals that are significantly better than other members.

When the actual testing period starts, the algorithm selects a top percentage of the population - say 15% - from which nearby investors can "learn". This "elite members" will have an area of influence which is embedded on the torus shape of the grid.

For a pair of investors in the grid, one being an elite and the other an instance found within its radius of influence, the probability of them breeding is set as the crossover rate, which as a probability is bounded by 0 and 1 . If the algorithm determines that the pair is breeding then a single-point crossover is set between the chromosomes and one of the resulting children is assigned to the non-elite parent.

Figure 2: Color coded example of single-point crossover

The algorithm created selects a crossover point as a random uniform variable, thus the probability for any gene to be selected as the crossover point is $1 / n$, where n is the number of genes in a chromosome. Furthermore, each child has a $1 / 2$ probability of being assigned to the non-elite parent.

Before the selected child is assigned as the parent's new chromosome one of the child's gene may face mutation. The probability of mutation, or mutation rate $\left(M_{r}\right)$, is usually lower than the crossover rate, and we can understand it as the rate of innovation within the markets. The algorithm randomly generates a value x such that $0 \leq \mathrm{x} \leq 1$ and randomly selects a gene from the chromosome $\left(\mathrm{G}_{\mathrm{i}}\right)$ and performs the following operation:

$$
\text { if } \mathrm{x} \leq \mathrm{M}_{\mathrm{r}} \text { then } \begin{cases}\text { if } \mathrm{G}_{\mathrm{i}}=0, & \text { set } \mathrm{G}_{\mathrm{i}}=1 \\ \text { if } \mathrm{G}_{\mathrm{i}}=1, & \text { set } G_{i}=0\end{cases}
$$

A new population and moving onward

Once the algorithm has run through its first breeding cycle, the new population will consist of three groups:

- The elite members from the original population In_{0}
- The non-elite members from the original population In_{0} which did not breed with elite members
- The members with new chromosomes resulting from crossing and mutation between elite members and non-elite members

All these groups now form part of a new generation In_{1}, which may have a different behavior depending on their genetic makeup and the current state of the markets. The chromosome of each investor instance is translated, market information is processed and positions are determined. The algorithm moves to the following period, calculates returns and capital and uses the data to determine a new elite for In_{1}. Finally, the elite crosses with non-elite members from its radius of influence, and a new population is created $\left(\mathrm{In}_{2}\right)$.

The cycle repeats over and over from $\operatorname{In}_{0} \operatorname{In}_{1} \operatorname{In}_{2} \ldots \operatorname{In}_{k}$ until the algorithm reaches the end of the timeline provided. For each population, the class "DataCollector", gathers relevant statistics which will be used to write our results.

Summary diagram of the main steps

$$
\text { Generate Initial Population } \mathrm{In}_{0}
$$

\downarrow

Chromosomes are translated into positions at time t
\downarrow

Proceed to time $t+\delta$
\downarrow

Calculate Returns and Capital
\downarrow

Use Returns or Capital to select elite members
\downarrow

Store statistics of population In_{0}
\downarrow

Breed elite members with non - elite members found in their radius
\downarrow

Population In_{1}
\downarrow

Repeat process with new population at time $t+\delta$
Figure 3:Steps of the Cellular Genetic Algorithm

Chapter 5

Results

General parameters in the algorithm

The Algorithm ran with a population of 100 investors on the INX with a mutation rate of 5%, investment rate of 25%, diameter of influence of 5 cells, and an elite list consisting of 15% of our population size. The accommodation period starts a year before the beginning date of each period and ends when the beginning date is reached. (i.e. January 1, 2003- January 1, 2004). The time interval between breeding of investors, δ, has been set to 30 days (1 month). Elite members were selected by comparing their average of the last 10 period returns. The crossover rate was changed systematically to analyze the impact of learning rate on the main statistics of the population. For each crossover rate the algorithm was implemented 30 times so to obtain a proper sample size. Student's t-test for paired means was utilized to compare the crossover rates.

Results for January 1, 2004 - January 1, 2007

As it can be observed in the Appendix D. 1 the t -test results for this period show that, for population average capital, there is a significant difference between the base case of crossover rate 0 and the higher crossover rates. Particularly, there was a positive significant difference for the rates of 0.4 and 0.6 . The other rates revealed a negative impact. It is also interesting to note that the variance of population average capital was higher for all crossover rates compared to the base case, with exception of crossover rate 0.6.

Appendix D. 2 shows the t -tests for the minimum capital found in the population. For all higher crossover rates, a positive significant difference was evidenced along with lower variance compared to the base case.

Appendix D. 3 shows the t -tests for the maximum capital found in the population. For all higher crossover rates, with exception of the 100% case, there was a positive significant difference compared to the base case. Furthermore, all higher crossover rates showed lower variance compared to the base case.

Appendices D.4, D. 5 and D. 6 show the average count of positive, negative and neutral return investors, relative to the initial period, of the sample. Both the positive and negative counts show a significant positive difference (there are more of both in the population) and higher variance compared to the base case. On the other hand, the count of instances with no loss or return has a significant negative difference and higher variance for all higher crossover rates compared to the base case.

	Statistical Significance				Variance					
Crossover Rates	20%	40%	60%	80%	100%	20%	40%	60%	80%	100%
Average	Negative	Positive	Positive	Negative	Negative	Higher	Higher	Lower	Higher	Higher
Minimum	Positive	Positive	Positive	Positive	Positive	Lower	Lower	Lower	Lower	Lower
Maximum	Positive	Positive	Positive	Positive	Negative	Lower	Lower	Lower	Lower	Lower
Positive Count	Positive	Positive	Positive	Positive	Positive	Higher	Higher	Higher	Higher	Higher
Negative Count	Positive	Positive	Positive	Positive	Positive	Higher	Higher	Higher	Higher	Higher
Neutral Count	Negative	Negative	Negative	Negative	Negative	Higher	Higher	Higher	Higher	Higher

Table 7: 2004 to 2007 statistical analysis versus the base case

Results for January 1, 2008 - January 1, 2011

As evidenced in Appendix E. 1 the t-test results show that, for the population average capital, there exists a significant difference between the base case and the populations with higher crossover rate. The crossover rate has a positive impact for all higher values with exception of the population with 80% crossover rate, which shows a negative impact. Variance in average capital was lower for all cases compared to the base case, with exception of the 80% case.

Appendix E. 2 shows the t-tests for the minimum capital found in the population. For all higher crossover rates, a positive significant difference was evidenced along with lower variance compared to the base case.

Appendix E. 3 shows the t-tests for the maximum capital found in the population. For all higher crossover rates, a positive significant difference was evidenced along with lower variance compared to the base case.

Appendices E.4, E. 5 and E. 6 show the average count of positive, negative and neutral return investors, relative to the initial period, of the sample. Both the positive and negative counts show a significant positive difference (there are more of both in the population). In terms of variance, the base case displayed lower variance for number of investors with overall negative return, while showing higher variance for the number of investors with overall positive return, compared to the higher crossover rates. The count of instances with no return or loss has a significant negative difference and higher variance for all higher crossover rates compared to the base case.

	Statistical Significance				Variance					
Crossover Rates	20%	40%	60%	80%	100%	20%	40%	60%	80%	100%
Average	Positive	Positive	Positive	Negative	Positive	Lower	Lower	Lower	Higher	Lower
Minimum	Positive	Positive	Positive	Positive	Positive	Lower	Lower	Lower	Lower	Lower
Maximum	Positive	Positive	Positive	Positive	Positive	Lower	Lower	Lower	Lower	Lower
Positive Count	Positive	Positive	Positive	Positive	Positive	Lower	Lower	Lower	Lower	Lower
Negative Count	Positive	Positive	Positive	Positive	Positive	Higher	Higher	Higher	Higher	Higher
Neutral Count	Negative	Negative	Negative	Negative	Negative	Higher	Higher	Higher	Higher	Higher

Table 8: 2008 to 20011 statistical analysis versus the base case

Results for January 1, 2014 - January 1, 2017

Appendix F. 1 shows the t -tests for the population average capital in relation to the crossover rate of the population. Statistical analysis shows that there is no significant difference from the base case (0% crossover rate) for populations with the crossover rates of 20% and 60%. Analysis shows that a crossover rates of 40% and 100% has a significant negative impact on the average capital of the population compared to the base case. On the other hand, a crossover rate of 80% had a significant positive impact on the average capital of the population compared to the base case. Variance was higher for crossover rates of 60% and 80% and lower for crossover rates of $20 \%, 40 \%$ and 100% relative to the base case.

The t-tests in Appendix F. 2 present the statistical analysis on the minimum capital of the population at different crossover rates. According to the t-test, all crossover rates above 0% show a significant decrease in the minimum capital of the population. Investor populations with crossover rates above 0% also showed lower variance compared to the base case.

Statistical analysis on the maximum capital of the population at different crossover rates, as seen in the Appendix F.3, shows that all crossover rates above 0% show a significant increase compared to the base case. The variance of the base case is of larger magnitude than for the other cases with exception of the case with 100% crossover rate.

Appendices F.4, F. 5 and F. 6 show the average count of positive, negative and neutral return investors, relative to the initial period, of the sample. Both the positive and negative counts show a significant positive difference (there are more of both in the population). In terms of variance, the base case displayed lower variance for number of investors with overall negative return. For the number of investors with overall positive return, the base case shows a higher variance to all cases, with exception to the population with crossover rate of 20%. The count of instances with no return or loss has a significant negative difference and higher variance for all crossover rates higher to the base case.

	Statistical Significance				Variance					
Crossover Rates	20%	40%	60%	80%	100%	20%	40%	60%	80%	100%
Average	Unsignificant	Negative	Unsignificant	Positive	Negative	Lower	Lower	Higher	Higher	Lower
Minimum	Negative	Negative	Negative	Negative	Negative	Lower	Lower	Lower	Lower	Lower
Maximum	Positive	Positive	Positive	Positive	Positive	Lower	Lower	Lower	Lower	Higher
Positive Count	Positive	Positive	Positive	Positive	Positive	Higher	Lower	Lower	Lower	Lower
Negative Count	Positive	Positive	Positive	Positive	Positive	Higher	Higher	Higher	Higher	Higher
Neutral Count	Negative	Negative	Negative	Negative	Negative	Higher	Higher	Higher	Higher	Higher

Table 9: 2014 to 2017 statistical analysis versus the base case

Chapter 6

Conclusion

This paper attempts to determine whether the willingness to learn from its peers of a population of investors has significant impact on the population's earnings given high or low volatility market conditions. This analysis was achieved by creating a genetic algorithm which utilized different levels of crossover rates that represented the learning behavior of an investor. The algorithm was run a total of 30 times per crossover rate in $\{0,0.2,0,4,0.6,0.8,1\}$ and for each high/low volatility period as stated in the methodology (2004-2007, 2008-2011,2014-2017). The samples were then compiled into averages and then used to check for statistical significance by using Student's t-test for paired means.

The model can still be improved and adapted to be a more accurate portrayal of the behavior of investors in the market. A significant addition to the algorithm would be to allow investors to not only take a buy $\{1\}$ and hold $\{0\}$ position, but also be capable of shorting $\{-1\}$ the asset. Better results might be available by including more strategies (as genes) to the chromosomes, especially those that include information about volatility. The market environment can also be represented more accurately by introducing a penalty when a significant proportion of the population enter the markets, since in practice this would reduce the profitability of a strategy. Our analysis was realized with data from the INX on a few number of periods and more insights may be available by using the algorithm with stocks, foreign exchange or other types of assets or by using periods outside the scope of this paper. In terms of the coding itself, Reeves in "Genetic Algorithms-Principles and Perspectives: A guide to GA Theory"
(2003) mentions that real-value parameters might be better represented through a Gray Code representation, rather than the binary representation.

The analysis performed in the study reveals that there is usually a significant difference in earnings between populations of investors having different crossover rates. As observed in the results, a crossover rate above 0% will usually generate better returns and lower variance for the population if going through a period of high volatility. Further t-tests between positive cases for the period of 2008 to 2011 showed that the optimal crossover rate is around 20% and 40%. For the low volatility period, difference is significant however it is mostly negative with exceptions of some crossover rates. For the pre-financial crisis low volatility period, only crossover rates of 40% and 60% revealed a positive impact. A t-test between these two populations also revealed that 60% crossover rate is significantly better for the average return of the population. The postfinancial crisis low volatility period has only an 80% crossover rate having a significantly positive impact to the average profitability of the population. Unlike the other periods, the postrecession period also holds cases where learning behavior has no significant impact in the population.

The results suggest to investors that their learning behavior should be different between periods of high and low volatility. More specifically, investors should be more open to learn during period of high volatility, around 20% to 40% of the times, and adopt currently successful strategies. It is difficult to point to an optimal willingness to learn for periods of low volatility, particularly post-recession, as an 80% crossover rate may generate profits but also makes the probable minimum lower and maximum higher. For an individual investor, this may mean there is a tradeoff of risk and return in terms of learning behavior.

It is interesting to note that the optimal learning behavior also changes between periods with similar levels of volatility. Pre-and post-recession time intervals show that nowadays, it is harder to generate positive returns by learning from other successful investors and that it conveys higher risks compared to previous eras.

Appendix A

Average data obtained from the GA for the period 2004-2007

A. 1 Average population capital for 30 iterations

Average Population Capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	
0	968.8612	968.3994	968.295	969.3686	967.1837	968.7995
1	956.2619	958.6435	956.7122	957.7099	954.191	957.1305
2	960.7931	961.7516	960.8068	961.8554	959.6833	961.5186
3	971.8284	975.3178	977.9526	973.9696	972.4289	973.7622
4	969.3983	972.505	975.2424	971.0828	970.2606	970.7969
5	948.008	947.3443	955.138	953.0834	947.8754	946.1694
6	945.1819	944.9428	953.1215	951.0517	944.6519	943.0664
7	945.1819	944.9428	953.1215	951.0517	944.6519	943.0664
8	945.1819	944.9428	953.1215	951.0517	944.6519	943.0664
9	945.1819	944.9428	953.1215	951.0517	944.6519	943.0664
10	945.1819	944.9428	953.1215	951.0517	944.6519	943.0664
11	941.717	941.4538	950.9389	948.7514	941.2298	940.9025
12	941.717	941.4538	950.9389	948.7514	941.2298	940.9025
13	941.717	941.4538	950.9389	948.7514	941.2298	940.9025
14	956.7839	957.4952	965.3226	966.0378	957.0275	958.8741
15	913.2676	903.3395	915.8716	917.0162	904.0998	902.9386
16	906.6401	894.7816	908.3201	911.6919	895.4345	895.6901
17	906.6401	894.7816	908.3201	911.6919	895.4345	895.6901
18	896.7177	884.0476	895.3456	903.0873	883.9179	881.3596
19	896.7177	884.0476	895.3456	903.0873	883.9179	881.3596
20	896.7177	884.0476	895.3456	903.0873	883.9179	881.3596
21	896.7177	884.0476	895.3456	903.0873	883.9179	881.3596
22	893.6194	880.9502	893.1015	899.3234	880.9006	877.4144
23	893.6194	880.9502	893.1015	899.3234	880.9006	877.4144
24	888.3035	876.7904	887.8347	893.9705	875.5131	870.2213
25	888.3035	876.7904	887.8347	893.9705	875.5131	870.2213
26	888.3035	876.7904	887.8347	893.9705	875.5131	870.2213
27	888.3035	876.7904	887.8347	893.9705	875.5131	870.2213
28	888.3035	876.7904	887.8347	893.9705	875.5131	870.2213
29	896.1715	886.4561	895.3539	903.5346	885.3981	879.6664
30	914.5505	917.7623	920.773	928.0514	914.9514	896.4573
31	887.9838	870.9601	883.1035	897.3498	880.067	871.8984
32	882.8026	865.3994	877.7421	891.7803	874.446	866.3404
33	910.7722	890.9472	906.6715	923.4204	905.7725	897.1971
34	892.7251	869.7205	883.6271	899.9801	883.6779	876.7611
35	882.9309	859.4976	873.6383	889.9079	873.5746	867.0879
36	874.8847	851.7239	866.0125	881.6783	865.4198	857.7719

A. 2 Minimum capital in the population for 30 iterations

	Minimum capital in the population						
		0	0.2	0.4	0.6	0.8	
Period		0	Crossover Rate	1			
0	828.4624	828.8211	829.6698	828.4624	828.4624	829.6698	
1	785.7972	800.7505	800.431	803.4106	798.669	806.2278	
2	794.3108	804.8372	801.6686	805.2752	800.5423	807.1644	
3	798.3489	810.7695	806.778	805.5333	809.722	809.2454	
4	789.376	806.7679	804.4542	801.2717	806.782	804.5018	
5	745.34	779.941	777.8438	780.9821	778.8482	778.3929	
6	745.34	774.8268	777.1782	776.6375	775.639	774.6191	
7	745.34	774.8268	777.1782	776.6375	775.639	774.6191	
8	745.34	774.8268	777.1782	776.6375	775.639	774.6191	
9	745.34	774.8268	777.1782	776.6375	775.639	774.6191	
10	745.34	774.8268	777.1782	776.6375	775.639	774.6191	
11	744.2594	767.0474	777.1289	774.7112	769.5897	770.6668	
12	744.2594	767.0474	777.1289	774.7112	769.5897	770.6668	
13	744.2594	767.0474	777.1289	774.7112	769.5897	770.6668	
14	776.6787	768.0591	784.5695	778.1692	777.0293	774.7648	
15	720.3849	695.1798	708.887	714.2879	703.1929	712.4068	
16	693.6425	686.4256	698.7285	707.4566	692.5724	704.0131	
17	693.6425	686.4256	698.7285	707.4566	692.5724	704.0131	
18	662.5812	673.9556	681.1784	700.5001	684.3118	688.9587	
19	662.5812	673.9556	681.1784	700.5001	684.3118	688.9587	
20	662.5812	673.9556	681.1784	700.5001	684.3118	688.9587	
21	662.5812	673.9556	681.1784	700.5001	684.3118	688.9587	
22	651.5903	672.1364	679.6758	696.2825	680.4192	684.0265	
23	651.5903	672.1364	679.6758	696.2825	680.4192	684.0265	
24	610.306	662.0211	670.9	684.0025	670.2493	668.4572	
25	610.306	662.0211	670.95	684.0025	670.2493	668.4572	
26	610.306	662.0211	670.95	684.0025	670.2493	668.4572	
27	610.306	662.0211	670.95	684.0025	670.2493	668.4572	
28	610.306	662.0211	670.95	684.0025	670.2493	668.4572	
29	637.6975	669.1337	677.628	690.4986	677.6593	673.7403	
30	683.561	680.4848	693.2002	700.7906	692.728	680.3704	
31	630.5586	634.7072	654.6761	664.3875	660.5623	646.1231	
32	623.2252	629.7868	650.709	661.4544	655.9847	642.1227	
33	666.7577	644.1553	668.4219	681.0973	673.4719	655.6775	
34	641.0624	626.0726	651.8085	661.2306	654.9933	637.9754	
35	627.1175	618.2932	642.9365	654.0531	648.4556	629.908	
36	613.3593	613.2361	636.1457	646.793	642.9971	621.266	

A. 3 Maximum capital in the population for 30 iterations

Maximum capital in the population						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	
0	1076.195	1086.241	1086.749	1093.125	1089.382	1086.749
1	1063.779	1081.21	1083.56	1086.749	1085.686	1083.052
2	1067.63	1084.951	1090.477	1098.783	1097.532	1091.982
3	1120.746	1125.954	1133.536	1135.711	1135.184	1132.193
4	1114.28	1124.055	1130.477	1132.844	1133.313	1128.
5	1058.647	1110.478	1121.004	1114.561	1112.103	1103.896
6	1038.643	1108.965	1119.231	1114.281	1109.152	1102.491
7	1038.643	1108.965	1119.231	1114.281	1109.152	1102.491
8	1038.643	1108.965	1119.231	1114.281	1109.152	1102.491
9	1038.643	1108.965	1119.231	1114.281	1109.152	1102.491
10	1038.643	1108.965	1119.231	1114.281	1109.152	1102.491
11	1034.673	1108.965	1118.722	1114.281	1108.686	1101.429
12	1034.673	1108.965	1118.722	1114.281	1108.686	1101.429
13	1034.673	1108.965	1118.722	1114.281	1108.686	1101.429
14	1086.732	1162.968	1164.857	1159.135	1136.576	1141.965
15	1034.682	1120.703	1138.306	1139.039	1119.91	1113.75
16	1027.225	1111.893	1135.149	1137.535	1112.827	1109.417
17	1027.225	1111.893	1135.149	1137.535	1112.827	1109.417
18	1006.435	1103.336	1126.854	1134.294	1103.645	1098.388
19	1006.435	1103.336	1126.854	1134.294	1103.645	1098.388
20	1006.435	1103.336	1126.854	1134.294	1103.645	1098.388
21	1006.435	1103.336	1126.854	1134.294	1103.645	1098.38
22	1006.435	1099.867	1125.494	1129.841	1098.111	1092.319
23	1006.435	1099.867	1125.494	1129.841	1098.111	1092.319
24	1006.435	1099.867	1120.385	1128.949	1096.584	1089.376
25	1006.435	1099.867	1120.385	1128.949	1096.584	1089.376
26	1006.435	1099.867	1120.385	1128.949	1096.584	1089.376
27	1006.435	1099.867	1120.385	1128.949	1096.584	1089.376
28	1006.435	1099.867	1120.385	1128.949	1096.584	1089.376
29	1006.435	1117.356	1133.344	1145.224	1115.759	1106.669
30	1018.777	1179.967	1184.184	1198.046	1165.857	1147.834
31	1006.435	1134.968	1153.872	1171.981	1131.582	1126.605
32	1001.708	1127.758	1147.305	1162.662	1124.988	1120.43
33	1066.272	1183.7	1192.396	1217.994	1182.517	1170.718
34	1025.18	1154.107	1168.507	1188.371	1167.134	1146.723
35	1004.999	1141.176	1159.316	1176.474	1156.458	1134.055
36	1000	1136.253	1152.328	1165.974	1145.375	1125.88

A. 4 Count of investors with overall negative return

Number of investors with negative return from initial capital						
		0	0.2	0.4	0.6	0.8
Period		0	Crossover	Rate		
0	42.63333	42.7	43.16667	42.53333	45	42.83333
1	48.1	52.03333	55.5	54.4	58.56667	55.16667
2	47.56667	51.6	54.76667	53.6	57.36667	54.26667
3	40.1	47.46667	49.13333	49.13333	53	50.4
4	41.63333	55.2	54.73333	57	58.36667	57.53333
5	51.43333	70.7	67.63333	67.16667	72.16667	72.33333
6	51.73333	71.83333	69.06667	68.66667	73.96667	74.26667
7	51.73333	71.83333	69.06667	68.66667	73.96667	74.26667
8	51.73333	71.83333	69.06667	68.66667	73.96667	74.26667
9	51.73333	71.83333	69.06667	68.66667	73.96667	74.26667
10	51.73333	71.83333	69.06667	68.66667	73.96667	74.26667
11	52.5	73.5	69.93333	69.73333	75.66667	74.73333
12	52.5	73.5	69.93333	69.73333	75.66667	74.73333
13	52.5	73.5	69.93333	69.73333	75.66667	74.73333
14	49.23333	65.73333	63.43333	61.53333	68.03333	64.76667
15	60.76667	82.56667	79.16667	77.76667	83.73333	82.96667
16	61.06667	85.1	81.7	79.56667	86.06667	85.43333
17	61.06667	85.1	81.7	79.56667	86.06667	85.43333
18	61.53333	87.7	85.2	82.36667	88.5	88.7
19	61.53333	87.7	85.2	82.36667	88.5	88.7
20	61.53333	87.7	85.2	82.36667	88.5	88.7
21	61.53333	87.7	85.2	82.36667	88.5	88.7
22	61.53333	88.3	85.6	83.26667	88.9	89.46667
23	61.53333	88.3	85.6	83.26667	88.9	89.46667
24	61.53333	88.86667	86.43333	84.26667	89.43333	90.2
25	61.53333	88.86667	86.43333	84.26667	89.43333	90.2
26	61.53333	88.86667	86.43333	84.26667	89.43333	90.2
27	61.53333	88.86667	86.43333	84.26667	89.43333	90.2
28	61.53333	88.86667	86.43333	84.26667	89.43333	90.2
29	61.53333	86.76667	84.53333	81.33333	87.43333	88.23333
30	60.1	77.4	76.1	73.6	78.43333	83.16667
31	61.53333	88.2	85.5	81.53333	85.5	87.13333
32	67.76667	89.26667	87.2	82.9	86.36667	88.43333
33	62.46667	83.1	79.23333	73.86667	78.33333	80.16667
34	63.06667	87.5	84.7	80.13333	83.23333	84.83333
35	67.76667	89.26667	87	82.76667	85.13333	86.4
36	68.26667	90.46667	88.3	84.76667	86.96667	87.96667

A. 5 Count of investors with no earnings or losses from initial capital

Number of investors with no earnings or losses from initial capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	
0	51.36667	52	51.33333	50.73333	48.73333	51.3
1	47.16667	43.06667	39.63333	39.3	35.63333	39.56667
2	47.16667	39.73333	35.16667	35.03333	29.73333	34.46667
3	47.16667	33.7	27.9	29.86667	24.96667	29.16667
4	47.16667	26.06667	22.43333	22.33333	19.96667	22.23333
5	44.5	14.53333	13.3	15.1	11.26667	12
6	44.5	13.8	12.23333	14.1	10	10.83333
7	44.5	13.8	12.23333	14.1	10	10.83333
8	44.5	13.8	12.23333	14.1	10	10.83333
9	44.5	13.8	12.23333	14.1	10	10.83333
10	44.5	13.8	12.23333	14.1	10	10.83333
11	44.5	12.56667	11.83333	13.3	9.2	10.56667
12	44.5	12.56667	11.83333	13.3	9.2	10.56667
13	44.5	12.56667	11.83333	13.3	9.2	10.56667
14	44.5	9.966667	9.166667	10.23333	6.866667	8.666667
15	37.96667	5.2	4.8	5.566667	3.6	4.033333
16	37.96667	3.966667	3.866667	4.533333	2.733333	2.9
17	37.96667	3.966667	3.866667	4.533333	2.733333	2.9
18	37.96667	2.9	3.066667	3.233333	1.966667	1.933333
19	37.96667	2.9	3.066667	3.233333	1.966667	1.933333
20	37.96667	2.9	3.066667	3.233333	1.966667	1.933333
21	37.96667	2.9	3.066667	3.233333	1.966667	1.933333
22	37.96667	2.666667	2.933333	3.033333	1.933333	1.866667
23	37.96667	2.666667	2.933333	3.033333	1.933333	1.866667
24	37.96667	2.533333	2.733333	2.833333	1.933333	1.7
25	37.96667	2.533333	2.733333	2.833333	1.933333	1.7
26	37.96667	2.533333	2.733333	2.833333	1.933333	1.7
27	37.96667	2.533333	2.733333	2.833333	1.933333	1.7
28	37.96667	2.533333	2.733333	2.833333	1.933333	1.7
29	37.96667	1.966667	2.4	2.266667	1.633333	1.366667
30	37.96667	1.333333	1.466667	1.366667	0.666667	0.9
31	37.96667	0.6	0.6	0.8	0.333333	0.466667
32	31.73333	0.3	0.3	0.566667	0.133333	0.133333
33	31.73333	0.233333	0.133333	0.166667	0.033333	0.066667
34	31.73333	0.066667	0.066667	0.066667	0.033333	
35	31.73333	0.066667	0.033333	0	0	
36	31.73333	0.066667	0	0	0	

A. 6 Count of investors with overall positive return

Number of investors with positive return from initial capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	1
0	6	5.3	5.5	6.733333	6.266667	5.866667
1	4.733333	4.9	4.866667	6.3	5.8	5.266667
2	5.266667	8.666667	10.06667	11.36667	12.9	11.26667
3	12.73333	18.83333	22.96667	21	22.03333	20.43333
4	11.2	18.73333	22.83333	20.66667	21.66667	20.23333
5	4.066667	14.76667	19.06667	17.73333	16.56667	15.66667
6	3.766667	14.36667	18.7	17.23333	16.03333	14.9
7	3.766667	14.36667	18.7	17.23333	16.03333	14.9
8	3.766667	14.36667	18.7	17.23333	16.03333	14.9
9	3.766667	14.36667	18.7	17.23333	16.03333	14.9
10	3.766667	14.36667	18.7	17.23333	16.03333	14.9
11	3	13.93333	18.23333	16.96667	15.13333	14.7
12	3	13.93333	18.23333	16.96667	15.13333	14.7
13	3	13.93333	18.23333	16.96667	15.13333	14.7
14	6.266667	24.3	27.4	28.23333	25.1	26.56667
15	1.266667	12.23333	16.03333	16.66667	12.66667	13
16	0.966667	10.93333	14.43333	15.9	11.2	11.66667
17	0.966667	10.93333	14.43333	15.9	11.2	11.66667
18	0.5	9.4	11.73333	14.4	9.533333	9.366667
19	0.5	9.4	11.73333	14.4	9.533333	9.366667
20	0.5	9.4	11.73333	14.4	9.533333	9.366667
21	0.5	9.4	11.73333	14.4	9.533333	9.366667
22	0.5	9.033333	11.46667	13.7	9.166667	8.666667
23	0.5	9.033333	11.46667	13.7	9.166667	8.666667
24	0.5	8.6	10.83333	12.9	8.633333	8.1
25	0.5	8.6	10.83333	12.9	8.633333	8.1
26	0.5	8.6	10.83333	12.9	8.633333	8.1
27	0.5	8.6	10.83333	12.9	8.633333	8.1
28	0.5	8.6	10.83333	12.9	8.633333	8.1
29	0.5	11.26667	13.06667	16.4	10.93333	10.4
30	1.933333	21.26667	22.43333	25.03333	20.9	15.93333
31	0.5	11.2	13.9	17.66667	14.16667	12.4
32	0.5	10.43333	12.5	16.53333	13.5	11.43333
33	5.8	16.66667	20.63333	25.96667	21.63333	19.76667
34	5.2	12.43333	15.23333	19.8	16.73333	15.16667
35	0.5	10.66667	12.96667	17.23333	14.86667	13.6
36	0	9.466667	11.7	15.23333	13.03333	12.03333

Appendix B

Average data obtained from the GA for the period 2008-2011

B. 1 Average population capital for 30 iterations

Average Population Capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	1
0	1106.619	1107.645	1108.418	1102.031	1107.645	1104.821
1	1081.541	1076.979	1076.626	1075.914	1079.846	1081.553
2	1099.972	1095.632	1092.913	1092.4	1095.669	1096.903
3	1116.969	1114.184	1108.06	1107.352	1109.16	1112.541
4	1028.158	1013.512	1022.088	1031.145	1020.103	1019.676
5	997.5056	993.848	1000.522	1007.565	990.0682	999.6026
6	966.8465	976.7917	978.3907	977.7774	964.1162	972.9707
7	959.0343	972.7972	971.0991	969.9599	954.0031	966.5093
8	959.0343	972.7972	971.0991	969.9599	954.0031	966.5093
9	959.0343	972.7972	971.0991	969.9599	954.0031	966.5093
10	950.4338	962.3992	961.9669	958.1879	939.5529	953.4841
11	950.4338	962.3992	961.9669	958.1879	939.5529	953.4841
12	950.4338	962.3992	961.9669	958.1879	939.5529	53.4841
13	950.4338	962.3992	961.9669	958.1879	939.5529	953.4841
14	951.3264	964.2629	963.4945	960.0728	940.2827	955.1072
15	950.4144	960.6169	961.4182	957.8429	939.0143	953.1242
16	952.1874	962.468	963.559	960.2912	940.8268	955.906
17	952.1874	962.468	963.559	960.2912	940.8268	955.906
18	948.3915	956.3899	956.8224	956.2813	936.2739	952.6992
19	948.3915	956.3899	956.8224	956.2813	936.2739	952.6992
20	948.3915	956.3899	956.8224	956.2813	936.2739	952.6992
21	933.8013	941.4078	942.1702	941.6797	923.0731	939.0662
22	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
23	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
24	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
25	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
26	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
27	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
28	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
29	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
30	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
31	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
32	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
33	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
34	930.3423	938.4164	937.5637	934.5843	916.5671	934.4587
35	918.3606	924.6647	923.3314	920.6061	900.0229	923.0634
36	918.3606	924.6647	923.3314	920.6061	900.0229	923.0634

B. 2 Minimum capital in the population for 30 iterations

Minimum capital in the population						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	
0	1000	1000	1000	1000	1000	1000
1	992.6172	962.1923	962.1923	962.1923	962.1923	962.1923
2	1000	962.1923	962.1923	962.1923	962.1923	963.1185
3	1000	963.8527	963.8527	966.3433	963.0225	970.0943
4	909.5884	838.2211	836.7796	841.8249	837.5837	844.9006
5	909.5884	776.9737	780.9426	785.3603	779.6923	792.8168
6	803.8929	723.0486	729.2751	731.4851	714.4392	739.4772
7	754.6298	708.6455	716.8283	718.1645	700.545	723.0241
8	754.6298	708.6455	716.8283	718.1645	700.545	723.0241
9	754.6298	708.6455	716.8283	718.1645	700.545	723.0241
10	632.5803	675.283	680.0708	675.0457	664.1218	684.5328
11	632.5803	675.283	680.0708	675.0457	664.1218	684.5328
12	632.5803	675.283	680.0708	675.0457	664.1218	684.5328
13	632.5803	675.283	680.0708	675.0457	664.1218	684.5328
14	645.2463	676.6055	680.9134	676.5258	664.1218	685.2022
15	632.3048	673.9723	677.5762	675.0348	663.6047	682.8755
16	634.1133	674.4772	678.4955	677.5088	664.5872	684.5856
17	634.1133	674.4772	678.4955	677.5088	664.5872	684.5856
18	623.318	668.1618	672.2033	672.2975	660.5502	682.059
19	623.318	668.1618	672.2033	672.2975	660.5502	682.059
20	623.318	668.1618	672.2033	672.2975	660.5502	682.059
21	594.9069	655.4823	660.2149	658.9427	646.152	669.6373
22	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
23	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
24	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
25	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
26	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
27	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
28	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
29	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
30	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
31	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
32	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
33	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
34	544.1569	653.6097	652.1706	653.9286	635.9231	667.5762
35	529.8054	636.8625	634.9505	639.7702	625.7421	654.415
36	529.8054	636.8625	634.9505	639.7702	625.7421	654.415

B. 3 Maximum capital in the population for 30 iterations

	Maximum capital in the population						
		0	0.2	0.4	0.6	0.8	
Period	0	1270.088	1270.088	1270.088	1270.088	1270.088	
1270.088							
1	1222.068	1270.088	1266.257	1270.088	1265.771	1267.372	
2	1257.36	1300.878	1296.861	1300.803	1296.437	1301.601	
3	1289.906	1331.092	1325.905	1326.582	1314.928	1324.05	
4	119.847	1304.431	1297.865	1304.711	1287.067	1299.811	
5	1057.637	1303.3	1290.232	1294.519	1277.055	1292.601	
6	1057.637	1303.25	1275.393	1281.176	1274.132	1282.188	
7	1057.637	1300.433	1269.055	1280.113	1267.743	1278.152	
8	1057.637	1300.433	1269.055	1280.113	1267.743	1278.152	
9	1057.637	1300.433	1269.055	1280.113	1267.743	1278.152	
10	1057.637	1300.433	1269.055	1280.035	1267.575	1266.908	
11	1057.637	1300.433	1269.055	1280.035	1267.575	1266.908	
12	1057.637	1300.433	1269.055	1280.035	1267.575	1266.908	
13	1057.637	1300.433	1269.055	1280.035	1267.575	1266.908	
14	1057.637	1303.505	1273.697	1283.709	1269.36	1271.596	
15	1057.637	1299.863	1269.746	1282.432	1269.319	1269.811	
16	1057.637	1302.38	1275.654	1290.45	1272.944	1275.289	
17	1057.637	1302.38	1275.654	1290.45	1272.944	1275.289	
18	1057.637	1298.822	1269.503	1287.462	1270.889	1270.994	
19	1057.637	1298.822	1269.503	1287.462	1270.889	1270.994	
20	1057.637	1298.822	1269.503	1287.462	1270.889	1270.994	
21	1057.637	1282.731	1258.278	1271.765	1261.844	1261.796	
22	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
23	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
24	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
25	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
26	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
27	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
28	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
29	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
30	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
31	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
32	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
33	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
34	1057.637	1280.438	1258.278	1268.427	1254.975	1261.796	
35	1057.637	1270.803	1251.895	1257.675	1243.742	1255.627	
36	1057.637	1270.803	1251.895	1257.675	1243.742	1255.627	

B. 4 Count of investors with overall negative return

Number of investors with negative return from initial capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	1
0	0	0	0	0	0	0
1	2.866667	31.76667	33.9	31.76667	31.63333	26.33333
2	0	30.33333	32.46667	30.73333	30.6	25.53333
3	0	16.4	22.46667	21.73333	21.8	17.1
4	20	48.7	46.76667	43.7	46.26667	46
5	24.7	53.83333	52.13333	50.5	55.33333	52.03333
6	43.56667	58.43333	58.8	57.96667	61.93333	59.2
7	43.56667	59.63333	61.03333	60.1	64.76667	60.53333
8	43.56667	59.63333	61.03333	60.1	64.76667	60.53333
9	43.56667	59.63333	61.03333	60.1	64.76667	60.53333
10	43.56667	62	63.13333	62.53333	66.7	62.53333
11	43.56667	62	63.13333	62.53333	66.7	62.53333
12	43.56667	62	63.13333	62.53333	66.7	62.53333
13	43.56667	62	63.13333	62.53333	66.7	62.53333
14	43.56667	61.3	62.66667	61.96667	66.6	62.2
15	43.56667	62.63333	63.4	62.6	67	62.43333
16	43.56667	61.9	62.7	61.76667	66.56667	61.86667
17	43.56667	61.9	62.7	61.76667	66.56667	61.86667
18	43.56667	63.73333	64.53333	63	67.76667	63.13333
19	43.56667	63.73333	64.53333	63	67.76667	63.13333
20	43.56667	63.73333	64.53333	63	67.76667	63.13333
21	46.36667	67.16667	68	66.9	70.9	66.86667
22	46.36667	67.43333	68.93333	68.5	71.9	68.16667
23	46.36667	67.43333	68.93333	68.5	71.9	68.16667
24	46.36667	67.43333	68.93333	68.5	71.9	68.16667
25	46.36667	67.43333	68.93333	68.5	71.9	68.16667
26	46.36667	67.43333	68.93333	68.5	71.9	68.16667
27	46.36667	67.43333	68.93333	68.5	71.9	68.16667
28	46.36667	67.43333	68.93333	68.5	71.9	68.16667
29	46.36667	67.43333	68.93333	68.5	71.9	68.16667
30	46.36667	67.43333	68.93333	68.5	71.9	68.16667
31	46.36667	67.43333	68.93333	68.5	71.9	68.16667
32	46.36667	67.43333	68.93333	68.5	71.9	68.16667
33	46.36667	67.43333	68.93333	68.5	71.9	68.16667
34	46.36667	67.43333	68.93333	68.5	71.9	68.16667
35	50.23333	70.93333	72.06667	71.5	74.43333	71.2
36	50.23333	70.93333	72.06667	71.5	74.43333	71.

B. 5 Count of investors with no earnings or losses from initial capital

Number of investors with no earnings or losses from initial capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	
0	44.33333	44.73333	43.4	46.26667	43.96667	44.93333
1	44.33333	15.1	11.73333	16.46667	14.06667	19.86667
2	44.33333	7.933333	6.2	8.3	8.166667	11.73333
3	44.33333	3.766667	3.3	4.166667	3.733333	5.8
4	44.33333	1.666667	1.8	2.666667	1.8	2.533333
5	44.33333	1.5	1.533333	2.033333	1.233333	1.866667
6	44.33333	1.233333	1.2	1.766667	1	1.566667
7	44.33333	1.1	1.1	1.6	0.766667	1.533333
8	44.33333	1.1	1.1	1.6	0.766667	1.533333
9	44.33333	1.1	1.1	1.6	0.766667	1.533333
10	44.33333	1	0.966667	1.533333	0.766667	. 5
11	44.33333	1	0.966667	1.533333	0.766667	1.5
12	44.33333	1	0.966667	1.533333	0.766667	. 5
13	44.33333	1	0.966667	1.533333	0.766667	1.5
14	44.33333	0.9	0.9	1.533333	0.766667	1.266667
15	44.33333	0.766667	0.866667	1.433333	0.666667	1.233333
16	44.33333	0.733333	0.733333	1.3	0.633333	. 2
17	44.33333	0.733333	0.733333	1.3	0.633333	. 2
18	44.33333	0.633333	0.633333	1.2	0.566667	0.966667
19	44.33333	0.633333	0.633333	1.2	0.566667	0.966667
20	44.33333	0.633333	0.633333	1.2	0.566667	0.966667
21	44.33333	0.466667	0.366667	0.8	0.366667	0.6
22	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
23	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
24	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
25	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
26	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
27	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
28	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
29	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
30	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
31	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
32	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
33	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
34	44.33333	0.466667	0.366667	0.8	0.333333	0.533333
35	43.86667	0.433333	0.266667	0.733333	0.333333	0.
36	43.86667	0.433333	0.266667	0.733333	0.333333	0.4

B. 6 Count of investors with overall positive return

Number of investors with positive return from initial capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	1
0	55.66667	55.26667	56.6	53.73333	56.03333	55.06667
1	52.8	53.13333	54.36667	51.76667	54.3	53.8
2	55.66667	61.73333	61.33333	60.96667	61.23333	62.73333
3	55.66667	79.83333	74.23333	74.1	74.46667	77.1
4	35.66667	49.63333	51.43333	53.63333	51.93333	51.46667
5	30.96667	44.66667	46.33333	47.46667	43.43333	46.1
6	12.1	40.33333	40	40.26667	37.06667	39.23333
7	12.1	39.26667	37.86667	38.3	34.46667	37.93333
8	12.1	39.26667	37.86667	38.3	34.46667	37.93333
9	12.1	39.26667	37.86667	38.3	34.46667	37.93333
10	12.1	37	35.9	35.93333	32.53333	35.96667
11	12.1	37	35.9	35.93333	32.53333	35.96667
12	12.1	37	35.9	35.93333	32.53333	35.96667
13	12.1	37	35.9	35.93333	32.53333	35.96667
14	12.1	37.8	36.43333	36.5	32.63333	36.53333
15	12.1	36.6	35.73333	35.96667	32.33333	36.33333
16	12.1	37.36667	36.56667	36.93333	32.8	36.93333
17	12.1	37.36667	36.56667	36.93333	32.8	36.93333
18	12.1	35.63333	34.83333	35.8	31.66667	35.9
19	12.1	35.63333	34.83333	35.8	31.66667	35.9
20	12.1	35.63333	34.83333	35.8	31.66667	35.9
21	9.3	32.36667	31.63333	32.3	28.73333	32.53333
22	9.3	32.1	30.7	30.7	27.76667	31.3
23	9.3	32.1	30.7	30.7	27.76667	31.3
24	9.3	32.1	30.7	30.7	27.76667	31.3
25	9.3	32.1	30.7	30.7	27.76667	31.3
26	9.3	32.1	30.7	30.7	27.76667	31.3
27	9.3	32.1	30.7	30.7	27.76667	31.3
28	9.3	32.1	30.7	30.7	27.76667	31.3
29	9.3	32.1	30.7	30.7	27.76667	31.3
30	9.3	32.1	30.7	30.7	27.76667	31.3
31	9.3	32.1	30.7	30.7	27.76667	31.3
32	9.3	32.1	30.7	30.7	27.76667	31.3
33	9.3	32.1	30.7	30.7	27.76667	31.3
34	9.3	32.1	30.7	30.7	27.76667	31.3
35	5.9	28.63333	27.66667	27.76667	25.23333	28.4
36	5.9	28.63333	27.66667	27.76667	25.23333	28.

Appendix C

Average data obtained from the GA for the period 2014-2017

C. 1 Average population capital for 30 iterations

		Crerage Population Capital						
		0	0.2	0.4	0.6	0.8		
Period	0	Crossover Rate	1					
0	997.1079	997.4735	997.4416	997.5051	997.4094	997.6399		
1	998.0293	998.2461	998.0253	998.2841	998.1104	998.2224		
2	1004.799	1006.859	1005.782	1007.444	1005.161	1005.805		
3	1004.799	1006.859	1005.782	1007.444	1005.161	1005.805		
4	1004.799	1006.859	1005.782	1007.444	1005.161	1005.805		
5	1004.799	1006.859	1005.782	1007.444	1005.161	1005.805		
6	997.5866	998.7981	998.5911	999.7698	998.9355	998.1782		
7	996.1364	997.6611	997.4495	998.5331	997.9205	996.7927		
8	995.0093	996.731	996.4865	997.2087	996.6491	995.8215		
9	986.0627	989.5617	987.7909	986.5389	986.7597	980.415		
10	986.0627	989.5617	987.7909	986.5389	986.7597	980.415		
11	986.0627	989.5617	987.7909	986.5389	986.7597	980.415		
12	985.0194	987.9939	986.7631	984.6989	985.5415	979.6857		
13	985.0194	987.9939	986.7631	984.6989	985.5415	979.6857		
14	985.0194	987.9939	986.7631	984.6989	985.5415	979.6857		
15	990.9157	992.5086	991.5992	991.0441	992.3836	986.5805		
16	990.9157	992.5086	991.5992	991.0441	992.3836	986.5805		
17	983.8532	983.4124	982.4329	982.5136	983.2699	978.2632		
18	979.3762	979.1846	978.1846	977.7507	978.7501	974.0406		
19	981.2944	980.7029	979.9747	979.9047	980.3345	976.112		
20	998.0914	996.0748	997.6938	1000.099	996.9933	991.7665		
21	984.2052	979.3478	980.4861	984.7014	982.2747	978.9177		
22	988.2953	982.9233	983.9994	988.1965	986.4792	982.4372		
23	998.018	992.4776	993.4556	997.4541	997.3697	991.6827		
24	1000.166	994.9279	995.8288	999.7097	999.8502	994.0873		
25	1000.166	994.9279	995.8288	999.7097	999.8502	994.0873		
26	1000.166	994.9279	995.8288	999.7097	999.8502	994.0873		
27	1025.491	1023.126	1023.63	1025.829	1027.359	1018.784		
28	1032.747	1032.603	1032.046	1034.793	1034.991	1025.609		
29	1019.633	1016.47	1015.757	1019.672	1021.032	1011.646		
30	1012.7	1009.743	1008.902	1012.098	1013.808	1004.881		
31	1012.7	1009.743	1008.902	1012.098	1013.808	1004.881		
32	1017.295	1014.586	1013.705	1016.14	1018.883	1010.256		
33	1032.747	1032.217	1031.387	1031.064	1035.952	1025.664		
34	1043.852	1046.507	1043.784	1044.782	1047.563	1038.68		
35	1023.885	1019.713	1021.652	1022.352	1026.867	1018.201		
36	1026.879	1022.843	1024.136	1025.462	1029.117	1021.126		

C. 2 Minimum capital in the population for 30 iterations

	Minimum capital in the population						
	Crossover Rate						
Period	0	0.2	0.4	0.6	0.8	1	
0	941.0376	940.7501	941.3252	942.0509	940.7501	940.4724	
1	945.2766	941.0324	941.6075	942.192	940.8912	941.204	
2	961.581	945.4985	945.1777	945.6826	941.1788	945.2799	
3	961.581	945.4985	945.1777	945.6826	941.1788	945.2799	
4	961.581	945.4985	945.1777	945.6826	941.1788	945.2799	
5	961.581	945.4985	945.1777	945.6826	941.1788	945.2799	
6	945.5729	934.4664	935.5125	934.7958	932.3799	934.1824	
7	942.1641	933.3382	934.3659	933.6842	931.4058	932.7376	
8	939.4295	932.7331	932.63	932.3351	929.533	931.9992	
9	908.5974	906.1392	901.726	904.3912	903.7793	900.6223	
10	908.5974	906.1392	901.726	904.3912	903.7793	900.6223	
11	908.5974	906.1392	901.726	904.3912	903.7793	900.6223	
12	907.8569	903.2	899.6659	902.5432	900.8589	898.9727	
13	907.8569	903.2	899.6659	902.5432	900.8589	898.9727	
14	907.8569	903.2	899.6659	902.5432	900.8589	898.9727	
15	914.1755	903.5983	899.7763	903.3469	903.3597	901.7867	
16	914.1755	903.5983	899.7763	903.3469	903.3597	901.7867	
17	897.8148	893.8667	889.1903	894.6178	891.1084	891.7408	
18	889.1809	889.6857	885.6418	889.6568	887.5277	888.0552	
19	893.4974	890.8393	887.0712	892.1909	888.6443	890.1792	
20	931.2853	895.8314	894.0084	903.4807	898.2941	896.4446	
21	907.5881	878.2023	873.0228	888.933	880.9816	880.2167	
22	915.437	879.7232	875.9334	891.59	883.6335	882.804	
23	930.2865	886.5467	882.8045	897.0277	891.7696	888.0743	
24	933.9492	888.5191	885.1315	899.1457	894.0987	890.7777	
25	933.9492	888.5191	885.1315	899.1457	894.0987	890.7777	
26	933.9492	888.5191	885.1315	899.1457	894.0987	890.7777	
27	975.1842	906.1114	902.4286	909.6792	909.5456	903.4734	
28	981.678	912.2649	910.2711	917.983	915.8013	909.2366	
29	966.4416	898.3379	893.4281	903.0935	901.5659	896.0349	
30	956.7833	890.7124	885.8093	895.5772	893.906	889.6927	
31	956.7833	890.7124	885.8093	895.5772	893.906	889.6927	
32	965.0665	892.0181	891.223	898.8516	899.5682	894.0297	
33	983.277	901.9298	898.0572	907.0079	910.0307	904.3407	
34	983.277	911.7234	909.4305	918.0216	919.0067	913.4747	
35	980.1522	883.8851	890.5185	892.5109	895.7716	889.6719	
36	981.9728	886.8004	892.5081	894.638	896.9645	892.9639	

C. 3 Maximum capital in the population for 30 iterations

	Maximum capital in the population						
		0	0.2	0.4	0.6	0.8	1
Period	0	1033.091	1033.091	1033.091	1033.091	1033.091	1033.091
1	1036.193	1035.728	1035.107	1035.262	1035.883	1035.658	
2	1054.066	1051.371	1050.103	1052.169	1049.387	1050.818	
3	1054.066	1051.371	1050.103	1052.169	1049.387	1050.818	
4	1054.066	1051.371	1050.103	1052.169	1049.387	1050.818	
5	1054.066	1051.371	1050.103	1052.169	1049.387	1050.818	
6	1035.885	1049.212	1047.323	1049.698	1046.995	1046.916	
7	1031.219	1048.621	1046.222	1048.119	1046.521	1046.105	
8	1026.488	1047.667	1045.582	1047.32	1045.724	1045.106	
9	1019.234	1047.664	1045.017	1046.434	1044.435	1043.115	
10	1019.234	1047.664	1045.017	1046.434	1044.435	1043.115	
11	1019.234	1047.664	1045.017	1046.434	1044.435	1043.115	
12	1019.234	1046.622	1044.697	1044.805	1043.594	1042.076	
13	1019.234	1046.622	1044.697	1044.805	1043.594	1042.076	
14	1019.234	1046.622	1044.697	1044.805	1043.594	1042.076	
15	1056.131	1080.807	1079.646	1077.193	1077.544	1073.971	
16	1056.131	1080.807	1079.646	1077.193	1077.544	1073.971	
17	1036.92	1071.842	1070.671	1070.456	1069.566	1067.922	
18	1026.948	1068.714	1066.646	1066.743	1064.621	1064.222	
19	1031.934	1070.288	1067.875	1068.625	1066.65	1067.363	
20	1073.249	1100.975	1096.968	1098.775	1098.717	1093.659	
21	1045.94	1084.265	1083.475	1086.056	1083.886	1084.175	
22	1054.852	1088.678	1086.516	1090.647	1088.868	1090.031	
23	1076.659	1102.453	1100.102	1106.133	1102.844	1103.305	
24	1080.898	1105.174	1102.998	1108.589	1105.474	1105.967	
25	1080.898	1105.174	1102.998	1108.589	1105.474	1105.967	
26	1080.898	1105.174	1102.998	1108.589	1105.474	1105.967	
27	1130.869	1146.761	1145.267	1148.992	1147.009	1143.575	
28	1145.187	1157.989	1155.502	1158.341	1157.719	1151.766	
29	1119.31	1141.377	1141.339	1144.242	1145.962	1137.831	
30	1103.76	1134.566	1134.895	1137.972	1139.571	1130.118	
31	1103.76	1134.566	1134.895	1137.972	1139.571	1130.118	
32	1114.357	1140.752	1141.778	1144.1	1146.472	1138.177	
33	1161.552	1176.831	1179.044	1172.476	1171.905	1162.612	
34	1183.778	1198.122	1194.019	1186.794	1188	1178.003	
35	1143.815	1176.519	1175.408	1171.321	1173.996	1163.118	
36	1150.624	1180.017	1177.784	1175.058	1177.131	1166.802	
3							

C. 4 Count of investors with overall negative return

Number of investors with negative return from initial capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	1
0	29.6	29	28.76667	29	28	28.65517
1	29.6	29	28.76667	29	28	28.65517
2	17.26667	19.5	21.23333	19.46667	21.1	20.68966
3	17.26667	19.5	21.23333	19.46667	21.1	20.68966
4	17.26667	19.5	21.23333	19.46667	21.1	20.68966
5	17.26667	19.5	21.23333	19.46667	21.1	20.68966
6	36.66667	49.53333	47.9	47.66667	43.83333	49.31034
7	38.1	53.9	52.43333	52.8	49.43333	54.55172
8	39.1	56.46667	56.16667	57.4	54.83333	57.72414
9	49.66667	61.83333	62.5	64.7	61.36667	67.51724
10	49.66667	61.83333	62.5	64.7	61.36667	67.51724
11	49.66667	61.83333	62.5	64.7	61.36667	67.51724
12	51.16667	64.06667	63.96667	66.86667	62.76667	68.13793
13	51.16667	64.06667	63.96667	66.86667	62.76667	68.13793
14	51.16667	64.06667	63.96667	66.86667	62.76667	68.13793
15	44.26667	60.2	60.06667	61.33333	57.4	62.72414
16	44.26667	60.2	60.06667	61.33333	57.4	62.72414
17	52.1	73.43333	74.03333	73.1	70.9	72.58621
18	54.76667	76.93333	77.7	77.66667	75.16667	76
19	54.53333	74.8	75.2	75.03333	72.96667	73.82759
20	33.7	55.5	52.36667	50.26667	52.5	57.7931
21	51.23333	70.33333	68.33333	64.23333	65.56667	67.17241
22	48.9	67	65.56667	61.3	62.3	64.55172
23	34.93333	58.13333	56.36667	52.96667	52.36667	57.68966
24	34.73333	55.73333	53.53333	50.96667	50.2	55.82759
25	34.73333	55.73333	53.53333	50.96667	50.2	55.82759
26	34.73333	55.73333	53.53333	50.96667	50.2	55.82759
27	9.333333	30.73333	32.13333	31.1	31.13333	36.48276
28	7.9	25.66667	27	26.3	26.96667	32.58621
29	10.2	36.4	38.83333	36.06667	35.5	42
30	15.23333	41.73333	43.56667	42.1	40.36667	47.27586
31	15.23333	41.73333	43.56667	42.1	40.36667	47.27586
32	12.03333	38.16667	40.66667	38.8	36.73333	43.2069
33	6.833333	28.1	30.23333	29.66667	27.96667	34.82759
34	5.533333	20.7	24.6	22.7	22.66667	27.89655
35	16.3	37.43333	37	36.7	33.83333	39.31034
36	14.36667	35.06667	35.56667	34.56667	32.76667	37.44828

C. 5 Count of investors with no earnings or losses from initial capital

Count of investors with no earnings or losses from initial capital						
	Crossover Rate					
Period	0	0.2	0.4	0.6	0.8	1
0	58.83333	58.66667	58.46667	57.86667	59.6	58.24138
1	56.86667	49.93333	50.86667	47.3	50.63333	50.68966
2	49.36667	26.36667	28.16667	22.3	30.16667	29.27586
3	49.36667	26.36667	28.16667	22.3	30.16667	29.27586
4	49.36667	26.36667	28.16667	22.3	30.16667	29.27586
5	49.36667	26.36667	28.16667	22.3	30.16667	29.27586
6	43.2	14.36667	17.23333	12.73333	19.4	15.06897
7	43.2	11.43333	13.6	9.5	15.43333	10.58621
8	43.2	9.7	10.96667	6.233333	11.26667	8.586207
9	43.2	8.8	9.033333	4.9	9.433333	6.655172
10	43.2	8.8	9.033333	4.9	9.433333	6.655172
11	43.2	8.8	9.033333	4.9	9.433333	6.655172
12	43.2	7.866667	8.7	4.3	8.466667	6.448276
13	43.2	7.866667	8.7	4.3	8.466667	6.448276
14	43.2	7.866667	8.7	4.3	8.466667	6.448276
15	43.2	7.3	7.966667	4.033333	7.9	5.689655
16	43.2	7.3	7.966667	4.033333	7.9	5.689655
17	43.2	3.6	3.366667	1.666667	4.533333	3.206897
18	41.56667	2.233333	1.966667	0.366667	2.6	1.758621
19	41.56667	1.633333	1.266667	0.266667	1.766667	0.793103
20	40.9	1.033333	0.866667	0.1	0.966667	0.344828
21	39.76667	0.333333	0.3	0.1	0.633333	0.103448
22	39.76667	0.2	0.133333	0.066667	0.333333	0.068966
23	39.76667	0.2	0.066667	0.033333	0.066667	0.034483
24	39.76667	0.066667	0.033333	0.033333	0	0
25	39.76667	0.066667	0.033333	0.033333	0	0
26	39.76667	0.066667	0.033333	0.033333	0	0
27	39.76667	0.066667	0.033333	0.033333	0	0
28	39.76667	0	0	0	0	0
29	39.76667	0	0	0	0	0
30	39.76667	0	0	0	0	0
31	39.76667	0	0	0	0	0
32	39.76667	0	0	0	0	0
33	39.76667	0	0	0	0	0
34	39.76667	0	0	0	0	0
35	39.76667	0	0	0	0	0
36	39.76667	0	0	0	0	0

C. 6 Count of investors with overall positive return

Number of investors with positive return from initial capital						
		0	0.2	0.4	0.6	0.8
Period	0	0.4	1			
0	11.56667	12.33333	12.76667	13.13333	12.4	13.10345
1	13.53333	21.06667	20.36667	23.7	21.36667	20.65517
2	33.36667	54.13333	50.6	58.23333	48.73333	50.03448
3	33.36667	54.13333	50.6	58.23333	48.73333	50.03448
4	33.36667	54.13333	50.6	58.23333	48.73333	50.03448
5	33.36667	54.13333	50.6	58.23333	48.73333	50.03448
6	20.13333	36.1	34.86667	39.6	36.76667	35.62069
7	18.7	34.66667	33.96667	37.7	35.13333	34.86207
8	17.7	33.83333	32.86667	36.36667	33.9	33.68966
9	7.133333	29.36667	28.46667	30.4	29.2	25.82759
10	7.133333	29.36667	28.46667	30.4	29.2	25.82759
11	7.133333	29.36667	28.46667	30.4	29.2	25.82759
12	5.633333	28.06667	27.33333	28.83333	28.76667	25.41379
13	5.633333	28.06667	27.33333	28.83333	28.76667	25.41379
14	5.633333	28.06667	27.33333	28.83333	28.76667	25.41379
15	12.53333	32.5	31.96667	34.63333	34.7	31.58621
16	12.53333	32.5	31.96667	34.63333	34.7	31.58621
17	4.7	22.96667	22.6	25.23333	24.56667	24.2069
18	3.666667	20.83333	20.33333	21.96667	22.23333	22.24138
19	3.9	23.56667	23.53333	24.7	25.26667	25.37931
20	25.4	43.46667	46.76667	49.63333	46.53333	41.86207
21	9	29.33333	31.36667	35.66667	33.8	32.72414
22	11.33333	32.8	34.3	38.63333	37.36667	35.37931
23	25.3	41.66667	43.56667	47	47.56667	42.27586
24	25.5	44.2	46.43333	49	49.8	44.17241
25	25.5	44.2	46.43333	49	49.8	44.17241
26	25.5	44.2	46.43333	49	49.8	44.17241
27	50.9	69.2	67.83333	68.86667	68.86667	63.51724
28	52.33333	74.33333	73	73.7	73.03333	67.41379
29	50.03333	63.6	61.16667	63.93333	64.5	58
30	45	58.26667	56.43333	57.9	59.63333	52.72414
31	45	58.26667	56.43333	57.9	59.63333	52.72414
32	48.2	61.83333	59.33333	61.2	63.26667	56.7931
33	53.4	71.9	69.76667	70.33333	72.03333	65.17241
34	54.7	79.3	75.4	77.3	77.33333	72.10345
35	43.93333	62.56667	63	63.3	66.16667	60.68966
36	45.86667	64.93333	64.43333	65.43333	67.23333	62.55172

Appendix D

Student's t-test for paired means for the data from 2004-2007

D. 1 T-test for population average capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	1
Mean	918.0538	910.2147	Mean	918.0538	908.4855
Variance	925.1722	1439.27	Variance	925.1722	1447.606
Observations	37	37	Observations	37	37
Pearson Correlation	0.994814		Pearson Correlation	0.998585	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	5.759854		t Stat	7.421345	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$7.28 \mathrm{E}-07$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	4.63E-09	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.46 \mathrm{E}-06$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	9.27E-09	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	918.0538	919.5699	Mean	918.0538	911.5923
Variance	925.1722	1195.987	Variance	925.1722	1259.368
Observations	37	37	Observations	37	37
Pearson Correlation	0.994305		Pearson Correlation	0.997351	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-1.70249		t Stat	7.010531	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.048642		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$1.59 \mathrm{E}-08$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.097284		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.18 \mathrm{E}-08$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.6	Crossover Rate	0.4	0.6
Mean	918.0538	924.0965	Mean	919.5699	924.0965
Variance	925.1722	860.9198	Variance	1195.987	860.9198
Observations	37	37	Observations	37	37
Pearson Correlation	0.996644		Pearson Correlation	0.994017	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-13.7494		t Stat	-4.37455	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	3.37E-16		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$4.98 \mathrm{E}-05$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$6.75 \mathrm{E}-16$		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	$9.97 \mathrm{E}-05$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	

D. 2 T-test for population minimum capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	694.9686	711.0628	Mean	694.9686	727.4192
Variance	4356.871	4293.487	Variance	4356.871	2830.743
Observations	37	37	Observations	37	37
Pearson Correlation	0.949517		Pearson Correlation	0.959738	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-4.68351		t Stat	-9.33956	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.97 \mathrm{E}-05$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	1.87E-11	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	3.94E-05		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.73 \mathrm{E}-11$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	694.9686	720.0913	Mean	694.9686	719.7714
Variance	4356.871	3546.758	Variance	4356.871	3321.867
Observations	37	37	Observations	37	37
Pearson Correlation	0.962581		Pearson Correlation	0.963373	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-8.33907		t Stat	-8.07867	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$3.14 \mathrm{E}-10$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	6.67E-10	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	6.27E-10		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.33 \mathrm{E}-09$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	694.9686	718.0771			
Variance	4356.871	3758.706			
Observations	37	37			
Pearson Correlation	0.958683				
Hypothesized Mean Difference	0				
df	36				
t Stat	-7.44491				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	4.32E-09				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$8.64 \mathrm{E}-09$				
t Critical two-tail	2.028094				

D. 3 T-test for population maximum capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	1031.756	1115.669	Mean	1031.756	1135.611
Variance	984.4397	556.7421	Variance	984.4397	797.6349
Observations	37	37	Observations	37	37
Pearson Correlation	0.127359		Pearson Correlation	-0.19668	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-13.8786		t Stat	-13.6858	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	2.54E-16		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	3.88E-16	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	5.07E-16		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$7.77 \mathrm{E}-16$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	1031.756	1130.356	Mean	1031.756	1115.961
Variance	984.4397	529.7139	Variance	984.4397	527.4681
Observations	37	37	Observations	37	37
Pearson Correlation	-0.11662		Pearson Correlation	0.167327	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-14.6214		t Stat	-14.3684	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	5.12E-17		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$8.77 \mathrm{E}-17$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.02 \mathrm{E}-16$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.75 \mathrm{E}-16$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	1031.756	1108.705			
Variance	984.4397	415.0271			
Observations	37	37			
Pearson Correlation	0.283304				
Hypothesized Mean Difference	0				
df	36				
t Stat	-14.5329				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	6.17E-17				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.23 \mathrm{E}-16$				
t Critical two-tail	2.028094				

D. 4 T-test for number of investors with overall negative return

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	57.0036	77.88018	Mean	57.0036	73.86577
Variance	53.79437	181.4168	Variance	53.79437	126.9818
Observations	37	37	Observations	37	37
Pearson Correlation	0.943643		Pearson Correlation	0.932795	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-18.184		t Stat	-19.8923	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$4.99 \mathrm{E}-20$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.62 \mathrm{E}-21$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	9.97E-20		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	5.23E-21	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	57.0036	75.75135	Mean	57.0036	78.7991
Variance	53.79437	152.4649	Variance	53.79437	138.3254
Observations	37	37	Observations	37	37
Pearson Correlation	0.957814		Pearson Correlation	0.910841	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-19.92		t Stat	-22.4167	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	2.5E-21		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	4.85E-23	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	5E-21		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	9.7E-23	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	57.0036	78.85766			
Variance	53.79437	164.6935			
Observations	37	37			
Pearson Correlation	0.919506				
Hypothesized Mean Difference	0				
df	36				
t Stat	-19.7311				
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$3.42 \mathrm{E}-21$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	6.85E-21				
t Critical two-tail	2.028094				

D. 5 T-test for count of investors with no losses or earnings from initial capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	40.24685	10.08468	Mean	40.24685	9.892793
Variance	26.30182	168.6345	Variance	26.30182	143.1472
Observations	37	37	Observations	37	37
Pearson Correlation	0.838439		Pearson Correlation	0.856114	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	20.1071		t Stat	23.0101	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.83 \mathrm{E}-21$		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$2.01 \mathrm{E}-23$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.67 \mathrm{E}-21$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.02 \mathrm{E}-23$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	40.24685	9.322523	Mean	40.24685	7.785586
Variance	26.30182	141.4279	Variance	26.30182	119.688
Observations	37	37	Observations	37	37
Pearson Correlation	0.832372		Pearson Correlation	0.809539	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	23.11976		t Stat	26.58898	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.71 \mathrm{E}-23$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.47 \mathrm{E}-25$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	3.43E-23		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$2.93 \mathrm{E}-25$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	40.24685	8.540541			
Variance	26.30182	145.684			
Observations	37	37			
Pearson Correlation	0.814758				
Hypothesized Mean Difference	0				
df	36				
t Stat	22.86969				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.47 \mathrm{E}-23$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	4.94E-23				
t Critical two-tail	2.028094				

D. 6 T-test for number of investors with overall positive return

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	2.74955	12.03514	Mean	2.74955	16.24144
Variance	8.87189	17.24993	Variance	8.87189	18.86552
Observations	37	37	Observations	37	37
Pearson Correlation	0.548726		Pearson Correlation	0.355225	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-15.9466		t Stat	-19.0567	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$3.38 \mathrm{E}-18$		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$1.08 \mathrm{E}-20$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$6.76 \mathrm{E}-18$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$2.15 \mathrm{E}-20$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	2.74955	14.92613	Mean	2.74955	13.41532
Variance	8.87189	24.48458	Variance	8.87189	22.38744
Observations	37	37	Observations	37	37
Pearson Correlation	0.533327		Pearson Correlation	0.63348	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-17.6373		t Stat	-17.7206	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.34 \mathrm{E}-19$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	1.15E-19	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$2.69 \mathrm{E}-19$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$2.31 \mathrm{E}-19$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	2.74955	12.6018			
Variance	8.87189	19.92247			
Observations	37	37			
Pearson Correlation	0.631537				
Hypothesized Mean Difference	0				
df	36				
t Stat	-17.2984				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	2.51E-19				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	5.03E-19				
t Critical two-tail	2.028094				

Appendix E

Student's t-test for paired means for the data from 2008-2011

E. 1 T-test for population average capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	961.9652	969.0734	Mean	961.9652	966.9363
Variance	2864.102	2455.001	Variance	2864.102	2525.134
Observations	37	37	Observations	37	37
Pearson Correlation	0.996129		Pearson Correlation	0.997479	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-7.17797		t Stat	-6.14319	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	9.6E-09		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.24 \mathrm{E}-07$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.92 \mathrm{E}-08$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.48 \mathrm{E}-07$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	961.9652	968.8606	Mean	961.9652	951.2187
Variance	2864.102	2448.709	Variance	2864.102	3239.227
Observations	37	37	Observations	37	37
Pearson Correlation	0.997387		Pearson Correlation	0.998736	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-7.64474		t Stat	14.90294	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.39 \mathrm{E}-09$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.83 \mathrm{E}-17$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	4.77E-09		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$5.66 \mathrm{E}-17$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	1	Crossover Rate	0.2	1
Mean	961.9652	965.2116	Mean	969.0734	965.2116
Variance	2864.102	2618.371	Variance	2455.001	2618.371
Observations	37	37	Observations	37	37
Pearson Correlation	0.999189		Pearson Correlation	0.997863	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-6.26045		t Stat	6.40101	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.56 \mathrm{E}-07$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.02 \mathrm{E}-07$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	3.12E-07		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	2.03E-07	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0.2	0.6	Crossover Rate	0.2	0.4
Mean	969.0734	966.9363	Mean	969.0734	968.8606
Variance	2455.001	2525.134	Variance	2455.001	2448.709
Observations	37	37	Observations	37	37
Pearson Correlation	0.995778		Pearson Correlation	0.998915	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	2.802413		t Stat	0.560906	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.004058		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.289168	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.008116		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.578336	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	

E. 2 T-test for population minimum capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	663.6267	707.6676	Mean	663.6267	709.9216
Variance	23640.79	10185.05	Variance	23640.79	10213.38
Observations	37	37	Observations	37	37
Pearson Correlation	0.9386		Pearson Correlation	0.946909	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-3.90883		t Stat	-4.23251	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.000197		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$7.61 \mathrm{E}-05$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	0.000393		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.000152	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	663.6267	709.3629	Mean	663.6267	696.7685
Variance	23640.79	10175.42	Variance	23640.79	11222.65
Observations	37	37	Observations	37	37
Pearson Correlation	0.947351		Pearson Correlation	0.947613	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-4.17998		t Stat	-3.19018	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$8.89 \mathrm{E}-05$		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	0.001472	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.000178		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.002944	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	663.6267	719.4645			
Variance	23640.79	9481.211			
Observations	37	37			
Pearson Correlation	0.941192				
Hypothesized Mean Difference	0				
df	36				
t Stat	-4.83241				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.25 \mathrm{E}-05$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	$2.5 \mathrm{E}-05$				
t Critical two-tail	2.028094				

E. 3 T-test for population maximum capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	1081.18	1290.832	Mean	1081.18	1278.231
Variance	4149.273	185.9801	Variance	4149.273	186.5825
Observations	37	37	Observations	37	37
Pearson Correlation	0.138676		Pearson Correlation	0.451986	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-19.9367		t Stat	-20.1442	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.43 \mathrm{E}-21$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.73 \mathrm{E}-21$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	$4.86 \mathrm{E}-21$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.45 \mathrm{E}-21$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	1081.18	1268.349	Mean	1081.18	1265.412
Variance	4149.273	212.1921	Variance	4149.273	187.6168
Observations	37	37	Observations	37	37
Pearson Correlation	0.619434		Pearson Correlation	0.632707	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-20.1293		t Stat	-19.7475	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.77 \mathrm{E}-21$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	3.33E-21	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	$3.54 \mathrm{E}-21$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$6.66 \mathrm{E}-21$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	1081.18	1270.842			
Variance	4149.273	197.3116			
Observations	37	37			
Pearson Correlation	0.600879				
Hypothesized Mean Difference	0				
df	36				
t Stat	-20.2082				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.55 \mathrm{E}-21$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.11 \mathrm{E}-21$				
t Critical two-tail	2.028094				

E. 4 T-test for number of investors with overall negative return

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	39.20721	59.21532	Mean	39.20721	59.57658
Variance	215.485	233.5108	Variance	215.485	233.1213
Observations	37	37	Observations	37	37
Pearson Correlation	0.94702		Pearson Correlation	0.95213	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-24.7756		t Stat	-26.5338	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.64 \mathrm{E}-24$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.57 \mathrm{E}-25$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.28 \mathrm{E}-24$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.15 \mathrm{E}-25$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for M	eans		t-Test: Paired Two Sample for M	ans	
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	39.20721	60.41892	Mean	39.20721	63.05856
Variance	215.485	228.0568	Variance	215.485	266.1148
Observations	37	37	Observations	37	37
Pearson Correlation	0.945716		Pearson Correlation	0.959868	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-26.2034		t Stat	-31.0099	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.42 \mathrm{E}-25$		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	7.23E-28	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.83 \mathrm{E}-25$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.45 \mathrm{E}-27$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	39.20721	59.21982			
Variance	215.485	256.6155			
Observations	37	37			
Pearson Correlation	0.965692				
Hypothesized Mean Difference	0				
df	36				
t Stat	-28.7481				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	9.97E-27				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.99 \mathrm{E}-26$				
t Critical two-tail	2.028094				

E. 5 T-test for count of investors with no losses or earnings from initial capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	44.30811	2.585586	Mean	44.30811	3.092793
Variance	0.011445	57.78145	Variance	0.011445	61.04668
Observations	37	37	Observations	37	37
Pearson Correlation	0.068617		Pearson Correlation	0.073183	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	33.41596		t Stat	32.11614	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	5.36E-29		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.14 \mathrm{E}-28$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.07 \mathrm{E}-28$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.28 \mathrm{E}-28$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	44.30811	2.354955	Mean	44.30811	2.408108
Variance	0.011445	52.37859	Variance	0.011445	55.87453
Observations	37	37	Observations	37	37
Pearson Correlation	0.069927		Pearson Correlation	0.067266	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	35.29315		t Stat	34.12572	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	7.93E-30		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	2.57E-29	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.59 \mathrm{E}-29$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$5.15 \mathrm{E}-29$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	44.30811	3.109009			
Variance	0.011445	63.02658			
Observations	37	37			
Pearson Correlation	0.082695				
Hypothesized Mean Difference	0				
df	36				
t Stat	31.59888				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$3.76 \mathrm{E}-28$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	7.52E-28				
t Critical two-tail	2.028094				

E. 6 T-test for number of investors with overall positive return

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	16.48468	38.1991	Mean	16.48468	37.33063
Variance	214.9247	103.1212	Variance	214.9247	99.04311
Observations	37	37	Observations	37	37
Pearson Correlation	0.921554		Pearson Correlation	0.929725	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-19.9906		t Stat	-19.4107	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.22 \mathrm{E}-21$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	5.88E-21	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.45 \mathrm{E}-21$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.18 \mathrm{E}-20$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for M	ans		t-Test: Paired Two Sample for M	eans	
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	16.48468	37.22613	Mean	16.48468	34.53333
Variance	214.9247	103.0335	Variance	214.9247	122.3863
Observations	37	37	Observations	37	37
Pearson Correlation	0.948751		Pearson Correlation	0.95913	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-21.1481		t Stat	-21.4489	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	3.42E-22		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.13 \mathrm{E}-22$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	6.84E-22		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	4.27E-22	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	16.48468	37.67117			
Variance	214.9247	104.4639			
Observations	37	37			
Pearson Correlation	0.939776				
Hypothesized Mean Difference	0				
df	36				
t Stat	-20.9729				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$4.52 \mathrm{E}-22$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	9.03E-22				
t Critical two-tail	2.028094				

Appendix F

Student's t-test for paired means for the data from 2014-2017

F. 1 T-test for population average capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	1001.614	1001.094	Mean	1001.614	1001.917
Variance	275.6251	260.375	Variance	275.6251	278.675
Observations	37	37	Observations	37	37
Pearson Correlation	0.983096		Pearson Correlation	0.996648	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	1.037417		t Stat	-1.34945	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.15323		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.09281	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.30646		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.185619	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	1001.614	1000.692	Mean	1001.614	1002.317
Variance	275.6251	258.8175	Variance	275.6251	308.6859
Observations	37	37	Observations	37	37
Pearson Correlation	0.9908		Pearson Correlation	0.99872	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	2.463946		t Stat	-3.29979	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.009326		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	0.001094	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	0.018652		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	0.002188	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	1001.614	997.258			
Variance	275.6251	266.2944			
Observations	37	37			
Pearson Correlation	0.982912				
Hypothesized Mean Difference	0				
df	36				
t Stat	8.669366				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.22 \mathrm{E}-10$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	$2.44 \mathrm{E}-10$				
t Critical two-tail	2.028094				

F. 2 T-test for population minimum capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	938.7857	906.8723	Mean	938.7857	910.3557
Variance	825.2589	447.9882	Variance	825.2589	354.3844
Observations	37	37	Observations	37	37
Pearson Correlation	0.274885		Pearson Correlation	0.376955	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	6.335024		t Stat	6.224274	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.24 \mathrm{E}-07$		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$1.74 \mathrm{E}-07$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	$2.48 \mathrm{E}-07$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.49 \mathrm{E}-07$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	938.7857	904.6603	Mean	938.7857	908.1252
Variance	825.2589	499.4661	Variance	825.2589	353.3975
Observations	37	37	Observations	37	37
Pearson Correlation	0.325381		Pearson Correlation	0.428685	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	6.89277		t Stat	6.971615	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.27 \mathrm{E}-08$		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$1.79 \mathrm{E}-08$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.54 \mathrm{E}-08$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	3.58E-08	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	938.7857	906.3928			
Variance	825.2589	428.3851			
Observations	37	37			
Pearson Correlation	0.345913				
Hypothesized Mean Difference	0				
df	36				
t Stat	6.789203				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$3.11 \mathrm{E}-08$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	$6.22 \mathrm{E}-08$				
t Critical two-tail	2.028094				

F. 3 T-test for population maximum capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	1069	1090.663	Mean	1069	1090.29
Variance	2189.501	2292.173	Variance	2189.501	2242.149
Observations	37	37	Observations	37	37
Pearson Correlation	0.965484		Pearson Correlation	0.963589	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-10.5557		t Stat	-10.1853	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	7.18E-13		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	1.9E-12	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.44 \mathrm{E}-12$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$3.8 \mathrm{E}-12$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	1069	1089.118	Mean	1069	1089.293
Variance	2189.501	2314.042	Variance	2189.501	2335.603
Observations	37	37	Observations	37	37
Pearson Correlation	0.966521		Pearson Correlation	0.963197	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-9.91119		t Stat	-9.5004	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	3.94E-12		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	1.2E-11	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	7.88E-12		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$2.4 \mathrm{E}-11$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	1069	1086.604			
Variance	2189.501	2031.435			
Observations	37	37			
Pearson Correlation	0.963366				
Hypothesized Mean Difference	0				
df	36				
t Stat	-8.53288				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.8 \mathrm{E}-10$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	3.6E-10				
t Critical two-tail	2.028094				

F. 4 T-test for number of investors with overall negative return

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	31.90541	47.92072	Mean	31.90541	47.53153
Variance	274.16	323.6968	Variance	274.16	317.1424
Observations	37	37	Observations	37	37
Pearson Correlation	0.901375		Pearson Correlation	0.906659	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-12.4918		t Stat	-12.6329	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	5.95E-15		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	4.27E-15	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	1.19E-14		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	8.54E-15	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	31.90541	48.15766	Mean	31.90541	46.11802
Variance	274.16	294.143	Variance	274.16	279.2096
Observations	37	37	Observations	37	37
Pearson Correlation	0.893483		Pearson Correlation	0.91046	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-12.6734		t Stat	-12.2791	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	3.89E-15		$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	9.84E-15	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	7.77E-15		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.97 \mathrm{E}-14$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	31.90541	50.25629			
Variance	274.16	298.365			
Observations	37	37			
Pearson Correlation	0.866305				
Hypothesized Mean Difference	0				
df	36				
t Stat	-12.7218				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	3.47E-15				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	6.94E-15				
t Critical two-tail	2.028094				

F. 5 T-test for count of investors with no losses or earnings from initial capital

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	43.02342	8.747748	Mean	43.02342	7.06036
Variance	21.70462	190.6173	Variance	21.70462	171.8025
Observations	37	37	Observations	37	37
Pearson Correlation	0.991105		Pearson Correlation	0.975679	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	22.63759		t Stat	25.37017	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$3.49 \mathrm{E}-23$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	7.3E-25	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$6.97 \mathrm{E}-23$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.46 \mathrm{E}-24$	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for M			t-Test: Paired Two Sample for M	eans	
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	43.02342	9.217117	Mean	43.02342	9.659459
Variance	21.70462	201.5158	Variance	21.70462	213.4422
Observations	37	37	Observations	37	37
Pearson Correlation	0.989037		Pearson Correlation	0.98684	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	21.39247		t Stat	20.21275	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	2.33E-22		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$1.54 \mathrm{E}-21$	
t Critical one-tail	1.688298		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.66 \mathrm{E}-22$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	3.08E-21	
t Critical two-tail	2.028094		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	43.02342	8.575023			
Variance	21.70462	206.07			
Observations	37	37			
Pearson Correlation	0.98677				
Hypothesized Mean Difference	0				
df	36				
t Stat	21.40986				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.27 \mathrm{E}-22$				
t Critical one-tail	1.688298				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.54 \mathrm{E}-22$				
t Critical two-tail	2.028094				

F. 6 T-test for number of investors with overall positive return

t-Test: Paired Two Sample for Means			t-Test: Paired Two Sample for Means		
Crossover Rate	0	0.2	Crossover Rate	0	0.6
Mean	25.07117117	43.33153	Mean	25.07117	45.40811
Variance	297.8797014	307.1993	Variance	297.8797	285.4988
Observations	37	37	Observations	37	37
Pearson Correlation	0.966281491		Pearson Correlation	0.954003	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-24.54895765		t Stat	-23.825	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) one-tail	$2.24057 \mathrm{E}-24$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$6.19 \mathrm{E}-24$	
t Critical one-tail	1.688297714		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.48114 \mathrm{E}-24$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$1.24 \mathrm{E}-23$	
t Critical two-tail	2.028094001		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for M			t-Test: Paired Two Sample for M	ans	
Crossover Rate	0	0.4	Crossover Rate	0	0.8
Mean	25.07117117	42.62523	Mean	25.07117	44.22252
Variance	297.8797014	282.9404	Variance	297.8797	291.6104
Observations	37	37	Observations	37	37
Pearson Correlation	0.96242995		Pearson Correlation	0.956567	
Hypothesized Mean Difference	0		Hypothesized Mean Difference	0	
df	36		df	36	
t Stat	-22.76166317		t Stat	-23.008	
$P(T<=t)$ one-tail	$2.90063 \mathrm{E}-23$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.02 \mathrm{E}-23$	
t Critical one-tail	1.688297714		t Critical one-tail	1.688298	
$\mathrm{P}(\mathrm{T}<=\mathrm{t}$) two-tail	$5.80126 \mathrm{E}-23$		$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.03 \mathrm{E}-23$	
t Critical two-tail	2.028094001		t Critical two-tail	2.028094	
t-Test: Paired Two Sample for Means					
Crossover Rate	0	1			
Mean	25.07117117	41.16869			
Variance	297.8797014	240.7426			
Observations	37	37			
Pearson Correlation	0.961148175				
Hypothesized Mean Difference	0				
df	36				
t Stat	-20.05109846				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ one-tail	$2.01107 \mathrm{E}-21$				
t Critical one-tail	1.688297714				
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	$4.02215 \mathrm{E}-21$				
t Critical two-tail	2.028094001				

BIBLIOGRAPHY

Adler, David. "Genetic Algorithm in Python Source Code - AI-Junkie Tutorial «Python Recipes «ActiveState Code." N.p., n.d. Web. 24 Dec. 2016.

Allen, Franklin, and Risto Karjalainen. "Using Genetic Algorithms to Find Technical Trading", The Wharton School, University of Pennsylvania, Philadelphia, PA 19104-6367.1." Journal of Financial Economics 51.2 (1999): 245-271. CrossRef. Web.

Austin, Mark et al. "Adaptive Systems for Foreign Exchange Trading." Quantitative Finance 4.4 (2004): 37-45. CrossRef. Web.

Bauer, Richard J. Genetic Algorithms and Investment Strategies. New York: Wiley, 1994. Print. Wiley Finance Editions.

Dempster, M.A.H., and C.M. Jones. "A Real-Time Adaptive Trading System Using Genetic Programming." Quantitative Finance 1.4 (2001): 397-413. CrossRef. Web.

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Mass: Addison-Wesley Pub. Co, 1989. Print.

Hodjat, Babak et al. "United States Patent: 8825560 - Distributed Evolutionary Algorithm for Asset Management and Trading." 2 Sept. 2014. Web. 28 Apr. 2015.

Hryshko *, A., and T. Downs. "System for Foreign Exchange Trading Using Genetic Algorithms and Reinforcement Learning." International Journal of Systems Science 35.13-14 (2004): 763-774. CrossRef. Web.

Papadamou, Stephanos, and George Stephanides. "Improving Technical Trading Systems by Using a New MATLAB-Based Genetic Algorithm Procedure." Mathematical and Computer Modelling 46.1-2 (2007): 189-197. CrossRef. Web.

Reeves, Colin R. Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory. Boston: Kluwer Academic Publishers, 2003. Print. Operations Research/computer Science Interfaces Series ORCS 20.

Whitley, Darrell. "A Genetic Algorithm Tutorial." Statistics and Computing 4.2 (1994): n. pag. CrossRef. Web. 1 Apr. 2015.

Zhang, Hua, and Ruoen Ren. "High Frequency Foreign Exchange Trading Strategies Based on Genetic Algorithms." 2010 Second International Conference on Networks Security Wireless Communications and Trusted Computing (NSWCTC). Vol. 2. N.p., 2010. 426-429. IEEE Xplore. Web.

ACADEMIC VITA Alvaro Ramiro Peredo Centellas

EdUCATION

The Pennsylvania State University

University Park, PA

Smeal College of Business/Schreyer Honors College: Finance
May 2017
Eberly College of Science: Mathematics | Minor in Statistics

Work Experience

Morgan Stanley

New York City, NY

Finance Summer Analyst

- Controlled the transfer of responsibilities of a weekly report presented to upper management from Corporate Reporting to the Financial Planning \& Analysis division by carrying a report parallel to the one created by members of FP\&A and cross-check for potential errors
- Reviewed financial statements from the supplementary packet and other documents to be released for the second quarter Press Release
- Cooperated with a team of six interns in order to create a knowledge information repository for the Regulatory Reporting group in order to facilitate communication about upcoming deadlines and instructions regarding appropriate filling of forms
- Presented the content of our knowledge information repository to about one hundred members of the Morgan Stanley community
- Programmed the knowledge information repository through HTML/CSS coding language with emphasis on being user friendly

Inter-American Development Bank
Office of Outreach and Partnerships (ORP) Intern
Washington, D.C.

- Created a report on historical and future trends of concessional financing for development, with a focus on the role of development finance institutions and multilateral organizations, to be used as introductory material for new hired analysts in the bank
- Conducted reputational and financial risk analysis on 26 of the bank's potential partners as part of the due diligence process carried by the ORP Office and reported the results to their Sales Force account and to the department's chief
- Continued and interpreted a project left by a previous intern which had the objective to create a standardized grading system for measuring the desirability the bank has of partnering with an organization using the analytical hierarchy process
- Retrieved data from Sales Force and created statistical summaries regarding the whole set of about 400 due diligences created by the ORP office and presented them to the Non-sovereign activities office as an effort to outsource the risk analysis step from ORP
Banco Mercantil Santa Cruz
Intern of Treasury and SAFI Investment Fund
- Analyzed the compilation of norms for banks and financial institutions in the context of the current Bolivian laws in order to apply them on report generation for banking institutions to be presented to the fund manager
- Evaluated bonds and other investment options proposed by financial entities like Société Générale and Santander Bank along the specifications determined by the institutions regarding their desired levels of risk and return
- Produced and revised the annual financial reports for five investment funds which were presented to the Directive Board of the SAFI
- Developed the proposal for the creation of a new investment fund, revising the draft proposal in regards to the manager's specifications

ACTIVITIES/LEADERSHIP

Students Consulting For Non-Profit Organizations (SCNO)
 University Park, PA
 Consultant/Member/Team Lead/V.P of Project Management
 Feb 2013 - May 2015

- Directed a team of six consultants towards setting project goals, developing deliverables timeline, and determining responsibilities, to correctly plan, design, and implement the appropriate solution for our client
- Devised a cost data collection and analysis methodology which included relevant statistical information for Mount Nittany Health Medical Center as part of an umbrella project to implement profit analysis on Diagnosis Related Groups (D.R.G) in patient care
- Negotiated with and recruited six non-profits located in the Centre County of Pennsylvania to carry year-long projects with SCNO Hedge Fund Club
Member of Foreign Exchange Group
- Collaborated with four other members in formulating strategies to gain profit from changes in the currency market, generating a 20% return in our group from a hypothetical nine million budget in a span of six months
- Researched economic, political and societal news along with economic indicators from developing countries such as Mexico, Russia, Turkey and South Africa in search for profit opportunities in foreign exchange between these countries and the US Dollar
- Learned and developed on concepts such as how economic indicators and monetary policy may affect the value of a country's currency along with a mathematical approach concentrating in using historical data to find statistical arbitrage between pair of currencies
Alpha Kappa Lambda Fraternity
University Park, PA
Vice President of Finance
Nov 2013 - Dec 2014
- Introduced a more intuitive system for recording and analyzing payments and expenses related to the fraternity's operating activities, allowing the executive board and member to have access to relevant information such as collection rate or capital allocation
- Coordinated payment options, billing cycles and schedule of charges between the fraternity members and our financial collaborator
- Served as member of the Fraternity's executive board, fundamental in decision making and planning in the organization
- Allocated a cash flow of approximately $\$ 100,000$ toward different operational functions and expenses of importance for the fraternity

