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ABSTRACT 
 

This study used the computational mathematics program, Mathematica, to model and 

simulate reversible aggregations of colloidal particles. Reversible colloidal aggregations can be 

found in silane-containing colloids at low pH’s. The goal of the research was to use the 

simulation created using Mathematica to find the equilibrium size, conformation, and properties, 

of a reversible cluster at a given temperature, attraction, repulsion, and screening. An initial 

simulation was conducted which indicated the possibility of an equilibrium structural 

conformation at dimensionless temperatures of Θ = 0.9 and Θ = 1.0. Another round of 

simulations was conducted at identical conditions to replicate the apparent minimums present in 

the first set of data. It was concluded, however, that significant noise in the data cast doubt on 

whether these apparent minimums indicated an equilibrium conformation of a reversible cluster. 

Further study will need to be conducted to determine the ideal simulation parameters that will be 

most ideal for observing an equilibrium conformation. Once these conditions are discovered, a 

more rigorous sampling method will need to be used to confirm the presence of an equilibrium 

conformation with confidence if a minimum value in free energy is observed. 
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Chapter 1  
 

Introduction 

One problem that is often faced in colloidal research is simulating reversible colloidal 

aggregations of particles to calculate physical properties of colloidal clusters at different conditions.1 The 

purpose of this research was to resolve this problem by using a computational mathematics program, 

known as Mathematica, to simulate reversible aggregations in order to gain more knowledge about the 

equilibrium properties of a cluster at certain temperatures and electrostatic parameters. This simulation, 

which is based on the prevailing theories derived from the research being done in the field of colloids, can 

be leveraged to make accurate predictions of reality that can be applied in the field of biotechnology, 

medical imaging, material science, soft-matter physics, and catalysis. 

Colloidal Aggregation 

Colloids are substances containing ultramicroscopic particles that are free to move in a medium.2 

Due to van der Waals forces, colloidal particles have a tendency to be attracted to each other and to form 

clusters. Once a cluster gets too large, the large network of clustered particles will turn a colloid, 

originally in the liquid phase, into a gel. This tendency for colloidal particles to attract and form large 

clusters is known as irreversible aggregation. However, irreversible aggregations can be prevented when 

the colloid experiences steric stabilization forces.3 These forces allow colloidal particles in a cluster to 

                                                      
1 Bentz, J., and S. Nir. "Aggregation of Colloidal Particles Modeled as a Dynamical Process." Proceedings 

of the National Academy of Sciences 78.3 (1981): 1634-637. Web. 
2 Law, B. M., J.-M. Petit, and D. Beysens. "Adsorption-induced Reversible Colloidal Aggregation." 

Physical Review E 57.5 (1998): 5782-794. Web. 
3 Lotfizadeh, Saba, Hassan Aljama, Dan Reilly, and Themis Matsoukas. "Formation of Reversible Clusters 

with Controlled Degree of Aggregation." Langmuir 32.19 (2016): 4862-867. Web. 
 



2 
break away from the cluster and redistribute in solution. These steric stabilization forces will eventually 

balance the short-range attractive force and long-range repulsive force in between colloidal particles until 

the cluster reaches a state of equilibrium. This can be accomplished by lowering the pH of a colloid 

(Figure 1-1 and Figure 1-2). 

   

 

  

 

 

 

 

These clusters that have the ability to redisperse are referred to as reversible colloidal clusters. As 

a result of their reversibility, many configurations of a colloidal cluster can exist in the medium at any 

given time. However, the configuration that is energetically favored is the configuration with the lowest 
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Figure 1-1. At high pH’s silanes will exhibit no repulsion. However, 
when the pH is lowered, the amine groups of the silane will ionize. The result 
is a silane with positively charged branches with a coating of negatively 
charged ions resulting in repulsion. 

Figure 1-2 General example of example of the phenomenon 
observed with silanes. The repulsion that results from lowering the pH can 
be leveraged to prevent irreversible clusters. 
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free energy. This configuration is the most likely to be observed in a mixture, and thus will dominate the 

macroscopic properties of the colloidal aggregation. The lowest free energy state is referred to as the 

equilibrium configuration of the colloidal aggregation, and is the configuration that is of most interest in 

this research. The goal of this research was to determine the distributions of the equilibrium structure of 

reversible colloidal clusters and to calculate the free energy per particle of these clusters using the 

Mathematica model that was created for the purpose of this research.
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Chapter 2  
 

Model 

 Several assumptions were made in order to simulate the reversible aggregation of colloidal 

particles using computational software. These assumptions were based on prevailing theory in colloidal 

research. Specifically, assumptions about the physical structure of reversible colloidal clusters were made 

in order for the structures to be modeled more easily in Mathematica. Additionally, theories from 

thermodynamics were employed in order to calculate the energy of clusters. The modifications to the 

physical structure and energy theories were programmed into the computational model of the reversible 

colloidal aggregations.  

Cubic Lattice Model 

In reality, colloidal aggregations of particles feature no significant structural patterns. This makes 

reversible colloidal aggregations very tricky to model computationally as enterprise software that supports 

this level of flexibility is few and far between. As such, certain simplifications were made in order to 

model and simulate reversible colloidal aggregations. 

Certain assumptions about the structure of reversible clusters were made in order to make the 

simulation of these clusters feasible. The cubic lattice was chosen because it is the simplest structural 

pattern to use when modeling the reversible colloidal aggregations (Figure 2-1). 



5 

    

 

While Mathematica can support tetragonal, hexagonal, and many other lattice structures, the 

cubic lattice assumption models a cluster with a sufficient amount of detail. Utilizing higher order lattice 

structures can improve the accuracy of the model, but would significantly increase the simulation’s 

runtimes. The cubic lattice provided a useful level of detail while minimizing the simulation’s calculation 

times. 

Energy Model 

The major goal of the research was to determine the distribution of the equilibrium structures of a 

reversible colloidal cluster. At equilibrium, a cluster’s free energy, which is a function of the cluster’s 

energy, will be minimized. In order to find an equilibrium structure, a cluster’s free energy was calculated 

as a function of the cluster size (Figure 2-2). Before this was accomplished, however, a model was 

developed to calculate the total energy of a cluster of colloidal particles. 

Figure 2-1. Using the cubic lattice structure, each particle can have a 
maximum of six neighbors. 
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Figure 2-2. The free energy of a cluster will be minimized when the cluster reaches a certain size. In this case, 
the cluster with 4 particles is the equilibrium cluster. 

 

The simulation leverages a microscopic model (Figure 2-3) to calculate the energy of interactions 

in between individual particles.4  

 

 

Figure 2-3. Microscopic model for the calculation of the energy of a cluster. 

 

The interaction energy between two particles is calculated as the sum of an attractive interaction 

that manifests itself on contact and a DLVO repulsion. Attraction is a close-range force that draws two 

particles closer together and it results from a difference in the charge of two particles.5 Repulsion is a 

                                                      
4Bordi, F., C. Cametti, C. Marianecci, and S. Sennato. "Equilibrium Particle Aggregates in Attractive 

Colloidal Suspensions." Journal of Physics: Condensed Matter 17.45 (2005): n. pag. Web. 
5Morales, Victor, Juan A. Anta, and Santiago Lago. "Integral Equation Prediction of Reversible 

Coagulation in Charged Colloidal Suspensions." Langmuir 19.2 (2003): 475-82. Web.  
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long-range force that pushes two particles farther away from each other and it results from a similarity in 

the charge of two particles. The interaction energy in between any two particles is defined as uij, which is 

a function of the individual energies of the attraction, uij
A, and repulsion, uij

R (Equation 2-1). 

 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑅𝑅      (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 1) 

 

The energy of attraction is a negative value. It is calculated using Equation 2-2, where A is the strength 

of interaction per contact point, and bij is 1 if the particles are touching and zero otherwise.  

 

𝑢𝑢𝑖𝑖𝑖𝑖𝐴𝐴 = −𝑏𝑏𝑖𝑖𝑖𝑖𝐴𝐴     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 2) 

 

The energy of repulsion is a positive value that is calculated by treating the cluster as a sphere. Note that 

assuming a spherical cluster deviates from the cubic lattice model. Despite this, because a minimum free 

energy is relative to all other conformations of a cluster’s structure, and all other clusters are simulated 

using the same assumption, this deviation was not of concern. The energy of repulsion in between two 

particles is defined using Equation 2-3, where R is the radius of the particles, Z is the charge, k is the 

Boltzmann constant, T is the temperature, e is the charge of an electron, and κ is the screening length. 

 

𝑢𝑢𝑖𝑖𝑖𝑖𝑅𝑅 =
𝑍𝑍2𝑒𝑒2

4𝜋𝜋𝜖𝜖0𝜖𝜖
�
𝑒𝑒−𝜅𝜅𝑅𝑅

1 + 𝜅𝜅𝜅𝜅�
2 𝑒𝑒−𝜅𝜅𝑟𝑟𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 3) 

 

The energy of interactions in between two particles can now be written as it appears in Equation 2-4. 

 

𝑢𝑢𝑖𝑖𝑖𝑖 = −𝑏𝑏𝑖𝑖𝑖𝑖𝐴𝐴 +
𝑍𝑍2𝑒𝑒2

4𝜋𝜋𝜖𝜖0𝜖𝜖
�
𝑒𝑒−𝛾𝛾

1 + 𝛾𝛾�
2 𝑒𝑒−𝜅𝜅𝑟𝑟𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 4) 
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 Note that the screening parameter (γ) was used when substituting Equation 2-2 and Equation 2-

3 into Equation 2-1. Screening is a phenomenon that weakens repulsive forces that exist in between two 

particles. The dimensionless value for the screening parameter used in the simulation is given by 

Equation 2-5 where κ is the screening length.  

 

𝛾𝛾 = 𝜅𝜅𝜅𝜅     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 5) 

 

Decreasing the screening parameter decreases the effective repulsion in between two particles and results 

in the formation of larger clusters (Figure 2-4). 

 

Figure 2-4. The negatively charged ion coating of one particle is attracted to the positive charge of the other 
particle. This phenomenon reduces the inherent repulsion in between the two positive charged particles. 
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Figure 2-5. As the screening parameter becomes larger, the resulting cluster will become larger. 

 

 In order to simplify the calculation of the interaction energy of two particles, Equation 2-5 is 

written in dimensionless form. The dimensionless energy, ϕij, and dimensionless distance in between two 

particles, ρij, is given by Equation 2-6 and Equation 2-7. 

 

𝜙𝜙𝑖𝑖𝑖𝑖 =
𝑢𝑢𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘

     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 6) 

𝜌𝜌𝑖𝑖𝑖𝑖 =
𝑟𝑟𝑖𝑖𝑖𝑖
𝜅𝜅

     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 7) 

 

The dimensionless form of attraction and repulsion used in the simulation are defined in Equation 2-8 

and Equation 2-9, where R is the radius of the particles, Z is the charge, k is the Boltzmann constant, T is 

the temperature, and e is the charge of an electron. 

 

�̅�𝐴 =
𝐴𝐴
𝑘𝑘𝑘𝑘

     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 8) 

𝜅𝜅� =
𝑍𝑍𝑒𝑒2

4π𝜖𝜖0𝜖𝜖𝜅𝜅𝑘𝑘𝑘𝑘
     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 9) 
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Using these dimensionless values, the interaction energy of any two particles is thus defined by Equation 

2-10.  

 

𝜙𝜙𝑖𝑖𝑖𝑖 = −�̅�𝐴𝑏𝑏𝑖𝑖𝑖𝑖 + 𝜅𝜅� �
𝑒𝑒−𝑦𝑦

1 + 𝑦𝑦�
2 𝑒𝑒−𝛾𝛾𝜌𝜌𝑖𝑖𝑖𝑖

 𝜌𝜌𝑖𝑖𝑖𝑖
   (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 10) 

 

The total energy of a cluster is calculated as the sum of the interaction energies of every pair of 

particles in a cluster, and is given by Equation 2-11. Note that the coefficient before the summation is 

necessary to ensure that pairs of particles are not double-counted. 

 

𝐸𝐸
𝑘𝑘𝑘𝑘

=
1
2
��𝜙𝜙𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 11) 

 

Finally, the total energy of the cluster can be written as it appears in Equation 2-12. 

 

𝐸𝐸� = −�̅�𝐴𝑏𝑏𝑖𝑖𝑖𝑖 +
𝜅𝜅�
2 �

𝑒𝑒−𝑦𝑦

1 + 𝑦𝑦�
2

��
𝑒𝑒−𝛾𝛾𝜌𝜌𝑖𝑖𝑖𝑖

 𝜌𝜌𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 12) 

Free Energy 

The free energy of a cluster is the dimensionless form of the Gibb’s free energy of a cluster. 

Having said that, the same information that can be derived about a cluster from the Gibb’s free energy can 

also be derived from the free energy. The free energy, 𝐹𝐹�, of a cluster, which is given by Equation 2-13, is 

a function of dimensionless energy, 𝐸𝐸�; dimensionless entropy, 𝑆𝑆̅; and dimensionless temperature, Θ.  
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𝐹𝐹� = 𝐸𝐸� − Θ𝑆𝑆̅     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 13) 

 

To calculate the free energy of a cluster, first the energy of the cluster has to be calculated for 

every cluster size at dimensionless temperatures from Θ = 1.0 to Θ = 0.0 using the simulation. 

Dimensionless temperature is defined as a ratio of the cluster’s temperature to a characteristic 

temperature, which can be assumed to be room temperature (Equation 2-14). 

 

Θ =
𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟

𝑘𝑘𝑐𝑐ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐
     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 14) 

 

Using this dimensionless temperature and energy, the entropy of the clusters were also evaluated from 

Θ=1.0 to Θ=0.0 using the relationship given in Equation 2-15, which assumes constant volume. 

 

𝑆𝑆̅ = �
1
Θ
𝑑𝑑𝐸𝐸�
𝑑𝑑Θ

𝑑𝑑Θ
Θ

0
     (𝐸𝐸𝐸𝐸𝑢𝑢𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2 − 15) 

 

After calculating all entropy values, there is enough information to calculate the free energy for all the 

clusters at all experimental temperatures. Plots of free energy and free energy per particle as functions of 

cluster size are created to determine the equilibrium cluster size. Determining the distribution of 

equilibrium properties at this cluster size is the goal of this research. 
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Chapter 3  

 
Method of Simulation 

The energy model used in this research requires that hundreds of thousands of calculations be 

performed to determine the equilibrium structure and properties of a colloidal cluster. Computational 

software was employed to simulate various cluster conformations and accurately calculate each 

conformation’s corresponding free energy in a relatively short amount of time. Wolfram Mathematica was 

the chosen software package for the simulations conducted for this research. 

Wolfram Mathematica 

Wolfram Mathematica is a highly developed computational software that synthesizes a broad 

range of programming paradigms with powerful mathematical functions. These unique characteristics of 

the program make it an excellent simulation tool in the fields of actuarial science, statistics, and high-level 

mathematics. Because of this software’s versatility, it often sees use outside these fields. One function 

utilized in this research to model reversible colloidal aggregations is called graph theory. Graph theory is 

a functionality built into Mathematica that allows for the modeling, analysis, synthesis, and visualization 

of graphs and networks. Graph theory utilizes vertices and edges to represent a network; each vertex can 

be used to represent a colloidal particle and each edge can be used to represent the interaction energy of 

two particles. This unique feature made Mathematica the ideal platform to simulate reversible 

aggregations using the cubic lattice structural model (Figure 3-1).  
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Figure 3-1. Screen capture of Mathematica demonstrating graph theory. The red vertices indicate the core cubic 
lattice structure of the cluster’s particles, while the blue vertices indicate all the potential bonding sites for neighboring 

particles. 

Simulation  

In order to simulate reversible aggregations with a reasonable degree of accuracy, the mechanism 

with which these colloidal clusters restructure had to be replicated within the computer model. This was 

accomplished by structuring the simulation to make use of the Monte-Carlo Method. At the beginning of 

the simulation, a cluster containing N colloidal particles with a defined strength of attraction, repulsion, 

and screening, is initialized (Figure 3-2), and the initial conformation of the cluster is constructed 

(Figure 3-3). 
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Figure 3-2. Screen capture of Mathematica demonstrating the initialization of the cluster. Note that the number 
of particles, repulsion, attraction, and screening are all user inputs. 

  

 

Figure 3-3. Screen capture of Mathematica demonstrating the initial conformation of a colloidal cluster 
containing 27 particles. 

 

A particle is then selected at random and moved to a random position on the cluster (Figure 3-4).  

 

 
Figure 3-4. Screen capture of Mathematica demonstrating the random selection, and 

repositioning of a particle. 
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The probability that the new conformation is accepted is proportional to the equilibrium constant 

for the cluster. Whether the new conformation is accepted or rejected is decided using the Metropolis 

Algorithm. The simulation draws a random number between 0 and 1, and accepts or rejects the new 

cluster according to the following postulate: if RND < e-ΔE, then accept the new conformation; else, reject 

the new conformation. 

This process is repeated for a set number of iterations until the properties of the cluster approach 

constant values. As the simulation progresses, Mathematica collects and stores physical data, including 

radius of gyration, energy, and number of bonds, for every conformation that is accepted using the 

Metropolis Algorithm. This data is then plotted as functions of the simulation iteration, and the 

distributions of values of this data are shown next to these plots (Figure 3-5). 

 

 

Figure 3-5. Screen capture from Mathematica demonstrating the data gathering capabilities of the simulation. 
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Data Processing 

The data that was collected in the simulation then needs to be manually processed according to 

the established energy model to obtain a free energy for every conformation that was accepted using the 

Metropolis Algorithm. The energy data that is obtained from the simulation can be plotted as a function of 

temperature. According to prevailing thermodynamic theory, the energy of the cluster should decrease as 

the temperature is decreased, until it reaches its minimum as the temperature approaches absolute zero 

(Figure 3-6).  

 

Figure 3-6. The energy of the cluster decreases with temperature until it reaches its minimum energy as Θ→0. 

 

According to Equation 2-15, integrating this plot with respect to temperature will yield the 

entropy of the cluster at a defined temperature. After calculating the entropy of a variety of cluster sizes at 

temperatures ranging from 𝜃𝜃 = 0.0 to 𝜃𝜃 = 1.0, the simulation must is run several more times to obtain 

plots of energy as a function of the number of particles in a cluster at the same temperatures that were 

used when calculating the entropies. The simulation is run for several trials at each cluster size and 

temperature to eliminate any outliers from the data. The corresponding list of energies can now be used 

along with the entropies calculated at all the temperatures to determine the free energy of the clusters 

using Equation 2-13. These free energies are then plotted as a function of cluster size (Figure 3-7).  
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Figure 3-7. The above plot is an example of how the free energy is plotted as a function of cluster size at various 
temperatures. The plots do not represent any data obtained from research. 

 

Any minimums present in this plot indicates the equilibrium cluster size at a given temperature. If 

a minimum structure is obtained, the properties of the data can be extracted and examined in 

Mathematica.  
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Chapter 4  

 
Results 

The initial simulations yielded the plot observed in Figure 4-1, which was conducted for a cluster 

with 27 particles. As the temperature decreases, the average energy of all the iterations approaches a 

minimum value of -93.3559, which corresponds to the energy of the initial cubic structure. This 

corresponds to expectation because as the temperature decreases, only lower energy configurations will 

be accepted which would drive the average energy of all the iterations to the value of its minimum energy 

configuration, which is more times than not, the initial cubic configuration. 

 

Figure 4-1. Plot of average energy versus dimensionless temperature for a cluster with 27 particles. 

 

Table 4-1. Simulation parameters for Figure 4-1 

Number of Particles 27 

Temperature (θ)  0.0-1.0 

Attraction -2.0 

Repulsion 10.0 

Screening 1.0 
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This simulation was repeated many times for a variety of different cluster sizes, and the results of 

which can be seen in Figure 4-2. The same trend that was observed in the initial simulation perpetuates 

throughout all the other simulations. 

 

Figure 4-2. Results of simulations for cluster sizes ranging from 10-75 particles. 
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Table 4-2. Simulation parameters for Figure 4-2 

Number of Particles 10-75 

Temperature (θ)  0.0-1.0 

Attraction -2.0 

Repulsion 10.0 

Screening 1.0 

 

 After obtaining the fits for the positive, linear portion of these plots, the energies, entropies, and 

free energies per particle were plotted as a function of cluster size at all the experimental temperatures, 

which can be seen in Figure 4-3, Figure 4-4, and Figure 4-5.  

 

Figure 4-3. A plot of energy per particle as a function of cluster size at all experimental temperatures. 

 



21 

 

Figure 4-4. A plot of entropy per particle as a function of cluster size at all experimental temperatures. 

 

 

Figure 4-5. A plot of free energy per particle as a function of cluster size at all experimental temperatures. 
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Table 4-3. Simulation parameters for Figure 4-3, Figure 4-4, Figure 4-5 

Number of Particles 10-75 

Temperature (θ)  0.0-1.0 

Attraction -2.0 

Repulsion 10.0 

Screening 1.0 

 

 After looking at this data, it is obvious that there are a few potential minimums in the free energy 

per particle at a variety of the temperatures. This would indicate an equilibrium cluster size, the properties 

of which would be of greatest interest in this research. The two temperatures that are most likely to 

contain an equilibrium cluster whose size is between 0 and 100 particles at the given conditions are Θ =

1.0 and Θ = 0.9. These two temperatures were isolated for further investigation to determine whether the 

minimums evident in the free energies at these temperatures were not the result of experimental error. 

Again, the plots of energy as a function of temperature were created for all cluster sizes and the fits for 

the positive, linear portions of these plots were obtained (Figure 4-6). 
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Figure 4-6. Results of simulations for cluster sizes ranging from 5-110 particles. 
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Table 4-4. Simulation parameters for Figure 4-6 

Number of Particles 5-110 

Temperature (θ)  0.0-1.0 

Attraction -2.0 

Repulsion 10.0 

Screening 1.0 

 

 After obtaining the fits for the positive, linear portion of these plots, the energies, entropies, and 

free energies per particle were plotted as a function of cluster size at Θ = 1.0 and Θ = 0.9, which can be 

seen in Figure 4-7, Figure 4-8, and Figure 4-9. The energy data was averaged over three separate trials 

to statistically remove as much error from the simulation results as possible. 

 

Figure 4-7. A plot of energy per particle as a function of cluster size at all experimental temperatures. 
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Figure 4-8. A plot of entropy per particle as a function of cluster size at all experimental temperatures. 

 

Figure 4-9. A plot of free energy per particle as a function of cluster size at all experimental temperatures. 
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Table 4-5. Simulation parameters for Figure 4-7, Figure 4-8, Figure 4-9 

Number of Particles 27 

Temperature (θ)  0.0-1.0 

Attraction -2.0 

Repulsion 10.0 

Screening 1.0 
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Chapter 5  

 
Discussion 

 The data gathered in the experiment provided a lot of valuable insight into the capabilities and 

scope of the simulation. Using the results of the experiment, a clear path forward can be established for 

future experimentation with this simulation to learn more about the behavior of reversible clusters. 

 The general trends that were observed in the simulations upheld many long-standing axioms of 

molecular thermodynamic theory. In Figure 5-1, the trend that can be observed is an inverse relationship 

in between the cluster size and energy. 

 

Figure 5-1. As the size of the cluster increases, the corresponding energy of the cluster decreases. 

  

Table 5-1. Simulation parameters for Figure 5-1 

Number of Particles 5-110 

Temperature (θ)  0.3-1.0 

Attraction -2.0 

Repulsion 10.0 

Screening 1.0 
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 This trend is expected, as an increase in the number of particles increases the magnitude of 

attractive interaction in the cluster. Attractive interactions were defined in the energy model to represent 

negative energy, so it makes sense that as the number of attractive interactions increases, the energy of the 

particle decreases. This phenomenon manifests itself in a physically obvious manner when considering an 

irreversible cluster of colloids. According to the energy model used in the simulation, as the strength of 

the attraction increases, the energy of the cluster decreases. It is also known that for reversible colloids, 

gelation is approached as the strength of the attraction increases.6 This suggests that the energy of a 

reversible cluster decreases until it reaches a minimum value, at which point the colloid becomes a gel 

(Figure 5-2). 

 

Figure 5-2. The energy of a reversible cluster decreases until it reaches a minimum value, at which point it forms 
a gel. 

 

 Another trend observed in the data collected from the simulations is that as the temperature 

decreases, the energy of a cluster with a defined size will subsequently decrease (Figure 5-3).  

                                                      
6 Puertas, Antonio M., Matthias Fuchs, and Michael E. Cates. "Comparative Simulation Study of Colloidal 

Gels And Glasses." Physical Review Letters 88.9 (2002): n. pag. Web. 
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Figure 5-3. Plots of cluster energy as a function of dimensionless temperature. The energy of the cluster 
increases with the temperature. 

  

Table 5-2. Simulation parameters for Figure 5-3 

Number of Particles 5-110 

Temperature (θ)  0.3-1.0 

Attraction -2.0 

Repulsion 10.0 

Screening 1.0 

 

 This trend is expected because as the temperature decreases, the probability that the simulation 

accepts a new conformation using the Metropolis Algorithm also decreases. If the simulation is less likely 

to accept new conformations, the cluster’s structure will favor a spherical structure, or in the case of the 

simulation, a cubic structure. This cluster shape is the lowest energy structural conformation as it 

maximizes the negative effect on energy by attractive forces and minimizes the positive effect on energy 

by repulsive forces. For this reason, it is not surprising that the energy of the cluster will decrease with 

temperature. 
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 The last trend observed in the results of the simulation that supports established theory is an 

asymptotic decrease in the per particle thermodynamic properties as the cluster size is increases. This 

trend is expected because as the size of the cluster increases, the thermodynamic decrease at a slower rate 

than the cluster size is able to grow. This results in the thermodynamics approaching a minimum value at 

very large cluster sizes. 

 The results of the experiment indicate that the simulation corresponds to thermodynamic theory, 

which suggests that the simulation of the reversible colloidal clusters using the Monte-Carlo method was 

successful. Additionally, the data collected seems to suggest the possibility that a minimum exists given 

the experimental conditions of this research. However, given significant noise observed in the data, these 

apparent minimums could not be confirmed to be an indication of an equilibrium structural conformation.  

 The noise in the data is most apparent when looking at the variability in the energy distributions 

of small clusters at low temperatures (Figure 5-4).  
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Figure 5-4. Energy distribution for 5 runs of the simulation at constant conditions. 

 

Table 5-3. Simulation parameters for Figure 5-4 

Number of Particles 27 

Temperature (θ)  0.0-1.0 

Attraction -2.0 

Repulsion 10.0 

Screening 1.0 

  

 From these energy distributions, it is difficult to predict the actual average energy of this cluster 

of particles given the experimental conditions. These energy distribution were created using the same 
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number of simulation iterations as was used in the research for a cluster of the same size. This indicates 

that despite doing multiple trials in the research, the total number of iterations did not provide enough 

samples to obtain an accurate value for average energy of a cluster. If the values for energy are not 

accurate, then this error propagates in subsequent calculations. This means that the error is likely to be so 

significant by the time the free energy is calculated that the apparent minimum values may be an artifact 

of the noise in the data. Adjusting for the noise in the data would require a much more rigorous sampling 

method that is beyond the scope of this research. Despite this minor shortcoming, the research proved the 

feasibility of the model as an accurate representation of a reversible cluster of colloidal particles. 

 Future research should focus on two major areas. The first area that needs to be explored are the 

sampling conditions. It is possible that the sampling conditions used in this research would never yield a 

minimum free energy value for the cluster sizes sampled. Sensitivity studies need to be conducted to 

determine if the sampling parameters are appropriate for the cluster sizes sampled. This means adjusting 

the attraction, repulsion, and screening parameters of the simulation. A methodology will need to be 

developed to determine if a set of parameters is likely to yield a minimum value.  

 Once it is determined which parameters will yield a minimum value of free energy, the sampling 

method using these parameters will have to be rigorous. This means increasing the number of iterations 

for every cluster by at least one order of magnitude for the smaller particles and for particles at low 

temperatures. If enough samples are gathered and averaged, there can be more confidence that any 

apparent minimums are a true indication of an equilibrium structure. 
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Chapter 6  

 
Conclusion 

 Overall the experiment was a conditional success, as the simulation successfully modeled the 

behavior of a reversible aggregation of colloidal particles. The results of the model agree with prevailing 

molecular thermodynamic theory, which supports this simulation’s viability as an accurate representation 

of this system. Additionally, apparent minimums in the free energy of a reversible colloidal cluster was 

observed during simulations. However, these apparent minimums were not confirmed to be an indication 

of an equilibrium conformation due to significant noise in the data.  

 For future work, the simulation should be used to test different parameters in order to determine 

whether different conditions would increase the likelihood of observing an equilibrium conformation of a 

reversible colloidal aggregations. It is difficult to pinpoint the exact parameters that would yield an 

equilibrium conformation of a colloidal cluster, because research was conducted in a simulation 

environment that depends on five different parameters. Furthermore, when certain parameters are 

identified as ideal for the observation of an equilibrium conformation, then a very rigorous sampling 

methodology should be employed to ensure that any apparent minimums in free energy can be confirmed 

to be equilibrium conformations of a reversible aggregation of colloidal particles. 
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