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Abstract 
 

 

 

Solar sails are currently being analyzed to determine if they are a feasible alternative to more 

conventional means of space propulsion, such as chemical rockets.  In this thesis, a minimum-

time optimal solution is obtained for a sail traveling from Earth to Venus.  This solution consists 

of the state and control histories of the sail, as well as the shape of the trajectory and the time of 

flight.  Direct collocation is used, specifically a pseudospectral method, to numerically generate 

an optimal solution for the sail’s governing equations of motion.  The pseudospectral method is 

determined to be an effective means of solving these differential equations.  The optimality of 

the solutions is verified by comparison of the Hamiltonian behavior to what is described in 

optimal control theory.  The results are analyzed, noting some anomalies and offering possible 

explanations.  Finally, the feasibility of the parameters used in the calculations is discussed based 

upon the current technology level of solar sails. 
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Chapter 1:  Introduction 
 

 

In this chapter, a basic introduction of solar sails is provided.  Also, the rationale for 

investigating the optimization problem addressed in this thesis is discussed.  The objective of 

this thesis is then presented, along with key assumptions and points of consideration 

regarding the setup of the problem. 

 

1.1 Problem Statement 
 

A solar sail is a method of space propulsion that utilizes solar radiation pressure to produce 

thrust.  The acceleration generated from photon collisions is relatively weak (on the order of 

mm/s2), so solar sails are categorized as a form of “low-level thrust.” Solar sails are most 

effective over long distances, when their small constant accelerations allow for high 

velocities to accumulate over time.  An additional advantage of solar sails is that there is no 

need for propellant, which often accounts for a large portion of a spacecraft’s mass.  Since 

launch costs are directly proportional to the mass of the payload, a significant amount of 

money can be saved in this regard if a solar sail is utilized. 

 These are a few of the main reasons why solar sails have been investigated as a viable 

alternative to more conventional methods, namely rocket propulsion.  One of the most 

critical metrics used to compare the two forms of propulsion is the time of flight required to 

reach a specified destination from Earth.  Obtaining minimal-time solutions for sail 
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trajectories will provide some insight into whether or not implementation of a full-scale solar 

sail is worthwhile. 

 

1.2 Thesis Objective 
 

 

The primary objective of this research is to obtain the control history, which is the set of sail 

control angles at discrete points along the path, for the minimal-time optimal trajectory from 

Earth to Venus.  The time of flight for the optimal trajectory and the shape of the trajectory 

are also points of interest for this problem.  There are a few major assumptions/notes to 

mention when formulating this problem: 

• In reality, a solar sail mission from Earth to Venus would typically start from an orbit 

around Earth and end in an orbit around Venus.  For simplicity, the sail is assumed to 

start at Earth’s center and end at the center of Venus. 

• The orbits of Earth and Venus are perfectly circular, having an eccentricity of zero.  

In reality, the orbits of the two planets have eccentricities slightly above zero.  Since 

the assumption does not stray too far from reality in this regard, it does not have a 

significant effect on the accuracy of the overall solution.  Considering the 

eccentricities of the orbits in this problem increases the complexity of the problem 

formulation for only a marginal rise in the quality of the answer. 
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• The orbits of the two planets, although perfectly circular, will not be coplanar.  This 

means that the inclinations of the two orbits will be exactly as they are in reality and 

the problem will be three-dimensional. 

• The solar sail model used is perfectly flat and made of material that is perfectly 

reflective.  This configuration is considered to be the ideal model for a solar sail 

because it gains the most momentum from collisions with photons.  As a result, the 

ideal model has the best performance and the optimal results generated from using it 

can be used as a benchmark for more realistic non-ideal models. 

The results described above will be obtained for ideal sails with different performance 

characteristics.  With these results, conclusions can be drawn about the effect that certain 

parameters have on the dynamics of the sail, as well as the accuracy of the numerical method 

used to obtain the optimal solutions. 
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Chapter 2:  Problem Formulation 
 

 

In this chapter, the nonlinear differential equations of motion for a planar, perfectly reflecting 

solar sail in a heliocentric orbit will be derived, along with critical performance parameters 

for solar sails.  Additionally, the equations of motion will be developed in a rotating 

reference frame and in cylindrical coordinates for convenience.  The state and control 

variables for this configuration will also be established.  Finally, the characteristic length and 

time units that will be used in this problem are introduced. 

 

2.1 Coordinate Systems and Sail Parameters 
 

 

In order to characterize the motion of a solar sail around the sun, a coordinate system must 

first be established.  The position of a solar sail in a Newtonian, or inertial, reference frame 

can be defined as follows. 

 

Figure 1:  Solar Sail Position in a Newtonian Reference Frame 
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Since this optimization problem deals with circular motion around the sun, which is 

centered at the origin, polar coordinates are the most convenient candidate to use.  However, 

the sail is not restricted to move in only two dimensions so a cylindrical coordinate system 

(with components ρ, ϴ, and z) will be utilized. 

 

Figure 2:  Solar Sail Position in a Cylindrical Coordinate System 

  

There are a few parameters which have an influence on a solar sail’s performance that 

should be introduced [1].  These parameters are constant for any given sail and are largely 
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dependent on the sail material used.  This relationship will be explored in further detail in 

Chapter 4.  The first such parameter is called the sail loading and is simply the total 

spacecraft mass per unit area. 

 𝜎𝜎 =
𝑚𝑚
𝐴𝐴

 (2.1) 
  

The sail loading is a useful tool to have when calculating the characteristic acceleration, 

another performance metric, and when determining the appropriate size of a solar sail.  

Sizing of solar sails is outside the scope of this thesis and will not be addressed, but the 

characteristic acceleration can be expressed as follows: 

 
𝑎𝑎0 =

9.12𝜂𝜂
𝜎𝜎[𝑔𝑔 ∗ 𝑚𝑚−2]

[𝑚𝑚𝑚𝑚 ∗ 𝑠𝑠−2] (2.2) 

 

The variable 𝜂𝜂 represents the efficiency of the solar sail and is used to account for any 

imperfections that may exist in a sail model.  Since the sail model is assumed to be ideal for 

this problem, an efficiency of 1 will be used.  The characteristic acceleration is defined as the 

acceleration that a sail experiences at 1 astronomical unit (AU) with the sail surface oriented 

perfectly normal to the sun-line.  The characteristic acceleration does not have a direct effect 

on the dynamics of the sail, but is a more concrete way of evaluating performance than the 

sail loading and will also be revisited in Chapter 4. 

The parameter that serves as the best indicator of performance is known as the sail 

lightness number (SLN), the sail lightness factor (SLF), or simply the lightness number.  

These three terms will be used interchangeably throughout the thesis.  The lightness number 
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is simply the ratio of the repulsive acceleration on the sail provided by solar radiation 

pressure to the gravitational acceleration exerted on the sail by the sun. 

 𝛽𝛽 =
𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑎𝑎𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (2.3) 

 

Since both accelerations vary with the sail’s distance from the sun according to an inverse 

square relationship, the SLN is a dimensionless constant.  As with the other parameters 

defined earlier, the lightness number is constant for any specific sail and is primarily 

dependent on the materials of which the sail is composed.  Since the acceleration due to 

gravity at a given location will be the same for every sail, the lightness number can be 

considered a measure of a sail’s ability to produce an acceleration from exposure to a given 

amount photons.  Lightness numbers typically range from 0 to 1, with higher numbers 

correlating to higher performance.  It will be shown in the next section that the lightness 

number appears in the equations that govern a sail’s motion and has a significant influence 

on the dynamics of the sail as a result. 

 

2.2 Solar Sail Equations of Motion 
 

 

The equation of motion for a perfectly reflecting solar sail in a heliocentric orbit [1] can be 

shown to be: 

 𝑟𝑟2𝑟𝑟
𝑟𝑟𝑟𝑟2

𝑁𝑁

+
𝜇𝜇
𝑟𝑟2 �̂�𝑟 = 𝛽𝛽

𝜇𝜇
𝑟𝑟2 (�̂�𝑟 ∙ 𝑟𝑟�)2𝑟𝑟� (2.4) 
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In this equation, 𝑟𝑟
2𝑟𝑟

𝑟𝑟𝑟𝑟2

𝑁𝑁
represents the acceleration of the sail with respect to the sun in the 

Newtonian frame of reference.  The variable 𝑟𝑟 is the radial distance between the sail and the 

sun and �̂�𝑟 is the unit vector directed along the sun-sail line.  As mentioned before, 𝛽𝛽 is the 

sail lightness factor and μ is the gravitational parameter.  The gravitational parameter is 

defined as: 

 𝜇𝜇 = 𝐺𝐺(𝑚𝑚𝑠𝑠𝑠𝑠𝑟𝑟 + 𝑚𝑚𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠 ) (2.5) 
 

where G is the gravitational constant.  However, the sail is assumed to have a much smaller 

mass than the sun, so 𝑚𝑚𝑠𝑠𝑎𝑎𝑟𝑟𝑠𝑠  can be considered negligible and the gravitational parameter 

becomes: 

 𝜇𝜇 = 𝐺𝐺𝑚𝑚𝑠𝑠𝑠𝑠𝑟𝑟  (2.6) 
 

The 𝑟𝑟� vector is the unit vector normal to the surface of the sail that is not exposed to 

photons.  This is the direction in which the sail experiences the acceleration from the solar 

radiation pressure, since the acceleration can only be directed perpendicular to the surface of 

a planar sail.  The 𝑟𝑟� vector is shown in Figure 3. 
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Figure 3:  The n-hat Vector and Associated Control Angles 

   

The angles α and γ are referred to as the control angles for the sail and their significance 

will be discussed in the next section.  Regardless, the normal vector can be expressed in 

terms of the cylindrical coordinates and control angles, viz. 

 𝑟𝑟� = cos 𝛾𝛾 cos 𝛼𝛼 𝑟𝑟�̂�𝜌 + cos 𝛾𝛾 sin 𝛼𝛼 𝑟𝑟̂𝜃𝜃 + sin 𝛾𝛾  𝑟𝑟̂𝑧𝑧  (2.7) 
 

Although Equation 2.4 is expressed in terms of the Newtonian reference frame, the 

problem at hand is most conveniently formulated in a rotating frame.  The geometrical 

representation of this transformation can be established by altering Figure 2 to reflect a 

rotation through an arbitrary angle ϴ: 
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Figure 4:  Representation of Sail Position in a Rotating Frame 

 

Equation 2.4 can be transformed from the inertial to the rotating, or body, frame [2] by 

solving for the inertial acceleration term,  𝑟𝑟2𝑟𝑟
 𝑟𝑟𝑟𝑟2

𝑁𝑁
, in the following equation. 

 𝑟𝑟2𝑟𝑟
𝑟𝑟𝑟𝑟2

𝐵𝐵

=
𝑟𝑟2𝑟𝑟
𝑟𝑟𝑟𝑟2

𝑁𝑁

− �𝜔𝜔��⃑ ̇ 𝐵𝐵 𝑁𝑁�  𝑥𝑥 𝑟𝑟� − �2𝜔𝜔��⃑ 𝐵𝐵
𝑁𝑁�  𝑥𝑥 

𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

𝐵𝐵

� −  �𝜔𝜔��⃑ 𝐵𝐵
𝑁𝑁�  𝑥𝑥 �𝜔𝜔��⃑ 𝐵𝐵

𝑁𝑁�  𝑥𝑥 𝑟𝑟�� (2.8) 

 

In Equation 2.8,  𝜔𝜔��⃑ 𝐵𝐵
𝑁𝑁�  represents the angular velocity of the body frame with respect to 

the Newtonian frame.  By the same token, 𝜔𝜔��⃑ ̇ 𝐵𝐵 𝑁𝑁�  denotes the angular velocity of the rotating 

frame with respect to the Newtonian frame.  Finally, 𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

𝐵𝐵
and 𝑟𝑟

2𝑟𝑟
𝑟𝑟𝑟𝑟2

𝐵𝐵
are the velocity and 
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acceleration of the sail in the rotating frame, respectively.  The terms of Equation 2.8 take on 

the following values: 

 𝜔𝜔��⃑ 𝐵𝐵
𝑁𝑁� = 𝜃𝜃 ̇ 𝑟𝑟̂𝑧𝑧  (2.9a) 

 𝜔𝜔��⃑ ̇ 𝐵𝐵 𝑁𝑁� = 𝜃𝜃 ̈ �̂�𝑟𝑧𝑧 (2.9b) 

 𝑟𝑟 =  𝜌𝜌 𝑟𝑟�̂�𝜌 +  𝑧𝑧 𝑟𝑟̂𝑧𝑧  (2.9c) 

 𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟

𝐵𝐵

=  �̇�𝜌 𝑟𝑟�̂�𝜌  +  �̇�𝑧 𝑟𝑟̂𝑧𝑧  
 

(2.9d) 

 𝑟𝑟2𝑟𝑟
𝑟𝑟𝑟𝑟2

𝐵𝐵

=  �̈�𝜌 𝑟𝑟�̂�𝜌  +  �̇�𝑧 ̈ 𝑟𝑟̂𝑧𝑧  
 

(2.9e) 

 

  By substituting these terms into Equation 2.8 and performing a few operations, the 

expression for the inertial acceleration in terms of a rotating frame in cylindrical coordinates can 

be established. 

 𝑟𝑟2𝑟𝑟
𝑟𝑟𝑟𝑟2

𝑁𝑁

= ��̈�𝜌 − 𝜌𝜌�̇�𝜃2� 𝑟𝑟�̂�𝜌 +  ��̈�𝜃𝜌𝜌 + 2�̇�𝜃�̇�𝜌� 𝑟𝑟̂𝜃𝜃 +  �̈�𝑧 𝑟𝑟̂𝑧𝑧  (2.10) 

 

  Finally, the results of Equation 2.10 can be inserted into Equation 2.4.  By substituting 

the values for �̂�𝑟 and 𝑟𝑟�, three nonlinear equations of motion in cylindrical component form 

emerge. 
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��̈�𝜌 − 𝜌𝜌�̇�𝜃2� 𝑟𝑟�̂�𝜌 +  �

𝜇𝜇𝜌𝜌

(𝜌𝜌2 + 𝑧𝑧2)3
2�

� 𝑟𝑟�̂�𝜌 − 𝛽𝛽
𝜇𝜇

𝜌𝜌2 + 𝑧𝑧2 �
𝜌𝜌 cos 𝛾𝛾 cos 𝛼𝛼 + 𝑧𝑧 sin 𝛾𝛾

�𝜌𝜌2 + 𝑧𝑧2
𝑟𝑟�̂�𝜌 �

2

cos 𝛾𝛾 cos 𝛼𝛼 = 0 (2.11a) 

 
��̈�𝜃𝜌𝜌 + 2�̇�𝜃�̇�𝜌� 𝑟𝑟̂𝜃𝜃 − 𝛽𝛽

𝜇𝜇
𝜌𝜌2 + 𝑧𝑧2 �

𝜌𝜌 cos 𝛾𝛾 cos 𝛼𝛼 + 𝑧𝑧 sin 𝛾𝛾
�𝜌𝜌2 + 𝑧𝑧2

𝑟𝑟̂𝜃𝜃 �
2

cos 𝛾𝛾 sin 𝛼𝛼 = 0 (2.11b) 

 
𝑧𝑧 ̈ 𝑟𝑟̂𝑧𝑧 +  �

𝜇𝜇𝑧𝑧

(𝜌𝜌2 + 𝑧𝑧2)3
2�

� 𝑟𝑟̂𝑧𝑧 − 𝛽𝛽
𝜇𝜇

𝜌𝜌2 + 𝑧𝑧2 �
𝜌𝜌 cos 𝛾𝛾 cos 𝛼𝛼 + 𝑧𝑧 sin 𝛾𝛾

�𝜌𝜌2 + 𝑧𝑧2
𝑟𝑟̂𝑧𝑧�

2

sin 𝛾𝛾 = 0 (2.11c) 

   

 Equations 2.11a-c are the three nonlinear equations of motion for a solar sail in a 

heliocentric orbit expressed in cylindrical coordinates for a rotating body frame. 

 

2.3 Optimal Control Problem Statement 
 

 

The objective of this problem is to determine the control history, 𝑠𝑠�⃑ (t), that allows for a 

minimal time solution to the equations of motion (Equations 2.11a-c) subject to a set of 

constraints.  The control history is the set of control angles, which were defined in Section 

2.2, that are determined at each discrete point, or node, along the trajectory. 

 
𝑠𝑠�⃑ (𝑟𝑟) =  �

𝑠𝑠1(𝑟𝑟)
𝑠𝑠2(𝑟𝑟)� =  �

𝛼𝛼(𝑟𝑟)
𝛾𝛾(𝑟𝑟)� (2.12) 

 

 To assist the optimal control software in converging towards a solution, the control 

angles were broken up into their trigonometric components.  This gives the software more 

flexibility when determining the control history.  Equation 2.12 can be altered so that the 

control history is now expressed as: 
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𝑠𝑠�⃑ (𝑟𝑟) =  �

𝑠𝑠1(𝑟𝑟)
𝑠𝑠2(𝑟𝑟)
𝑠𝑠3(𝑟𝑟)
𝑠𝑠4(𝑟𝑟)

� =  �

cos 𝛼𝛼(𝑟𝑟)
sin 𝛼𝛼(𝑟𝑟)
cos 𝛾𝛾(𝑟𝑟)
sin 𝛾𝛾(𝑟𝑟)

� (2.13) 

 

 However, an additional constraint is required to ensure that the trigonometric components 

for each control angle are compatible at each node in the trajectory. 

 cos2 𝛼𝛼(𝑟𝑟) +  sin2 𝛼𝛼(𝑟𝑟) = 1 (2.14a) 
 cos2 𝛾𝛾(𝑟𝑟) +  sin2 𝛾𝛾(𝑟𝑟) = 1  (2.14b) 

 

 To ensure that the trajectory of the sail coincides with Venus’s orbit, constraints need to 

be placed on the final values of the sail’s position, velocity and inclination [3].  This is 

accomplished through the following equations: 

 𝜌𝜌𝑓𝑓
2 + 𝑧𝑧𝑓𝑓

2 = 𝑟𝑟𝑔𝑔
2 (2.15a) 

 �̇�𝜌𝑓𝑓
2 +  �𝜌𝜌𝑓𝑓 �̇�𝜃𝑓𝑓 �

2
+  �̇�𝑧𝑓𝑓

2 =
𝜇𝜇
𝑟𝑟𝑔𝑔

 (2.15b) 
 𝜌𝜌𝑓𝑓

2�̇�𝜃𝑓𝑓

�𝜌𝜌𝑓𝑓
2𝑧𝑧𝑓𝑓

2�̇�𝜃𝑓𝑓
2 + ��̇�𝜌𝑓𝑓 𝑧𝑧𝑓𝑓 − 𝜌𝜌𝑓𝑓 �̇�𝑧𝑓𝑓 �

2
+ 𝜌𝜌𝑓𝑓

4�̇�𝜃𝑓𝑓
2

= cos 𝑟𝑟𝑔𝑔 (2.15c) 

  

where the “f” subscript denotes the final values of the state variables.  The state vector, �⃑�𝑥, 

is composed of the cylindrical components represented in Figure 2 and their first time 

derivatives. 

 

�⃑�𝑥 =  

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6⎦

⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎡
𝜌𝜌
�̇�𝜌
𝜃𝜃
�̇�𝜃
𝑧𝑧
�̇�𝑧⎦

⎥
⎥
⎥
⎤

 (2.16) 
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 Equations 2.11a-c are best formulated in terms of these state variables, as the optimal 

control software requires the equations of motion in the form�̇⃑�𝑥 = 𝑓𝑓(�⃑�𝑥, 𝑠𝑠�⃑ ) [4].  By substituting 

the state variables from Equation 2.15 into the equations of motion represented in Equations 

2.11a-c, the equations of motion in state variable form can be obtained after some 

manipulation. 

 

�̇⃑�𝑥 =  

⎣
⎢
⎢
⎢
⎢
⎡
�̇�𝑥1
�̇�𝑥2
�̇�𝑥3
�̇�𝑥4
�̇�𝑥5
�̇�𝑥6⎦

⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

𝑥𝑥2

𝑥𝑥1𝑥𝑥3
2 −

𝜇𝜇𝑥𝑥1

(𝑥𝑥1
2 + 𝑥𝑥5

2)3
2�

+ 𝛽𝛽
𝜇𝜇

𝑥𝑥1
2 + 𝑥𝑥5

2 �
𝜌𝜌𝑠𝑠3𝑠𝑠1 + 𝑧𝑧𝑠𝑠4

�𝑥𝑥1
2 + 𝑥𝑥5

2
�

2

𝑠𝑠3𝑠𝑠1

𝑥𝑥4

1
𝑥𝑥1

∗ �−2𝑥𝑥1𝑥𝑥4 + 𝛽𝛽
𝜇𝜇

𝑥𝑥1
2 + 𝑥𝑥5

2 �
𝜌𝜌𝑠𝑠3𝑠𝑠1 + 𝑧𝑧𝑠𝑠4

�𝑥𝑥1
2 + 𝑥𝑥5

2
�

2

𝑠𝑠3𝑠𝑠2�

𝑥𝑥6

−
𝜇𝜇𝑥𝑥5

(𝑥𝑥1
2 + 𝑥𝑥5

2)3
2�

+ 𝛽𝛽
𝜇𝜇

𝑥𝑥1
2 + 𝑥𝑥5

2 �
𝜌𝜌𝑠𝑠3𝑠𝑠1 + 𝑧𝑧𝑠𝑠4

�𝑥𝑥1
2 + 𝑥𝑥5

2
�

2

𝑠𝑠4
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.17) 

 

 Equation 2.17 marks the farthest that the equations of motion need to be developed in 

order for the optimal control software to solve for the minimal time solution.  This set of 

equations fully describes the dynamics of a solar sail in a heliocentric orbit using cylindrical 

coordinates in a rotating reference frame. 

 

2.4 Scaling of Variables 
 

 

With many problems involving orbital mechanics, the numbers involved will be very large 

(in the case of distances) and very small (in the case of angular velocities) if conventional SI 

units are utilized to represent these values.  The routines that are run by the optimal control 
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software are processor-intensive to begin with, but incorporating very large numbers into 

these calculations will result in unnecessarily long computation times.  Also, the optimal 

control algorithm employs a particular representation of the variables in the problem such 

that they need to be scaled to approximately the same order of magnitude.  Another problem 

associated with performing operations on very large and very small numbers is that there are 

high values of truncation and roundoff errors.  To avoid these problems, canonical units are 

introduced. 

 First, the characteristic length unit will be an astronomical unit (AU), which is the mean 

distance from the earth to the sun.  Also, the characteristic time unit will be a year.  Finally, 

the gravitational parameter, μ, which is dependent on the length and time units via the 

equation for the orbit’s period, can be determined to be 4π2.  Using these units allows for the 

relevant variables to be expressed by more reasonable values, simplifying the necessary 

calculations [5].  
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Chapter 3:  Method of Analysis 
 

 

In this chapter, the general concept of direct collocation with nonlinear programming will be 

discussed, along with how it is used to generate approximate solutions to optimal control 

problems.  The pseudospectral method, which is used to solve the problem that this thesis 

addresses, will also be examined.  The necessary conditions for optimal control will then be 

defined in order to help validate the results obtained from the pseudospectral method.  

Finally, a summary of DIDO, the optimal control software utilized for this problem, will be 

provided. 

 

3.1 Direct Collocation with Nonlinear Programming 
 

 

Direct collocation is a method of implicitly solving the differential equations that were 

derived in Section 2.3 by approximating the optimal trajectory as a series of polynomials [6].  

This trajectory is partitioned into segments that are separated by nodes of length T, where the 

polynomials, which are functions of the state and control variables defined in Chapter 2, must 

satisfy the differential equations of motion.  In other words, the values at the left and right 

nodes for any segment must match those defined by the equations of motion such that there is 

a smooth, continuous curve connecting any two segments. 
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Figure 5:  Direct Collocation Using a Piecewise Polynomial 

 

In the middle of each segment, a collocation point is established and the derivative of the 

polynomials, �̇�𝑥𝑐𝑐 , is compared to the derivative obtained from the equations of motion [7].  

The defect, Δ, which is a measure of how well the polynomials represent the solution to the 

equations of motion, is defined as: 

 ∆ = 𝑓𝑓(𝑥𝑥𝑐𝑐, 𝑠𝑠𝑐𝑐) −  �̇�𝑥𝑐𝑐  (3.1) 
 

When the state and control variables are determined such that the defect is below a 

specified tolerance, the polynomials are considered to be an accurate approximation of the 

solution to the differential equations. 
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3.2 Pseudospectral Optimal Control 
 

 

The pseudospectral method is a type of direct collocation and will be the means of 

determining the optimal trajectory for this problem [4].  This method differs from the one 

described in Section 3.1 in that the optimal trajectory is a sum of Chebyshev polynomials 

with unknown coefficients.  The optimal solution is found when the unknown polynomial 

coefficients are determined.   

The number of nodes that the trajectory is divided into is equivalent to the number of 

polynomials that are used to represent the solution.  Additionally, this number also denotes 

the order of these Chebyshev polynomials.  Therefore, an approximation with many nodes 

will be represented by high-order polynomials and will produce a solution that has a 

relatively high accuracy. 

 

 
3.3 Conditions for Optimal Control 

  

 

In optimal control theory, the Hamiltonian is a useful tool for verifying that a solution 

approximately meets the necessary conditions for optimality.  The Hamiltonian is composed 

of the system states, �⃑�𝑥, and controls, 𝑠𝑠�⃑ , that were defined in Section 2.3 [8]. 

 ℋ = 1 + 𝜆𝜆𝑥𝑥𝑟𝑟 𝑓𝑓(�⃑�𝑥, 𝑠𝑠�⃑ ) (3.2) 
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In the context of this problem, the Hamiltonian can be fully expressed as: 

 ℋ = 1 + 𝜆𝜆𝑥𝑥1 �̇�𝑥1 + 𝜆𝜆𝑥𝑥2 �̇�𝑥2 + 𝜆𝜆𝑥𝑥3 �̇�𝑥3 + 𝜆𝜆𝑥𝑥4 �̇�𝑥4 + 𝜆𝜆𝑥𝑥5 �̇�𝑥5 + 𝜆𝜆𝑥𝑥6 �̇�𝑥6 (3.3) 
 

where �̇�𝑥1, �̇�𝑥2, … represent the equations of motion in state variable form that were established 

in Equation 2.17 and 𝜆𝜆𝑥𝑥1 , 𝜆𝜆𝑥𝑥2 , … are referred to as their corresponding costates and are a form 

of Lagrange multipliers.  To obtain a comprehensive idea of how accurate the approximate 

solution is, the Hamiltonian is generated at each node along the trajectory using Equation 3.3.  

For a minimum-time optimization problem such as this, the Hamiltonian should be constant 

over time and exactly equal to -1 [4]. 

 

3.4 Problem Formulation in DIDO 
 

 

DIDO is a piece of optimal control software that runs through MATLAB.  It accepts the 

equations of motion for the solar sail in state variable form, along with initial values and 

constraints that bound the problem and restrict the motion of the sail.  It then employs the 

pseudospectral method described in Section 3.2 to produce a potentially optimal solution [4].  

This solution consists of the optimal state variables and control variables at each node, along 

with the total time of flight.  DIDO also calculates the costates at each node so the 

Hamiltonian can be evaluated.  In order to input the appropriate data into DIDO, several files 

must be created, as shown below. 
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1. Dynamics File:  This file contains the equations of motion for the sail in state variable 

form, as expressed in Equation 2.17. 

2. Events File:  This file contains the initial conditions for the state variables, along with 

the constraints that ensure the final position, velocity, and inclination of the sail’s 

trajectory coincide with the corresponding values for Venus. 

3. Path File:  This file defines the constraints on the sail’s control angles, as defined in 

Equations 2.14a-b. 

4. Cost File:  This file accepts a structure array from MATLAB containing the states, 

controls, and node locations.  The output is the endpoint cost, which is essentially the 

time of flight for the optimal solution in the context of this problem. 

5. Problem File:  This is the main file that is in charge of calling the other files and is the 

only one that actually gets run.  It also includes constraints on the maximum and 

minimum values that the state and control variables can have throughout the trajectory, as 

well as the maximum time of flight.  The initial values for the state variables are also 

defined in this file, as well as parameters involving the pseudospectral method, such as 

providing initial guesses for the solution or setting the number of nodes to be used.  

Finally, all of the data processing is done at the end of the file. 

 

The source code for these files is included in Appendix A.  
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Chapter 4:  Numerical Examples: Results and 
Discussion 

 

This chapter contains all of the optimal control solutions generated by DIDO.  First, a 

solution with 81 nodes is obtained to display the software’s capability to produce accurate 

results.  Then, slightly less accurate solutions are calculated which investigate the effect that 

lightness number has on the dynamics of the sail, shape of the trajectory, and optimal time of 

flight.  These results are analyzed and explanations are offered for any anomalies in the data.  

Finally, the feasibility of the key parameters used in the problem formulation is discussed. 

 

4.1 High Accuracy Time-Optimal Solution 
 

 

To demonstrate what a relatively accurate optimal solution looks like, DIDO was run with 

the trajectory separated by 81 nodes.  As mentioned in Section 3.2, the number of nodes is 

equal to the order of the Chebyshev polynomials used to approximate the solution, so this 

trajectory is composed of a series of 81st order polynomials.  Even with the use of canonical 

units, this solution took a relatively long time to generate and was intended to show DIDO’s 

capability to produce accurate results.  It should be noted that the z-axis in Figure 6 is scaled 

differently than the x and y axes, exaggerating the inclination of Venus.  In reality, the two 

orbits are nearly coplanar, with Venus having an inclination of roughly 3.5⁰. 
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Figure 6: Sail Trajectory with 81 Nodes for a SLF = 0.1 

 

Figure 7 shows how the Hamiltonian behaves over time for the trajectory shown above.  

As described in Section 3.3, a minimum-time optimal solution will have a Hamiltonian that is 

constant and equal to -1.  Relatively speaking, the fluctuations that are present in the central 

portion of this plot are extremely small.  While the solution generated by the pseudospectral 

method isn’t exactly optimal, the behavior of the Hamiltonian indicates that the solution is 

extremely accurate. 
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Figure 7: Hamiltonian as a Function of Time for 81 Nodes and SLF = 0.1 

 

Another advantage of a solution with many nodes is that the control history looks smooth 

and continuous.  Figure 8 is a plot of the required control angle α, which is the sail deflection 

within the instantaneous plane of motion.  As shown in the figure, α assumes a negative 

value for the majority of the sail’s flight.  This corresponds to the sail being oriented so that 

the acceleration vector opposes the direction of the sail’s motion, gradually reducing its 

velocity.  As a result, the energy and radius of the sail’s orbit are reduced to coincide with 

that of Venus. 
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Figure 8: Control Angle (alpha) as a Function of Time for 81 Nodes and SLF = 0.1 

 

Figure 9 shows the control history for γ, the angle that the sail makes in and out of the 

instantaneous plane of motion.  The sail initially has a positive value for γ, which 

corresponds to a rise in the positive z direction above Earth’s orbital plane.  Roughly halfway 

through the trajectory, γ becomes negative and the sail starts to travel in the negative z 

direction to match the inclination of Venus’s orbit. 
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Figure 9: Control Angle (gamma) as a Function of Time for 81 Nodes and SLF = 0.1 

 

The reason why the optimal trajectory under these conditions needs to rise above the 

Earth’s orbital plane before dropping below it again is unclear.  As shown in Section 4.2, this 

is not typically the case when a wide range of scenarios are considered.  It is suspected that 

this trajectory is a product of the relatively low lightness number.  Sails with lower lightness 

numbers will have less “control authority” than those with higher values.  Control authority 

refers to the sail’s ability to maneuver through the forces in nature that try to govern its 

motion [9].  As a result, an optimal trajectory for a sail with a low lightness number might 

assume an unorthodox form that is less intuitive.  In fact, the pseudospectral method utilized 

was unable to produce an optimal result for a value of β lower than 0.07. 
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4.2 The Effect of Sail Lightness Number on Optimal Results 
 

 

As stated in Section 2.1, the sail lightness number is a measure of a solar sail’s performance.  

To investigate the lightness number’s influence on the dynamics of the sail, optimal solutions 

were generated for an ideal sail with a gradually increasing value of β.  By holding all other 

parameters constant, the effect of lightness number on the optimal results becomes apparent.  

The solutions (listed in Appendix B) are the pseudospectral approximations using 41 nodes, 

which allows for faster computational time and a reasonable degree of accuracy. 

The effect that the number of nodes has on the quality of the results is instantly 

noticeable.  The optimal results generated using 81 nodes in Section 4.1 are far more smooth 

and continuous than the 41 node results.  With the 41 node solutions, the control angles make 

sharp adjustments, which are not very practical.  However, a considerable amount of 

accuracy is maintained, as shown by the fact that the Hamiltonian only fluctuates by ±0.1 at 

the very most. 

There are several trends that appear as the sail lightness factor is increased.  The first 

trend deals with the actual sail trajectory.  As mentioned in Section 4.1, the trajectory at low 

values of β rises fairly high above Earth’s orbital plane before dropping back below it.  With 

higher lightness numbers, this motion is less exaggerated or even nonexistent.  This is 

because sails with higher values of β have more control authority and are able to take more 

direct routes to their destination. 

Also, the optimal trajectories tended to become less smooth as lightness number 

increased.  A jagged path is not very practical, especially for solar sails, because 
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instantaneous direction changes are only relevant when assuming impulsive maneuvers.  The 

reason for this behavior is unknown, but it is speculated that it is a result of the 

pseudospectral method.  High values of β tend to result in increased sensitivity to the control 

angles by DIDO, so changes in trajectory can be abrupt. 

Another thing to note is that the orbit of Venus seems to rotate in a clockwise direction 

about the z-axis with increasing lightness number.  In reality, Venus’s orbit does not move in 

this fashion- this is a byproduct of the problem formulation.  The initial state values for the 

sail’s trajectory are fixed and there is no constraint that forces the path to coincide with the 

longitude of the ascending node for Venus.  Therefore, this rotation of Venus’s orbit is an 

indication of the optimal trajectory becoming shorter with increasing lightness number.  As a 

result, the time of flight for the optimal trajectory decreases with growing values of β, as 

shown in Figure 10. 

 

Figure 10:  Time of Flight as a Function of Sail Lightness Number Using 41 Nodes 

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

Time of Flight vs. Sail Lightness Number

Sail Lightness Number

Ti
m

e 
of

 F
lig

ht
 (Y

ea
rs

)



 

28 
 

 

 The actual times of flight and their corresponding lightness numbers are included in Table 1. 

Table 1:  Time of Flight as a Function of Sail Lightness Number Using 41 Nodes 

Sail Lightness Number Time of Flight (Years) 
0.10 0.8053 
0.15 0.7725 
0.20 0.7552 
0.25 0.7443 
0.30 0.7366 
0.35 0.7307 
0.40 0.7261 
0.45 0.7223 
0.50 0.7191 
0.55 0.7164 
0.60 0.7140 
0.65 0.7119 
0.70 0.7100 
0.75 0.7083 
0.80 0.7068 
0.85 0.7054 
0.90 0.7042 
0.95 0.7030 
1.00 0.7019 

 

As the lightness number increases, the optimal trajectory time of flight asymptotically 

approaches approximately 0.7 years.  To put this number into perspective, a Hohmann 

transfer between two circular orbits with the same radius as Earth and Venus would take 

roughly 0.4 years.  However, as mentioned in Section 1.1, the benefits of low-level thrust are 

seen over long distances, and the trajectories generated are relatively short.  Also, the launch 

costs of the conventional spacecraft needed to perform the Hohmann transfer would be much 

higher than those of a solar sail. 
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4.3 Feasibility of Results 
 

 

The optimal results have been produced for a range of lightness numbers, but as mentioned in 

Section 2.1, this parameter is largely dependent on the sail material.  The ideal material for a 

solar sail has a low sail loading (σ) and a high reflectivity.  The sail loading is the mass per 

unit area, so thin and lightweight materials prove to be best suited for solar sailing.  A 

common technique involves coating such materials, like Mylar or Kapton, with a thin layer 

of aluminum to increase reflectivity [10].  The resulting material still has a low value of σ, 

which corresponds to a large characteristic acceleration via Equation 2.2.  The sail lightness 

factor is directly related to the characteristic acceleration [11] through the following 

relationship: 

 𝛽𝛽 = 0.168𝑎𝑎0 (4.1) 
 

 Solar sailing has garnered moderate interest from the scientific community and there have 

been a handful of missions involving sails over past few decades.  However, the only 

successful missions were testing sail deployment methods.  As of the writing of this thesis, 

there have been no successful missions conducted to test solar sails as a primary form of 

propulsion for a spacecraft.  As a result, there is no experimental data regarding performance 

characteristics of solar sails in space. 

 For now, possible values of β must therefore be determined through purely theoretical 

methods. Sail materials and construction methods [11] have been proposed that could yield 

lightness numbers of 1.  Adding small perforations in these sails that are smaller than the 
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wavelength of visible light would reduce the mass of the sail without allowing photons to 

pass through the material.  In theory, this technique could raise the lightness number to as 

high as 10.  Even though these numbers are theoretical, it seems as though sails with 

lightness numbers equivalent to the ones investigated in this thesis could easily be obtained 

using current manufacturing techniques. 

 However, these predictions will remain speculative until these sails are actually tested in 

space.  There are currently two missions scheduled for 2010, IKAROS and Lightsail-1, that 

will obtain this critical performance data if successful.  
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Chapter 5:  Conclusions and Future Work 
 

 

This chapter provides some concluding remarks regarding the numerical method used to 

solve the optimal control problem in this thesis.  Also, the software used to implement the 

pseudospectral method is discussed.  Finally, the results obtained from this software are 

assessed. 

 

5.1 Conclusions 
 

 

In this thesis, it was determined that pseudospectral optimal control was an effective method 

of determining a minimal-time solution to the nonlinear equations of motion for a solar sail.  

DIDO proved to be an effective tool to implement this method, allowing for parameters to be 

changed and results to be output seamlessly.  However, this was only the case once the 

program syntax was correctly formulated for the first time.  When first using the software, it 

can be very confusing and it requires a fairly thorough reading of the user’s manual.  One of 

the biggest problems with DIDO is its inability to provide useful error messages, which often 

leave the user with no information about the location of any bugs in the code.  Another area 

in which DIDO could improve upon is the computation time for more accurate solutions.  

However, much of this can be attributed to running through MATLAB, which is notoriously 

slow when compared to other languages. 

 The results obtained were quite useful, offering much insight into the dynamics of a solar 

sail.  By generating optimal solutions for a range of sail lightness numbers, the idea that this 
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parameter is a strong indicator of a sail’s performance was confirmed.  Additionally, some 

information about the relationship between lightness factor and the pseudospectral method 

was discovered, as shown by the moderate drop in solution optimality with increasing values 

of β. 

 
5.2 Future Work Recommendations 

 

 

Suggested future work includes the utilization of non-ideal sail models for more realistic 

results.  These results can be compared to the results presented in this thesis to determine 

how accounting for different imperfections affects the dynamics of the sail and its trajectory, 

as well as the impact on time of flight.  Some aspects to consider in a non-ideal model 

include: 

• The ability of a sail to billow from the solar radiation pressure.  The ideal model 

assumes a perfectly flat and rigid sail, which does not occur in reality.  Sail materials 

will be ultralight and ultrathin and subject to some form of deflection. 

• The fact that photons do not reflect perfectly off the surface of the sail.  There are 

phenomena such as re-radiation and photon dispersion that occur in reality and 

decrease the performance of the sail. 

The optimal solutions for sails with a lightness number higher than 1 could also be 

established.  If the upcoming sail missions described in Section 4.3 prove that these lightness 

numbers are attainable, then these new optimal trajectories will most likely yield better 

results. 
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Finally, other destinations could be considered, preferably ones that are a considerable 

distance away.  Results for farther destinations will provide a better idea of how beneficial 

solar sail technology actually is.  
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Appendix A: MATLAB Source – Perfectly Reflective 
 

A.1 Problem File 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Problem (script) file for the Perfectly Reflective Planar Sail 
% 
% Alex Pini 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%=================== 
% Problem variables: 
%------------------- 
% states = (rho, rhodot, theta, thetadot, z, zdot) 
% controls = alpha, gamma 
%=================== 
  
%--------------------------------------- 
% bounds the state and control variables 
%--------------------------------------- 
  
rhoL = 0.6; rhoU = 1.2; 
rhodotL = -0.5; rhodotU = 0.5;  
thetaL = 0; thetaU = 3*pi;  
thetadotL = pi; thetadotU = 4*pi; 
zL = -0.2; zU = 0.2; 
zdotL = -0.2; zdotU = 0.2; 
  
bounds.lower.states = [rhoL; rhodotL; thetaL; thetadotL; zL; zdotL]; 
bounds.upper.states = [rhoU; rhodotU; thetaU; thetadotU; zU; zdotU]; 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
%% Fixed limits on controls (sin and cos of the control angles) 
%%%%%%%%%%%%%%%%%%%%%%%% 
  
bounds.lower.controls = [0; -1; 0; -1]; 
bounds.upper.controls = [1; 1; 1; 1]; 
  
%------------------ 
% bound the horizon 
%------------------ 
  
t0 = 0; 
tfMax = 1; 
bounds.lower.time = [t0, t0]; 
bounds.upper.time = [t0, tfMax]; % Fixed time at t0 and a possibly free time 
at tf 
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%------------------------------------------- 
% Set up the bounds on the endpoint function 
%------------------------------------------- 
  
% See events file for definition of events function 
  
mu = 4 * pi^2; 
  
% Initial conditions for state variables 
  
rho0 = 1; 
rhodot0 = 0; 
theta0 = 0; 
thetadot0 = sqrt(mu/rho0^3); 
z0 = 0; 
zdot0 = 0; 
 
bounds.lower.events = [rho0; rhodot0; theta0; thetadot0; z0; zdot0; 0;0;0]; 
bounds.upper.events = bounds.lower.events; % equality event function bounds 
  
%% made path constraints into event constraints and commented out the path 
%% constraint info in main problem file 
  
bounds.lower.path = [0; 0]; 
bounds.upper.path = [0; 0]; 
  
%============================================ 
% Define the problem using DIDO expresssions: 
%============================================ 
  
IdealPlanar.cost = 'IdealPlanarCost'; 
IdealPlanar.dynamics = 'IdealPlanarDynamics'; 
IdealPlanar.events = 'IdealPlanarEvents'; 
IdealPlanar.path = 'IdealPlanarPath'; 
IdealPlanar.bounds = bounds; 
  
%==================================================== 
  
% % Enable this section for first run to get a feasible solution 
% 
% ca = cos(-pi/4); 
% sa = sin(-pi/4); 
% cg = cos(0); 
% sg = sin(0); 
% 
% % insert guesses for beginning, middle, and end times 
% 
% algorithm.guess.controls = [ca ca ca; sa sa sa; cg cg cg; sg sg sg]; 
% 
% algorithm.guess.states = [rho0, 0.85 , 0.7233; 0 -0.2 0; 0 thetaU/2 thetaU; 
%   thetadot0 (thetadot0+sqrt(mu/(0.7233^3)))/2 sqrt(mu/(0.7233^3));  
%   0 0 0.01; 0 -0.01 0]; 
% 
% algorithm.guess.time = [0 tfMax/2 tfMax]; 
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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algorithm.nodes = [21]; 
load 'ideal_planar_21_nodes_015' primal; 
algorithm.guess = primal 
% algorithm.mode = 'accurate' %enable for accurate solution 
% Call dido 
tStart= cputime; % start CPU clock 
[cost, primal, dual] = dido(IdealPlanar, algorithm); 
runTime = cputime-tStart 
save 'ideal_planar_21_nodes_015' 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Calling values for state variables from primal structure 
  
rho = primal.states(1,:); 
rhodot = primal.states(2,:); 
theta = primal.states(3,:); 
thetadot = primal.states(4,:); 
z = primal.states(5,:); 
zdot = primal.states(6,:); 
t = primal.nodes; 
  
%Calling final values for state variables from primal structure 
  
rhof = primal.states(1,end); 
rhodotf = primal.states(2,end); 
thetaf = primal.states(3,end); 
thetadotf = primal.states(4,end); 
zf = primal.states(5,end); 
zdotf = primal.states(6,end); 
tf = primal.nodes(1,end) 
  
%Converting position components in state vector to Cartesian coordinates 
%for plotting purposes 
  
[x,y,z] = pol2cart(theta(1,:), rho(1,:), z(1,:)); 
  
%Calculating the longitude of the ascending node for the optimal trajectory 
%from the final values for the state variables 
  
cLAN = (((rhof * zdotf - rhodotf * zf) * cos(thetaf) + rhof * zf * thetadotf 
* sin(thetaf))/(sqrt((rhof * zdotf - rhodotf * zf)^2 + (rhof)^2 * (zf)^2 * 
(thetadotf)^2))); 
 
sLAN = (((rhof * zdotf - rhodotf * zf) * sin(thetaf) - rhof * zf * thetadotf 
* cos(thetaf))/(sqrt((rhof * zdotf - rhodotf * zf)^2 + (rhof)^2 * (zf)^2 * 
(thetadotf)^2))); 
  
LAN = atan2(sLAN,cLAN); 
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%Plotting Earth and Venus Orbits 
  
[ex,ey,ez] = cylinder(1,200); 
[vx,vy,vz] = cylinder(0.723332,200); 
  
i_v = 3.39471 * pi/180; 
  
vx2 = vx .* cos(i_v); 
vy2 = vy; 
vz2 = -vx .* sin(i_v); 
  
C_1 = [1, 0, 0; 0, cos(-i_v), sin(-i_v); 0, -sin(-i_v), cos(-i_v)]; 
C_3 = [cos(-LAN), sin(-LAN), 0; -sin(-LAN), cos(-LAN), 0; 0, 0, 1]; 
  
n = 1; 
  
while n < 210 
     
    node = (2 * pi /200) * n; 
     
    V(1,n) = 0.723332 * cos(node); 
    V(2,n) = 0.723332 * sin(node); 
    V(3,n) = 0; 
     
    n = n + 1; 
     
end 
  
  
V_3 = C_3 * C_1 * V; 
  
%Outputting relevant figures 
  
figure 
plot3(x(1,:),y(1,:),z(1,:),'g-
o',ex(1,:),ey(1,:),ez(1,:),'b',V_3(1,:),V_3(2,:),V_3(3,:),'r') 
grid on; 
xlabel('x (A.U.)') 
ylabel('y (A.U.)') 
zlabel('z (A.U.)') 
title('Optimal Sail Trajectory (\beta = 0.6)') 
legend('Sail Trajectory','Earth Orbit','Venus Orbit') 
figure 
plot(primal.nodes,dual.Hamiltonian) 
ylabel('H') 
xlabel('Time (Years)') 
title('Hamiltonian vs. Time') 
figure 
calpha = primal.controls(1,:); 
salpha = primal.controls(2,:); 
cgamma = primal.controls(3,:); 
sgamma = primal.controls(4,:); 
plot(primal.nodes,atan2(salpha,calpha)) 
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title ('Control Angle \alpha vs. Time') 
ylabel('\alpha (rad)') 
xlabel('Time (Years)') 
figure 
plot(primal.nodes, atan2(sgamma,cgamma)) 
title ('Control Angle \gamma vs. Time') 
ylabel('\gamma (rad)') 
xlabel('Time (Years)') 
 
 
 

A.2 Dynamics File 
 
 
 
function XDOT = IdealPlanarDynamics(primal) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Dynamics for the Perfectly Reflective Planar Sail 
% 
% Alex Pini  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
mu = 4*pi^2; 
SLF = 0.15; 
  
XDOT = zeros(6,1); 
rho = primal.states(1,:); 
rhodot = primal.states(2,:); 
theta = primal.states(3,:); 
thetadot = primal.states(4,:); 
z = primal.states(5,:); 
zdot = primal.states(6,:); 
  
calpha = primal.controls(1,:); 
salpha = primal.controls(2,:); 
cgamma = primal.controls(3,:); 
sgamma = primal.controls(4,:); 
  
%======================================================= 
% Equations of Motion: 
%======================================================= 
  
r = sqrt(rho.^2 + z.^2); 
rhatnsq = (( rho .* cgamma .* calpha + z .* sgamma)./r).^2; 
 
x1dot = rhodot; 
 
x2dot = rho .* thetadot.^2 - (mu * rho)./(r.^3) + SLF .* mu./(r.^2) .* 
rhatnsq .* cgamma .* calpha; 
 
x3dot = thetadot; 
x4dot = (1./rho) .* (-2 * rhodot .* thetadot + SLF .* mu./(r.^2) .* rhatnsq.* 
cgamma .* salpha); 
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x5dot = zdot; 
 
x6dot = -1 * (mu * z)./(r.^3) + SLF .* mu./(r.^2) .* rhatnsq .* sgamma; 
  
%====================================================== 
XDOT = [x1dot; x2dot; x3dot; x4dot; x5dot; x6dot]; 
%====================================================== 
 
 

A.3 Events File 
 
 
 
function endpointFunction = IdealPlanarEvents(primal) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Endpoint function for the Perfectly Reflective Planar Sail 
% 
% Alex Pini 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
rho0 = primal.states(1,1);      rhof = primal.states(1,end); 
rhodot0 = primal.states(2,1);   rhodotf = primal.states(2,end); 
theta0 = primal.states(3,1);    thetaf = primal.states(3,end); 
thetadot0 = primal.states(4,1); thetadotf = primal.states(4,end); 
z0 = primal.states(5,1);        zf = primal.states(5,end); 
zdot0 = primal.states(6,1);     zdotf = primal.states(6,end); 
  
% preallocate the endpointFunction evaluation for good MATLAB computing 
  
endpointFunction = zeros(9,1); % t0 is specified in the problem file 
  
%=========================================================== 
  
mu = 4 * pi^2; 
  
%Defining orbital properties of Venus so final states of optimal 
%trajectory can be constrained 
  
r_v = 0.7233; 
i_v = 3.39471 * pi/180; 
LAN_v = 45*pi/180; 
  
endpointFunction(1) = rho0; 
endpointFunction(2) = rhodot0; 
endpointFunction(3) = theta0; 
endpointFunction(4) = thetadot0; 
endpointFunction(5) = z0; 
endpointFunction(6) = zdot0; 
  
 
%Equations constraining final states of optimal trajectory 
%to correlate with those of Venus's orbit 
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endpointFunction(7) = (rhof)^2 + (zf)^2 - (r_v)^2; 
 
endpointFunction(8) = (rhodotf)^2 + (rhof*thetadotf)^2 + (zdotf)^2 - 
mu/(r_v); 
 
endpointFunction(9) = (((rhof)^2 * thetadotf)/(sqrt((rhof)^2 * (zf)^2 * 
(thetadotf)^2 + (rhodotf*zf - rhof*zdotf)^2 + (rhof)^4 * (thetadotf)^2)))-
cos(i_v); 
 
%% endpointFunction(10) = (((rhof * zdotf - rhodotf * zf) * cos(thetaf) + 
rhof * zf * thetadotf * sin(thetaf))/(sqrt((rhof * zdotf - rhodotf * zf)^2 + 
(rhof)^2 * (zf)^2 * (thetadotf)^2)))-cos(LAN_v); 
 
%% endpointFunction(11) = (((rhof * zdotf - rhodotf * zf) * sin(thetaf) - 
rhof * zf * thetadotf * cos(thetaf))/(sqrt((rhof * zdotf - rhodotf * zf)^2 + 
(rhof)^2 * (zf)^2 * (thetadotf)^2)))-sin(LAN_v); 
%----------------------------------------------------------- 
 
 

A.4 Path File 
 
 
 
function Constraints = IdealPlanarPath(primal) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Endpoint function for the Perfectly Reflective Planar Sail 
% 
% Alex Pini 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
calpha = primal.controls(1,:); 
salpha = primal.controls(2,:); 
cgamma = primal.controls(3,:); 
sgamma = primal.controls(4,:); 
 
%Constraining the trigonometric components of each control 
%angle at each node so that the control angles 
%are meaningful 
 
  
conalpha = calpha.^2 + salpha.^2 - 1; 
congamma = cgamma.^2 + sgamma.^2 - 1; 
  
Constraints = [conalpha; congamma]; 
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A.5 Cost File 
 
 
function [EndpointCost, RunningCost] = IdealPlanarCost(primal) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Endpoint Cost for the Perfectly Reflective Planar Sail 
% 
% Alex Pini 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tf = primal.nodes(end); 
EndpointCost = tf; 
RunningCost = 0; 

 
 
 
 
 
 

 

 

 

 

 

 

  



 

42 
 

Appendix B: Variation of Optimal Results with SLN 
 

 

In the following pages, the optimal results generated from DIDO are presented.  The results 

consist of the shape of the trajectory, the control history, and the Hamiltonian behavior over 

time.  With all other parameters held constant, the sail lightness number is incremented by 0.05 

from 0.1-1.0.  
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Figure 11:  Optimal Solution when SLF = 0.10 
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Figure 12:  Optimal Solution when SLF = 0.15 
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Figure 13:  Optimal Solution when SLF = 0.20 
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Figure 14:  Optimal Solution when SLF = 0.25 
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Figure 15:  Optimal Solution when SLF = 0.30 
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Figure 16:  Optimal Solution when SLF = 0.35 
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Figure 17:  Optimal Solution when SLF = 0.40 
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Figure 18:  Optimal Solution when SLF = 0.45 
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Figure 19:  Optimal Solution when SLF = 0.50 
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Figure 20:  Optimal Solution when SLF = 0.55 
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Figure 21:  Optimal Solution when SLF = 0.60 
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Figure 22:  Optimal Solution when SLF = 0.65 
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Figure 23:  Optimal Solution when SLF = 0.70 
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Figure 24:  Optimal Solution when SLF = 0.75 
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Figure 25:  Optimal Solution when SLF = 0.80 
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Figure 26:  Optimal Solution when SLF = 0.85 
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Figure 27:  Optimal Solution when SLF = 0.90 
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Figure 28:  Optimal Solution when SLF = 0.95 
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Figure 29:  Optimal Solution when SLF = 1.00 
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