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Abstract

In this honors thesis, we investigate the topological problem of everting the 2-sphere in
3-space, i.e. turning a sphere inside out via continuous change allowing self-intersection but
not allowing tearing, creasing, or pinching. The result was shown to exist by an abstract
theorem proven in the 1950s, but the first explicit construction was not published until almost
a decade later. Throughout the past 60 years, many constructions have been made, each
providing their own insight into the theory behind the problem. In the following pages, we
study the history surrounding the problem, the theory that made it possible, and a myriad
of explicit examples giving a solid foundation in descriptive topology.
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Chapter 1

Introduction



2

The topological problem of everting a sphere by a regular homotopy has been a topic of
much research in the past 58 years. To state the problem more explicitly, to evert a sphere
by regular homotopies is to turn it inside out by a continuous deformation that is allowed
to pass through itself but does not puncture, rip, crease, or pinch the surface. The study
was initiated by an abstract theorem that proved its existence but did not give an explicit
construction. In this thesis, we investigate the history of the problem, the theorem that
proved its existence, and four ways in which one can perform such an eversion.

In Chapter 2, we learn about the history surrounding this problem and the key players
involved. This includes a background on the problem as well as a literature review. Attention
here is put on the people involved in the rich history of this problem as the methods in which
they devised are touched on in later chapters.

Chapter 3 introduces us to the necessary definitions and notions needed to understand
how it is possible to evert a sphere. We will look at simple examples of homotopies, regular
homotopies, and isotopies to see the topological ideas behind the methods to follow in the
later chapters. This section is integral in understanding the machinery used not only to give
an explicit construction, but to prove the existence in the first place.

In Chapter 4, we investigate Smale’s original work to understand the broader ideas and
impacts of his methods. We state the main results he arrived at as well as some insight into
how he proved them.

In the remaining chapters, we look at 4 different methods of sphere eversion: the roll
and pull method (Chapter 5), the tobacco pouch method (Chapter 6, Section 2), the
use of minimal surfaces (Chapter 6, Section 3), and Thurston’s corrugation technique
(Chapter 7). Each method has a style all its own, thus the combination provides a solid
foundation in descriptive topology.

In particular, the roll and pull method makes use of small perturbations on the surface
and is the easiest to visually get a grasp on. The next two methods, the tobacco pouch
method and the use of minimal surfaces, rely heavily on the idea of halfway models, which
are immersed spheres that are halfway inside out in certain sense that is covered in Chapter
6, Section 1. The tobacco pouch eversions sport a rotational and aesthetic symmetry, and
make use of the symmetries of halfway models to construct an explicit eversion. The minimal
surfaces approach utilizes halfway models in a different sense; starting with a halfway model,
we aim to relax it to a sphere by gradient descent with respect to the Willmore energy. Thus
if such a descent is possible, we start with the immersed sphere, send it to a halfway model
by gradient ascent, apply a rigid rotation sending the halfway model back to itself, then
apply gradient descent to send it to an inside out immersed sphere. Thurston’s corrugation
technique makes use of a so called “regularity procedure”. Using Thurston’s technique, one
corrugates the surface of the sphere so that at any point in which a homotopy becomes
illegal with respect to our rules, the corrugation smooths out that area so in fact we are not
tearing, puncturing, or creasing the surface. This method is very natural in its essence as
will be seen Chapter 7.
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Chapter 2

The Paradoxical Problem of Everting
the Sphere
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2.1 Mathematical Paradoxes
Mathematics presents a myriad of beautiful and sometimes surprising results. Such

phenomena can be found in every field, with more emphasis put on those examples that are
as interesting as they are informative. From Peano’s construction of a space-filling curve in
point-set topology to the Banach-Tarski Paradox in measure & set theories, the underlying
beauty of the systems studied in mathematics present themselves when looked in the right
light.

Figure 2.1: (Left) Iterations in creating Peano’s space filling curve. (Right) Deconstruction
of one sphere into two spheres of exactly the same size, showing the essence of the Banach-
Tarski paradox.

In this thesis, we will be studying a paradox that is not given much attention in the
undergraduate classroom - the problem of turning a sphere inside out. Clearly, given any
spherical object in real life, there is no way to turn it inside out without puncturing the
surface. This leads our intuition to believe that any sphere cannot be turned inside out.
But what if we allow the surface to pass through itself? Does this thwart our intuition and
make it possible to do such a feat? In the following pages, we will theoretically and explicitly
show our natural intuition is wrong and with this one physical caveat averted, we are able
to perform the desired eversion.

Before we start the mathematical theory behind the problem, it is important to define
our problem in just the right way. We start now with the problem in layman’s terms and
equivalently reformulate it in Chapter 3 once the necessary machinery is provided.

Question: Given a mathematical sphere which can pass through itself and be stretched
without tearing, is it possible to turn it inside out in 3 dimensions without
tearing the surface or pinching it infinitely thin?

The short answer to this question is yes, it is possible to turn such a sphere inside out. But
the answer is not the end of the story for us. What we will be investigating is not only why
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it is possible to turn a sphere inside out (through abstract mathematical methods), but how
to do it (through visual mathematical methods).

2.2 Literature Review
A natural place to start our review is with the person who showed that sphere eversion

was even possible and the series of papers that started the whole rat race towards explicit
sphere eversion constructions. In 1958, Stephen Smale released a paper with R.K. Lashof
titled “On the Immersions of Manifolds in Euclidean Space” [LaSm], whereas they delved
into the structure of maps from a k - dimensional manifold into a k+` - dimensional manifold
and what information can be gathered about the spaces by looking at the maps. This paper
is mentioned as it inspired the work titled “The classification of immersions of spheres in
Euclidean space”, the paper in which Smale surprised the world and showed that everting
the sphere was possible. While his methods did not give an explicit construction, with a
lot of work, his methods could provide an explicit construction. A more detailed exposition
about the stronger results he proved will be covered in Chapter 3.

As with most ideas that push the boundaries of what our minds are capable of, an explicit
example really helps. To this end, Smale’s doctoral advisor, Raoul Bott, requested/asked the
mathematical community for/challenged those willing to try to create an explicit eversion
so as to visualize the phenomena. Due to the intricate and non-intuitive nature of self-
intersecting surfaces, expressing such a construction has its own visual boundaries present.
Thus, to rise to Bott’s challenge not only takes the mathematical prowess to understand
continuous deformations of the sphere but an uncanny ability to visualize the changing
structure of a surface as it passes through itself. We now go through a time-line of events
following Smale’s discovery.

In 1960, Arnold Shapiro was the first to rise to the challenge. He introduced the use of
halfway models into the problem of everting a sphere, the method discussed in Chapter 6,
as well as using standard topological constructions only. While many regard him as being
the first to construct an eversion, he never published his work and his methods were not
widely known until 1979 when George Francis and Bernard Morin wrote an article in The
Mathematical Intelligencer explaining his method, 17 years after Shapiro’s death [FrMo].
The next mathematician to perform the task was Anthony Phillips. In 1966, Phillips used
Boy’s surface as a halfway model, relying on the fact that the sphere was a proper double
cover of the immersed projective plane. To visualize his method, he described the process in
sections, drawing each step in the eversion and providing the necessary argument to validate
each step in the construction.

Later in the 1960s, 1968 to be exact, Bryce De Witt provided another pictorial argument
for a sphere eversion. In a similar manner to Shapiro, De Witt did not publish his approach
and explicit details behind his method have still not made their way to mainstream mathe-
matics. Around 1970, Charles Pugh began making a series of chicken-wire models showing
the stages of an eversion constructed a few years earlier by topologist Bernard Morin, a
French mathematician who had been blind since his childhood. Pugh completed the models
which were displayed in the Berkeley mathematics department until they were stolen less
than a decade later. In 1977, Nelson Max released the animation “Turning a Sphere Inside
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Out”, an effort that took 6 years to make whereas Max digitalized Pugh’s chicken-wire mod-
els with the coordinates calculated by hand from the wire models and entered directly as
data into the computer. This compilation took the mathematics community by storm and
was a huge international success.

Again at Berkeley, but this time in 1974, William Thurston began work on an eversion
using ideas of the Dirac “belt-trick”, a method which states that a strip can be given a full-
twist by either twisting the two ends or passing them through each-other along a straight
line. This resulted in an eversion using the idea of corrugation and relying on the intrinsic
symmetries present at each step of the eversion, a method we will study in Chapter 7.
Thurston’s approach was compiled by Silvio Levy, Delle Maxwell, and Tamara Munzner in
1994 into the animation “Outside In”, a film that has been an international success and
shown both mathematicians and non-mathematicians the beauty behind this problem.

In 1987, George Francis released “A Topological Picturebook”, a topology book that
studied sphere eversions as one of its main facets [Fr2]. Many approaches are discussed,
including Shapiro’s original approach, halfway models, and tobacco pouch eversions. Five
years later in 1992, Franco̧is Apéry with the help of Bernard Morin, explicitly described
an algebraic halway model. Before their work, computer animations relied on gathering
points from a database, a timely and not always pleasantly visual task. The introduction of
algebraic equations makes rendering a lot easier as well as a more timely and geometrically
pleasing result. In 1995, Francis along with the help of John Sullivan and Bob Kusner devised
a construction using Willmore energy, built off previous results of Kusner and Robert Bryant.
The resulting minimax eversion was a geometrically optimal eversion in that it minimized
the Willmore energy and gave a beautifu; geometric construction. 3 years later in 1995,
Francis, Sullivan, and Stuart Levy compiled these minimax ideas into the animation “The
Optiverse”, an approach we will investigate in Chapter 6.

The next approach was created by Eric de Neve in 1996 but was not animated into a
movie until 2015 by Chris Hills. This approach utilizes small perturbations on the surface
of a sphere and is covered in more detail in Chapter 5. 50 years after being introduced,
Shapiro’s methods were used once again in 2010 by Iain Aitchison in his film “The Holiverse”
[Ai]. The rendered images provide insight into Shapiro;s method but with an added element
of simplicity. Most recently, in 2015 Arnaud Chéritat released a video of his construction,
utilizing ideas of Whitney’s that come from the 2 dimensional analogue of the problem
(whether a circle embedded in the plane can be turned inside out) [Ch]. This list is most
likely not exhaustive as there were surely communications between these mathematicians
and others that have not made their way to the limelight.

The history of the problem shows the different approaches and methodologies taken by
those rising to the task, and gives a solid background for us to begin our investigation of
everting the sphere in 3-space.
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Chapter 3

Homotopies and Regular Homotopies
of the Sphere
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3.1 Definitions
In this section we provide the necessary tools to study the problem at hand. Here we

assume all spaces we are dealing with (X, Y , etc.) are Hausdorff.

Definition 3.1.1. Let f and g be continuous maps from X to Y . A map H : X× [0, 1]→ Y
is a homotopy if it satisfies the following:

1. If x ∈ X, then H(x, 0) = h0(x) = f(x) and H(x, 1) = h1(x) = g(x).

2. H(x, t) = ht(x) is continuous in both x and t.

If there exists a homotopy between maps f and g, we say f and g are homotopic and
write f ' g. It can easily be checked that in fact, homotopy of maps is an equivalence
relation. Thus, if there exists a homotopy taking one map to another, or in more generality
one space to another, we say the two maps (or spaces) are homotopically equivalent. There
are some interesting properties that one can derive quite easily from this definition. The
following is an example of one such property.

Lemma 3.1.2. Let X ⊂ Rn be a convex domain and let f and g be continuous maps from
another topological space Y to X. Then f ' g.

Proof. We prove this by giving an explicit homotopy between f and g. Define H : Y ×I → X
by H(y, t) = tg(y) + (1− t)f(y), namely this is the homotopy that takes the image of each
y ∈ Y under f to that of g by the straight line connecting f(y) to g(y). As X is convex,
every straight line connecting two points of X is also in X, thus H is a valid homotopy and
f ' g.

Now in an effort to restrict our attention to everting a sphere, we need the following
definitions.

Definition 3.1.3. The unit sphere S2 is the set of points that lie at a distance of 1 from a
fixed central point, i.e. S2 = {(x, y, z) : x2 + y2 + z2 = 1}.

Definition 3.1.4. An immersed sphere in R3 is the image of a smooth map F : S2 → R3

such that the Jacobian matrix DF is everywhere of rank 2.

Definition 3.1.5. A sphere is embedded if the immersion map F is also one-to-one.

Definition 3.1.6. A map Ft, t ∈ I, through immersions is a regular homotopy if t → DFt
is also continuous. We can equivalently define a regular homotopy as a homotopy through
immersions. Additionally, a regular homotopy through embeddings is an isotopy.

Definition 3.1.7. An eversion of the sphere is a regular homotopy from the identity inclusion
S2 → R3 to the antipodal map of S2 into R3.

Remark 3.1.8. If we imagine taking the identity inclusion sphere and coloring the outside
surface red and the inside blue, then the antipodal embedding represents the sphere with the
outside blue and the inside red. Thus, a regular homotopy taking the identity to the antipodal
sphere is a continuous deformation of the sphere which does not pinch, crease, or tear the
surface, i.e. an eversion as introduced earlier in this paper.
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First thing to note, not all immersions are embeddings. In fact, a sphere cannot be
everted by an isotopy as any map taking the sphere inside out must take the surface of the
sphere through itself, and at any place on the surface where we have a double line, triple
point, quadruple point, etc., we lose injectiveness of the map taking S2 to that immersion.
In fact, it has been shown that every eversion of the sphere has a quadruple point [Hu]. To
see why regular homotopies are of importance in the process of everting a sphere, we must
note that otherwise (if we only required a homotopy), the problem would be trivial. This is
formulated as the following.

Lemma 3.1.9. Let f and g be two immersions of S2. Then f ' g.

Proof. Define H : S2 × I → R3 by H(x, t) = tf(x) + (1− t)g(x). To see this is a homotopy,
since f and g are continuous with respect to x, H is continuous in x. Continuity in t follows
from linear functions being continuous. Thus f ' g.

As all immersions are homotopic, trying to turn a sphere inside-out by a usual homotopy
is no big feat, simply slide every point f(x) to g(x) with constant speed and you are done.
Doing this without pinching, tearing, or creasing the surface is where the trouble comes into
the mix. In the next section we go through some visual examples of homotopies, regular
homotopies, and isotopies to get ourselves familiar with the objects we are dealing with.

3.2 Examples
The first few examples we show deal with simple ideas just to get the feel for homotopy

theory. We then move to transformations of the sphere. In the end, we show that the linear
homotopy from the immersed sphere to the inside-out sphere by switching antipodal points
is not a regular homotopy. Additionally, we show the transformation of pushing the north
pole through the south pole is not a regular homotopy as well.

Example 3.2.1 (Categorization of the alphabet). The English alphabet can be partitioned
into the following classes of letters which are homotopically equivalent to each other:
{A,D,O,P,Q,R}, {B}, {C,E,F,G,H,I,J,K,L,M,N,S,T,U,V,W,X,Y,Z}.

Proof. Here we show two pictorial homotopies and leave the rest for the interested reader.
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A very similar approach can be done for each letter in the prescribed equivalence classes to
show the assertion is correct.

Another important notion in homotopy theory is the idea of contractibility. We say a
space X is contractible if the identity map on X is homotopic to the constant map on the
space taking everything to a point.

Example 3.2.2. Any convex set in Rn is contractible.

Proof. Let x0 be an arbitrary point in our convex set C. By defining f to be the identity
on C and g to be the constant function sending everything to x0, the result follows directly
from Lemma 3.1.2.

Example 3.2.3. The north pole-south pole switching map is not an eversion, where the
north pole-south pole switching map is the linear map that swaps the z coordinate of the
standard immersion.

Proof. Let f : S2 → R3 be the standard inclusion, and −f be the antipodal map. Define
Ft(X, Y, Z) = (X, Y, (2t− 1)Z). This gives rise to the Jacobian

DFt =

 1 0 0
0 1 0
0 0 2t− 1


This is not an eversion as it fails to be an immersion at t = 1/2 along Z = 0. Geometri-

cally, we get this picture

Example 3.2.4. The linear antipode switching map is not an eversion.

Proof. Let f : S2 → R3 be the standard inclusion, and −f be the antipodal map. Define
Ft(X, Y, Z) = ((2t− 1)X, (2t− 1)Y, (2t− 1)Z). Just as before, we look at the Jacobian

DFt =

 2t− 1 0 0
0 2t− 1 0
0 0 2t− 1


This is not an eversion as it fails to be an immersion at t = 1/2 along X, Y, Z = 0.

Geometrically, we get
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This problem is just a generalization of Example 3.2.3 where all three coordinates get
reversed.
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Chapter 4

Smale’s Proof of Existence
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4.1 Smale’s Main Result & its Consequences

Figure 4.1: Excerpt from the title page of The Classification of Immersions of Spheres in
Euclidean Space.

In Stephen Smale’s 1959 (written in 1957) paper The Classification of Immersions of
Spheres in Euclidean Space [Sm], Smale proved an abstract theorem guaranteeing the exis-
tence of a sphere eversion but did not give an explicit construction. This resulted in Raoul
Bott’s request of an explicit eversion, a task that would not be met for a few years, but
this has already been discussed in the Literature Review section of Chapter 2. In this
chapter, we go over the statements of Smale’s theorems and discuss the implications of the
revolutionary ideas present in his paper.

Let’s start off with the statement of one of the many theorems in his paper and see what
we can take from it.

Theorem 4.1.1 (Smale (1959) Theorem B). Two C∞ immersions of Sk in En are regularly
homotopic when n ≥ 2k + 1.

First off, we need to clarify what a few terms in this statement mean. A C∞ function
is a map that is infinitely often differentiable, a term that many mathematicians refer to
as being “smooth”. While it may sound similar to a function being analytic, this assertion
is weaker than analyticity as every analytic map is smooth but not every smooth map is
analytic. Here by En, we simply mean n-dimensional Euclidean space, i.e. Rn equipped with
the standard inner product. Now that we have the notational background, we can explore
the implications of this theorem.

The result above essentially states that if you have two smooth immersions of a k-
dimensional sphere in n-dimensional Euclidean space, there exists a regular homotopy taking
one immersion to the other if n is of a reasonable size. Another equivalent formulation is
that the space of all smooth immersions of Sk into Rn, when n ≥ 2k + 1, is connected. If
we try directly applying this result to the problem where k = 2 and n = 3, we see this
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theorem does not guarantee anything about everting the 2-sphere in 3-space. Nevertheless,
this theorem is very powerful and is not a clause of necessity and sufficiency. Luckily for
us, Smale actually proved an additional statement in his paper that gives us what we are
looking for.

Theorem 4.1.2 (Smale (1959)). The space of smooth immersions of S2 into R3 is connected.

From this, we deduce the following.

Corollary 4.1.3. There exists a path in the space of smooth immersions of S2 into R3 that
connects the standard embedding, f , of the sphere to the antipodal embedding, −f .

So there it is, the statement that inspired half a century of tumultuous work and miracu-
lous examples of descriptive topology. Smale’s proof of Theorem 4.1.2 involves identifying
the classes of smooth immersions of the sphere with the homotopy group of the Stiefel man-
ifold, an object that plays a big role in differential topology & geometry. We mention it here
for completion of explanation but for a more in depth study of the use of the Stiefel manifold
and its relation to sphere eversions, see [Sm].



15

Chapter 5

“Roll and Pull” Method
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5.1 Explanation & Execution
The “roll and pull” method (R&P method) is the simplest method of sphere eversion to

visualize, making it a strong first choice of methods to investigate. Instead of making use of
a small number of topological events, it deals with small perturbations on the surface which
create a “ring” that can be pulled to the equator. Once this ring is present, simply pass the
poles through one another and the eversion is complete. As with most methods investigated
in this thesis, there is a nice animation showing this eversion. The video, titled “Sim-
ple Sphere eversion”, can be found at https://www.youtube.com/watch?v=FL4JoWlVj98.
Named after its creators, an alternative name for this method is the deNeve/Hills eversion.

While other arguments in this paper rely on heavy topological tools, this approach is very
visual and geometric. Since this approach can be visualized and followed by the imaginative
and willing reader, we actually go step by step through this eversion. This is unlike the
other methods in this paper where we describe the steps that take place but do not give a
topological argument at each stage explaining why the step indeed is regularly homotopic.
Note though that at each step, one can check that the actions that are happening are not
violating the rules of a valid sphere eversion. Hence this step by step approach is actually a
valid proof to the existence of a sphere eversion once one argues that each step is valid; but
as this is not difficult, it is left to the reader to fill in as an exercise. Notationally, we use
S2

o to denote the standard embedding of the sphere and S2
i for the reverse embedding. We

now walk through the steps of the R&P eversion to give insight into the beauty behind this
problem.

Step 0 Start with the sphere S2
o with the exterior surface colored blue and the interior surface

colored orange.

Step 1 Zoom in on a small section of the surface until the resulting structure looks like R2.

https://www.youtube.com/watch?v=FL4JoWlVj98
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Step 2 Rule the surface of the sphere so any perturbations to the surface are easily visible.

Step 3 Starting with the lower line from Step 2, slide it up and under the upper line creating
two rolled “tubes” on the sphere, one below the surface and one above it. We call
the red tube “tube R” and the gold tube “tube G”.

Step 4 Slide the middle section of tube R away from tube G. Tube R should have a box car
function shape to it. We call this configuration the arch.

Step 5 Pinch the lower side of the left vertical tube comprising tube R as well as the upper part
of the right vertical tube. Additionally, slide the upper right corner further right away
from the arch.
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Step 6 Slide the two vertical tubes together, making the small part of the left tube line up with
the thick part of the right tube and vice-versa.

Step 7 Construct a curve that lies on the intersection of the two tubes surfaces.

Step 8 Start pulling the small section of the right tube down around the tube intersection while
pulling the small section of the left tube up.

Step 9 Continue the process from Step 8. Note that while we are sliding these two small
sections of tube along their intersection, no pinching or tearing of the surface occurs.
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Step 10 While sliding the two small tubes along the intersection, they will eventually pass each
other. If the small tube thickness is less than half of the large tubes thickness, no pinching
will happen.

Step 11 Continue moving the left tube up and the right tube down.

Step 12 As the left tube is moved up and the right tube is moved down, we are left with the
original tube intersection configuration essentially reflected about the hyperplane passing
vertically through the intersection tube.

Step 13 Just as the tubes were coalesced to create the intersection tube, we can separate them
leaving two disjoint red tubes, the lower tube, tube R1, and the upper tube, tube R2.
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Step 14 Re-thicken the areas of the tubes that were shrunk in step 5.

Step 15 Relax the tubes back into a more geometrically sound position. What can be noted
now is that tube R1 is just tube R we started with and tube R2 is a free closed tube
on the surface.

Step 16 Relax tube R1 back to a horizontal tube and start pulling tube R2 into a circular shape.

Step 17 Start unrolling tube R1 and tube G while finishing making tube R2 a torus on the surface
of S2

o .
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Step 18 Finish unrolling tubes R1 and G from each other.

Step 19 Start increasing the size of the torus tube R2.

Step 20 Pull the tube to the equator of S2
o and pass the north and south poles through each other.

Step 21 Finish pulling the poles through process and relax the shape into the everted sphere, S2
i .

This step concludes the R&P method of everting the sphere.
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Chapter 6

Halfway Model Approaches
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6.1 Halfway Models
In this section, we begin with the definition of a halfway model and then work through

some examples to uncover the beauty and simplicity behind its structure.

Definition 6.1.1. A halfway model is an immersed sphere which is halfway inside-out in the
sense that it has a symmetry that interchanges the two sides of the surface. In particular,
for an appropriate parameterization, antipodal points on the abstract ambient sphere will get
mapped by the immersion to points which are related by this symmetry.

At first glance, this definition gives us that a halfway model is a “kind of inside-out
sphere” with certain symmetry properties. These symmetries interchange the sides of the
surface, whereas we mean in the halfway model, certain rigid motions of space will swap the
inside of the sphere with the outside of the sphere. This idea is most easily understood by
example.

Figure 6.1: (Left) A halfway model sporting a three-fold symmetry. This halfway model is an
immersion of the projective plane with a single triple point. (Right) A halfway model sporting
four-fold rotational symmetry, an example of a Morin model. Note that each rotation by π

2
about the visible quadruple point leaves the model invariant with the sides of the surface
reversed, [Su1].

In the above examples, we are given 2 immersed surfaces that act as halfway models for
different eversions. The key idea behind the use of halfway models is that if we can relax our
halfway model to an immersed sphere with no intersections, namely our canonical immersed
sphere or the inside out sphere, then we can recover a full eversion. To see this, start with
the immersed sphere, reverse the relaxation process to obtain the halfway model, apply a
rigid motion to the surface to reverse orientation, then relax back to an immersed sphere,
which will be our original sphere but inside out.

This idea of “relaxing” the surface has many flavors, but we will only be discussing
two of them, the tobacco pouch method and gradient descent with respect to Willmore
energy, dubbed the minimax eversion. The first method we look at gets its name from
its visual relation to French tobacco pouches and are particularly intricate. The method
of gradient descent comes from the introduction of an energy associated to the immersed
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spheres and gives geometrically pleasing constructions, computed using different software
programs engineered at different geometry centers around the country.

6.2 Tobacco Pouch Method
In this section, we present the background for a countably infinite set of eversions of

the sphere, indexed by a number n ∈ Z≥2. These so called tobacco pouch eversions sport
a surprising number of symmetries and are named for their likeness to the common French
tobacco pouch blague automatique [Fr1]. We go through this method of eversion, utilizing
the illustrations and arguments of George Francis to give pictorial arguments for the eversion
in the case of n = 2. The following figure (found in [Fr1]) will be referred to throughout this
argument, where the number system (ij) refers to the picture in the ith row and jth column,
e.g. (43) is the reflection of the Morin model in the mirror, also shown in Figure 6.1.
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To start the eversion, isotopically deform the sphere into the shape of a gastrula, a sphere
with a dimple pushed into it. This shape consists of two concentric spheres attached by a
neck that is reminiscent of the interior of a torus. This has been separated into separate
pictures in (31) and (41). (11) is the neck of the gastrula once a turning procedure has
been applied, with 4 windows cut into it so we can see what is going on within the surface.
This could be done by turning both concentric spheres into ellipsoids with perpendicular
major axes as in (32) and (42). It is important to note that the intersecting ellipsoidal shape
collection has two-fold symmetry, a rotation by π about the axis straight through the top of
the surface leaves the surface invariant.

If we now shift our attention to the ribbon neighborhood (21) of the contour, a valid
regular homotopy which takes the lobes pointed to by the arrow through each other gives
us the four-cusped hypocycloid found in (22). Again, note that (22) and (42) both sport a
four-fold symmetry. If the opposite sides of the sphere were colored, a quarter turn of (22)
or (42) would give us the same surface just with the colors swapped. By looking at (12),
this four-fold swapping symmetry is not present at for the whole surface we have at this
stage. To get four-fold symmetry throughout, push the right and left side of (12) through
each other to obtain (13). Removing the windows from (13), we obtain (23), an immersed
annulus. Putting (23) and (42) together, we obtain a version of the Morin surface (33),
whose reflection in (43) is what we have seen above in the first section of this chapter. Now
to finish this eversion, apply the reverse of this process to other pair of opposite segments in
(22).

This method can be generalized to all symmetries of even order. The contour in the
middle stage (the halfway model for tobacco pouch eversions), the (generalization of the)
Morin surface, can be generalized to a hypocycloid with 2n cusps. The surface remains
invariant by a 1/2n turn about the vertical axis. For n odd, this method yields a different
type of eversion, with an odd number of ends twisted into the neck of the gastrula. For a
lengthy discussion of the odd case, see [Fr1]. The next section investigates another method
utilizing halfway models, this time from a geometric, energy minimizing standpoint.

6.3 The Minimax Eversion
To see the insight behind the method involving minimal surfaces, lets start by imagining

a stiff metal wire. The elastic bending energy of a stiff wire is the integral of the squared
curvature over the whole wire. This measures how far from minimal the new position of the
wire is. The same idea can be applied to surfaces in space. At each point on a 2-dimensional
surface, there are two principal curvatures κ1, κ2 which are determined by the maximum and
minimum of the normal curvature at that point. Additionally, there is the average of these
two called the mean curvature, H = 1

2(κ1 + κ2), which again measures how far the surface
is from being minimal. Lastly, there is the Gaussian curvature which is the product of the
two principals, κ = κ1 · κ2. From these observations, we formulate the following definition.

Definition 6.3.1. For a 2-dimensional surface Σ, the Willmore energy of Σ is

W =
∫

Σ
H2dA−

∫
Σ
κdA =

∫
Σ
H2dA− 2πχ(Σ)
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where H is the mean curvature, κ is the Gaussian curvature, and χ(Σ) is the Euler charac-
teristic of Σ. The second equality holds by the Gauss-Bonnet Theorem.

Here, as a reminder, we restate Gauss-Bonnet for manifolds with no boundary.

Theorem 6.3.2 (Gauss-Bonnet). Suppose Σ is a compact two-dimensional Riemannian
manifold with empty boundary. Let κ be the Gaussian curvature for Σ and χ(Σ) be the Euler
characteristic of Σ. Then we have the equality∫

Σ
κdA = 2πχ(Σ)

There a few facts we will utilize while trying to understand this method of sphere eversion.

• Of all closed surfaces, the round sphere minimizes W . Thus we can normalize W such
that WS2 = 1.

• Any self-intersecting surface with a k-tuple point yields W ≥ k, [Ku, LiYa].

• As mentioned in Chapter 3, every sphere eversion has at least one stage where a
quadruple point is encountered, hence we have W ≥ 4 [Hu].

• The term gradient descent refers to a variational optimization method used to find local
minima of a function by taking steps along the function proportional to the negative
of the gradient. Here, the function we are looking at is W in the (infinite-dimensional)
space of all 2 dimensional surfaces in R3 with the gradient defined on this space.

• In the 1980’s, Robert Bryant was able to classify all critical points of the Willmore
energy for immersed spheres; even more so, they all have integer energy values greater
than or equal to 4 (except for the round sphere which has value 1) [Br].

We now have all the necessary tools to explore the sphere eversions utilizing the idea of
Willmore energy.

Given an immersion of the sphere, we can calculate its Willmore energy, which is guar-
anteed to be an integer value greater than or equal to 4. By gradient descent, we can ride
down from this local minima to the point where the Willmore energy is 1, namely the round
sphere. Thus, to complete a sphere eversion using a halfway model, we start with the canon-
ical embedded sphere, go over one of these local minima corresponding to a halfway model,
and then ride the gradient descent back down to the inside-out round sphere. The easiest
model to use for this process is one found by Rob Kusner whereas the energy of the halfway
model is exactly 4. Since there is only one minimum below it, gradient descent will take us
directly to the round sphere.

One may be a bit critical of this approach because it seems plausible that the process of
gradient descent could lead us to a surface with pinches or creases. Currently there is not
enough theory known behind fourth order partial differential equations to formally guarantee
this will not happen, where fourth order PDEs are brought up here because some of the
fundamental equations of the minimax eversion are fourth order PDEs. Luckily, the process
of eversion by gradient descent could be computed to verify the correctness of the assertion.
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One of the first programs used to check this process was created by Ken Brakke and simply
named evolver. This program was created to solve variational problems, which made it an
excellent candidate for computing sphere eversions. When Sullivan, Francis, and Kusner used
evolver in 1995 to test some of their results, not only did they verify that gradient descent
was a valid approach, but that the eversion that was rendered was topologically optimal
in the sense that it used the least number of topological events and it was geometrically
optimal in that it that it require the least amount of bending energy; whereas by topological
event we mean a moment in time where the topology of the surface changes, i.e. the creation
or annihilation of a double curve or triple point. These results have been compiled into
a internationally renowned video titled “The Optiverse”. In this presentation of everting
a sphere, they show examples from a countably infinite family of eversions using different
halfway models indexed by the number of “lobes” necessary to perform the eversion. In the
two halfway models shown in Figure 6.1, the corresponding lobe index is 3 and 4 for the
immersed projective plane and Morin model respectively.

This method of sphere eversion is natural in that it requires the least amount of bending
energy and that the visualizations have a large amount of symmetries. The next approach
is natural in a more intuitive and constructive way, as we will now explore.

https://www.youtube.com/watch?v=cdMLLmlS4Dc&t=72s
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Chapter 7

Thurston’s Corrugation Technique
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7.1 Introduction
In 1974, Bill Thurston had the idea to implement the “belt-trick” to try to construct a

sphere eversion. The belt-trick refers to a method of twisting a long-strip, which can be done
either by twisting it at each end or by pushing the two ends through one another by parallel
transport along the straight line connecting the two ends. This one key idea is what lead to
a whole new approach of everting the sphere. One may ask “what is the connection between
twisting long strips and turning a sphere inside-out?”, and this is natural question to ask
after being introduced to the belt-trick. In the next section, we will answer this question and
show some of the beautiful geometric objects that are present in this method of eversion.

7.2 Corrugations and the Belt-Trick
Aside from the use of the belt-trick, the most crucial part of Thurston’s eversion is

the use of corrugations. His idea was to take any continuous motion of the sphere to its
antipodal embedding and make it regular by adding corrugations in a controlled manner
(when possible). By regular, we simply mean taking out any singularities such as pinches
or creases. These added corrugations make the surface more flexible and easier to perform
self-intersections without forming pinches or creases.

Figure 7.1: In this figure we have two immersed spheres: the left one represents the standard
embedding of S2 and the right is a sphere with corrugations, both viewed from above. These
pictures were created using the software sphereEversion.

The introduction of the idea of strips comes into play if we imagine the sphere being a
barrel with a cap on each end. If we decompose the barrel into thin vertical strips, we can
just think of a sphere as a collection of vertical strips with caps connecting the ends of the
strips. As mentioned above, a strip can be twisted by means of passing the ends through
each other, then rotating the ends of the strips. This is shown below in Figure 7.2.
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Figure 7.2: Three steps showing the belt-trick applied to one of the strips comprising the
surface of the sphere.

Thus, Thurston’s technique boils down to corrugating the surface of the sphere, pinpoint-
ing strips which will serve as guides for the eversion, applying the belt-trick to the guide
strips, and relaxing the surface back to its normal shape. This approach can be summed up
in the following picture series.

Figure 7.3: Step by step approach of the sphere eversion method devised by Thurston. These
still shots are from the video “Outside In”.

Thurston’s method of sphere eversion is more visually stunning than the previous ones
discussed and contains many more pleasing symmetries. This approach was compiled by the
Geometry Center at the University of Minnesota into the movie “Outside In”, a film that
has become a world-wide sensation and introduced the masses to the problem of everting a
sphere. A lengthy discussion of what happens at each stage of the Thurston eversion is given
in the film as well as historical content and the relationship between everting the sphere and
the Whitney-Graustein theorem.

This concludes our study of the topological problem of everting the sphere. Many different
methods of solving the same problem were shown, giving insight into the intricacy behind
this “paradox”. The interested reader can follow the links present throughout this thesis to
explore each approach in its own right and to gain a deeper appreciation of the past 60 years
of descriptive topology.

https://www.youtube.com/watch?v=wO61D9x6lNY
https://www.youtube.com/watch?v=wO61D9x6lNY
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