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ABSTRACT 

 

Currently, reverse engineering techniques require a combination of laser scanners, 

coordinate measuring systems, and human interaction to generate usable files. All of these 

methods are both cost prohibitive and require many hours to complete. The end result is a three-

dimensional model with varying degrees of accuracy. Recreating three-dimensional models is 

extremely beneficial in cases where the original manufacturer is no longer in business or if the 

part was manufactured prior to modern three-dimensional modeling techniques. 

This thesis investigates the accuracy of model generation using photogrammetry 

algorithms. A digital single-lens (DSLR) camera or a camera found on a modern cell phone are 

used to keep the cost and barrier to entry low. Initial work completed compared the accuracy of 

off-the-shelf software before moving on to customized algorithms. New methods combine 

position tracking from an inertial measurement system (IMU) alongside Structure from Motion 

(SfM) techniques to create accurate three-dimensional models. 

The two software packages evaluated are PhotoModeler made by EoS Systems Inc. and Remake 

made by AutoDesk. Three objects, each presenting different challenges to the photogrammetric method, 

are used to conclude which software package is more accurate. On all three tests, Remake was the most 

accurate, at best achieving tolerances of ±
0.6833
1.2598

 𝑚𝑚  and at worst ±
1.6688
1.0084

 𝑚𝑚. After conducting tests 

on a newly created SfM algorithm written in MathWorks Inc’s. MATLAB, the length of a 76.2 mm cube 

was calculated to be 76.3 mm.  



ii 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES ..................................................................................................... iii  

LIST OF TABLES ....................................................................................................... iv 

ACKNOWLEDGEMENTS ......................................................................................... v 

Chapter 1 Introduction ................................................................................................. 1 

Chapter 2 Evaluation of Current Technology .............................................................. 4 

Camera Parameters........................................................................................................... 5 

Data Collection ................................................................................................................ 6 

Software Used and Steps Taken ....................................................................................... 8 

PhotoModeler ........................................................................................................... 8 

Remake ..................................................................................................................... 9 

Point Cloud generation ............................................................................................. 11 

Comparing to Ground Truth ..................................................................................... 11 

Results .............................................................................................................................. 12 

Chapter 3 Improvements with Position Data ............................................................... 16 

Camera Calibration .......................................................................................................... 16 

Structure from Motion with Unknown Position ............................................................... 19 

Structure from Motion with Known Position ................................................................... 24 

Position Tracking ............................................................................................................. 27 

Inertial Measurement Unit Modeling ....................................................................... 27 

Calculating Position ................................................................................................. 28 

Results .............................................................................................................................. 30 

Chapter 4 Conclusions ................................................................................................. 32 

Chapter 5 Future Work and Areas for Expansion ........................................................ 34 



iii 

 

Phone Camera Calibration ............................................................................................... 34 

Advanced Accelerometer Modeling and Improved Position Tracking ............................ 35 

Appendix A  Structure from Motion with 2 Views – Metric Output........................... 36 

Appendix B  Structure from Motion with Multiple Views .......................................... 40 

Appendix C  Position Tracking Algorithm .................................................................. 45 

BIBLIOGRAPHY ........................................................................................................ 48 

 

 



iv 

 

LIST OF FIGURES 

Figure 1: An example of photogrammetry using aerial photography. The blue points are camera 

locations. .................................................................................................................. 1 

Figure 2: The three machined objects used for close-range testing. ........................................ 5 

Figure 3: Studio setup, eliminating shadows and producing even lighting. ............................ 6 

Figure 4: The position of the camera where ϴ is the angle between the object and the camera’s 

line of sight and where Ф is the constant 11.25° angle between each image. ......... 7 

Figure 5: An unmodified output from PhotoModeler. This 3D object has no scale, and the 

background has not yet been removed. .................................................................... 9 

Figure 6: An unmodified output from Remake. This 3D object has no scale, and the background 

has not yet been removed. ....................................................................................... 10 

Figure 7: Results of all three objects from PhotoModeler. ...................................................... 14 

Figure 8: Distribution of variance for objects 1, 2, and 3 from PhotoModeler respectively. .. 14 

Figure 9: Results of all three objects from Remake. ................................................................ 15 

Figure 10: Distribution of variance for objects 1, 2, and 3 from Remake respectively. .......... 15 

Figure 11: Pin-hole camera model relating world point P{XYZ} to image point p{x y}. Image 

sourced from [12]. .................................................................................................. 17 

Figure 12: An example of the calibration board used with the MathWorks camera calibration 

application. ............................................................................................................. 19 

Figure 13: SfM depiction, with unique points P, and where OL and OR correspond to C1 and C2 

respectively. Image sourced from [8]. ................................................................... 20 

Figure 14: Original images (distorted) used in a two view SfM. ............................................. 22 

Figure 15: Undistorted images used for two view SfM. .......................................................... 22 

Figure 16: Epipolar points used to compute the Fundamental matrix. .................................... 23 

Figure 17: A total of 71,983 points were tracked between the two images. ............................ 23 

Figure 18: Unscaled point cloud calculated from the two view SfM algorithm. ..................... 24 

Figure 19: Scaled SfM results, allowing for measurements. ................................................... 25 

Figure 20: Attempt to use multiple view with SfM. ................................................................ 26 

Figure 21: IMU Acceleration data before and after accounting for gravity. ............................ 28 



v 

 

Figure 22: Phone position calculated from IMU...................................................................... 31 



vi 

 

LIST OF TABLES 

Table 1: A comparison of photogrammetry and laser scanning provided from Barsanti [3]. .. 2 

Table 2: Results for all three objects in both PhotoModeler and Remake. .............................. 12 

 



vii 

 

ACKNOWLEDGEMENTS 

 

Appreciation and thanks goes to 

 

Dr. Saurabh Basu 

for mentoring me and dedicating time to this research, as well as his dedication to the Department of 

Industrial and Manufacturing Engineering 

 

Dr. Catherine Harmonosky 

for her dedication to research and the Department of Industrial and Manufacturing Engineering 

 

Mr. Michael Immel 

for continuously pursuing new ideas and inspiring the work contained within this thesis 

 

Ms. Debra Rodgers 

for facilitating the coordination with the Department of Industrial and Manufacturing Engineering 

 



1 

 

Chapter 1  
 

Introduction 

Reconstructing computerized three dimensional models is one part of reverse engineering a 

product and can be needed for many different reasons. However, this process is often difficult and 

expensive, requiring special equipment such as laser scanners and coordinate measuring machines as well 

as specialized personnel. In addition, completing model reconstruction is a time intensive process. New 

techniques, such as photogrammetry, are emerging to replace traditional reverse engineering methods. A 

comparison of photogrammetry and laser scanning can be seen in Table 1.  Photogrammetry uses 

overlapping images and vision processing to create three-dimensional scene reconstruction [1]. 

Traditionally, photogrammetry uses aerial photographs to map large areas such as agriculture fields, 

stadiums, architecture, and mines [2]. An example of this can be seen in Figure 1. The blue dots represent 

each camera position. The goals of this work include evaluating the accuracy of current products available 

as well as methods for improvement by tracking the position of each image. 

 

Figure 1: An example of photogrammetry using aerial photography. The blue points are camera locations. 
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Table 1: A comparison of photogrammetry and laser scanning provided from Barsanti [3]. 

 
Photogrammetry 

(Image-Based modeling) 

Laser Scanner 

(Range-Based modeling) 

Characteristics   

Cost of the instruments (HW and SW) Low High 

Manageability/Portability Excellent Sufficient 

Time of data acquisition Quite short High 

Time for modeling Quite short, experience required Often long 

3D information To be derived Direct 

Distance’s dependence Independent Dependent 

Dimension’s dependence Independent Dependent 

Material’s dependence Almost independent Dependent 

Geometry’s dependence Dependent Almost/totally independent 

Texture’s dependence Dependent Independent 

Scale Absent Implicit (1:1) 

Data volume 
Dependent on the images resolution and 

on the measurements 
Dense point cloud 

Detail’s modeling Good/excellent Generally excellent 

Texture Included Absent/Low resolution 

Edges Excellent Quite problematic 

Statistics From each calculated point Global 

Open-source software Some A few 

 

As photogrammetry has previously been used to model large objects, with a scale of many 

meters, the accuracy of these methods on small industrial parts, on the scale of centimeters, is being 

evaluated. This process is known as close-range photogrammetry. Two different software packages, Eos 

Systems PhotoModeler and Autodesk Remake, will be evaluated. Eos Systems PhotoModeler is designed 

and recommended for use in architectural, accident scene, and archeological image reconstruction [4]. 

Autodesk Remake is marketed for similar archeological purposes, but also for creating prototypes and 

preparing models for additive manufacturing [5]. A variety of objects of known dimensions will be used 

to evaluate the accuracy of both software packages. Once understood, techniques will be evaluated to test 

potential improvements. 

While the exact technique used by Eos Systems and Autodesk is proprietary information, 

structure from motion (SfM) is one of the most commonly employed techniques in the past 15 years for 

scene reconstruction [6]. As such, this method is utilized in this thesis and will be the basis for iteration. 

SfM uses the images to calculate the translation and rotation of one camera to another by computing the 
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fundamental matrix. The fundamental matrix relates the points in two images using epipolar geometry, as 

explained in Chapter 3. This method of calculating the fundamental matrix to find camera position was 

pioneered by Luong in the mid 1990’s [7]. While this method works well for calculating the rotation of 

the cameras, translation can only be calculated with a scaling factor. It is common to compute the 

translation vector with a length of one to facilitate post process scaling [8]. If the position of the relative 

camera position is known, the result of the SfM algorithm will not need to be scaled. This should increase 

the accuracy as there is no need for user input on the final results, thus reducing the chances of human 

error. None of the software tested included this capability, and thus a new algorithm was created. 
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Chapter 2  
 

Evaluation of Current Technology 

To accurately evaluate both PhotoModeler and Remake, a consistent hardware and environmental 

setup were used. A single camera, with a set focal length, aperture, and ISO, in a studio lit environment 

was used to take all pictures of all objects. Three different objects were selected to be modeled, each 

attempting to capture different types of challenges. The first object was a 76.2 millimeter (mm) cube, 

selected to test the accuracy of hard edges as well as to present a baseline. The second object was similar 

to the first, but contained depth information. This was achieved by machining conics and semicircles into 

the faces of a 76.2 mm cube. Due to the added cuts and overhangs, the possibility of shadows greatly 

increased which often presents challenges to the reconstruction process of photogrammetry [2]. The third 

object selected contained complex curves in addition to depth information and sharp edges. This was 

selected to test the accuracy of reconstruction of objects with mainly non-straight edge features. All three 

objects were machined to within .05 mm of the original design, as measured by a coordinate measuring 

machine. Figure 2 shows the three objects being used for this thesis. To compare the results, all output 

models were compared to the true model. From this comparison, a tolerance was calculated. This method 

was selected as tolerancing parts is common in industry and often drives the manufacturing process used 

to create the product. 
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Figure 2: The three machined objects used for close-range testing. 

Camera Parameters 

The camera chosen for this project was a Cannon EOS 6D DSLR. A fixed, 100 mm focal length 

lens was used along with an aperture set to f/32.0. The shutter speed was 1/10 second and an ISO of 3200. 

The EOS 6D has a resolution of 20.2 megapixels and 35 mm, full frame image sensor. These camera 

parameters were selected based on previous published studies as well as the lighting in the room [9]. 

Due to the ability to capture sharp images in relatively small working spaces, the macro lens was 

chosen. The highest accuracy of photogrammetry can be achieved when 50-80% of the image pixels are 

of the desired object [10]. A macro lens allows more of the image to be of the desired object, and has the 

effect of being “zoomed in” on the object. The fixed focal length was chosen as a non-moving focal 

length is one of the assumptions made in three-dimensional scene reconstruction algorithms, which will 

be discussed in further detail in Chapter 3-Camera Calibration. 
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Data Collection 

To decrease any variance between images, a studio was used in an effort to create even and 

smooth lighting. In addition, the objects were placed on a plain, uniform color background. This 

environment produces the best results as it decreases shadows and increases the contrast between the 

desired object and the background [9]. Both the lighting and background can be seen in Figure 3. 

 

Figure 3: Studio setup, eliminating shadows and producing even lighting. 

To keep conditions as consistent as possible from object to object, the object remained stationary 

at the center of the setup and the camera was mounted to a tripod. A delay was used on the shutter, so the 

act of pressing the button to capture the picture would not cause vibrations and thus blurriness in the 

image. Two concentric circles were drawn on the ground, the outer circle being for the single back tripod 

leg and the inner circle being for the front two tripod legs. For each object, a total of 128 images were 

captured. The circle was divided into 32 evenly spaced sections, with a picture being taken every 11.25 

degrees. A circumferential path of pictures was taken at 4 different heights, corresponding to the total of 

128 images. Based off testing by Behrouzi and researchers at the University of Arkansas, the line of sight 

to the camera should be no more than 60 degrees [9] [2]. As such, the four passes were made at 60 

degrees, 40 degrees, 20 degrees, and 0 degrees respectively. Due to the variance in object size and vertical 

location of the camera, the distance from the lens of the camera to the object ranged from 38 to 66 

centimeters. The position of the camera and the tripod can be seen in Figure 4. 
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Figure 4: The position of the camera where ϴ is the angle between the object and the camera’s line of sight and 

where Ф is the constant 11.25° angle between each image. 

In addition to the setup of the camera, the objects also needed preparation. Photogrammetry uses 

vision processing and feature tracking, discussed in further detail in Chapter 3, which needs unique 

features to track across images. Highly reflective and glossy surfaces, also known as non-Lambertian 

surfaces, do not allow for easy feature tracking and produce poor results [11]. While methods for image 

reconstruction on non-Lambertian surfaces are an area of research, these will not be considered for the 

scope of this thesis. As the objects being used started as polished aluminum, adding a matte coating was 

necessary to create a Lambertian surface. This was achieved by simply coating each object with a thin 

layer of a baby power. A chalk spray was also tested, but the baby powder was ultimately selected due to 

better results, less expense, and ease of sourcing. 

The final component in this setup is a measuring device. The ruler is included for post processing 

the data. As stated in Chapter 1, the results of the scene reconstruction algorithm are not scaled and a 

known distance must be included for the final model to produce metric results. As the purpose of this 

section of the thesis is to test the accuracy of the final object size, it would be biased to scale the model 

based off the known dimensions of the object itself. 



8 

 

Software Used and Steps Taken 

While PhotoModeler and Remake were the main software packages being tested, ultimately 

additional software was needed to generate point clouds as well as compare results. Each software 

package required slightly different processes, which are explained in the following sections. All non-open 

source software was purchased by the Department of Industrial and Manufacturing Engineering at The 

Pennsylvania State University. 

PhotoModeler 

Unlike Remake, PhotoModeler requests the camera being used to be calibrated. This is not 

required, but highly recommended by EoS Systems. While not specifically stated by EoS Systems, this 

step is needed to calculate the internal parameters of the camera. Internal parameters include image sensor 

size, lens focal length, as well as distortion characteristics: in total, there are 11 unknown variables that 

need to be solved [12]. Camera calibration will be discussed further in Chapter 3- Camera Calibration. 

PhotoModeler provides a printable calibration target for the user as well as a built-in calibration 

algorithm. 

Once the camera has been calibrated, photographing each object can begin. Upon uploading the 

images, the software analyzes each picture, differentiating between the object and the background. After 

doing this for each image, features between each image are matched and then triangulation can begin. The 

process of triangulation and generation of a three-dimensional model occurs entirely on the user’s 

computer. For the processing of the 128 photos used for this research, a minimum of 8 gigabytes (GB) of 

random access memory (RAM) was needed but 16 GB is recommended [13].  

The results require post processing as well. After triangulation, there is typically still some of the 

background that needs to be removed. PhotoModeler has point cloud as well as mesh editing tools, 
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allowing the user to remove the background. The biggest drawbacks are a lack of a “fill feature”, allowing 

the user to define a bottom plane and create a solid body, and the lack of a “hole fill” feature, allowing the 

user to quickly remove holes. As mentioned previously, the original result is scaled, and has no units. The 

user must define two points in the model and provide a distance. An example of an unmodified output 

from PhotoModeler can be seen in Figure 5. 

 

Figure 5: An unmodified output from PhotoModeler. This 3D object has no scale, and the background has not yet been 

removed. 

Remake 

While similar to PhotoModeler in many ways, Remake does not request a calibration file. This 

feature alone greatly increases the ease of use for this software but increases the processing time. Not 

having a calibrated camera does come at a cost, and that comes at computation expense. Remake requires 

at least 64 GB of RAM and Autodesk recommends 128 GB of RAM, making this software not feasible 

for current laptop technology, and even most desktop computers [14]. 

To mitigate the requirement for such large amounts of RAM, Autodesk provides cloud computing 

services. While this provides a solution for one problem, it also presents new issues as well. The largest 

advantage the cloud computing option has is freeing up the local machine for other tasks. In addition, this 

feature lowers the cost for a user, and computers with less RAM are typically less expensive. However, 

using the cloud also presents an uncontrollable variable for the user. Once a project is uploaded, the 
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project is added to a queue to be processed. While this can be monitored within the program, the user has 

no control as to if the project is actively being solved. For all the uses in the project, this downside 

provided no hindrance as no project took longer than 4 hours to solve. An example of the results from 

Remake can be seen in Figure 6. 

Once triangulation is complete and the file is on the local machine, the mesh can be manipulated 

manually. Similar to PhotoModeler, basic mesh removal tools exist to facilitate background removal. 

Remake does have a “fill feature” as well as a “hole fill” feature, making the post processing extremely 

easy. As will all reconstruction algorithms, the image has no scale, and this must be entered manually. 

 

Figure 6: An unmodified output from Remake. This 3D object has no scale, and the background has not yet 

been removed. 

The final output from Remake is a stereolithography (STL) file. While this file is beneficial for 

computer aided design (CAD) programs and additive manufacturing, it is difficult to evaluate the results. 

Conversion of the STL is discussed in the next section. 
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Point Cloud generation 

In order to compare the results from PhotoModeler and Remake, a point cloud was deemed to be 

the most effective way. The process of comparing the results file to ground truth is discussed in the next 

section. 

PhotoModeler generates both a point cloud and an STL file. While simply using the point cloud 

file would be ideal, further mesh refinement beyond the capabilities of the software was required. The 

most important addition was a closeout layer on the bottom of the STL. This was done using an open 

source, mesh editing software, MeshLab. Care was taken to change the rest of the mesh as little as 

possible, to have as close to no effect on the accuracy of the original file. Meshlab is able to save files as 

both STLs as well as point clouds. This software was used to save the output of PhotoModeler as a point 

cloud after modifications were made. Even though no modifications were needed to be made outside of 

Remake, Meshlab was still used. The results file from Remake was simply opened and then saved as a 

point cloud. It is important to note that all scaling was done in the original software, either PhotoModeler 

or Remake. 

Comparing to Ground Truth 

The first step in analyzing the output of the two software packages evaluated is creating a ground 

truth. As the objects were relatively simple, CAD files were made (for the object with complex curves, 

this was required for machining) and saved as STL files. Using the open source software CloudCompare, 

point clouds can be compared to an STIL file by using point cloud registries. The output of the point 

cloud registry process is a data point corresponding to each location in the point cloud with distance 

information to the ground truth STL file. 
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Using the output of the point cloud registry, maximum, minimum, and average variance were 

calculated. In addition, histograms were plotted along with calculations of standard deviations. All of this 

data was compared across the three objects and from both PhotoModeler and Remake to evaluate 

accuracy. 

Results 

In addition to the accuracy computed through point cloud registries, STL quality was also 

evaluated. STL quality was evaluated by comparing the number of holes in the generated mesh, the 

number of inverted triangles, the number of overlapping triangles, the number of bad edges, and the 

number of intersecting triangles.  

While there is some variance in the results, Autodesk Remake was the most accurate in every 

case when looking at the point cloud compared to ground truth. When comparing the quality of the STL 

mesh, Remake always had less holes and fewer overlapping triangles. For the two cubes, Remake had 

fewer inverted triangles and fewer bad edges, but performed worse on the third object with complex 

curves. PhotoModeler had less intersecting triangles in all cases. This is most likely due to the way the 

different software programs added the bottom of the model. Table 2 shows the full results. 

 

Table 2: Results for all three objects in both PhotoModeler and Remake. 

 Software PhotoModeler Remake 

STL/Point 

Cloud 

 Object 1 Object 2 Object 3 Object 1 Object 2 Object 3 

Number of Planar Holes 0 1 0 0 0 0 

Number of Inverted Triangles 0 342 0 0 0 56 

Number of Overlapping Triangles 384 1960 775 358 125 569 

Number of Bad Edges 0 768 3 0 68 30 

Intersecting Triangles 328 476 155 999 1332 1488 

Computer 

Comparison 

Max Pos Variance (mm) 2.6314 2.6010 1.7678 0.6833 1.3589 1.6688 

Max Neg Variance (- mm) 1.9126 2.3368 2.6594 1.2598 1.1354 1.0084 

Average Variance (mm) 0.1600 0.1168 0.0076 -0.1219 -0.0229 -0.0635 

Standard Deviation (mm) 0.2235 0.2743 0.3429 0.3404 0.1981 0.3226 
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It is surprising that both PhotoModeler and Remake performed the worst on the object 

selected to be the baseline when comparing average variances and maximum positive variance. 

However, the results are quite varied if standard deviation is compared. Ultimately, in 

manufacturing the overall tolerance of a part is one of the most critical pieces of information. As 

such, the minimum and maximum were used to create tolerance windows. For object 1, Remake 

was the most accurate, with a tolerance of  ±
0.6833
1.2598

 𝑚𝑚. Remake also held a tighter tolerance on 

object 2 at ±
1.3589
1.1354

 𝑚𝑚. The tighter tolerance for object 3, of ±
1.6688
1.0084

 𝑚𝑚  was also achieved by 

Remake. These results provide a baseline so a decision can be made if the photogrammetry 

process is suitable for different tolerancing applications. A visual representation of the results 

can be seen in Figure 7 and Figure 9. Figure 8 and Figure 10 show the histograms of the deviations 

of the models created by photogrammetry compared to ground truth. 
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Figure 7: Results of all three objects from PhotoModeler. 

 

 

Figure 8: Distribution of variance for objects 1, 2, and 3 from PhotoModeler respectively. 
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Figure 9: Results of all three objects from Remake. 

 

 

Figure 10: Distribution of variance for objects 1, 2, and 3 from Remake respectively.
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Chapter 3  
 

Improvements with Position Data 

Now that the baseline from two photogrammetry software packages is complete, efforts to 

improve the accuracy can be made. In order to do this, a complete understanding of the Sfm algorithm is 

needed. This begins with understanding the camera model and camera calibration. The correction factors 

computed in the calibration step feed into SfM. Once this is mastered, position data is included to 

improve accuracy. This step is critical as it takes human input out of the equation, the largest source of 

error. This technique is the basis of stereo cameras and has not been applied to a monocular set of images. 

Camera Calibration 

In order to calibrate a camera, it is important to first understand the model of a camera. One of the 

simplest and most common models is known as the pin-hole camera model. The pin-hole camera assumes 

a small hole in a plane that the rays of an image pass through to create an inverse image on the opposing 

side. The pin hole of the model corresponds to the lens of the camera, and the image plane is the sensor 

chip. If the focal point is a known value and the distance to the image plane is known, then a three-

dimensional world point P{XYZ} can be described as a two-dimensional image point p{x y}. This 

concept is depicted in Figure 11. To solve for the coordinates for p{x y}, the following equations can be 

used: 

𝑥 = 𝑓 ∗
𝑋

𝑍
 

𝑦 = 𝑓 ∗
𝑌

𝑍
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where f is the focal length of the camera and X, Y, and Z are the world coordinate points. From Figure 11 

there are two key lessons. The first is there are an infinite amount of points world points P{XYZ} that 

correspond to image point p, as long as it falls along the ray displayed in red. This will become important 

in Chapter 3- Structure from Motion with Unknown Position. The second is that in real life, the point p{x 

y} is a single pixel on a sensor chip and to increase light there is a lens in front of the image plane, or the 

sensor chip. This lens is not perfect and distorts the image, requiring correction factors. [12] 

 

Figure 11: Pin-hole camera model relating world point P{XYZ} to image point p{x y}. Image sourced from [12]. 

Typically, a camera is described with two matrices; the matrix K to describe the camera 

parameters of focus, the height of each pixel, the width of each pixel, and the {x y} point where axis zc 

crosses the image plane, as well as the matrix 𝜉𝑐 to describe the pose of the camera. The pose is fully 

defined by six variables corresponding to the translation and orientation of the camera. While in theory 

these 11 variables are known, in practice they are unknown due to variations in manufacturing standards. 

Solving for these 11 variables comprises one step of the camera calibration. The matrix K is depicted 

below: 

𝐾 = [

𝑓
𝜌𝑤
⁄ 0 𝑢0

0
𝑓
𝜌ℎ
⁄ 𝑣0

0 0 1

] 
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Where f is the focal length, pw is the width of each pixel, ph is the height of each pixel, uo and vo represent 

the point where axis zc crosses the image plane. [12] To correlate the image plane to a pixel array and to 

calculate the uo and yo values: 

𝑢 =
𝑥

𝜌𝑤
+ 𝑢0 

𝑣 =  
𝑦

𝜌ℎ
+ 𝑣0 

Where u and v correspond to the pixel position that relate the sensor array position to the point p{x y} on 

the image plane. [12] 

The second step is calculating distortion. Distortion is seen in two main ways, tangential and 

radial. A tangential distortion causes the image to shift off center while radial distortion causes points to 

shift along radial lines originating at the {x y} point where axis zc crosses the image plane. The radial 

distortion usually has a larger effect on the image. For example, radial distortion is one of the common 

characteristics of a fisheye lens. Characterizing radial distortion is completed with three variables and 

tangential distortion with two variables. Computing these five variables is the second part of camera 

calibration. The distortion 𝛿𝑢 and 𝛿𝑣 can be explained by: 

[
𝛿𝑢
𝛿𝑣
] = [

𝑢(𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)

𝑣(𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)
] + [

2𝑝1𝑢𝑣 + 𝑝2(𝑟
2 + 2𝑢2)

𝑝1(𝑟
2 + 2𝑣2) + 2𝑝1𝑢𝑣

] 

Where the first matrix represents the radial distortion and the second matrix represents the tangential 

distortion. The k values are the radial coefficients and the p variables are the tangential coefficients that 

need to be determined. Typically, three coefficients are used for radial distortion and two coefficients are 

used for tangential distortion. [12] 

While camera calibration can be done with a single image containing known three-dimensional 

data, the process is much easier with multiple known two-dimensional data images. For the purpose of 

this thesis, the MathWorks MATLAB single camera calibration application was used. Numerous images 

were taken of a calibration checkerboard of known size. The calibrator detects the points of the 
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checkerboard and compares the detected points to where the points should lie. By using multiple images, 

the entire calibration matrix can be computed [15]. Figure 12 shows an example of a calibration picture 

with the corners of the calibration matrix detected. 

 

Figure 12: An example of the calibration board used with the MathWorks camera calibration application. 

Structure from Motion with Unknown Position 

The basic premise of SfM is using a set of images to correlate points in the image frame p{x y} to 

the world coordinates P{XYZ}. As was depicted in Figure 11, a single image cannot be used to calculate 

a world point, and a minimum of a second image is needed. For the purpose of this thesis, using simply 

two images will be employed, which will be discussed in further detail later in this section. If we call the 

origin of the first camera C1 and the origin of the second camera C2, then the intersection of rays C1P and 

C2P will correlate to a unique world point [8]. This basic concept is seen in Figure 13. By using this 

method for hundreds of points, a point cloud of the world can be generated. 
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Figure 13: SfM depiction, with unique points P, and where OL and OR correspond to C1 and C2 respectively. Image 

sourced from [8]. 

Figure 13 also shows the epipoles, epipolar lines, and the epipolar plane. These three features are 

used to identify the pose of the second camera relative to the first. For the purpose of this explanation, the 

points pL and pR correspond to the point label projection point in Figure 13 on the left and right images 

respectively. The projection point is where the ray OLP and ORP pass through left and right respective 

image planes. At the most basic level, the epipolar line is the projection of the opposite OP ray. For 

example, the epipolar line on the right image is the projection of ray OLP onto the right image. The 

epipolar line on the left image is the projection of ray ORP onto the left image. The epipolar line can be 

described even further though by looking at the projection points pL and pR, along with epipoles eL and eR. 

The epipoles are simply the projections of the opposite projection point. So, eR is the projection of pL on 

the right image plane and eL is the projection pR on the left image frame.  This means the rays eLpL and 

eRpR are the epipolar lines for the left and right images respectively. Finally, the plane created by OLORP 

(which passes through eL and eR) is the epipolar plane. Once all the epipolar features are computed, a 3x3 

matrix known as the Fundamental matrix can be calculated. Using the Fundamental matrix, pL, and pR, the 

pose and translation of the second camera to the first can be calculated. [7] 

Computing the Fundamental matrix itself is outside the scope of this thesis, but with the help of 

prewritten MATLAB functions the orientation and transpose of the second camera can still be calculated. 

The function estimateFundamentalMatrix is used to compute the Fundamental matrix, which is then 
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given to the function relativeCameraPose along with the matched image points and the calibrated camera 

matrix, the orientation and transpose of the second camera to the first camera is calculated [16]. However, 

the scale of the transpose cannot be calculated without further information. This is the same basic 

principle that makes it impossible to tell if an apparent small object is simply large and far away or an 

apparent large object is simply small and very close. As such, the transpose vector is calculated with a 

length of one, and the image is not metric [8]. 

In order to put all the theory stated above into practice, a basic SfM algorithm was written. To 

keep the method as simple as possible, only two views were used. While including multiple images to 

create a denser point cloud is feasible, to create a baseline reconstructed model this added complexity was 

avoided. Figure 14 to Figure 18 shows the output of that algorithm. Figure 14 shows the original images 

and Figure 15 shows the same images after distortion has been removed. Due to the high quality DSLR 

being used, there is not a lot of distortion present. Figure 16 shows the first set of points matched overtop 

of the two images, as well as the direction of point travel. These points are the epipolar points used to 

calculate the Fundamental matrix. Once the camera positions are calculated, another set of matched points 

are calculated to create a dense point cloud. Since the camera position has been calculated, the minimum 

quality of each detected point can be reduced. These new points are shown in Figure 17.  Finally, Figure 

18 shows the reconstructed scene. In this case, the front of the cube can be clearly seen, along with the 

two positions of the camera when the images were captured. It can also be seen from the scale of the axis, 

that the face of the cube measures close to 1 square unit, which makes sense as this image has not been 

scaled in any way. 
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Figure 14: Original images (distorted) used in a two view SfM. 

 

 

Figure 15: Undistorted images used for two view SfM. 
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Figure 16: Epipolar points used to compute the Fundamental matrix. 

 

Figure 17: A total of 71,983 points were tracked between the two images. 



24 

 

 

Figure 18: Unscaled point cloud calculated from the two view SfM algorithm. 

Structure from Motion with Known Position 

To create a properly scaled image, the transpose vector simply needs to be multiplied by the 

actual distance the camera moved. Since the images were taken from the pictures taken in Chapter 2-Data 

Collection, the distance from one camera to a second can be calculated. By estimating the location of the 

image sensor, and an 11.25 degree shift of the camera around the object, the approximate distance of the 

transpose is 73.66 mm. Since the SfM algorithm calculates the transpose with a length of one, simply 

scaling the transpose by a factor of 73.66 will yield a metric result. The only change made from the 

algorithm completed in the previous section is the addition of the scaling factor to the transpose vector. 

As such, Figure 14 to Figure 16 remain identical, and only the output changes. The results can be seen in 

Figure 19. The width of the block is approximately 76.3 mm when it should be 76.2 mm. The width can 

be calculated from the two points shown, by finding the difference vector and calculating the length. 

These equations can be seen below. 
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[
Δ𝑋
Δ𝑌
Δ𝑍
] = [

−40.106
−20.043
483.362

] − [
27.584
−5.370
451.358

] 

[
Δ𝑋
Δ𝑌
Δ𝑍
] = [

−67.69
−14.673
32.004

] 

𝑙𝑒𝑛𝑔𝑡ℎ = √67.692 + 14.6732 + 32.0042 = 76.298 𝑚𝑚 

 

 

Figure 19: Scaled SfM results, allowing for measurements. 

With the basic two image SfM algorithm functional, increased point density can be reconstructed 

by using an increased number of views. To test the addition of multiple views, only the first rotation of 

images from Chapter 2-Data Collection will be used: yielding 32 pictures. Due to increased computation 

cost, the image set was further reduced to 29 pictures. The most significant difference between the 

multiple view algorithm compared to the two-image algorithm is a data set to store camera poses as well 

as tracked points [17]. In addition, points are tracked across more than just the adjacent image. For 

example, features in image 7 could be matched to features in image 2. The results from this algorithm can 

be seen in Figure 20. One can easily see a problem seems to have arisen. The camera poses should be 
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arranged in essentially a circular plane around the object. The phenomenon seen in Figure 20 is a well-

known problem that occurs due to error build up as each pose is calculated. A technique pioneered in 

1999 known as Bundle Adjustment can be used to reduce the error build up [18]. While portions of this 

technique were used, it can be seen that adjustment of the camera pose was only effective until 

approximately the fourth image. 

 

Figure 20: Attempt to use multiple view with SfM. 

Due to the intricacies of Bundle Adjustment and a potential reduction in error by calculating 

position data via alternative methods, multi-view SfM algorithms will not be pursued further. Instead, the 

focus will return to improving the scaling coefficient used in the two-image algorithm, as this can later be 

applied to the multi-image SfM. While the results in Figure 19 are extremely accurate, deviation can 

occur. The step most likely to introduce error is the measurement and calculation of the position of the 

camera. Estimations were made as to the location of image sensor and very primitive methods of 



27 

 

measuring the angle between the camera positions were used. Even though the calculations provided 

proper scaling, the fact the measurement is being completed by a human adds a possibility of error. 

Position Tracking 

As seen in Chapter 3-Structure from Motion with Known Position, knowing the transpose of one 

camera to another can yield extremely promising results. If the true transpose of the camera is known, the 

result of the SfM algorithm is metric. In order to improve the position tracking from human measurement, 

this section will focus on using an Inertial Measurement Unit (IMU). As modern cellular devices contain 

both IMUs as well as cameras, these devices make the perfect test subject. To obtain accurate data from 

an IMU, the first step is understanding how to model one and calculate the necessary variables. The 

output from the IMU is accelerometer data in three axes and a gyroscope to provide angular acceleration. 

The data was filtered to remove the noise prior to calculating the position. 

Inertial Measurement Unit Modeling 

The first step in obtaining accurate accelerometer data is removing gravity. To remove the gravity 

vector, the orientation of the phone must be known, which can be calculated from the gyroscopic 

information. The output of the IMU is 𝜙̇, 𝜃̇, 𝑎𝑛𝑑 𝜓̇, corresponding to the roll rate, pitch rate, and yaw rate 

respectively. Roll pitch and yaw can be obtained by [19]: 

[
𝜙
𝜃
𝜓
] = [

𝜙̇

𝜃̇
𝜓̇

] 𝛿𝑡 + [

𝜙𝑘−1
𝜃𝑘−1
𝜓𝑘−1

] 

Where ϕ, θ, and ψ are the roll pitch and yaw of the phone. These values are then used to remove the 

gravity component, as seen below [19]: 
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[

𝑢̇𝑡𝑟𝑢𝑒
𝑣̇𝑡𝑟𝑢𝑒
𝑤̇𝑡𝑟𝑢𝑒

] = [

𝑢̇𝑚𝑒𝑎𝑠 + 𝑔 ∗ 𝑠𝑖𝑛(𝜃)

𝑣̇𝑚𝑒𝑎𝑠 + 𝑔 ∗ 𝑐𝑜𝑠(𝜃)sin (𝜙)

𝑤̇𝑚𝑒𝑎𝑠 − 𝑔 ∗ 𝑐𝑜𝑠(𝜃)cos (𝜙)
] 

Where 𝑢̇𝑡𝑟𝑢𝑒 , 𝑣̇𝑡𝑟𝑢𝑒 , 𝑤̇𝑡𝑟𝑢𝑒 are the acceleration in the x, y, and z axis with gravity removed, and 

𝑢̇𝑚𝑒𝑎𝑠, 𝑣̇𝑚𝑒𝑎𝑠, 𝑤̇𝑚𝑒𝑎𝑠 are the measured accelerations from the IMU. The effects of gravity on the IMU 

acceleration data can be seen in Figure 21. 

 

Figure 21: IMU Acceleration data before and after accounting for gravity. 

In addition to removing gravity, it can be observed from Figure 21 that even with gravity 

accounted for, all three axes have an offset bias. In an attempt to make the sensor output as accurate as 

possible, the average acceleration was calculated and stored as a bias parameter. This bias was then 

applied to the data prior to integrating to find position. 

Calculating Position 

To calculate the position, simple numeric integration was used. First, the initial conditions for 

velocity were set as 0 m/s. Once completing the second integration, the position of the phone is found, 
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however the position calculated is in body coordinates. To be useful for the SfM algorithm the position is 

needed in global coordinates. While a Euler direction cosine matrix could be used, the chances of the 

phone rotating into gimbal lock (when the rotation is zero degrees, and causing an unsolvable matrix) is 

quite probable. As such, the quaternion was utilized for the transformation from body to global 

coordinates. The following equations were used to calculate body position and velocity, as well as global 

velocity and position [19]. 

[

𝑢𝑘
𝑣𝑘
𝑤𝑘
] = [

𝑢̇𝑡𝑟𝑢𝑒
𝑣̇𝑡𝑟𝑢𝑒
𝑤̇𝑡𝑟𝑢𝑒

] ∗ 𝑑𝑡 + [

𝑢𝑘−1
𝑣𝑘−1
𝑤𝑘−1

] 

[

𝑥𝑘
𝑦𝑘
𝑧𝑘
] =

1

2
∗ ([

𝑢𝑘
𝑣𝑘
𝑤𝑘
] + [

𝑢𝑘−1
𝑣𝑘−1
𝑤𝑘−1

]) ∗ 𝑑𝑡 + [

𝑢𝑘−1
𝑣𝑘−1
𝑤𝑘−1

] 

Where uk, vk, wk are the velocities in the x, y, and z directions respectively and xk, yk, and zk describe the 

phone position in body coordinates. Then, using the ϕ, θ, and ψ (roll pitch and yaw), the quaternion vector 

can be calculated as defined by [20]: 

{𝑞̂} = {

𝑞1
𝑞2
𝑞3
𝑞4

} =

{
 
 
 
 

 
 
 
 𝑙 ∗ 𝑠𝑖𝑛 (

𝜃

2
)

𝑚 ∗ 𝑠𝑖𝑛 (
𝜃

2
)

𝑛 ∗ 𝑠𝑖𝑛 (
𝜃

2
)

𝑐𝑜𝑠 (
𝜃

2
) }
 
 
 
 

 
 
 
 

 

Where l, m, n describe the unit vector 𝒖̂ in the body coordinate system. To transform from the body xyz 

coordinate system to the global XYZ system the direction cosine matrix can be calculated as [20] 

[𝑸]𝑥𝑋 = [

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞1𝑞2 − 𝑞3𝑞4) 2(𝑞1𝑞3 + 𝑞2𝑞4)

2(𝑞1𝑞2 + 𝑞3𝑞4) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞2𝑞3 − 𝑞1𝑞4)

2(𝑞1𝑞3 − 𝑞2𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 − 𝑞4

2

] 

 

[
𝑋̇
𝑌̇
𝑍̇

] = [𝑸]𝑥𝑋 [

𝑢𝑘
𝑣𝑘
𝑤𝑘
] 
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[

𝑋𝑘
𝑌𝑘
𝑍𝑘

] =
1

2
∗ ([

𝑋̇𝑘
𝑌̇𝑘
𝑍̇𝑘

] + [

𝑋̇𝑘−1
𝑌̇𝑘−1
𝑍̇𝑘−1

]) ∗ 𝑑𝑡 + [

𝑋̇𝑘−1
𝑌̇𝑘−1
𝑍̇𝑘−1

] 

Where 𝑋̇, 𝑌̇, 𝑎𝑛𝑑 𝑌̇ describe the velocity of the phone and Xk, Yk, and Zk describe the position of the 

phone in global coordinates [19]. 

Results 

While numerous different tests were completed, all yielded extremely similar results. Due to 

compounding error that is integrated twice, the final calculated position is extremely variable and does not 

accurately represent the actual IMU movement. Figure 22 shows the calculated position of a stationary 

phone over the course of only five and a half seconds. While the calculated position originally was 

clustered within an approximately 0.5mm by 0.1 mm by 0.1 mm box, it can be seen that when the IMU 

was stopped recording the position was becoming rapidly inaccurate. If allowed to continue, the 

calculated position would have predicted meters of movement within a matter of minutes. 
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Figure 22: Phone position calculated from IMU. 

 

Unfortunately, the results of this effort did not contribute to calculating the position of the camera 

and help increase the accuracy of the SfM algorithm. Figure 22 depicts a well-known phenomenon known 

as velocity random walk, or randomly walking bias, which is when the calculated velocity and position 

appear to randomly walk or change due to IMU bias [21].  
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Chapter 4  
 

Conclusions 

In the event the original three-dimensional computer model is unavailable, reverse 

engineering techniques are used to create the needed geometry. Traditionally this has been done 

using coordinate measuring machines, laser scanners, physical measuring, or some combination 

of these processes. Recently, photogrammetry has emerged as a method to create accurate 

reconstruction of relatively small scale items for reverse engineering. 

A base line evaluation of the photogrammetric method was the first step; evaluating the 

accuracy of two purchased software packages. Eos Systems PhotoModeler and Autodesk 

Remake were used to create models for three different types of objects. The first object was 

meant as a baseline and was a simple 76.2 mm cube. The second object was also a 76.2 mm cube 

but contained subtracted conics and hemispheres to induce shadows.  The final object was a thin, 

long object with complex curves and cuts. This object was meant to be the most challenging. 

Each of the three objects was selected to test how the software packages would react to 

different features. Both software packages performed well, consistently producing results that 

were within 2.5 mm of the original design. Unfortunately, no real statistical significance could be 

found when comparing the results of objects 1, 2, and 3 from the same software. Remake 

consistently performed better, and the worst tolerance model was ±
1.6688
1.0084

 𝑚𝑚. 

The biggest drawback of both PhotoModeler and Remake was a lack of scaling. In order 

to produce a metric model, a scale had to be included by the user, thus leading to potential 

inaccuracies. In an effort to remove this variable, a SfM algorithm was developed using 

MATLAB. The original task was simply reconstructing a scene from two images. Once 
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successful, the position of the camera was tracked and this data was also utilized in the 

algorithm. By including information about the camera position, the output of the model was true 

to size. While results were preliminary, the face of the 76.2 mm cube was calculated to be 76.3 

mm by the SfM algorithm.  

In an effort to increase the accuracy further, a tracking system was developed using an 

IMU. Unfortunately, this goal was unsuccessful. Due to inaccuracies and bias in the IMU, 

computing a precise location is not possible. 

While the goal of having a single system capable of taking pictures and tracking position 

was unsuccessful, the overall goal of the thesis was accomplished. The current available software 

was evaluated to a high level of accuracy across a broad range of objects with various types of 

features. Furthermore, the goal of creating a SfM algorithm that produced a metric reconstruction 

without a scaling being set by the user was successfully implemented.
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Chapter 5  
 

Future Work and Areas for Expansion 

In order to simplify and test the proof of concept for an improved SfM algorithm, two 

main assumptions were made. The first assumption was the user has access to an easily 

calibratable camera and the second was a known camera position. Both of these assumptions are 

not necessarily accurate and can be improved upon in the future. 

Phone Camera Calibration 

One of the most important steps in calibrating a camera is maintaining a constant focal length on 

the lens. In addition, keeping the aperture at a constant diameter is also important [12]. If the transition is 

made from a DSLR to the camera on a phone, these assumptions may be difficult to keep. Many phone 

cameras do not allow the user the ability to change the focus point with hardware, but instead use 

software techniques to change the focus. The effects of this have not been investigated on the quality of 

the calibration. In addition, DSLR cameras typically use glass lenses that are well manufactured, helping 

to reduce distortion. The differences between Figure 15 and Figure 16 is a perfect example of this. Most 

cell phone camera lenses are plastic, which have worse distortion properties. In addition, the camera 

calibration matrix can be more likely to change overtime with a lower quality lens. In the future, work 

achieving a calibration matrix for a phone camera and comparing the results to a DSLR could be 

completed. 
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Advanced Accelerometer Modeling and Improved Position Tracking 

While using a cell phone’s IMU to accurately calculate position was unsuccessful, other research 

has been done on how to improve this process.  Typically, a real IMU deviates from an ideal IMU due to 

bias, scaling, and noise [19].  In addition, methods have been developed to measure bias stability, and 

many of the modeling parameters needed are often included in an IMU’s data sheet [22]. While including 

a more accurate model of the IMU was beyond the scope of this thesis, knowing the noise, bias, and 

stability variables of the IMU used could produce accurate position data that could be used in the SfM 

algorithm. If both advanced accelerometer modeling and phone camera calibration are successful, then a 

smart phone alone could perform metric scene reconstruction.
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Appendix A 

 

Structure from Motion with 2 Views – Metric Output 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1 
%                     Pennsylvania State University               2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 
%                             COPYRIGHT 2017 4 
%                     Pennsylvania State University  5 
%                       University Park, PA 16802 6 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7 
% 8 
% FILENAME: SFM_2_pics 9 
% 10 
% DESCRIPTION: This code loads two pictures and creates a point cloud. To 11 
%              do this, it first calculates the orientation and pose of the 12 
%              second camera relative to the first. The point cloud that is 13 
%              output is not metric. 14 
% 15 
% REFERENCES: 1.  The MathWorks, "Structure from Motion," The MathWorks Inc 16 
%                 2017. [Online]. Available: 17 
%                 https://www.mathworks.com/help/visiion/ug/structure-from 18 
%   motion.html 19 
% 20 
%             2.  The MathWorks, "Structure from Motion from Two Views," The 21 
%                 MathWorks Inc., 2017. [Online]. Available: 22 
%                 https://www.mathworks.com/help/visiion/ug/structure-from- 23 
%                 motion-from-two-views.html 24 
% 25 
% DATE                AUTHOR                REVISION 26 
% 04-APRIL-2017      BENJAMIN SATTLER         INITIAL RELEASE 27 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 28 
% 29 
% INPUTS: Provide description of script inputs if applicable. 30 
%         1. Image 1        :  First image used 31 
%         2. Image 2        :  Second image used 32 
%         3. Camera Matrix  :  Camera calibration 33 
% 34 
% OUTPUTS: Provide description of script outputs if applicable. 35 
%         1. PtCloud        :  Calculated point cloud of the world 36 
%          37 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 38 

  39 
%% Clean Workspace 40 
% This section of the code simply closes all figures, clears all variables, 41 
% and clears the command window 42 

  43 
clear all, close all, clc 44 

  45 
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%% Load the Images 46 
% This section of the code uses a directory to create an image set that 47 
% imports the two input images 48 

  49 
images = imageDatastore('C:\Users\bzs52\Documents\Senior Year\Dr. Basu\SFM'); 50 
I1=readimage(images,1);                                 % Read image 1 51 
I2=readimage(images,2);                                 % Read image 2 52 
figure                                                  % Create a figure 53 
imshowpair(I1,I2,'montage');                            % Show the images 54 
title('Original Images');                               % Title the figure 55 

  56 
%% Load Camera Params 57 
% This section of code loads the camera parameters of a calibrated camera 58 

  59 
load ('C:\Users\bzs52\Documents\Senior Year\Dr. Basu\Cal Pics\EoS 6D 60 
big\matlab.mat'); 61 

  62 
%% Remove Lens Distortion 63 
% This section of code removes distortion from the images 64 

  65 
I1=undistortImage(I1,cameraParams);                     % Undistort image 1 66 
I2=undistortImage(I2,cameraParams);                     % Undistort image 2 67 
figure                                                  % Create figure 68 
imshowpair(I1,I2,'montage');                            % Show the images 69 
title('Undistorted Images');                            % Title the figure 70 

  71 
%% Find Points in Both Images for Epipolar Points 72 
% This section of code finds trackable points, only used to calculate the 73 
% epipolar points to find the Essential Matrix 74 

  75 
imagePoints1 = detectMinEigenFeatures(rgb2gray(I1),'MinQuality',0.05); 76 
figure                                                  % Create figure 77 
imshow(I1,'InitialMagnification',50);                   % Show image 78 
title('150 Strongest Corners from the first Image');    % Title figure 79 
hold on 80 
plot(imagePoints1.selectStrongest(150))                 % Plot detected 81 
points 82 

  83 
% Define the parameters of the point tracker 84 
tracker=vision.PointTracker('MaxBidirectionalError',1,'NumPyramidLevels',5); 85 
imagePoints1=imagePoints1.Location;                     % Save point locatons 86 
initialize(tracker,imagePoints1,I1);                    % Start the point 87 
tracker 88 
[imagePoints2,validIdx]=step(tracker,I2);               % Use the tracker to 89 
correlate points 90 
matchedPoints1=imagePoints1(validIdx,:);                % Save image 1 points 91 
if valid match 92 
matchedPoints2=imagePoints2(validIdx,:);                % Save image 2 points 93 
if valid match 94 
figure                                                  % Create figure 95 
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);%Show the images and 96 
matched points 97 
title('Tracked Features');                              % Title the figure 98 
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  99 
%% Calculate the Essential Matrix 100 
% Using the matched points, calculate all parameters of the Essential 101 
% Matrix 102 

  103 
% Use the estimateEssentialMatrix to find epipolar points and a 3x3 matrix 104 
[E, epipolarInliers]=estimateEssentialMatrix(... 105 
    matchedPoints1,matchedPoints2,cameraParams,'Confidence',99.99); 106 

  107 
inlierPoints1=matchedPoints1(epipolarInliers,:);        % Calc epipolar 108 
points on image 1 109 
inlierPoints2=matchedPoints2(epipolarInliers,:);        % Calc epipolar 110 
points on image 2 111 
figure                                                  % Create figure 112 
showMatchedFeatures(I1,I2,inlierPoints1,inlierPoints2); % Show images and 113 
epipolar points 114 
title('Epipolar Inliers')                               % Title the figure 115 

  116 
%% Use Essential Matrix to find Camera Orientation and Translation 117 
% This section of code uses the Essential Matrix calculated in the previous 118 
% section to find the relative orientation and transpose of the second 119 
% camera to the first camera 120 

  121 
[orient, loc]=relativeCameraPose(E,cameraParams,inlierPoints1,inlierPoints2); 122 
loc= loc*2.9364;                                        % 2.9364 is the 123 
distance the camera 124 
                                                        % moved between each 125 
image. 126 
                                                        % Calc from 127 
experimental setup 128 

                                                         129 
%% Reconstruct the Scene 130 
% This section of code first removes the outer edge of the image, then 131 
% finds new points to track. Since camera position is already known, the 132 
% quality of the points can be reduced to help find more points. Finally, 133 
% the 3D position of the points is calculated 134 

  135 
roi=[40,40,size(I1,2)-40,size(I1,1)-40];               % Define the section 136 
of the image to use 137 
% Detect new points. As mentioned above, the quality of points can be lower 138 
imagePoints1 = detectMinEigenFeatures(rgb2gray(I1), 'ROI', roi, ... 139 
    'MinQuality', 0.001); 140 
% Define the parameters of the point tracker 141 
tracker = vision.PointTracker('MaxBidirectionalError', 1, 'NumPyramidLevels', 142 
5); 143 
imagePoints1 = imagePoints1.Location;                  % Save the point 144 
locations 145 
initialize(tracker, imagePoints1, I1);                 % Start the image 146 
tracker 147 
[imagePoints2, validIdx] = step(tracker, I2);          % Use the tracker to 148 
correlate points 149 
matchedPoints1 = imagePoints1(validIdx, :);            % Save image 1 points 150 
if valid match 151 
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matchedPoints2 = imagePoints2(validIdx, :);            % Save image 2 points 152 
if valid match 153 
camMatrix1=cameraMatrix(cameraParams,eye(3),[0 0 0]);  % Create first camera 154 
matrix 155 
[R,t]=cameraPoseToExtrinsics(orient,loc);              % Calculate 156 
orientation and pose of cam 2 157 
camMatrix2=cameraMatrix(cameraParams,R,t);             % Create second camera 158 
matrix 159 
% Use triangulation to find the 3D location of each point 160 
points3D = triangulate(matchedPoints1, matchedPoints2,camMatrix1,camMatrix2); 161 
numPixels=size(I1,1)*size(I1,2);                       % Calc total number of 162 
pixels 163 
allColors=reshape(I1,[numPixels,3]);                   % Put all points into 164 
a MxN matrix 165 
% save the RGB number of all the pixels 166 
colorIdx = sub2ind([size(I1, 1), size(I1, 2)], round(matchedPoints1(:,2)), 167 
... round(matchedPoints1(:, 1))); 168 
color = allColors(colorIdx, :);                        % Save color to point 169 
ptCloud=pointCloud(points3D,'Color',color);            % Create the point 170 
cloud 171 

  172 
%% Display the Point Cloud 173 
% Visualize the camera locations and orientations along with the world 174 

  175 
cameraSize = 0.3;                                      % Set the camera size 176 
figure                                                 % Create the figure 177 
% show the first camera 178 
plotCamera('Size', cameraSize, 'Color', 'r', 'Label', '1', 'Opacity', 0); 179 
hold on 180 
grid on 181 
% show the second camera 182 
plotCamera('Location', loc, 'Orientation', orient, 'Size', cameraSize, ... 183 
    'Color', 'b', 'Label', '2', 'Opacity', 0); 184 

  185 
% Show the point cloud 186 
pcshow(ptCloud, 'VerticalAxis', 'y', 'VerticalAxisDir', 'down', ... 187 
    'MarkerSize', 45); 188 
camorbit(0, -30);                                      % Rotate the plot 189 
camzoom(1.5);                                          % Zoom in on the plot 190 
xlabel('x-axis (in)');                                 % Label the x-axis 191 
ylabel('y-axis (in)');                                 % Label the y-axis 192 
zlabel('z-axis (in)');                                 % Label the z-axis 193 
title('Reconstructed View from Known Transpose');      % Title the figure 194 
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Appendix B 

 

Structure from Motion with Multiple Views

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1 
%                     Pennsylvania State University               2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 
%                             COPYRIGHT 2017 4 
%                     Pennsylvania State University  5 
%                       University Park, PA 16802 6 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7 
% 8 
% FILENAME: SFM_mult_pics 9 
% 10 
% DESCRIPTION: This code loads two pictures and creates a point cloud. To 11 
%              do this, it first calculates the orientation and pose of the 12 
%              second camera relative to the first. The point cloud that is 13 
%              output is not metric. 14 
% 15 
% REFERENCES: 1.  The MathWorks, "Structure from Motion," The MathWorks Inc 16 
%                 2017. [Online]. Available: 17 
%                 https://www.mathworks.com/help/visiion/ug/structure-from 18 
%   motion.html 19 
% 20 
%             2.  The MathWorks, "Structure from Motion from Multiple Views," 21 
%                 The MathWorks Inc., 2017. [Online]. Available: 22 
%                 https://www.mathworks.com/help/visiion/ug/structure-from 23 
%   motion-from-multiple-views.html 24 
% 25 
% DATE                AUTHOR                REVISION 26 
% 04-APRIL-2017      BENJAMIN SATTLER         INITIAL RELEASE 27 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 28 
% 29 
% INPUTS: Provide description of script inputs if applicable. 30 
%         1. Images         :  Directory of Image Pathway 31 
%         2. Camera Matrix  :  Camera calibration 32 
% 33 
% OUTPUTS: Provide description of script outputs if applicable. 34 
%         1. PtCloud        :  Calculated point cloud of the world 35 
%          36 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 37 

  38 
%% Clean Workspace 39 
% This section of the code simply closes all figures, clears all variables, 40 
% and clears the command window 41 

  42 
clear all, close all, clc 43 

  44 
%% Load the images 45 
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% This section of the code uses a directory to create an image set that 46 
% imports the two input images 47 

  48 
imds = imageDatastore('C:\Users\bzs52\Documents\Senior Year\Dr. 49 
Basu\SFM\Block Pics'); 50 
images=cell(1,numel(imds.Files));   % create empty array for images 51 
for i=1:numel(imds.Files)           % for loop to run through all images 52 
    I=readimage(imds,i);            % read in image 53 
    images{i}=rgb2gray(I);          % convert image to grayscale and save in 54 
array 55 
end 56 

  57 
%% Load Camera Params 58 
% This section of code loads the camera parameters of a calibrated camera 59 

  60 
load ('C:\Users\bzs52\Documents\Senior Year\Dr. Basu\Cal Pics\EoS 6D 61 
big\matlab.mat'); 62 

  63 
%% Remove Lens Distortion 64 
% This section of code removes distortion from the images 65 

  66 
I=undistortImage(images{1},cameraParams); 67 

  68 
%% Find Point Correspondences Between the Images 69 
% This section of code finds trackable points 70 

  71 
roi = [50,50,size(I, 2)-2*50,size(I, 1)- 2*50];                 % Set region 72 
of interest 73 
prevPoints=detectSURFFeatures(I, 'NumOctaves', 8, 'ROI', roi);  % detect 74 
points 75 
prevFeatures = extractFeatures(I, prevPoints, 'Upright', true); % Extract 76 
features 77 
vSet = viewSet;                                                 % Create set 78 
for other views 79 
viewId = 1;                                                     % First view 80 
ID 81 
% Add in the information from the first image to the set 82 
vSet = addView(vSet, viewId, 'Points', prevPoints, 'Orientation', ... 83 
    eye(3, 'like', prevPoints.Location), 'Location', ... 84 
    zeros(1, 3, 'like', prevPoints.Location)); 85 
%% Add the rest of the views 86 
% This section of code brings in the rest of the images and detects the 87 
% points. It also matches the points to the previous feature 88 

  89 
k=0; 90 
for i = 2:numel(images)                               % Loop through every 91 
image 92 
    I=undistortImage(images{i},cameraParams);         % Undistort the image 93 
    currPoints=detectSURFFeatures(I, 'NumOctaves', 8, 'ROI', roi);% Detect 94 
points 95 
    currFeatures =extractFeatures(I, currPoints, 'Upright', true);% Detect 96 
features 97 
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    indexPairs=matchFeatures(prevFeatures, currFeatures, ...      % Find 98 
matches 99 
        'MaxRatio', .7, 'Unique',  true); 100 
    matchedPoints1=prevPoints(indexPairs(:, 1));      % Save match if valid 101 
in image 1 102 
    matchedPoints2=currPoints(indexPairs(:, 2));      % Save match if valid 103 
in image 2 104 
    % Calculate the orientation and location of one camera to the previous 105 
    [relativeOrient,relativeLoc,inlierIdx]=helperEstimateRelativePose(... 106 
        matchedPoints1,matchedPoints2,cameraParams); 107 
    vSet=addView(vSet,i,'Points',currPoints);         % Add the points to the 108 
set 109 
    vSet=addConnection(vSet,i-1,i,'Matches',indexPairs(inlierIdx,:)); 110 
    prevPose=poses(vSet,i-1);                         % Look at previous pose 111 
    prevOrientation=prevPose.Orientation{1};          % Look at the previous 112 
orientation 113 
    prevLocation=prevPose.Location{1};                % Look at the previous 114 
transpose 115 
    orientation=relativeOrient*prevOrientation;       % Calculate the new 116 
orientation 117 
    location=prevLocation+relativeLoc*prevOrientation;% Calc new location 118 
    vSet=updateView(vSet,i,'Orientation',orientation, ... 119 
        'Location',location); 120 
    tracks = findTracks(vSet);                        % Find points in all 121 
views 122 
    camPoses = poses(vSet);                           % Load camera poses 123 
    % Calculate the world points 124 
    xyzPoints = triangulateMultiview(tracks, camPoses, cameraParams); 125 
    % Use Bundle Adjustment to account for erros 126 
    [xyzPoints, camPoses, reprojectionErrors] = bundleAdjustment(xyzPoints, 127 
... 128 
        tracks, camPoses, cameraParams, 'FixedViewId', 1, ... 129 
        'PointsUndistorted', true); 130 
    vSet = updateView(vSet, camPoses);                % Save adjusted cam 131 
poses 132 
    prevFeatures = currFeatures;                      % Make current features 133 
previous feats 134 
    prevPoints   = currPoints;                        % Make current points 135 
previous points 136 
    k=k+1;                                            % Update k 137 
end 138 

  139 
%% Display Camera Poses 140 
% This section of code simply displays the camera positions and points used 141 
% to calculate those positions 142 
camPoses = poses(vSet);             % Save the camera positions 143 
figure;                             % Create a figure 144 
plotCamera(camPoses, 'Size', 0.2);  % Plot the cameras 145 
hold on                             % Keep the plot up 146 
goodIdx = (reprojectionErrors < 5); % Calculate if good point or not 147 
xyzPoints = xyzPoints(goodIdx, :);  % Save the valid XYZ points 148 
% Display valid points 149 
pcshow(xyzPoints, 'VerticalAxis', 'y', 'VerticalAxisDir', 'down', ... 150 
    'MarkerSize', 45); 151 
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grid on                             % Display a grid 152 
hold off                            % Turn the hold off 153 
loc1 = camPoses.Location{1};        % Identify cam position one 154 
xlim([loc1(1)-5, loc1(1)+4]);       % Set the x axis 155 
ylim([loc1(2)-5, loc1(2)+4]);       % Set the y axis 156 
zlim([loc1(3)-1, loc1(3)+20]);      % Set the z axis 157 
camorbit(0, -30);                   % Change orientation of plot 158 
title('Camera Location');           % Title the plot 159 

  160 
%% Compute Dense Reconstruction 161 
% Go through the images again. This time detect a dense set of corners, 162 
% and track them across all views using vision.PointTracker. 163 

  164 
I=undistortImage(images{1},cameraParams);               % Undistort first 165 
image 166 
prevPoints=detectMinEigenFeatures(I,'MinQuality',0.001);% Detect points 167 
% Create the point tracker 168 
tracker=vision.PointTracker('MaxBidirectionalError',1,'NumPyramidLevels', 6); 169 
prevPoints=prevPoints.Location;                         % Set first points 170 
initialize(tracker,prevPoints,I);                       % Init tracker 171 
vSet=updateConnection(vSet,1,2,'Matches',zeros(0, 2));  % Make part of set 172 
vSet=updateView(vSet,1,'Points',prevPoints);            % Store points in set 173 

  174 
for i = 2:numel(images)                                 % Loop through all 175 
images 176 
    I=undistortImage(images{i},cameraParams);           % Undistort current 177 
pic 178 
    [currPoints,validIdx]=step(tracker,I);              % Track the points 179 
    if i<numel(images)                                  % Check where in loop 180 
        vSet=updateConnection(vSet,i,i+1,'Matches',zeros(0, 2)); % Zero 181 
Images 182 
    end 183 
    vSet=updateView(vSet,i,'Points',currPoints);        % Update the set 184 
    matches=repmat((1:size(prevPoints,1))',[1,2]);      % Tile matches matrix 185 
    matches=matches(validIdx,:);                        % Save valid matches 186 
    vSet=updateConnection(vSet,i-1,i,'Matches',matches);% Save matches in set 187 
end 188 

  189 
tracks=findTracks(vSet);                                % Track points in the 190 
set 191 
camPoses=poses(vSet);                                   % Read camera poses 192 
xyzPoints = triangulateMultiview(tracks, camPoses,...   % Calc XYZ points 193 
    cameraParams); 194 
% Use bundleAdjustment to reduce errors 195 
[xyzPoints, camPoses, reprojectionErrors] = bundleAdjustment(... 196 
    xyzPoints, tracks, camPoses, cameraParams, 'FixedViewId', 1, ... 197 
    'PointsUndistorted', true); 198 

  199 
% Get color from images 200 
for i=1:length(tracks) 201 
    matches(i,:)=[double(tracks(1,i).Points(1,1)) 202 
double(tracks(1,i).Points(1,2))]; 203 
end 204 
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numPixels=size(I, 1)*size(I, 2);                        % Calc total pix 205 
number 206 
Q=readimage(imds,1);                                    % Read RGB value 207 
allColors = reshape(Q, [numPixels, 3]);                 % Save the color IDs 208 
colorIdx = sub2ind([size(I, 1), size(I, 2)], round(matches(:,2)), ... 209 
    round(matches(:, 1))); 210 
color = allColors(colorIdx, :); 211 
ptCloud=pointCloud(xyzPoints,'Color',color);            % Add color to pt 212 
cloud 213 

  214 
%% Display Point Cloud 215 
% Visualize the camera locations and orientations along with the world 216 
figure;                                                 % Create figure 217 
plotCamera(camPoses, 'Size', 0.2);                      % Plot cameras 218 
hold on                                                 % Keep plot 219 
goodIdx = (reprojectionErrors < 5);                     % Calc if good point 220 
pcshow(ptCloud, 'VerticalAxis', 'y', ...                % Disp point cloud 221 
    'VerticalAxisDir', 'down', 'MarkerSize', 45); 222 
grid on                                                 % Plot with grid 223 
hold off                                                % Turn hold off 224 
loc1 = camPoses.Location{1};                            % Identify camera 1 225 
xlim([loc1(1)-5, loc1(1)+4]);                           % x axis 226 
ylim([loc1(2)-5, loc1(2)+4]);                           % y axis 227 
zlim([loc1(3)-1, loc1(3)+20]);                          % z axis 228 
camorbit(0, -30);                                       % Define orientation 229 
title('Unscaled Scene Reconstruction from Multiple Views'); 230 
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Appendix C 

 

Position Tracking Algorithm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1 
%                     Pennsylvania State University               2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 
%                             COPYRIGHT 2017 4 
%                     Pennsylvania State University  5 
%                       University Park, PA 16802 6 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7 
% 8 
% FILENAME: from_file_gravity_removed 9 
% 10 
% DESCRIPTION: This code loads data recorded using the MATLAB mobile 11 
%              application. The end result is plots of the phone's 12 
%              acceleration in body coordinates as well as the position of 13 
%              the phone in both body and global coordinates 14 
% 15 
% REFERENCES: 1.  C. D. Monaco, Detecting the Instability of Oncoming 16 
%                 Vehicles Using Optical Flow and Map-Based Context, 17 
%                 University Park: Penn State Electronic Theses and 18 
%                 Dissertations for Graduate School, 2016. 19 
% 20 
% DATE                AUTHOR                REVISION 21 
% 04-APRIL-2017      BENJAMIN SATTLER         INITIAL RELEASE 22 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 23 
% 24 
% INPUTS: Provide description of script inputs if applicable. 25 
%         1. Acceleration :  System acceleration [m/s^2] 26 
%         2. Orientation  :  System roll pitch and yaw [degrees] 27 
% 28 
% OUTPUTS: Provide description of script outputs if applicable. 29 
%         1. NoG          :   Accel data w/ gravity removed [m/s^2] 30 
%         2. NoG_zeroed   :   Accel data w/ gravity & bias removed [m/s^2] 31 
%         3. uvw          :   Velocity in body coordinates [m/s] 32 
%         4. xyz          :   Position in body coordinates [m] 33 
%         5. XYZ_vel      :   Velocity in global coordinates [m/s] 34 
%         6. XYZ          :   Position in global coordinates [m] 35 
%          36 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 37 

 38 
%% Clean Workspace 39 
% This section of the code simply closes all figures, clears all variables, 40 
% and clears the command window 41 

  42 
clear all, close all, clc 43 

  44 
%% Load Data 45 
% This section of the code loads the .mat file recorded from Matlab mobile 46 

  47 
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load 'stationary_phone.mat'     % Load the data file 48 
acc=acc';                       % Transpose the data 49 
o=o';                           % Transpose the data 50 
o(2,:)=-o(2,:);                 % Convert to SAE coords 51 

  52 
%% Remove Gravity 53 
% This section calculates the actual acceleration of the phone by removing 54 
% the measured gravity 55 

  56 
g=9.81;                         % [m/s] 57 
NoG=zeros(3,length(t));         % init No gravity variable 58 

  59 
for i=1:length(t)               % in this loop, calc dt, and remove gravity 60 
    if(i<length(t))             % check the quantity of i 61 
        dt(i+1)=t(i+1)-t(i);    % calculated the change in time 62 
    end 63 
    if(i==1)                    % check the quantity of i 64 
        NoG(:,i)=[0;0;0];       % Set initial condition to 0 65 
    else 66 
        % Use the roll, pitch, and yaw from MATLAB Mobile to remove effect 67 
        % of gravity. Modified from [1] 68 
        NoG(:,i)=acc(:,i)+[g*sind(o(3,i));g*cosd(o(3,i)).*sind(o(2,i));-69 
g*cosd(o(3,i)).*cosd(o(2,i))]; 70 
    end 71 
end 72 

  73 
%% Remove Bias 74 
% This section of code averages the entire calculated acceleration to find 75 
% the offset bias. This bias is then removed from the data 76 

  77 
bias=mean(NoG');               % calculate the bias of the IMU 78 
NoG_zeroed=NoG-bias';          % subtract bias from the data 79 

  80 
%% Filter the Data 81 
% This section of code filters the data using a simple moving average 82 

  83 
coeff50hz = ones(1, 50)*(1/50); 84 
avgNoG_zeroed = filter(coeff50hz, 1, NoG_zeroed); 85 

  86 
%% Calculate Body  87 
% In this section of the code, the change of time, and dt between is 88 
% measurement is calculated. dt is then used to calculate the body velocity 89 
% and the position. A quaternion is used to transform the data from body to 90 
% global coordinates. 91 

  92 
dt=zeros(length(t),1);          % init dt var 93 
uvw=zeros(3,length(t));         % init uvw var 94 
for i=1:length(t)               % Calculate uvw,xyz,quatern,& world coords 95 
    if(i==1)                    % check quantity of i 96 
        uvw(:,i)=[0;0;0];       % set initial condition to 0 97 
    else 98 
        % Lines 41,42, and 45 modified from [1] 99 
        uvw(:,i)=avgNoG_zeroed(:,i)*dt(i)+uvw(:,i-1);        % calc velocity 100 



47 

 
        xyz(:,i)=0.5*(uvw(:,i)+uvw(:,i-1))*dt(i)+uvw(:,i-1); % body position 101 
        q=angle2quat(o(1,i),o(2,i),o(3,i),'zyx');            % quatern vector 102 
        XYZ_vel(:,i)=quatrotate(quatinv(q),uvw(:,i)');       % World velocity 103 
        XYZ(:,i)=0.5*(XYZ_vel(:,i)+XYZ_vel(:,i-1))*dt(i)+XYZ_vel(:,i-1); % 104 
world coords 105 
    end 106 
end 107 

  108 
%% Plot Data 109 
% This section of code simply plots the data into relevant figures 110 

  111 
h1=figure;                  % Create a figure 112 
plot(t,NoG_zeroed(3,:))     % Plot the Z accel with gravity and bias removed 113 
vs time 114 
title('Accel in Z') 115 
hold on 116 
plot(t,avgNoG_zeroed(3,:))  % Plot the filtered accel data on same graph 117 
movegui(h1,'northwest')     % Move graph to top left corner of screen 118 

  119 
h2=figure;                  % Create a figure 120 
plot(t,NoG_zeroed(2,:))     % Plot Y accel with gravity and bias removed vs 121 
time 122 
title('Accel in Y') 123 
hold on 124 
plot(t,avgNoG_zeroed(2,:))  % Plot the filtered accel data on same graph 125 
movegui(h2,'north')         % Move graph to top center of screen 126 

  127 
h3=figure;                  % Create a figure 128 
plot(t,NoG_zeroed(1,:))     % Plot X accel with gravity and bias removed vs 129 
time 130 
title('Accel in X') 131 
hold on 132 
plot(t,avgNoG_zeroed(1,:))  % Plot the filtered accel data on same graph 133 
movegui(h3,'northeast')     % Move graph to the top right corner of screen 134 

  135 
h4=figure;                  % Create a figure 136 
plot(XYZ(1,:),XYZ(2,:))     % Plot the XY position of phone in world 137 
coordinates 138 
title('Phone Position in World Coords') 139 
movegui(h4,'southwest')     % Move graph to bottom left corner of screen 140 

  141 
h5=figure;                  % Create a figure 142 
plot(xyz(1,:),xyz(2,:))     % Plot xy position of phone in body coordinates 143 
title('Phone Position in Body Coords') 144 
movegui(h5,'south')         % Move graph to the bottom center of screen 145 

  146 
h6=figure;                  % Create a figure 147 
plot3(XYZ(1,:),XYZ(2,:),XYZ(3,:))   % Plot 3D position of phone in world 148 
coords 149 
title('Phone Position in World Coords') 150 
movegui(h6,'southeast')     % Move graph to bottom left corner of screen 151 
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