
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

THREE-DIMENSIONAL MODEL RECONSTRUCTION FROM IMAGES USING POSITION

TRACKING AND STRUCTURE FROM MOTION

BENJAMIN JACQUES SATTLER

Spring 2017

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Mechanical Engineering

with honors in Industrial Engineering

Reviewed and approved* by the following:

Saurabh Basu

Assistant Professor of Industrial and Manufacturing Engineering

Thesis Supervisor

Catherine Harmonosky

Assistant Professor of Industrial and Manufacturing Engineering

Honors Advisor

* Signatures are on file in the Schreyer Honors College.

i

ABSTRACT

Currently, reverse engineering techniques require a combination of laser scanners,

coordinate measuring systems, and human interaction to generate usable files. All of these

methods are both cost prohibitive and require many hours to complete. The end result is a three-

dimensional model with varying degrees of accuracy. Recreating three-dimensional models is

extremely beneficial in cases where the original manufacturer is no longer in business or if the

part was manufactured prior to modern three-dimensional modeling techniques.

This thesis investigates the accuracy of model generation using photogrammetry

algorithms. A digital single-lens (DSLR) camera or a camera found on a modern cell phone are

used to keep the cost and barrier to entry low. Initial work completed compared the accuracy of

off-the-shelf software before moving on to customized algorithms. New methods combine

position tracking from an inertial measurement system (IMU) alongside Structure from Motion

(SfM) techniques to create accurate three-dimensional models.

The two software packages evaluated are PhotoModeler made by EoS Systems Inc. and Remake

made by AutoDesk. Three objects, each presenting different challenges to the photogrammetric method,

are used to conclude which software package is more accurate. On all three tests, Remake was the most

accurate, at best achieving tolerances of ±
0.6833
1.2598

 𝑚𝑚 and at worst ±
1.6688
1.0084

 𝑚𝑚. After conducting tests

on a newly created SfM algorithm written in MathWorks Inc’s. MATLAB, the length of a 76.2 mm cube

was calculated to be 76.3 mm.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Introduction ... 1

Chapter 2 Evaluation of Current Technology .. 4

Camera Parameters... 5

Data Collection .. 6

Software Used and Steps Taken ... 8

PhotoModeler ... 8

Remake ... 9

Point Cloud generation ... 11

Comparing to Ground Truth ... 11

Results .. 12

Chapter 3 Improvements with Position Data ... 16

Camera Calibration .. 16

Structure from Motion with Unknown Position ... 19

Structure from Motion with Known Position ... 24

Position Tracking ... 27

Inertial Measurement Unit Modeling ... 27

Calculating Position ... 28

Results .. 30

Chapter 4 Conclusions ... 32

Chapter 5 Future Work and Areas for Expansion .. 34

iii

Phone Camera Calibration ... 34

Advanced Accelerometer Modeling and Improved Position Tracking 35

Appendix A Structure from Motion with 2 Views – Metric Output........................... 36

Appendix B Structure from Motion with Multiple Views .. 40

Appendix C Position Tracking Algorithm .. 45

BIBLIOGRAPHY .. 48

iv

LIST OF FIGURES

Figure 1: An example of photogrammetry using aerial photography. The blue points are camera

locations. .. 1

Figure 2: The three machined objects used for close-range testing. .. 5

Figure 3: Studio setup, eliminating shadows and producing even lighting. 6

Figure 4: The position of the camera where ϴ is the angle between the object and the camera’s

line of sight and where Ф is the constant 11.25° angle between each image. 7

Figure 5: An unmodified output from PhotoModeler. This 3D object has no scale, and the

background has not yet been removed. .. 9

Figure 6: An unmodified output from Remake. This 3D object has no scale, and the background

has not yet been removed. ... 10

Figure 7: Results of all three objects from PhotoModeler. .. 14

Figure 8: Distribution of variance for objects 1, 2, and 3 from PhotoModeler respectively. .. 14

Figure 9: Results of all three objects from Remake. .. 15

Figure 10: Distribution of variance for objects 1, 2, and 3 from Remake respectively. 15

Figure 11: Pin-hole camera model relating world point P{XYZ} to image point p{x y}. Image

sourced from [12]. .. 17

Figure 12: An example of the calibration board used with the MathWorks camera calibration

application. ... 19

Figure 13: SfM depiction, with unique points P, and where OL and OR correspond to C1 and C2

respectively. Image sourced from [8]. ... 20

Figure 14: Original images (distorted) used in a two view SfM. ... 22

Figure 15: Undistorted images used for two view SfM. .. 22

Figure 16: Epipolar points used to compute the Fundamental matrix. 23

Figure 17: A total of 71,983 points were tracked between the two images. 23

Figure 18: Unscaled point cloud calculated from the two view SfM algorithm. 24

Figure 19: Scaled SfM results, allowing for measurements. ... 25

Figure 20: Attempt to use multiple view with SfM. .. 26

Figure 21: IMU Acceleration data before and after accounting for gravity. 28

v

Figure 22: Phone position calculated from IMU.. 31

vi

LIST OF TABLES

Table 1: A comparison of photogrammetry and laser scanning provided from Barsanti [3]. .. 2

Table 2: Results for all three objects in both PhotoModeler and Remake. 12

vii

ACKNOWLEDGEMENTS

Appreciation and thanks goes to

Dr. Saurabh Basu

for mentoring me and dedicating time to this research, as well as his dedication to the Department of

Industrial and Manufacturing Engineering

Dr. Catherine Harmonosky

for her dedication to research and the Department of Industrial and Manufacturing Engineering

Mr. Michael Immel

for continuously pursuing new ideas and inspiring the work contained within this thesis

Ms. Debra Rodgers

for facilitating the coordination with the Department of Industrial and Manufacturing Engineering

1

Chapter 1

Introduction

Reconstructing computerized three dimensional models is one part of reverse engineering a

product and can be needed for many different reasons. However, this process is often difficult and

expensive, requiring special equipment such as laser scanners and coordinate measuring machines as well

as specialized personnel. In addition, completing model reconstruction is a time intensive process. New

techniques, such as photogrammetry, are emerging to replace traditional reverse engineering methods. A

comparison of photogrammetry and laser scanning can be seen in Table 1. Photogrammetry uses

overlapping images and vision processing to create three-dimensional scene reconstruction [1].

Traditionally, photogrammetry uses aerial photographs to map large areas such as agriculture fields,

stadiums, architecture, and mines [2]. An example of this can be seen in Figure 1. The blue dots represent

each camera position. The goals of this work include evaluating the accuracy of current products available

as well as methods for improvement by tracking the position of each image.

Figure 1: An example of photogrammetry using aerial photography. The blue points are camera locations.

2

Table 1: A comparison of photogrammetry and laser scanning provided from Barsanti [3].

Photogrammetry

(Image-Based modeling)

Laser Scanner

(Range-Based modeling)

Characteristics

Cost of the instruments (HW and SW) Low High

Manageability/Portability Excellent Sufficient

Time of data acquisition Quite short High

Time for modeling Quite short, experience required Often long

3D information To be derived Direct

Distance’s dependence Independent Dependent

Dimension’s dependence Independent Dependent

Material’s dependence Almost independent Dependent

Geometry’s dependence Dependent Almost/totally independent

Texture’s dependence Dependent Independent

Scale Absent Implicit (1:1)

Data volume
Dependent on the images resolution and

on the measurements
Dense point cloud

Detail’s modeling Good/excellent Generally excellent

Texture Included Absent/Low resolution

Edges Excellent Quite problematic

Statistics From each calculated point Global

Open-source software Some A few

As photogrammetry has previously been used to model large objects, with a scale of many

meters, the accuracy of these methods on small industrial parts, on the scale of centimeters, is being

evaluated. This process is known as close-range photogrammetry. Two different software packages, Eos

Systems PhotoModeler and Autodesk Remake, will be evaluated. Eos Systems PhotoModeler is designed

and recommended for use in architectural, accident scene, and archeological image reconstruction [4].

Autodesk Remake is marketed for similar archeological purposes, but also for creating prototypes and

preparing models for additive manufacturing [5]. A variety of objects of known dimensions will be used

to evaluate the accuracy of both software packages. Once understood, techniques will be evaluated to test

potential improvements.

While the exact technique used by Eos Systems and Autodesk is proprietary information,

structure from motion (SfM) is one of the most commonly employed techniques in the past 15 years for

scene reconstruction [6]. As such, this method is utilized in this thesis and will be the basis for iteration.

SfM uses the images to calculate the translation and rotation of one camera to another by computing the

3

fundamental matrix. The fundamental matrix relates the points in two images using epipolar geometry, as

explained in Chapter 3. This method of calculating the fundamental matrix to find camera position was

pioneered by Luong in the mid 1990’s [7]. While this method works well for calculating the rotation of

the cameras, translation can only be calculated with a scaling factor. It is common to compute the

translation vector with a length of one to facilitate post process scaling [8]. If the position of the relative

camera position is known, the result of the SfM algorithm will not need to be scaled. This should increase

the accuracy as there is no need for user input on the final results, thus reducing the chances of human

error. None of the software tested included this capability, and thus a new algorithm was created.

4

Chapter 2

Evaluation of Current Technology

To accurately evaluate both PhotoModeler and Remake, a consistent hardware and environmental

setup were used. A single camera, with a set focal length, aperture, and ISO, in a studio lit environment

was used to take all pictures of all objects. Three different objects were selected to be modeled, each

attempting to capture different types of challenges. The first object was a 76.2 millimeter (mm) cube,

selected to test the accuracy of hard edges as well as to present a baseline. The second object was similar

to the first, but contained depth information. This was achieved by machining conics and semicircles into

the faces of a 76.2 mm cube. Due to the added cuts and overhangs, the possibility of shadows greatly

increased which often presents challenges to the reconstruction process of photogrammetry [2]. The third

object selected contained complex curves in addition to depth information and sharp edges. This was

selected to test the accuracy of reconstruction of objects with mainly non-straight edge features. All three

objects were machined to within .05 mm of the original design, as measured by a coordinate measuring

machine. Figure 2 shows the three objects being used for this thesis. To compare the results, all output

models were compared to the true model. From this comparison, a tolerance was calculated. This method

was selected as tolerancing parts is common in industry and often drives the manufacturing process used

to create the product.

5

Figure 2: The three machined objects used for close-range testing.

Camera Parameters

The camera chosen for this project was a Cannon EOS 6D DSLR. A fixed, 100 mm focal length

lens was used along with an aperture set to f/32.0. The shutter speed was 1/10 second and an ISO of 3200.

The EOS 6D has a resolution of 20.2 megapixels and 35 mm, full frame image sensor. These camera

parameters were selected based on previous published studies as well as the lighting in the room [9].

Due to the ability to capture sharp images in relatively small working spaces, the macro lens was

chosen. The highest accuracy of photogrammetry can be achieved when 50-80% of the image pixels are

of the desired object [10]. A macro lens allows more of the image to be of the desired object, and has the

effect of being “zoomed in” on the object. The fixed focal length was chosen as a non-moving focal

length is one of the assumptions made in three-dimensional scene reconstruction algorithms, which will

be discussed in further detail in Chapter 3-Camera Calibration.

6

Data Collection

To decrease any variance between images, a studio was used in an effort to create even and

smooth lighting. In addition, the objects were placed on a plain, uniform color background. This

environment produces the best results as it decreases shadows and increases the contrast between the

desired object and the background [9]. Both the lighting and background can be seen in Figure 3.

Figure 3: Studio setup, eliminating shadows and producing even lighting.

To keep conditions as consistent as possible from object to object, the object remained stationary

at the center of the setup and the camera was mounted to a tripod. A delay was used on the shutter, so the

act of pressing the button to capture the picture would not cause vibrations and thus blurriness in the

image. Two concentric circles were drawn on the ground, the outer circle being for the single back tripod

leg and the inner circle being for the front two tripod legs. For each object, a total of 128 images were

captured. The circle was divided into 32 evenly spaced sections, with a picture being taken every 11.25

degrees. A circumferential path of pictures was taken at 4 different heights, corresponding to the total of

128 images. Based off testing by Behrouzi and researchers at the University of Arkansas, the line of sight

to the camera should be no more than 60 degrees [9] [2]. As such, the four passes were made at 60

degrees, 40 degrees, 20 degrees, and 0 degrees respectively. Due to the variance in object size and vertical

location of the camera, the distance from the lens of the camera to the object ranged from 38 to 66

centimeters. The position of the camera and the tripod can be seen in Figure 4.

7

Figure 4: The position of the camera where ϴ is the angle between the object and the camera’s line of sight and

where Ф is the constant 11.25° angle between each image.

In addition to the setup of the camera, the objects also needed preparation. Photogrammetry uses

vision processing and feature tracking, discussed in further detail in Chapter 3, which needs unique

features to track across images. Highly reflective and glossy surfaces, also known as non-Lambertian

surfaces, do not allow for easy feature tracking and produce poor results [11]. While methods for image

reconstruction on non-Lambertian surfaces are an area of research, these will not be considered for the

scope of this thesis. As the objects being used started as polished aluminum, adding a matte coating was

necessary to create a Lambertian surface. This was achieved by simply coating each object with a thin

layer of a baby power. A chalk spray was also tested, but the baby powder was ultimately selected due to

better results, less expense, and ease of sourcing.

The final component in this setup is a measuring device. The ruler is included for post processing

the data. As stated in Chapter 1, the results of the scene reconstruction algorithm are not scaled and a

known distance must be included for the final model to produce metric results. As the purpose of this

section of the thesis is to test the accuracy of the final object size, it would be biased to scale the model

based off the known dimensions of the object itself.

8

Software Used and Steps Taken

While PhotoModeler and Remake were the main software packages being tested, ultimately

additional software was needed to generate point clouds as well as compare results. Each software

package required slightly different processes, which are explained in the following sections. All non-open

source software was purchased by the Department of Industrial and Manufacturing Engineering at The

Pennsylvania State University.

PhotoModeler

Unlike Remake, PhotoModeler requests the camera being used to be calibrated. This is not

required, but highly recommended by EoS Systems. While not specifically stated by EoS Systems, this

step is needed to calculate the internal parameters of the camera. Internal parameters include image sensor

size, lens focal length, as well as distortion characteristics: in total, there are 11 unknown variables that

need to be solved [12]. Camera calibration will be discussed further in Chapter 3- Camera Calibration.

PhotoModeler provides a printable calibration target for the user as well as a built-in calibration

algorithm.

Once the camera has been calibrated, photographing each object can begin. Upon uploading the

images, the software analyzes each picture, differentiating between the object and the background. After

doing this for each image, features between each image are matched and then triangulation can begin. The

process of triangulation and generation of a three-dimensional model occurs entirely on the user’s

computer. For the processing of the 128 photos used for this research, a minimum of 8 gigabytes (GB) of

random access memory (RAM) was needed but 16 GB is recommended [13].

The results require post processing as well. After triangulation, there is typically still some of the

background that needs to be removed. PhotoModeler has point cloud as well as mesh editing tools,

9

allowing the user to remove the background. The biggest drawbacks are a lack of a “fill feature”, allowing

the user to define a bottom plane and create a solid body, and the lack of a “hole fill” feature, allowing the

user to quickly remove holes. As mentioned previously, the original result is scaled, and has no units. The

user must define two points in the model and provide a distance. An example of an unmodified output

from PhotoModeler can be seen in Figure 5.

Figure 5: An unmodified output from PhotoModeler. This 3D object has no scale, and the background has not yet been

removed.

Remake

While similar to PhotoModeler in many ways, Remake does not request a calibration file. This

feature alone greatly increases the ease of use for this software but increases the processing time. Not

having a calibrated camera does come at a cost, and that comes at computation expense. Remake requires

at least 64 GB of RAM and Autodesk recommends 128 GB of RAM, making this software not feasible

for current laptop technology, and even most desktop computers [14].

To mitigate the requirement for such large amounts of RAM, Autodesk provides cloud computing

services. While this provides a solution for one problem, it also presents new issues as well. The largest

advantage the cloud computing option has is freeing up the local machine for other tasks. In addition, this

feature lowers the cost for a user, and computers with less RAM are typically less expensive. However,

using the cloud also presents an uncontrollable variable for the user. Once a project is uploaded, the

10

project is added to a queue to be processed. While this can be monitored within the program, the user has

no control as to if the project is actively being solved. For all the uses in the project, this downside

provided no hindrance as no project took longer than 4 hours to solve. An example of the results from

Remake can be seen in Figure 6.

Once triangulation is complete and the file is on the local machine, the mesh can be manipulated

manually. Similar to PhotoModeler, basic mesh removal tools exist to facilitate background removal.

Remake does have a “fill feature” as well as a “hole fill” feature, making the post processing extremely

easy. As will all reconstruction algorithms, the image has no scale, and this must be entered manually.

Figure 6: An unmodified output from Remake. This 3D object has no scale, and the background has not yet

been removed.

The final output from Remake is a stereolithography (STL) file. While this file is beneficial for

computer aided design (CAD) programs and additive manufacturing, it is difficult to evaluate the results.

Conversion of the STL is discussed in the next section.

11

Point Cloud generation

In order to compare the results from PhotoModeler and Remake, a point cloud was deemed to be

the most effective way. The process of comparing the results file to ground truth is discussed in the next

section.

PhotoModeler generates both a point cloud and an STL file. While simply using the point cloud

file would be ideal, further mesh refinement beyond the capabilities of the software was required. The

most important addition was a closeout layer on the bottom of the STL. This was done using an open

source, mesh editing software, MeshLab. Care was taken to change the rest of the mesh as little as

possible, to have as close to no effect on the accuracy of the original file. Meshlab is able to save files as

both STLs as well as point clouds. This software was used to save the output of PhotoModeler as a point

cloud after modifications were made. Even though no modifications were needed to be made outside of

Remake, Meshlab was still used. The results file from Remake was simply opened and then saved as a

point cloud. It is important to note that all scaling was done in the original software, either PhotoModeler

or Remake.

Comparing to Ground Truth

The first step in analyzing the output of the two software packages evaluated is creating a ground

truth. As the objects were relatively simple, CAD files were made (for the object with complex curves,

this was required for machining) and saved as STL files. Using the open source software CloudCompare,

point clouds can be compared to an STIL file by using point cloud registries. The output of the point

cloud registry process is a data point corresponding to each location in the point cloud with distance

information to the ground truth STL file.

12

Using the output of the point cloud registry, maximum, minimum, and average variance were

calculated. In addition, histograms were plotted along with calculations of standard deviations. All of this

data was compared across the three objects and from both PhotoModeler and Remake to evaluate

accuracy.

Results

In addition to the accuracy computed through point cloud registries, STL quality was also

evaluated. STL quality was evaluated by comparing the number of holes in the generated mesh, the

number of inverted triangles, the number of overlapping triangles, the number of bad edges, and the

number of intersecting triangles.

While there is some variance in the results, Autodesk Remake was the most accurate in every

case when looking at the point cloud compared to ground truth. When comparing the quality of the STL

mesh, Remake always had less holes and fewer overlapping triangles. For the two cubes, Remake had

fewer inverted triangles and fewer bad edges, but performed worse on the third object with complex

curves. PhotoModeler had less intersecting triangles in all cases. This is most likely due to the way the

different software programs added the bottom of the model. Table 2 shows the full results.

Table 2: Results for all three objects in both PhotoModeler and Remake.

 Software PhotoModeler Remake

STL/Point

Cloud

 Object 1 Object 2 Object 3 Object 1 Object 2 Object 3

Number of Planar Holes 0 1 0 0 0 0

Number of Inverted Triangles 0 342 0 0 0 56

Number of Overlapping Triangles 384 1960 775 358 125 569

Number of Bad Edges 0 768 3 0 68 30

Intersecting Triangles 328 476 155 999 1332 1488

Computer

Comparison

Max Pos Variance (mm) 2.6314 2.6010 1.7678 0.6833 1.3589 1.6688

Max Neg Variance (- mm) 1.9126 2.3368 2.6594 1.2598 1.1354 1.0084

Average Variance (mm) 0.1600 0.1168 0.0076 -0.1219 -0.0229 -0.0635

Standard Deviation (mm) 0.2235 0.2743 0.3429 0.3404 0.1981 0.3226

13

It is surprising that both PhotoModeler and Remake performed the worst on the object

selected to be the baseline when comparing average variances and maximum positive variance.

However, the results are quite varied if standard deviation is compared. Ultimately, in

manufacturing the overall tolerance of a part is one of the most critical pieces of information. As

such, the minimum and maximum were used to create tolerance windows. For object 1, Remake

was the most accurate, with a tolerance of ±
0.6833
1.2598

 𝑚𝑚. Remake also held a tighter tolerance on

object 2 at ±
1.3589
1.1354

 𝑚𝑚. The tighter tolerance for object 3, of ±
1.6688
1.0084

 𝑚𝑚 was also achieved by

Remake. These results provide a baseline so a decision can be made if the photogrammetry

process is suitable for different tolerancing applications. A visual representation of the results

can be seen in Figure 7 and Figure 9. Figure 8 and Figure 10 show the histograms of the deviations

of the models created by photogrammetry compared to ground truth.

14

Figure 7: Results of all three objects from PhotoModeler.

Figure 8: Distribution of variance for objects 1, 2, and 3 from PhotoModeler respectively.

15

Figure 9: Results of all three objects from Remake.

Figure 10: Distribution of variance for objects 1, 2, and 3 from Remake respectively.

16

Chapter 3

Improvements with Position Data

Now that the baseline from two photogrammetry software packages is complete, efforts to

improve the accuracy can be made. In order to do this, a complete understanding of the Sfm algorithm is

needed. This begins with understanding the camera model and camera calibration. The correction factors

computed in the calibration step feed into SfM. Once this is mastered, position data is included to

improve accuracy. This step is critical as it takes human input out of the equation, the largest source of

error. This technique is the basis of stereo cameras and has not been applied to a monocular set of images.

Camera Calibration

In order to calibrate a camera, it is important to first understand the model of a camera. One of the

simplest and most common models is known as the pin-hole camera model. The pin-hole camera assumes

a small hole in a plane that the rays of an image pass through to create an inverse image on the opposing

side. The pin hole of the model corresponds to the lens of the camera, and the image plane is the sensor

chip. If the focal point is a known value and the distance to the image plane is known, then a three-

dimensional world point P{XYZ} can be described as a two-dimensional image point p{x y}. This

concept is depicted in Figure 11. To solve for the coordinates for p{x y}, the following equations can be

used:

𝑥 = 𝑓 ∗
𝑋

𝑍

𝑦 = 𝑓 ∗
𝑌

𝑍

17

where f is the focal length of the camera and X, Y, and Z are the world coordinate points. From Figure 11

there are two key lessons. The first is there are an infinite amount of points world points P{XYZ} that

correspond to image point p, as long as it falls along the ray displayed in red. This will become important

in Chapter 3- Structure from Motion with Unknown Position. The second is that in real life, the point p{x

y} is a single pixel on a sensor chip and to increase light there is a lens in front of the image plane, or the

sensor chip. This lens is not perfect and distorts the image, requiring correction factors. [12]

Figure 11: Pin-hole camera model relating world point P{XYZ} to image point p{x y}. Image sourced from [12].

Typically, a camera is described with two matrices; the matrix K to describe the camera

parameters of focus, the height of each pixel, the width of each pixel, and the {x y} point where axis zc

crosses the image plane, as well as the matrix 𝜉𝑐 to describe the pose of the camera. The pose is fully

defined by six variables corresponding to the translation and orientation of the camera. While in theory

these 11 variables are known, in practice they are unknown due to variations in manufacturing standards.

Solving for these 11 variables comprises one step of the camera calibration. The matrix K is depicted

below:

𝐾 = [

𝑓
𝜌𝑤
⁄ 0 𝑢0

0
𝑓
𝜌ℎ
⁄ 𝑣0

0 0 1

]

18

Where f is the focal length, pw is the width of each pixel, ph is the height of each pixel, uo and vo represent

the point where axis zc crosses the image plane. [12] To correlate the image plane to a pixel array and to

calculate the uo and yo values:

𝑢 =
𝑥

𝜌𝑤
+ 𝑢0

𝑣 =
𝑦

𝜌ℎ
+ 𝑣0

Where u and v correspond to the pixel position that relate the sensor array position to the point p{x y} on

the image plane. [12]

The second step is calculating distortion. Distortion is seen in two main ways, tangential and

radial. A tangential distortion causes the image to shift off center while radial distortion causes points to

shift along radial lines originating at the {x y} point where axis zc crosses the image plane. The radial

distortion usually has a larger effect on the image. For example, radial distortion is one of the common

characteristics of a fisheye lens. Characterizing radial distortion is completed with three variables and

tangential distortion with two variables. Computing these five variables is the second part of camera

calibration. The distortion 𝛿𝑢 and 𝛿𝑣 can be explained by:

[
𝛿𝑢
𝛿𝑣
] = [

𝑢(𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)

𝑣(𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6)
] + [

2𝑝1𝑢𝑣 + 𝑝2(𝑟
2 + 2𝑢2)

𝑝1(𝑟
2 + 2𝑣2) + 2𝑝1𝑢𝑣

]

Where the first matrix represents the radial distortion and the second matrix represents the tangential

distortion. The k values are the radial coefficients and the p variables are the tangential coefficients that

need to be determined. Typically, three coefficients are used for radial distortion and two coefficients are

used for tangential distortion. [12]

While camera calibration can be done with a single image containing known three-dimensional

data, the process is much easier with multiple known two-dimensional data images. For the purpose of

this thesis, the MathWorks MATLAB single camera calibration application was used. Numerous images

were taken of a calibration checkerboard of known size. The calibrator detects the points of the

19

checkerboard and compares the detected points to where the points should lie. By using multiple images,

the entire calibration matrix can be computed [15]. Figure 12 shows an example of a calibration picture

with the corners of the calibration matrix detected.

Figure 12: An example of the calibration board used with the MathWorks camera calibration application.

Structure from Motion with Unknown Position

The basic premise of SfM is using a set of images to correlate points in the image frame p{x y} to

the world coordinates P{XYZ}. As was depicted in Figure 11, a single image cannot be used to calculate

a world point, and a minimum of a second image is needed. For the purpose of this thesis, using simply

two images will be employed, which will be discussed in further detail later in this section. If we call the

origin of the first camera C1 and the origin of the second camera C2, then the intersection of rays C1P and

C2P will correlate to a unique world point [8]. This basic concept is seen in Figure 13. By using this

method for hundreds of points, a point cloud of the world can be generated.

20

Figure 13: SfM depiction, with unique points P, and where OL and OR correspond to C1 and C2 respectively. Image

sourced from [8].

Figure 13 also shows the epipoles, epipolar lines, and the epipolar plane. These three features are

used to identify the pose of the second camera relative to the first. For the purpose of this explanation, the

points pL and pR correspond to the point label projection point in Figure 13 on the left and right images

respectively. The projection point is where the ray OLP and ORP pass through left and right respective

image planes. At the most basic level, the epipolar line is the projection of the opposite OP ray. For

example, the epipolar line on the right image is the projection of ray OLP onto the right image. The

epipolar line on the left image is the projection of ray ORP onto the left image. The epipolar line can be

described even further though by looking at the projection points pL and pR, along with epipoles eL and eR.

The epipoles are simply the projections of the opposite projection point. So, eR is the projection of pL on

the right image plane and eL is the projection pR on the left image frame. This means the rays eLpL and

eRpR are the epipolar lines for the left and right images respectively. Finally, the plane created by OLORP

(which passes through eL and eR) is the epipolar plane. Once all the epipolar features are computed, a 3x3

matrix known as the Fundamental matrix can be calculated. Using the Fundamental matrix, pL, and pR, the

pose and translation of the second camera to the first can be calculated. [7]

Computing the Fundamental matrix itself is outside the scope of this thesis, but with the help of

prewritten MATLAB functions the orientation and transpose of the second camera can still be calculated.

The function estimateFundamentalMatrix is used to compute the Fundamental matrix, which is then

21

given to the function relativeCameraPose along with the matched image points and the calibrated camera

matrix, the orientation and transpose of the second camera to the first camera is calculated [16]. However,

the scale of the transpose cannot be calculated without further information. This is the same basic

principle that makes it impossible to tell if an apparent small object is simply large and far away or an

apparent large object is simply small and very close. As such, the transpose vector is calculated with a

length of one, and the image is not metric [8].

In order to put all the theory stated above into practice, a basic SfM algorithm was written. To

keep the method as simple as possible, only two views were used. While including multiple images to

create a denser point cloud is feasible, to create a baseline reconstructed model this added complexity was

avoided. Figure 14 to Figure 18 shows the output of that algorithm. Figure 14 shows the original images

and Figure 15 shows the same images after distortion has been removed. Due to the high quality DSLR

being used, there is not a lot of distortion present. Figure 16 shows the first set of points matched overtop

of the two images, as well as the direction of point travel. These points are the epipolar points used to

calculate the Fundamental matrix. Once the camera positions are calculated, another set of matched points

are calculated to create a dense point cloud. Since the camera position has been calculated, the minimum

quality of each detected point can be reduced. These new points are shown in Figure 17. Finally, Figure

18 shows the reconstructed scene. In this case, the front of the cube can be clearly seen, along with the

two positions of the camera when the images were captured. It can also be seen from the scale of the axis,

that the face of the cube measures close to 1 square unit, which makes sense as this image has not been

scaled in any way.

22

Figure 14: Original images (distorted) used in a two view SfM.

Figure 15: Undistorted images used for two view SfM.

23

Figure 16: Epipolar points used to compute the Fundamental matrix.

Figure 17: A total of 71,983 points were tracked between the two images.

24

Figure 18: Unscaled point cloud calculated from the two view SfM algorithm.

Structure from Motion with Known Position

To create a properly scaled image, the transpose vector simply needs to be multiplied by the

actual distance the camera moved. Since the images were taken from the pictures taken in Chapter 2-Data

Collection, the distance from one camera to a second can be calculated. By estimating the location of the

image sensor, and an 11.25 degree shift of the camera around the object, the approximate distance of the

transpose is 73.66 mm. Since the SfM algorithm calculates the transpose with a length of one, simply

scaling the transpose by a factor of 73.66 will yield a metric result. The only change made from the

algorithm completed in the previous section is the addition of the scaling factor to the transpose vector.

As such, Figure 14 to Figure 16 remain identical, and only the output changes. The results can be seen in

Figure 19. The width of the block is approximately 76.3 mm when it should be 76.2 mm. The width can

be calculated from the two points shown, by finding the difference vector and calculating the length.

These equations can be seen below.

25

[
Δ𝑋
Δ𝑌
Δ𝑍
] = [

−40.106
−20.043
483.362

] − [
27.584
−5.370
451.358

]

[
Δ𝑋
Δ𝑌
Δ𝑍
] = [

−67.69
−14.673
32.004

]

𝑙𝑒𝑛𝑔𝑡ℎ = √67.692 + 14.6732 + 32.0042 = 76.298 𝑚𝑚

Figure 19: Scaled SfM results, allowing for measurements.

With the basic two image SfM algorithm functional, increased point density can be reconstructed

by using an increased number of views. To test the addition of multiple views, only the first rotation of

images from Chapter 2-Data Collection will be used: yielding 32 pictures. Due to increased computation

cost, the image set was further reduced to 29 pictures. The most significant difference between the

multiple view algorithm compared to the two-image algorithm is a data set to store camera poses as well

as tracked points [17]. In addition, points are tracked across more than just the adjacent image. For

example, features in image 7 could be matched to features in image 2. The results from this algorithm can

be seen in Figure 20. One can easily see a problem seems to have arisen. The camera poses should be

26

arranged in essentially a circular plane around the object. The phenomenon seen in Figure 20 is a well-

known problem that occurs due to error build up as each pose is calculated. A technique pioneered in

1999 known as Bundle Adjustment can be used to reduce the error build up [18]. While portions of this

technique were used, it can be seen that adjustment of the camera pose was only effective until

approximately the fourth image.

Figure 20: Attempt to use multiple view with SfM.

Due to the intricacies of Bundle Adjustment and a potential reduction in error by calculating

position data via alternative methods, multi-view SfM algorithms will not be pursued further. Instead, the

focus will return to improving the scaling coefficient used in the two-image algorithm, as this can later be

applied to the multi-image SfM. While the results in Figure 19 are extremely accurate, deviation can

occur. The step most likely to introduce error is the measurement and calculation of the position of the

camera. Estimations were made as to the location of image sensor and very primitive methods of

27

measuring the angle between the camera positions were used. Even though the calculations provided

proper scaling, the fact the measurement is being completed by a human adds a possibility of error.

Position Tracking

As seen in Chapter 3-Structure from Motion with Known Position, knowing the transpose of one

camera to another can yield extremely promising results. If the true transpose of the camera is known, the

result of the SfM algorithm is metric. In order to improve the position tracking from human measurement,

this section will focus on using an Inertial Measurement Unit (IMU). As modern cellular devices contain

both IMUs as well as cameras, these devices make the perfect test subject. To obtain accurate data from

an IMU, the first step is understanding how to model one and calculate the necessary variables. The

output from the IMU is accelerometer data in three axes and a gyroscope to provide angular acceleration.

The data was filtered to remove the noise prior to calculating the position.

Inertial Measurement Unit Modeling

The first step in obtaining accurate accelerometer data is removing gravity. To remove the gravity

vector, the orientation of the phone must be known, which can be calculated from the gyroscopic

information. The output of the IMU is 𝜙̇, 𝜃̇, 𝑎𝑛𝑑 𝜓̇, corresponding to the roll rate, pitch rate, and yaw rate

respectively. Roll pitch and yaw can be obtained by [19]:

[
𝜙
𝜃
𝜓
] = [

𝜙̇

𝜃̇
𝜓̇

] 𝛿𝑡 + [

𝜙𝑘−1
𝜃𝑘−1
𝜓𝑘−1

]

Where ϕ, θ, and ψ are the roll pitch and yaw of the phone. These values are then used to remove the

gravity component, as seen below [19]:

28

[

𝑢̇𝑡𝑟𝑢𝑒
𝑣̇𝑡𝑟𝑢𝑒
𝑤̇𝑡𝑟𝑢𝑒

] = [

𝑢̇𝑚𝑒𝑎𝑠 + 𝑔 ∗ 𝑠𝑖𝑛(𝜃)

𝑣̇𝑚𝑒𝑎𝑠 + 𝑔 ∗ 𝑐𝑜𝑠(𝜃)sin (𝜙)

𝑤̇𝑚𝑒𝑎𝑠 − 𝑔 ∗ 𝑐𝑜𝑠(𝜃)cos (𝜙)
]

Where 𝑢̇𝑡𝑟𝑢𝑒 , 𝑣̇𝑡𝑟𝑢𝑒 , 𝑤̇𝑡𝑟𝑢𝑒 are the acceleration in the x, y, and z axis with gravity removed, and

𝑢̇𝑚𝑒𝑎𝑠, 𝑣̇𝑚𝑒𝑎𝑠, 𝑤̇𝑚𝑒𝑎𝑠 are the measured accelerations from the IMU. The effects of gravity on the IMU

acceleration data can be seen in Figure 21.

Figure 21: IMU Acceleration data before and after accounting for gravity.

In addition to removing gravity, it can be observed from Figure 21 that even with gravity

accounted for, all three axes have an offset bias. In an attempt to make the sensor output as accurate as

possible, the average acceleration was calculated and stored as a bias parameter. This bias was then

applied to the data prior to integrating to find position.

Calculating Position

To calculate the position, simple numeric integration was used. First, the initial conditions for

velocity were set as 0 m/s. Once completing the second integration, the position of the phone is found,

29

however the position calculated is in body coordinates. To be useful for the SfM algorithm the position is

needed in global coordinates. While a Euler direction cosine matrix could be used, the chances of the

phone rotating into gimbal lock (when the rotation is zero degrees, and causing an unsolvable matrix) is

quite probable. As such, the quaternion was utilized for the transformation from body to global

coordinates. The following equations were used to calculate body position and velocity, as well as global

velocity and position [19].

[

𝑢𝑘
𝑣𝑘
𝑤𝑘
] = [

𝑢̇𝑡𝑟𝑢𝑒
𝑣̇𝑡𝑟𝑢𝑒
𝑤̇𝑡𝑟𝑢𝑒

] ∗ 𝑑𝑡 + [

𝑢𝑘−1
𝑣𝑘−1
𝑤𝑘−1

]

[

𝑥𝑘
𝑦𝑘
𝑧𝑘
] =

1

2
∗ ([

𝑢𝑘
𝑣𝑘
𝑤𝑘
] + [

𝑢𝑘−1
𝑣𝑘−1
𝑤𝑘−1

]) ∗ 𝑑𝑡 + [

𝑢𝑘−1
𝑣𝑘−1
𝑤𝑘−1

]

Where uk, vk, wk are the velocities in the x, y, and z directions respectively and xk, yk, and zk describe the

phone position in body coordinates. Then, using the ϕ, θ, and ψ (roll pitch and yaw), the quaternion vector

can be calculated as defined by [20]:

{𝑞̂} = {

𝑞1
𝑞2
𝑞3
𝑞4

} =

{

 𝑙 ∗ 𝑠𝑖𝑛 (

𝜃

2
)

𝑚 ∗ 𝑠𝑖𝑛 (
𝜃

2
)

𝑛 ∗ 𝑠𝑖𝑛 (
𝜃

2
)

𝑐𝑜𝑠 (
𝜃

2
) }

Where l, m, n describe the unit vector 𝒖̂ in the body coordinate system. To transform from the body xyz

coordinate system to the global XYZ system the direction cosine matrix can be calculated as [20]

[𝑸]𝑥𝑋 = [

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞1𝑞2 − 𝑞3𝑞4) 2(𝑞1𝑞3 + 𝑞2𝑞4)

2(𝑞1𝑞2 + 𝑞3𝑞4) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞2𝑞3 − 𝑞1𝑞4)

2(𝑞1𝑞3 − 𝑞2𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 − 𝑞4

2

]

[
𝑋̇
𝑌̇
𝑍̇

] = [𝑸]𝑥𝑋 [

𝑢𝑘
𝑣𝑘
𝑤𝑘
]

30

[

𝑋𝑘
𝑌𝑘
𝑍𝑘

] =
1

2
∗ ([

𝑋̇𝑘
𝑌̇𝑘
𝑍̇𝑘

] + [

𝑋̇𝑘−1
𝑌̇𝑘−1
𝑍̇𝑘−1

]) ∗ 𝑑𝑡 + [

𝑋̇𝑘−1
𝑌̇𝑘−1
𝑍̇𝑘−1

]

Where 𝑋̇, 𝑌̇, 𝑎𝑛𝑑 𝑌̇ describe the velocity of the phone and Xk, Yk, and Zk describe the position of the

phone in global coordinates [19].

Results

While numerous different tests were completed, all yielded extremely similar results. Due to

compounding error that is integrated twice, the final calculated position is extremely variable and does not

accurately represent the actual IMU movement. Figure 22 shows the calculated position of a stationary

phone over the course of only five and a half seconds. While the calculated position originally was

clustered within an approximately 0.5mm by 0.1 mm by 0.1 mm box, it can be seen that when the IMU

was stopped recording the position was becoming rapidly inaccurate. If allowed to continue, the

calculated position would have predicted meters of movement within a matter of minutes.

31

Figure 22: Phone position calculated from IMU.

Unfortunately, the results of this effort did not contribute to calculating the position of the camera

and help increase the accuracy of the SfM algorithm. Figure 22 depicts a well-known phenomenon known

as velocity random walk, or randomly walking bias, which is when the calculated velocity and position

appear to randomly walk or change due to IMU bias [21].

32

Chapter 4

Conclusions

In the event the original three-dimensional computer model is unavailable, reverse

engineering techniques are used to create the needed geometry. Traditionally this has been done

using coordinate measuring machines, laser scanners, physical measuring, or some combination

of these processes. Recently, photogrammetry has emerged as a method to create accurate

reconstruction of relatively small scale items for reverse engineering.

A base line evaluation of the photogrammetric method was the first step; evaluating the

accuracy of two purchased software packages. Eos Systems PhotoModeler and Autodesk

Remake were used to create models for three different types of objects. The first object was

meant as a baseline and was a simple 76.2 mm cube. The second object was also a 76.2 mm cube

but contained subtracted conics and hemispheres to induce shadows. The final object was a thin,

long object with complex curves and cuts. This object was meant to be the most challenging.

Each of the three objects was selected to test how the software packages would react to

different features. Both software packages performed well, consistently producing results that

were within 2.5 mm of the original design. Unfortunately, no real statistical significance could be

found when comparing the results of objects 1, 2, and 3 from the same software. Remake

consistently performed better, and the worst tolerance model was ±
1.6688
1.0084

 𝑚𝑚.

The biggest drawback of both PhotoModeler and Remake was a lack of scaling. In order

to produce a metric model, a scale had to be included by the user, thus leading to potential

inaccuracies. In an effort to remove this variable, a SfM algorithm was developed using

MATLAB. The original task was simply reconstructing a scene from two images. Once

33

successful, the position of the camera was tracked and this data was also utilized in the

algorithm. By including information about the camera position, the output of the model was true

to size. While results were preliminary, the face of the 76.2 mm cube was calculated to be 76.3

mm by the SfM algorithm.

In an effort to increase the accuracy further, a tracking system was developed using an

IMU. Unfortunately, this goal was unsuccessful. Due to inaccuracies and bias in the IMU,

computing a precise location is not possible.

While the goal of having a single system capable of taking pictures and tracking position

was unsuccessful, the overall goal of the thesis was accomplished. The current available software

was evaluated to a high level of accuracy across a broad range of objects with various types of

features. Furthermore, the goal of creating a SfM algorithm that produced a metric reconstruction

without a scaling being set by the user was successfully implemented.

34

Chapter 5

Future Work and Areas for Expansion

In order to simplify and test the proof of concept for an improved SfM algorithm, two

main assumptions were made. The first assumption was the user has access to an easily

calibratable camera and the second was a known camera position. Both of these assumptions are

not necessarily accurate and can be improved upon in the future.

Phone Camera Calibration

One of the most important steps in calibrating a camera is maintaining a constant focal length on

the lens. In addition, keeping the aperture at a constant diameter is also important [12]. If the transition is

made from a DSLR to the camera on a phone, these assumptions may be difficult to keep. Many phone

cameras do not allow the user the ability to change the focus point with hardware, but instead use

software techniques to change the focus. The effects of this have not been investigated on the quality of

the calibration. In addition, DSLR cameras typically use glass lenses that are well manufactured, helping

to reduce distortion. The differences between Figure 15 and Figure 16 is a perfect example of this. Most

cell phone camera lenses are plastic, which have worse distortion properties. In addition, the camera

calibration matrix can be more likely to change overtime with a lower quality lens. In the future, work

achieving a calibration matrix for a phone camera and comparing the results to a DSLR could be

completed.

35

Advanced Accelerometer Modeling and Improved Position Tracking

While using a cell phone’s IMU to accurately calculate position was unsuccessful, other research

has been done on how to improve this process. Typically, a real IMU deviates from an ideal IMU due to

bias, scaling, and noise [19]. In addition, methods have been developed to measure bias stability, and

many of the modeling parameters needed are often included in an IMU’s data sheet [22]. While including

a more accurate model of the IMU was beyond the scope of this thesis, knowing the noise, bias, and

stability variables of the IMU used could produce accurate position data that could be used in the SfM

algorithm. If both advanced accelerometer modeling and phone camera calibration are successful, then a

smart phone alone could perform metric scene reconstruction.

36

Appendix A

Structure from Motion with 2 Views – Metric Output

%%% 1
% Pennsylvania State University 2
%%% 3
% COPYRIGHT 2017 4
% Pennsylvania State University 5
% University Park, PA 16802 6
%%% 7
% 8
% FILENAME: SFM_2_pics 9
% 10
% DESCRIPTION: This code loads two pictures and creates a point cloud. To 11
% do this, it first calculates the orientation and pose of the 12
% second camera relative to the first. The point cloud that is 13
% output is not metric. 14
% 15
% REFERENCES: 1. The MathWorks, "Structure from Motion," The MathWorks Inc 16
% 2017. [Online]. Available: 17
% https://www.mathworks.com/help/visiion/ug/structure-from 18
% motion.html 19
% 20
% 2. The MathWorks, "Structure from Motion from Two Views," The 21
% MathWorks Inc., 2017. [Online]. Available: 22
% https://www.mathworks.com/help/visiion/ug/structure-from- 23
% motion-from-two-views.html 24
% 25
% DATE AUTHOR REVISION 26
% 04-APRIL-2017 BENJAMIN SATTLER INITIAL RELEASE 27
%%% 28
% 29
% INPUTS: Provide description of script inputs if applicable. 30
% 1. Image 1 : First image used 31
% 2. Image 2 : Second image used 32
% 3. Camera Matrix : Camera calibration 33
% 34
% OUTPUTS: Provide description of script outputs if applicable. 35
% 1. PtCloud : Calculated point cloud of the world 36
% 37
%%% 38

 39
%% Clean Workspace 40
% This section of the code simply closes all figures, clears all variables, 41
% and clears the command window 42

 43
clear all, close all, clc 44

 45

37

%% Load the Images 46
% This section of the code uses a directory to create an image set that 47
% imports the two input images 48

 49
images = imageDatastore('C:\Users\bzs52\Documents\Senior Year\Dr. Basu\SFM'); 50
I1=readimage(images,1); % Read image 1 51
I2=readimage(images,2); % Read image 2 52
figure % Create a figure 53
imshowpair(I1,I2,'montage'); % Show the images 54
title('Original Images'); % Title the figure 55

 56
%% Load Camera Params 57
% This section of code loads the camera parameters of a calibrated camera 58

 59
load ('C:\Users\bzs52\Documents\Senior Year\Dr. Basu\Cal Pics\EoS 6D 60
big\matlab.mat'); 61

 62
%% Remove Lens Distortion 63
% This section of code removes distortion from the images 64

 65
I1=undistortImage(I1,cameraParams); % Undistort image 1 66
I2=undistortImage(I2,cameraParams); % Undistort image 2 67
figure % Create figure 68
imshowpair(I1,I2,'montage'); % Show the images 69
title('Undistorted Images'); % Title the figure 70

 71
%% Find Points in Both Images for Epipolar Points 72
% This section of code finds trackable points, only used to calculate the 73
% epipolar points to find the Essential Matrix 74

 75
imagePoints1 = detectMinEigenFeatures(rgb2gray(I1),'MinQuality',0.05); 76
figure % Create figure 77
imshow(I1,'InitialMagnification',50); % Show image 78
title('150 Strongest Corners from the first Image'); % Title figure 79
hold on 80
plot(imagePoints1.selectStrongest(150)) % Plot detected 81
points 82

 83
% Define the parameters of the point tracker 84
tracker=vision.PointTracker('MaxBidirectionalError',1,'NumPyramidLevels',5); 85
imagePoints1=imagePoints1.Location; % Save point locatons 86
initialize(tracker,imagePoints1,I1); % Start the point 87
tracker 88
[imagePoints2,validIdx]=step(tracker,I2); % Use the tracker to 89
correlate points 90
matchedPoints1=imagePoints1(validIdx,:); % Save image 1 points 91
if valid match 92
matchedPoints2=imagePoints2(validIdx,:); % Save image 2 points 93
if valid match 94
figure % Create figure 95
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);%Show the images and 96
matched points 97
title('Tracked Features'); % Title the figure 98

38

 99
%% Calculate the Essential Matrix 100
% Using the matched points, calculate all parameters of the Essential 101
% Matrix 102

 103
% Use the estimateEssentialMatrix to find epipolar points and a 3x3 matrix 104
[E, epipolarInliers]=estimateEssentialMatrix(... 105
 matchedPoints1,matchedPoints2,cameraParams,'Confidence',99.99); 106

 107
inlierPoints1=matchedPoints1(epipolarInliers,:); % Calc epipolar 108
points on image 1 109
inlierPoints2=matchedPoints2(epipolarInliers,:); % Calc epipolar 110
points on image 2 111
figure % Create figure 112
showMatchedFeatures(I1,I2,inlierPoints1,inlierPoints2); % Show images and 113
epipolar points 114
title('Epipolar Inliers') % Title the figure 115

 116
%% Use Essential Matrix to find Camera Orientation and Translation 117
% This section of code uses the Essential Matrix calculated in the previous 118
% section to find the relative orientation and transpose of the second 119
% camera to the first camera 120

 121
[orient, loc]=relativeCameraPose(E,cameraParams,inlierPoints1,inlierPoints2); 122
loc= loc*2.9364; % 2.9364 is the 123
distance the camera 124
 % moved between each 125
image. 126
 % Calc from 127
experimental setup 128

 129
%% Reconstruct the Scene 130
% This section of code first removes the outer edge of the image, then 131
% finds new points to track. Since camera position is already known, the 132
% quality of the points can be reduced to help find more points. Finally, 133
% the 3D position of the points is calculated 134

 135
roi=[40,40,size(I1,2)-40,size(I1,1)-40]; % Define the section 136
of the image to use 137
% Detect new points. As mentioned above, the quality of points can be lower 138
imagePoints1 = detectMinEigenFeatures(rgb2gray(I1), 'ROI', roi, ... 139
 'MinQuality', 0.001); 140
% Define the parameters of the point tracker 141
tracker = vision.PointTracker('MaxBidirectionalError', 1, 'NumPyramidLevels', 142
5); 143
imagePoints1 = imagePoints1.Location; % Save the point 144
locations 145
initialize(tracker, imagePoints1, I1); % Start the image 146
tracker 147
[imagePoints2, validIdx] = step(tracker, I2); % Use the tracker to 148
correlate points 149
matchedPoints1 = imagePoints1(validIdx, :); % Save image 1 points 150
if valid match 151

39

matchedPoints2 = imagePoints2(validIdx, :); % Save image 2 points 152
if valid match 153
camMatrix1=cameraMatrix(cameraParams,eye(3),[0 0 0]); % Create first camera 154
matrix 155
[R,t]=cameraPoseToExtrinsics(orient,loc); % Calculate 156
orientation and pose of cam 2 157
camMatrix2=cameraMatrix(cameraParams,R,t); % Create second camera 158
matrix 159
% Use triangulation to find the 3D location of each point 160
points3D = triangulate(matchedPoints1, matchedPoints2,camMatrix1,camMatrix2); 161
numPixels=size(I1,1)*size(I1,2); % Calc total number of 162
pixels 163
allColors=reshape(I1,[numPixels,3]); % Put all points into 164
a MxN matrix 165
% save the RGB number of all the pixels 166
colorIdx = sub2ind([size(I1, 1), size(I1, 2)], round(matchedPoints1(:,2)), 167
... round(matchedPoints1(:, 1))); 168
color = allColors(colorIdx, :); % Save color to point 169
ptCloud=pointCloud(points3D,'Color',color); % Create the point 170
cloud 171

 172
%% Display the Point Cloud 173
% Visualize the camera locations and orientations along with the world 174

 175
cameraSize = 0.3; % Set the camera size 176
figure % Create the figure 177
% show the first camera 178
plotCamera('Size', cameraSize, 'Color', 'r', 'Label', '1', 'Opacity', 0); 179
hold on 180
grid on 181
% show the second camera 182
plotCamera('Location', loc, 'Orientation', orient, 'Size', cameraSize, ... 183
 'Color', 'b', 'Label', '2', 'Opacity', 0); 184

 185
% Show the point cloud 186
pcshow(ptCloud, 'VerticalAxis', 'y', 'VerticalAxisDir', 'down', ... 187
 'MarkerSize', 45); 188
camorbit(0, -30); % Rotate the plot 189
camzoom(1.5); % Zoom in on the plot 190
xlabel('x-axis (in)'); % Label the x-axis 191
ylabel('y-axis (in)'); % Label the y-axis 192
zlabel('z-axis (in)'); % Label the z-axis 193
title('Reconstructed View from Known Transpose'); % Title the figure 194

40

Appendix B

Structure from Motion with Multiple Views

%%% 1
% Pennsylvania State University 2
%%% 3
% COPYRIGHT 2017 4
% Pennsylvania State University 5
% University Park, PA 16802 6
%%% 7
% 8
% FILENAME: SFM_mult_pics 9
% 10
% DESCRIPTION: This code loads two pictures and creates a point cloud. To 11
% do this, it first calculates the orientation and pose of the 12
% second camera relative to the first. The point cloud that is 13
% output is not metric. 14
% 15
% REFERENCES: 1. The MathWorks, "Structure from Motion," The MathWorks Inc 16
% 2017. [Online]. Available: 17
% https://www.mathworks.com/help/visiion/ug/structure-from 18
% motion.html 19
% 20
% 2. The MathWorks, "Structure from Motion from Multiple Views," 21
% The MathWorks Inc., 2017. [Online]. Available: 22
% https://www.mathworks.com/help/visiion/ug/structure-from 23
% motion-from-multiple-views.html 24
% 25
% DATE AUTHOR REVISION 26
% 04-APRIL-2017 BENJAMIN SATTLER INITIAL RELEASE 27
%%% 28
% 29
% INPUTS: Provide description of script inputs if applicable. 30
% 1. Images : Directory of Image Pathway 31
% 2. Camera Matrix : Camera calibration 32
% 33
% OUTPUTS: Provide description of script outputs if applicable. 34
% 1. PtCloud : Calculated point cloud of the world 35
% 36
%%% 37

 38
%% Clean Workspace 39
% This section of the code simply closes all figures, clears all variables, 40
% and clears the command window 41

 42
clear all, close all, clc 43

 44
%% Load the images 45

41

% This section of the code uses a directory to create an image set that 46
% imports the two input images 47

 48
imds = imageDatastore('C:\Users\bzs52\Documents\Senior Year\Dr. 49
Basu\SFM\Block Pics'); 50
images=cell(1,numel(imds.Files)); % create empty array for images 51
for i=1:numel(imds.Files) % for loop to run through all images 52
 I=readimage(imds,i); % read in image 53
 images{i}=rgb2gray(I); % convert image to grayscale and save in 54
array 55
end 56

 57
%% Load Camera Params 58
% This section of code loads the camera parameters of a calibrated camera 59

 60
load ('C:\Users\bzs52\Documents\Senior Year\Dr. Basu\Cal Pics\EoS 6D 61
big\matlab.mat'); 62

 63
%% Remove Lens Distortion 64
% This section of code removes distortion from the images 65

 66
I=undistortImage(images{1},cameraParams); 67

 68
%% Find Point Correspondences Between the Images 69
% This section of code finds trackable points 70

 71
roi = [50,50,size(I, 2)-2*50,size(I, 1)- 2*50]; % Set region 72
of interest 73
prevPoints=detectSURFFeatures(I, 'NumOctaves', 8, 'ROI', roi); % detect 74
points 75
prevFeatures = extractFeatures(I, prevPoints, 'Upright', true); % Extract 76
features 77
vSet = viewSet; % Create set 78
for other views 79
viewId = 1; % First view 80
ID 81
% Add in the information from the first image to the set 82
vSet = addView(vSet, viewId, 'Points', prevPoints, 'Orientation', ... 83
 eye(3, 'like', prevPoints.Location), 'Location', ... 84
 zeros(1, 3, 'like', prevPoints.Location)); 85
%% Add the rest of the views 86
% This section of code brings in the rest of the images and detects the 87
% points. It also matches the points to the previous feature 88

 89
k=0; 90
for i = 2:numel(images) % Loop through every 91
image 92
 I=undistortImage(images{i},cameraParams); % Undistort the image 93
 currPoints=detectSURFFeatures(I, 'NumOctaves', 8, 'ROI', roi);% Detect 94
points 95
 currFeatures =extractFeatures(I, currPoints, 'Upright', true);% Detect 96
features 97

42

 indexPairs=matchFeatures(prevFeatures, currFeatures, ... % Find 98
matches 99
 'MaxRatio', .7, 'Unique', true); 100
 matchedPoints1=prevPoints(indexPairs(:, 1)); % Save match if valid 101
in image 1 102
 matchedPoints2=currPoints(indexPairs(:, 2)); % Save match if valid 103
in image 2 104
 % Calculate the orientation and location of one camera to the previous 105
 [relativeOrient,relativeLoc,inlierIdx]=helperEstimateRelativePose(... 106
 matchedPoints1,matchedPoints2,cameraParams); 107
 vSet=addView(vSet,i,'Points',currPoints); % Add the points to the 108
set 109
 vSet=addConnection(vSet,i-1,i,'Matches',indexPairs(inlierIdx,:)); 110
 prevPose=poses(vSet,i-1); % Look at previous pose 111
 prevOrientation=prevPose.Orientation{1}; % Look at the previous 112
orientation 113
 prevLocation=prevPose.Location{1}; % Look at the previous 114
transpose 115
 orientation=relativeOrient*prevOrientation; % Calculate the new 116
orientation 117
 location=prevLocation+relativeLoc*prevOrientation;% Calc new location 118
 vSet=updateView(vSet,i,'Orientation',orientation, ... 119
 'Location',location); 120
 tracks = findTracks(vSet); % Find points in all 121
views 122
 camPoses = poses(vSet); % Load camera poses 123
 % Calculate the world points 124
 xyzPoints = triangulateMultiview(tracks, camPoses, cameraParams); 125
 % Use Bundle Adjustment to account for erros 126
 [xyzPoints, camPoses, reprojectionErrors] = bundleAdjustment(xyzPoints, 127
... 128
 tracks, camPoses, cameraParams, 'FixedViewId', 1, ... 129
 'PointsUndistorted', true); 130
 vSet = updateView(vSet, camPoses); % Save adjusted cam 131
poses 132
 prevFeatures = currFeatures; % Make current features 133
previous feats 134
 prevPoints = currPoints; % Make current points 135
previous points 136
 k=k+1; % Update k 137
end 138

 139
%% Display Camera Poses 140
% This section of code simply displays the camera positions and points used 141
% to calculate those positions 142
camPoses = poses(vSet); % Save the camera positions 143
figure; % Create a figure 144
plotCamera(camPoses, 'Size', 0.2); % Plot the cameras 145
hold on % Keep the plot up 146
goodIdx = (reprojectionErrors < 5); % Calculate if good point or not 147
xyzPoints = xyzPoints(goodIdx, :); % Save the valid XYZ points 148
% Display valid points 149
pcshow(xyzPoints, 'VerticalAxis', 'y', 'VerticalAxisDir', 'down', ... 150
 'MarkerSize', 45); 151

43

grid on % Display a grid 152
hold off % Turn the hold off 153
loc1 = camPoses.Location{1}; % Identify cam position one 154
xlim([loc1(1)-5, loc1(1)+4]); % Set the x axis 155
ylim([loc1(2)-5, loc1(2)+4]); % Set the y axis 156
zlim([loc1(3)-1, loc1(3)+20]); % Set the z axis 157
camorbit(0, -30); % Change orientation of plot 158
title('Camera Location'); % Title the plot 159

 160
%% Compute Dense Reconstruction 161
% Go through the images again. This time detect a dense set of corners, 162
% and track them across all views using vision.PointTracker. 163

 164
I=undistortImage(images{1},cameraParams); % Undistort first 165
image 166
prevPoints=detectMinEigenFeatures(I,'MinQuality',0.001);% Detect points 167
% Create the point tracker 168
tracker=vision.PointTracker('MaxBidirectionalError',1,'NumPyramidLevels', 6); 169
prevPoints=prevPoints.Location; % Set first points 170
initialize(tracker,prevPoints,I); % Init tracker 171
vSet=updateConnection(vSet,1,2,'Matches',zeros(0, 2)); % Make part of set 172
vSet=updateView(vSet,1,'Points',prevPoints); % Store points in set 173

 174
for i = 2:numel(images) % Loop through all 175
images 176
 I=undistortImage(images{i},cameraParams); % Undistort current 177
pic 178
 [currPoints,validIdx]=step(tracker,I); % Track the points 179
 if i<numel(images) % Check where in loop 180
 vSet=updateConnection(vSet,i,i+1,'Matches',zeros(0, 2)); % Zero 181
Images 182
 end 183
 vSet=updateView(vSet,i,'Points',currPoints); % Update the set 184
 matches=repmat((1:size(prevPoints,1))',[1,2]); % Tile matches matrix 185
 matches=matches(validIdx,:); % Save valid matches 186
 vSet=updateConnection(vSet,i-1,i,'Matches',matches);% Save matches in set 187
end 188

 189
tracks=findTracks(vSet); % Track points in the 190
set 191
camPoses=poses(vSet); % Read camera poses 192
xyzPoints = triangulateMultiview(tracks, camPoses,... % Calc XYZ points 193
 cameraParams); 194
% Use bundleAdjustment to reduce errors 195
[xyzPoints, camPoses, reprojectionErrors] = bundleAdjustment(... 196
 xyzPoints, tracks, camPoses, cameraParams, 'FixedViewId', 1, ... 197
 'PointsUndistorted', true); 198

 199
% Get color from images 200
for i=1:length(tracks) 201
 matches(i,:)=[double(tracks(1,i).Points(1,1)) 202
double(tracks(1,i).Points(1,2))]; 203
end 204

44

numPixels=size(I, 1)*size(I, 2); % Calc total pix 205
number 206
Q=readimage(imds,1); % Read RGB value 207
allColors = reshape(Q, [numPixels, 3]); % Save the color IDs 208
colorIdx = sub2ind([size(I, 1), size(I, 2)], round(matches(:,2)), ... 209
 round(matches(:, 1))); 210
color = allColors(colorIdx, :); 211
ptCloud=pointCloud(xyzPoints,'Color',color); % Add color to pt 212
cloud 213

 214
%% Display Point Cloud 215
% Visualize the camera locations and orientations along with the world 216
figure; % Create figure 217
plotCamera(camPoses, 'Size', 0.2); % Plot cameras 218
hold on % Keep plot 219
goodIdx = (reprojectionErrors < 5); % Calc if good point 220
pcshow(ptCloud, 'VerticalAxis', 'y', ... % Disp point cloud 221
 'VerticalAxisDir', 'down', 'MarkerSize', 45); 222
grid on % Plot with grid 223
hold off % Turn hold off 224
loc1 = camPoses.Location{1}; % Identify camera 1 225
xlim([loc1(1)-5, loc1(1)+4]); % x axis 226
ylim([loc1(2)-5, loc1(2)+4]); % y axis 227
zlim([loc1(3)-1, loc1(3)+20]); % z axis 228
camorbit(0, -30); % Define orientation 229
title('Unscaled Scene Reconstruction from Multiple Views'); 230

45

Appendix C

Position Tracking Algorithm

%%% 1
% Pennsylvania State University 2
%%% 3
% COPYRIGHT 2017 4
% Pennsylvania State University 5
% University Park, PA 16802 6
%%% 7
% 8
% FILENAME: from_file_gravity_removed 9
% 10
% DESCRIPTION: This code loads data recorded using the MATLAB mobile 11
% application. The end result is plots of the phone's 12
% acceleration in body coordinates as well as the position of 13
% the phone in both body and global coordinates 14
% 15
% REFERENCES: 1. C. D. Monaco, Detecting the Instability of Oncoming 16
% Vehicles Using Optical Flow and Map-Based Context, 17
% University Park: Penn State Electronic Theses and 18
% Dissertations for Graduate School, 2016. 19
% 20
% DATE AUTHOR REVISION 21
% 04-APRIL-2017 BENJAMIN SATTLER INITIAL RELEASE 22
%%% 23
% 24
% INPUTS: Provide description of script inputs if applicable. 25
% 1. Acceleration : System acceleration [m/s^2] 26
% 2. Orientation : System roll pitch and yaw [degrees] 27
% 28
% OUTPUTS: Provide description of script outputs if applicable. 29
% 1. NoG : Accel data w/ gravity removed [m/s^2] 30
% 2. NoG_zeroed : Accel data w/ gravity & bias removed [m/s^2] 31
% 3. uvw : Velocity in body coordinates [m/s] 32
% 4. xyz : Position in body coordinates [m] 33
% 5. XYZ_vel : Velocity in global coordinates [m/s] 34
% 6. XYZ : Position in global coordinates [m] 35
% 36
%%% 37

 38
%% Clean Workspace 39
% This section of the code simply closes all figures, clears all variables, 40
% and clears the command window 41

 42
clear all, close all, clc 43

 44
%% Load Data 45
% This section of the code loads the .mat file recorded from Matlab mobile 46

 47

46

load 'stationary_phone.mat' % Load the data file 48
acc=acc'; % Transpose the data 49
o=o'; % Transpose the data 50
o(2,:)=-o(2,:); % Convert to SAE coords 51

 52
%% Remove Gravity 53
% This section calculates the actual acceleration of the phone by removing 54
% the measured gravity 55

 56
g=9.81; % [m/s] 57
NoG=zeros(3,length(t)); % init No gravity variable 58

 59
for i=1:length(t) % in this loop, calc dt, and remove gravity 60
 if(i<length(t)) % check the quantity of i 61
 dt(i+1)=t(i+1)-t(i); % calculated the change in time 62
 end 63
 if(i==1) % check the quantity of i 64
 NoG(:,i)=[0;0;0]; % Set initial condition to 0 65
 else 66
 % Use the roll, pitch, and yaw from MATLAB Mobile to remove effect 67
 % of gravity. Modified from [1] 68
 NoG(:,i)=acc(:,i)+[g*sind(o(3,i));g*cosd(o(3,i)).*sind(o(2,i));-69
g*cosd(o(3,i)).*cosd(o(2,i))]; 70
 end 71
end 72

 73
%% Remove Bias 74
% This section of code averages the entire calculated acceleration to find 75
% the offset bias. This bias is then removed from the data 76

 77
bias=mean(NoG'); % calculate the bias of the IMU 78
NoG_zeroed=NoG-bias'; % subtract bias from the data 79

 80
%% Filter the Data 81
% This section of code filters the data using a simple moving average 82

 83
coeff50hz = ones(1, 50)*(1/50); 84
avgNoG_zeroed = filter(coeff50hz, 1, NoG_zeroed); 85

 86
%% Calculate Body 87
% In this section of the code, the change of time, and dt between is 88
% measurement is calculated. dt is then used to calculate the body velocity 89
% and the position. A quaternion is used to transform the data from body to 90
% global coordinates. 91

 92
dt=zeros(length(t),1); % init dt var 93
uvw=zeros(3,length(t)); % init uvw var 94
for i=1:length(t) % Calculate uvw,xyz,quatern,& world coords 95
 if(i==1) % check quantity of i 96
 uvw(:,i)=[0;0;0]; % set initial condition to 0 97
 else 98
 % Lines 41,42, and 45 modified from [1] 99
 uvw(:,i)=avgNoG_zeroed(:,i)*dt(i)+uvw(:,i-1); % calc velocity 100

47

 xyz(:,i)=0.5*(uvw(:,i)+uvw(:,i-1))*dt(i)+uvw(:,i-1); % body position 101
 q=angle2quat(o(1,i),o(2,i),o(3,i),'zyx'); % quatern vector 102
 XYZ_vel(:,i)=quatrotate(quatinv(q),uvw(:,i)'); % World velocity 103
 XYZ(:,i)=0.5*(XYZ_vel(:,i)+XYZ_vel(:,i-1))*dt(i)+XYZ_vel(:,i-1); % 104
world coords 105
 end 106
end 107

 108
%% Plot Data 109
% This section of code simply plots the data into relevant figures 110

 111
h1=figure; % Create a figure 112
plot(t,NoG_zeroed(3,:)) % Plot the Z accel with gravity and bias removed 113
vs time 114
title('Accel in Z') 115
hold on 116
plot(t,avgNoG_zeroed(3,:)) % Plot the filtered accel data on same graph 117
movegui(h1,'northwest') % Move graph to top left corner of screen 118

 119
h2=figure; % Create a figure 120
plot(t,NoG_zeroed(2,:)) % Plot Y accel with gravity and bias removed vs 121
time 122
title('Accel in Y') 123
hold on 124
plot(t,avgNoG_zeroed(2,:)) % Plot the filtered accel data on same graph 125
movegui(h2,'north') % Move graph to top center of screen 126

 127
h3=figure; % Create a figure 128
plot(t,NoG_zeroed(1,:)) % Plot X accel with gravity and bias removed vs 129
time 130
title('Accel in X') 131
hold on 132
plot(t,avgNoG_zeroed(1,:)) % Plot the filtered accel data on same graph 133
movegui(h3,'northeast') % Move graph to the top right corner of screen 134

 135
h4=figure; % Create a figure 136
plot(XYZ(1,:),XYZ(2,:)) % Plot the XY position of phone in world 137
coordinates 138
title('Phone Position in World Coords') 139
movegui(h4,'southwest') % Move graph to bottom left corner of screen 140

 141
h5=figure; % Create a figure 142
plot(xyz(1,:),xyz(2,:)) % Plot xy position of phone in body coordinates 143
title('Phone Position in Body Coords') 144
movegui(h5,'south') % Move graph to the bottom center of screen 145

 146
h6=figure; % Create a figure 147
plot3(XYZ(1,:),XYZ(2,:),XYZ(3,:)) % Plot 3D position of phone in world 148
coords 149
title('Phone Position in World Coords') 150
movegui(h6,'southeast') % Move graph to bottom left corner of screen 151

48

BIBLIOGRAPHY

[1] E. P. Baltsavias, "A Comparison Between Photogrammetry and Laser Scanning," ISPRS Journal

of Photogrammetry and Remote Sensing, vol. 54, no. 2-3, pp. 83-94, 1999.

[2] University of Arkansas, "Digital Photogrammetry," Geospatial Modeling & Visualization, 2017.

[Online]. Available: http://gmv.cast.uark.edu/photogrammetry/. [Accessed 3 August 2016].

[3] S. Gonizzi Barsanti, F. Remondino and D. Visintini, "Photogrammetry and Laser Scanning for

Archaeological Site 3D Modeling - Some Critical Issues," CEUR-WS, vol. 948, 2012.

[4] Eos Systems Inc., "PhotoModeler Product Overview," Eos Systems Inc., 2016. [Online].

Available: http://www.photomodeler.com/products/default.html. [Accessed 02 April 2017].

[5] Autodesk Inc., "Autodesk Remake," Autodesk Inc., 2015. [Online]. Available:

https://remake.autodesk.com/about. [Accessed 02 April 2017].

[6] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge:

Cambridge University Press, 2000.

[7] Q. Luong and O. Faugeras, "The Fundamental Matrix: Theory, Algorithms, and Stability

Analysis," International Joumal of Computer Vision, vol. 17, pp. 43-75, 1996.

[8] The MathWorks, "Structure from Motion," The MathWorks Inc., 2017. [Online]. Available:

https://www.mathworks.com/help/vision/ug/structure-from-motion.html. [Accessed 02 April

2017].

49

[9] A. A. Behrouzi and D. A. Kuchma, "Instruction Manual: Photogrammetry as a Non-Contact

Measuring System in Large Scale Structural Testing," Network for Earthquake Engineering

Simulation, 2014.

[10] EoS Systems Inc., "Factors Affecting Accuracy in Photogrammetry," PhotoModeler, 2017.

[Online]. Available:

http://info.photomodeler.com/blog/kb/factors_affecting_accuracy_in_photogramm/.

[Accessed 02 April 2017].

[11] I. Ihrke, K. N. Kutulakos, H. P. A. Lensch, M. Magnor and W. Heidrich, "Transparent and

Specular Object Reconstruction," in EuroGraphics, Crete, 2008.

[12] P. Corke, Robotics, Vision and Control, Berlin: Springer, 2013.

[13] PhotoModeler, "What are the computer requirements to run PhotoModeler," EoS Systems Inc.,

2017. [Online]. Available:

http://info.photomodeler.com/blog/kb/what_are_the_computer_requirements_to_run/.

[Accessed 07 April 2017].

[14] AutoDesk, "System requirements for Autodesk ReMake 2017," Autodesk Knowledge Network ,

15 May 2015. [Online]. Available:

https://knowledge.autodesk.com/support/remake/troubleshooting/caas/sfdcarticles/sfdcarticles

/System-requirements-for-Autodesk-ReMake-2017.html. [Accessed 02 April 2017].

[15] The MathWorks, "Single Camera Calibration App," The MathWorks, Inc., 2017. [Online].

Available: https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html.

[Accessed 02 April 2017].

50

[16] The MathWorks, "relativeCameraPose," The MathWorks Inc., 2017. [Online]. Available:

https://www.mathworks.com/help/vision/ref/relativecamerapose.html. [Accessed 02 April

2017].

[17] The MathWorks, "Structure From Motion From Multiple Views," The MathWorks Inc., 2017.

[Online]. Available: https://www.mathworks.com/help/vision/examples/structure-from-

motion-from-multiple-views.html. [Accessed 03 April 2017].

[18] B. Triggs, P. McLauchlan, R. Hartley and A. Fitzgibbon, "Bundle Adjustment — A Modern

Synthesis," in International Workshop on Vision Algorithms, Corfu, 1999.

[19] C. D. Monaco, Detecting the Instability of Oncoming Vehicles Using Optical Flow and Map-

Based Context, University Park: Penn State Electronic Theses and Dissertations for Graduate

School, 2016.

[20] H. D. Curtis, Orbital Mechanics for Engineering Students, Waltham: Elsevier Ltd., 2014.

[21] N. El-Sheimy, H. Hou and X. Niu, "Analysis and Modeling of Inertial Sensors Using Allan

Variance," IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1, pp. 140-

149, 2008.

[22] O. J. Woodman, "An Introduction to Inertial Navigation," Univeristy of Cambridge, 2007.

ACADEMIC VITA

Academic Vita of Benjamin Jacques Sattler

EDUCATION Bachelor of Science in Mechanical Engineering Spring 2017

 The Pennsylvania State University, University Park, PA

 Schreyer Honors College: Industrial Engineering

Dean’s List: FA12, SP13, FA13, FA14

THESIS Three-Dimensional Model Reconstruction from Images

 Using Position Tracking and Structure from Motion

 Thesis Supervisor: Dr. Saurabh Basu

CAREER SpaceX – Propulsion Production FA 15 -SP 16

EXPERIENCE Design Tooling to Increase Efficiency of Manufacturing Rocket Engines

• Interface with individuals designing flight components to meet manufacturing

requirements

• Design tools varying from shipping rocket stages, to qualification stands, to

assembly aids

• Define load cases and perform analysis on all designs ensuring safe operation

• Create engineering drawings for fabrication

Roush – Engine and Transmission Calibration SP 15 –FA 15

• Calibration and mapping of engine dyno, chassis dyno, and in-vehicle engines

• Improving accuracy of inferred engine parameters to decrease number of needed

sensors

• Track-side support during vehicle testing to diagnose problems as they arose

RESEARCH Undergraduate Student Research
EXPERIENCE BATTERY Lab SP 14 –SP 15

 The Pennsylvania State University, University Park, PA

• Engage in systems engineering research under Timothy Cleary

• Design of large vehicle battery pack and integration

• Crash safety and effects of shock and vibration on battery lifespan

 Hydrogen Hybrid Research Lab FA 12 – SP 15

 The Pennsylvania State University, University Park, PA

• Engage in interdisciplinary research under Dr. Joel Anstrom

• Restoring a GM Ev1 and updating to state-of-the-art technology

• Organizing renewable vehicle competition- built charging station for 12 electric

vehicles

NSF-Funded Undergraduate Research (REU) Summer 2013

Modeling of Ignition Time and Temperature of Biodiesel Surrogates

University of Connecticut, Storres, CT

• Engage in chemical and thermodynamics research under Dr. Tianfeng Lu

• Computational combustion simulation of biodiesel. MATLAB based models

• Use of CHEMKIN database and software package to find ignition timing and

temperature

LEADERSHIP EcoCAR 3 Team Leader/Project Manager 2014/2015

Penn State Advanced Vehicle Team

• Lead and review writing of team reports and assist with all necessary waivers

• Guide and focus team to meet deadlines and deliverables dictated by competition

• Create control algorithms which were implemented into team’s vehicle

• Use of MATLAB and Simulink to make accurate vehicle models for SIL and HIL

setups

• Logging and reading of in-vehicle CAN messages for vehicle refinement and

calibration

• Technical and software skills: welding, machining, MATLAB, Simulink, Siemens

NX

PUBLICATIONS Design and Implementation of a Series Plug-In Hybrid Electric Vehicle for the

EcoCAR 2 Competition (SAE International)

 Paper #: 2014-01-2909 Published 2014-10-13

Motivational Tactics and Techniques for Largely Volunteer-Based Organizations

(2015 PMI Global Conference Proceedings)

	Chapter 1 Introduction
	Chapter 2 Evaluation of Current Technology
	Camera Parameters
	Data Collection
	Software Used and Steps Taken
	PhotoModeler
	Remake
	Point Cloud generation
	Comparing to Ground Truth

	Results

	Chapter 3 Improvements with Position Data
	Camera Calibration
	Structure from Motion with Unknown Position
	Structure from Motion with Known Position
	Position Tracking
	Inertial Measurement Unit Modeling
	Calculating Position

	Results

	Chapter 4 Conclusions
	Chapter 5 Future Work and Areas for Expansion
	Phone Camera Calibration
	Advanced Accelerometer Modeling and Improved Position Tracking

	Appendix A Structure from Motion with 2 Views – Metric Output
	Appendix B Structure from Motion with Multiple Views
	Appendix C Position Tracking Algorithm
	BIBLIOGRAPHY

