THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE

DEPARTMENT OF MATHEMATICS

TOPOLOGY AND DATA ANALYSIS

HANGYU ZHOU
SPRING 2017

A thesis
submitted in partial fulfillment of the requirements for baccalaureate degrees in Mathematics with honors in Mathematics

Reviewed and approved* by the following:

John Roe
Professor of Mathematics
Thesis Supervisor
Sergei Tabachnikov
Professor of Mathematics
Honors Adviser

*Signatures are on file in the Schreyer Honors College.

Abstract

Topological data analysis is a recently developed technique to analyze datasets in Euclidean space. This new technique enables us to analyze datasets which are high-dimensional, incomplete and noisy. The motivation of topological data analysis is to study the shape of the data. To see the shape from a discrete set of data points, many algorithms require a choice of proximity. However, this parameter is usually hard to decide and we need some other information to determine what proximity to use. The main insight of persistent homology is that we should be looking at all proximities altogether, but it is hard to transform this large amount of information into an understandable and easy-to-present form. In topological data analysis, the idea of homology solves this problem. Briefly, we assume that structures that persist over a long range of proximities are real structures of the dataset, while structures which only persist for a short range are considered to be noise. In this thesis, we will discuss the mathematical tools that are necessary to understand topological data analysis, introduce how a particular algorithm works, and apply this technique to analyze some real-world data.

Acknowledgements

I feel lucky to work with Professor John Roe, who motivated me to study topological data analysis. This project is impossible without his teachings and patience. Thank you for your understanding and encouragement when I feel depressed. Thank you for being my thesis advisor even though I am an undergraduate who is still learning about doing research.

Table of Contents

1 Mathematical Introduction 1
1.1 From Data to Simplicial Complexes 1
1.2 Homology 2
1.3 Persistent Homology 6
1.4 Structure Theorem for Persistence Spaces 9
2 Computational Methods 18
2.1 Smith Normal Form Codes 18
2.2 Algorithms 20
2.3 Persistent Homology Codes 27
3 Examples 28
3.1 Students' Performance in a Math Course 28
3.2 Cyclo-octane Molecule Conformations 30
4 Conclusion 32
Appendix 33
Bibliography 45

List of Figures

1 A point cloud 1
2 A point cloud with noise 1
3 Example of Rips complex with different choice of parameter ϵ from [2] 2
4 Examples of simplicial complexes $\left(\mathcal{K}_{1}, \mathcal{K}_{2}\right.$ and $\left.\mathcal{K}_{4}\right)$ 4
5 Rips complex with $\epsilon=1,2, \sqrt{5}$ 8
6 Example of barcodes 8
$7 \quad$ Example of the algorithm 21
8 Barcode for the Example 25
$9 \quad$ Barcodes for good students 28
10 Barcodes for good students after normalization 29
11 Barcodes after replacing no shows by averages 30
12 Example of a conformation of cyclo-octane from [8] 30
13 Barcodes for the conformation space of cyclo-octane 31

1 Mathematical Introduction

1.1 From Data to Simplicial Complexes

In this paper, by "data" we mean a finite set of points in some Euclidean space; we call the set of data the point cloud. As an easy example, consider the figure below.

Figure 1: A point cloud
We see that the data points seem to break into three different clusters. Even without noise, the clustering is only visible on a certain range of scales. And in real life, the data are not as nice as shown in figure 1 . We always encounter some noise as shown below and we would like to be able to see this clustering behavior even with noise.

Figure 2: A point cloud with noise
For our purpose, we introduce a parameter ϵ which help us complete the point cloud to a simplicial complex with data points as vertices. The edges are determined by proximity and ϵ is the measure of proximity.

Definition 1. Given a colection of points $\left\{x_{n}\right\}$ in Euclidean space \mathbb{R}^{n}, the Rips complex, \mathcal{R}_{ϵ}, is the simplicial complex whose k -simplices correspond to unordered $(k+1)$-tuples of points $\left\{x_{n}\right\}_{0}^{k}$ which are pairwise within distance ϵ.

There are some other ways to define a simplicial complex from a point cloud, but from a computation point of view, the Rips complex is less expensive because it is the maximal
among all simplicial complexes with a given 1-skeleton. Thus, the combinatorics of the 1 -skeleton completely determines the Rips complex.

Figure 3: Example of Rips complex with different choice of parameter ϵ from [2]

The structure of the Rips complex varies as we vary ϵ. For sufficiently small ϵ, the complex is a discrete set; for sufficiently large ϵ, the complex is a single high-dimensional simplex. So a natural question to ask is: which parameter ϵ should we choose in order to capture the right structure? Consider the example in figure 3 above. The point cloud is a sampling of points in a planar annulus. As shown in the figure, it seems that it is really hard to decide which ϵ to choose. When ϵ is large enough to remove the gap from within the structure of the annulus, the large hole in the middle is also filled in.

1.2 Homology

Definition 2. A set $\left\{v_{0}, \cdots v_{n}\right\}$ of points of \mathbb{R}^{n} is said to be geometrically independent if for any scalars t_{i}, the equations

$$
\sum_{i=0}^{n} t_{i}=0 \quad \text { and } \quad \sum_{i=0}^{n} t_{i} v_{i}=0
$$

imply that $t_{0}=t_{1}=\cdots=t_{n}=0$.

Clearly, a one-point set is always geometrically independent. It is an easy exercise to show that in general the set $\left\{v_{0}, \cdots v_{n}\right\}$ is geometrically independent if and only if the vectors

$$
v_{1}-v_{0}, \cdots, v_{n}-v_{0}
$$

are linearly independent. Thus, two distinct points form a geometrically independent set in \mathbb{R}^{n}, so do three non-collinear points, four non-coplanar points, and so on.

Definition 3. Given a geometrically independent set $\left\{v_{0}, \cdots v_{n}\right\}$ in \mathbb{R}^{n}, we define the \mathbf{n} simplex Δ spanned by $v_{0}, \cdots v_{n}$ to be the set of all points x of \mathbb{R}^{n} such that

$$
x=\sum_{i=0}^{n} t_{i} v_{i}, \text { where } \sum_{i=0}^{n} t_{i}=1
$$

and $t_{i} \geq 0$ for all i. The numbers t_{i} are uniquely determined by x and are called the barycentric coordinates of the point x of Δ with respect to $v_{0}, \cdots v_{n}$.

For example, a 0 -simplex is a point; a 1 -simplex is a line segment; a 2 -simplex is a triangle; a 3 -simplex is a tetrahedron.

Definition 4. The points $v_{0}, \cdots v_{n}$ that span Δ are called the vertices of Δ. The number n is called the dimension of Δ. Any simplex spanned by a subset of $\left\{v_{0}, \cdots v_{n}\right\}$ is called a face of Δ. The faces of Δ different from Δ itself are called the proper faces of Δ and the union of all proper faces is called the boundary of Δ, denoted by $\partial \Delta$. The open simplex Δ° is $\Delta-\partial \Delta$, the interior of Δ.

Now we are ready to define a simplicial complex.
Definition 5. A simplicial complex \mathcal{K} in \mathbb{R}^{n} is a collection of simplices in \mathbb{R}^{n} such that:

1. Every face of a simplex of \mathcal{K} is in \mathcal{K}.
2. The intersection of any two simplices of \mathcal{K} is a face of each of them.

In figure $4, \mathcal{K}_{1}, \mathcal{K}_{2}$ and \mathcal{K}_{4} are all simplicial complexes, while \mathcal{K}_{3} is not.
Definition 6. A subcomplex of \mathcal{K} is a subcollection of \mathcal{K} that contains all faces of its elements. A particular subcomplex of \mathcal{K} is the collection of all simplices of \mathcal{K} of dimension at most p; it is called the \mathbf{p}-skeleton of \mathcal{K}.

Figure 4: Examples of simplicial complexes $\left(\mathcal{K}_{1}, \mathcal{K}_{2}\right.$ and $\left.\mathcal{K}_{4}\right)$

Definition 7. Let Δ be a simplex. Define two orderings of its vertex set to be equivalent if they differ from one another by an even permutation. If $\operatorname{dim} \Delta>0$, the orderings of the vertices fall into two equivalence classes. Each of these classes is called an orientation of Δ. If $\operatorname{dim} \Delta=0$, then there is only one class and hence only one orientation of Δ. A simplex Δ together with an orientation is called an oriented simplex.

From this point on, we will use $v_{0} \cdots v_{n}$ to denote the simplex spanned by $\left\{v_{0}, \cdots, v_{n}\right\}$, use $\left[v_{0}, \cdots, v_{n}\right]$ to denote the oriented simplex, and use $\left(v_{0}, \cdots, v_{n}\right)$ to denote the equivalence class of the particular ordering.

Definition 8. Let \mathcal{K} be a simplicial complex. A p-chain on \mathcal{K} with values in a ring R is a function c from the set of oriented p-simplices of \mathcal{K} to R, such that:

1. $c(\Delta)=-c\left(\Delta^{\prime}\right)$ if Δ and Δ^{\prime} are same simplex with opposite orientation.
2. $c(\Delta)=0$ for all but finitely many oriented p-simplices.

The group of p-chains of \mathcal{K} is denoted by $C_{p}(\mathcal{K})$, with the addition defined by adding the values. if $p<0$ or $p>\operatorname{dim} \mathcal{K}$, we let $C_{p}(\mathcal{K})$ be the trivial group.

If Δ is an oriented simplex, the elementary chain c corresponding to Δ is the function such that: $c(\Delta)=1$ and $c\left(\Delta^{\prime}\right)=-1$ if Δ^{\prime} and Δ are the same simplex with opposite orientation and 0 otherwise. By abuse of notation, we sometimes also use Δ to denote the elementary p-chain corresponding to the oriented simplex Δ. Then we can write $\Delta^{\prime}=-\Delta$.

Theorem 1. $C_{p}(\mathcal{K})$ is free abelian. A basis for $C_{p}(\mathcal{K})$ can be obtained by orienting each p-simplex and using the corresponding elementary chains as a basis.

Now we have a sequence of free abelian groups, and we can define a map along the chain by sending each simplex to its "boundary".

Definition 9. Define the homomorphism

$$
\partial_{p}: C_{p}(\mathcal{K}) \rightarrow C_{p-1}(\mathcal{K})
$$

by

$$
\partial_{p}(\Delta)=\partial_{p}\left[v_{0}, \cdots, v_{p}\right]=\sum_{i=0}^{p}(-1)^{i}\left[v_{0}, \cdots, \hat{v}_{i}, \cdots, v_{p}\right]
$$

where \hat{v}_{i} means that the vertex v_{i} is removed from the list. ∂_{p} is called a boundary operator.

Since $C_{p}(\mathcal{K})$ is the trivial group when $p<0$, the map ∂_{p} is trivial for $p \leq 0$. It is an easy exercise to check $\partial_{p}(-\Delta)=-\partial_{p}(\Delta)$ and thus ∂_{p} is well-defined.

Theorem 2. $\partial_{p-1} \circ \partial_{p}=0$.

Proof.

$$
\begin{aligned}
\partial_{p-1} \partial_{p}\left[v_{0}, \cdots, v_{n}\right] & =\sum_{i=0}^{p}(-1)^{i} \partial_{p-1}\left[v_{0}, \cdots, \hat{v}_{i}, \cdots, v_{n}\right] \\
& =\sum_{j<i}(-1)^{i}(-1)^{j}\left[\cdots, \hat{v}_{j}, \cdots, \hat{v}_{i}, \cdots\right]+\sum_{j>i}(-1)^{i}(-1)^{j-1}\left[\cdots, \hat{v}_{i}, \cdots, \hat{v}_{j}, \cdots\right] \\
& =0
\end{aligned}
$$

The last step is true because each term appears twice, with opposite signs. The sequence of chains together with the boundary maps is call a chain complex. Now we can define the homology group.

Definition 10. The group $H_{p}(\mathcal{K})=\operatorname{Ker} \partial_{p} / \operatorname{Im} \partial_{p+1}$ is the $p^{\text {th }}$ homology group of \mathcal{K}.

For example, suppose that \mathcal{K} is the boundary of a triangle, with three 0 -simplices v_{1}, v_{2}, v_{3} and three 1 -simplices e_{1}, e_{2}, e_{3}. Note that the triangle itself is not part of \mathcal{K}, i.e. \mathcal{K} does not contain 2-simplices. Since $\partial_{1}\left(e_{1}\right)=v_{1}-v_{2}, \partial_{1}\left(e_{2}\right)=v_{2}-v_{3}, \partial_{1}\left(e_{3}\right)=v_{3}-v_{1}=-\partial_{1}\left(e_{1}\right)-\partial_{1}\left(e_{2}\right)$ and $\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{2}\right\}$ is a basis for C_{0}, it follows that $H_{0}(\mathcal{K})$ is isomorphic to \mathbb{Z} and is generated by v_{2}. Since there are no 2 -simplices, $H_{1}(\mathcal{K})$ is equal to $\operatorname{ker}\left(\partial_{1}\right)$, which is infinite cyclic generated by $e_{1}+e_{2}+e_{3}$ since $\partial_{1}\left(a e_{1}+b e_{2}+c e_{3}\right)=(a-c) v_{1}+(b-a) v_{2}+(c-b) v_{3}=0$ only if $a=b=c$. The groups $H_{n}(\mathcal{K})$ are 0 for $n \geq 2$ since there are simplices in these dimensions. Thus,

$$
H_{n}(\mathcal{K})= \begin{cases}\mathbb{Z} & \text { for } n=0,1 \\ 0 & \text { for } n \geq 2\end{cases}
$$

1.3 Persistent Homology

Although homology is a strong tool, it is not sufficient to consider only the homology of a complex associated to a point cloud at a particular ϵ. Thus, it is a mistake to ask which value of ϵ is optimal. In fact, the correct thing to do is to consider all ϵ together. This leads to the idea of persistent homology.

Definition 11. Given a simplicial complex \mathcal{K}, a filtration is a totally ordered set of subcomplexes \mathcal{K}_{i} of \mathcal{K}, indexed by the nonnegative integers, such that if $i \leq j$ then $\mathcal{K}_{i} \subseteq \mathcal{K}_{j}$. The total ordering itself is called a filter.

In our case, the filtration is given by the sequence of Rips complexes with different proximity ϵ and we have the natural inclusion map defined along the sequence.

Let $D \subseteq \mathbb{R}^{n}$ be a point cloud. For $\epsilon>0$, let $\mathcal{R}_{\epsilon}(D)$ be the Rips complex of D at proximity ϵ. If we take coefficients in some field k, then we can view the chain complex of $\mathcal{R}_{\epsilon}(D)$ as a chain complex of k-modules, in other words, vector spaces over k. Let $\mathcal{R}_{\epsilon}^{m}(D)$ denote the m-chains of the complex $\mathcal{R}_{\epsilon}(D)$. To define persistent homology, we introduce the idea of varying ϵ. Let

$$
\epsilon_{1}<\epsilon_{2}<\cdots
$$

be a sequence of ϵ-values tending to ∞. We abbreviate $\mathcal{R}_{n}(D)$ for $\mathcal{R}_{\epsilon_{n}}(D)$. Then we have a sequence of vector spaces

$$
\mathcal{R}_{1}^{m}(D) \rightarrow \mathcal{R}_{2}^{m}(D) \rightarrow \mathcal{R}_{3}^{m}(D) \rightarrow \cdots
$$

and also a sequence of chain complexes

The diagram above commutes. In the diagram, each column is a chain complex, and the chain maps f_{i} connect chain complexes of successively larger simplicial complexes in the filtration together. Since the filtration of Rips complexes is linked by inclusion, the chain maps are induced by the inclusion maps.

Definition 12. A sequence of vector spaces $V_{1} \rightarrow V_{2} \rightarrow \cdots$ together with maps $f_{n}: V_{n} \rightarrow$ V_{n+1} is called a persistence vector space. A sequence of chain complexes connected by chain maps is called a persistence complex.

In the next section, we will show how a persistence vector space can be regarded as a graded module over the polynomial ring $k[x]$. This will allow us to use the structure theory for modules over $k[x]$ to classify persistence vector spaces. As an immediate consequence of this discussion, we have the following lemma.

Lemma 1. The homology spaces of a persistence complex are persistence vector spaces.

We therefore want to seek a classification of persistence vector spaces (which we abbreviate as persistence spaces from this point on). This can be done if we add some finiteness conditions.

Definition 13. A persistence space $V_{1} \xrightarrow{f_{1}} V_{2} \xrightarrow{f_{2}} \cdots$ is of finite type if

1. all the vector spaces V_{i} are finite dimensional
2. all but finitely many of the maps f_{i} are isomorphisms

Lemma 2. The chain spaces, and therefore the homology spaces, associated with the Rips complex of finite point cloud D are of finite type.

Proof. This is clear for Rips complexes themselves because the Rips complexes become stay for sufficiently large ϵ. Thus, for sufficiently large ϵ, the homology of the Rips complex is that of a point which completes the proof.

Definition 14. For $n_{1} \leq n_{2}, n_{1}, n_{2} \in \mathbb{N}$, the persistence space $Q\left(n_{1}, n_{2}\right)$ has vector spaces

$$
Q\left(n_{1}, n_{2}\right)_{i}=\left\{\begin{array}{l}
k \text { if } n_{1} \leq i \leq n_{2} \\
0 \text { otherwise }
\end{array}\right.
$$

with the maps between the k 's being isomorphisms and others zero. We allow $n_{2}=+\infty$.
Theorem 3. Every persistence space of finite type is isomorphic to a unique finite direct sum of spaces of the type $Q\left(n_{1}, n_{2}\right)$.

Proof. This is a direct result of the structure theorem which will be proved in the next section.

The barcode representation of such a space has one bar starting at n_{1} and ending at n_{2} for each $Q\left(n_{1}, n_{2}\right)$ summand.

To give an example, the figure above shows four points $(0,0),(0,1),(2,1),(2,0)$ and the Rips complex with different $\epsilon(1,2, \sqrt{5}$ respectively).

Figure 5: Rips complex with $\epsilon=1,2, \sqrt{5}$

The barcode representation of the homology groups for the figure above is shown below. The x-axis is ϵ. Each horizontal bar represents the birthdeath of a separate homology class. Longer bars correspond to more robust topological structure in the data.

Figure 6: Example of barcodes

The top panel shows H_{0}. At $\epsilon=0$ there are four bars for the four disconnected vertices. At $\epsilon=1$ two edges appear, reducing the number of connected components to two. This is why the top two bars die. At $\epsilon=2$, the vertices forms a rectangle and becomes fully connected, so one more bar dies. The remaining bar represents the one vertex that grabs everything to eventually become the fully connected component. It never dies. The bottom panel shows H_{1}. In the example above, a homology class corresponding to the hole is born at $\epsilon=2$, when the rectangle becomes connected. It persists until $\epsilon=\sqrt{5}$ and dies because the Rips complex becomes the solid tetrahedron. This is represented by the single short bar.

1.4 Structure Theorem for Persistence Spaces

Definition 15. Let R be a ring, M, N be R-modules. The direct sum $A \oplus B=\{(a, b): a \in$ $A, b \in B\}$ is a module under component wise operations: for any $a \in A, b \in B$ and $r \in R$, $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$ and $r(a, b)=(r a, r b)$. This extends to a direct sum of finitely many R-modules. However, for a direct sum of infinitely many R-modules, all elements have all but finitely many components equal to 0 .

Definition 16. A ring R is a graded ring, if there is a given family of subgroups $\left\{R_{n}\right\}_{n \in \mathbb{Z}}$ of R such that

1. $R=\bigoplus_{n} R_{n}$,
2. $R_{n} R_{m} \subseteq R_{n+m}$ for all n, m.

Note that any ring R is a graded ring with the trivial grading $R_{0}=R$ and $R_{n}=0$, for all $n \neq 0$. As another example, let k be a field and x_{1}, \cdots, x_{d} be variables over k. For $p=\left\{p_{1}, \cdots, p_{d}\right\} \in \mathbb{N}^{d}$, let $x^{p}=x_{1}^{p_{1}} \cdots x_{d}^{p_{d}}$. Then the polynomial ring $R=k\left[x_{1}, \cdots, x_{d}\right]=$ $\bigoplus_{n} R_{n}$ is a graded ring, where

$$
R_{n}=\left\{\sum_{p \in \mathbb{N}^{d}} r_{p} x^{p}: r_{p} \in R \text { and } p_{1}+\cdots+p_{d}=n\right\}
$$

This is called the standard grading on the polynomial ring $k\left[x_{1}, \cdots, x_{d}\right]$.
Definition 17. Let R be a graded ring and M an R-module. We say that M is a graded R-module if there is a given family of subgroups $\left\{M_{n}\right\}_{n \in \mathbb{Z}}$ of M such that

1. $M=\bigoplus_{n} M_{n}$,
2. $R_{n} M_{m} \subseteq M_{n+m}$ for all n, m.

An nonzero element $m \in M$ is homogeneous of degree n if $m \in M_{n}$, for some $n \in \mathbb{Z}$. We denote the degree of m by $\operatorname{deg} m$. If $m \in M$ is a nonzero element, then we can express it uniquely as a finite sum $\sum_{i} m_{i}$, where each m_{i} is homogeneous. These m_{i} are called the homogeneous components of m.

Theorem 4. let k be a field. A persistence space over k is a graded $k[x]$-module.

Proof. If we have a persistence space:

$$
V_{1} \xrightarrow{f_{1}} V_{2} \xrightarrow{f_{2}} \cdots
$$

Let $V=V_{1} \oplus V_{2} \oplus \cdots$. If we let k act by scalar multiplication is the usual way and $x \cdot\left(v_{1}, v_{2}, \cdots\right)=\left(0, f_{1}\left(v_{1}\right), f_{2}\left(v_{2}\right), \cdots\right)$, then V becomes a graded module over $k[x]$ with homogeneous parts V_{1}, V_{2}, \cdots. For the other directions, if we have a graded $k[x]$-module V with homogeneous parts V_{1}, V_{2}, \cdots, then we can get a sequence of vector spaces $V_{1} \rightarrow V_{2} \rightarrow$ \cdots and the maps between the vector spaces are defined by the action of x on V. Because x is a homogeneous element in $k[x]$ of degree one, multiplication by x must necessarily be represented by linear maps from V_{j} to V_{j+1}.

Definition 18. Let M be a graded R-module and n an integer. M shifted by n, denoted by $M(n)$, is defined to be equal to M as an R-module, but with its grading defined by $M(n)_{k}=M_{n+k}$.

Definition 19. Let R be a graded ring and M, N graded R-modules. Let $f: M \rightarrow N$ be an R-module homomorphism. Then f is a graded homomorphism if $f\left(M_{n}\right) \subseteq N_{n}$ for all n. In addition, f is a graded isomorphism if f is a graded homomorphism and an isomorphism.

From now on, when we say two graded modules are isomorphic, we always mean graded isomorphic.

Proposition 1. Let R be a graded ring and M, N graded R-modules. Let $f: M \rightarrow N$ be an R-module graded isomorphism, then the following are true:

1. $f\left(M_{n}\right)=N_{n}$ for all n,
2. f^{-1} is also a graded isomorphism.

Proof. 1. Pick an arbitrary element $b \in N_{n}$. Since f is an isomorphism, there exists $a \in M$ such that $f(a)=b$. Write a as a finite sum $a=\sum_{i} a_{i}$ where each a_{i} is homogeneous.

Since f is a graded homomorphism, $f(a)=\sum_{i} f\left(a_{i}\right) \in N_{n}$ and $f\left(a_{i}\right) \in N_{i}$. Since $N_{i} \cap N_{j}=\{0\}$ if $i \neq j$, we get that $f\left(a_{i}\right)=0$ and thus $a_{i}=0$ for all $i \neq n$. Hence, $a=a_{n} \in M_{n}$.
2. We want to show that that $f^{-1}\left(N_{n}\right) \subseteq M_{n}$. Pick an arbitrary element $a \in f^{-1}\left(N_{n}\right)$. Then $f(a) \in N_{n}=f\left(M_{n}\right)$ by (1). Then $f(a)=f\left(a^{\prime}\right)$ for some $a^{\prime} \in M_{n}$. Since f is an isomorphism and thus one-to-one, $a=a^{\prime} \in M_{n}$.

Definition 20. Let R be a ring, M be a graded R-module. If there is a function from I to \mathbb{Z} which maps i to n_{i} and a graded isomorphism

$$
f: \bigoplus_{i \in I} R\left(n_{i}\right) \rightarrow M
$$

then M is free.
Definition 21. Let R be a ring, M be a finitely generated graded R-module. Let $\left\{m_{1}, \cdots, m_{n}\right\}$ be a generating set of M. If this set is also linearly independent, then it is a basis of M. If in addition, every element in the set is homogeneous, we call the set a homogeneous basis of M. The rank of M is the cardinality of a basis of M (i.e. the number of elements in M).

Proposition 2. Let R be a ring, M be a graded R-module. Then M is free if and only if it has a homogeneous basis.

Proof. " \Longrightarrow "Assume that M if free. Then by definition there exists an isomorphism $f: \bigoplus_{i \in I} R\left(n_{i}\right) \rightarrow M$. Let e_{i} be the element which has 1 in $R\left(n_{i}\right)$-coordinate and 0 elsewhere and $m_{i}=f\left(e_{i}\right)$. Clearly, $\left\{e_{i}: i \in I\right\}$ is a basis for $\bigoplus_{i \in I} R\left(n_{i}\right)$. We will show that $\left\{m_{i}: i \in I\right\}$ is a basis for M. Since f is graded and e_{i} are homogeneous for all i, m_{i} are homogeneous for all i. If $\sum_{i} r_{i} m_{i}=0$ where $r_{i} \in R$ for all i. Since f is a graded isomorphism, f^{-1} is also a graded isomorphism by proposition 1 . Thus,

$$
f^{-1}\left(\sum_{i} r_{i} m_{i}\right)=\sum_{i} r_{i} f^{-1}\left(m_{i}\right)=\sum_{i} r_{i} e_{i}=f(0)=0 .
$$

Since the set of all e_{i} is linearly independent, we get that $r_{i}=0$ for all i which means that $\left\{m_{i}: i \in I\right\}$ is also linearly independent. To show that $\left\{m_{i}: i \in I\right\}$ generates M, take an arbitrary element $m \in M$. Since f^{-1} is an isomorphism and $\left\{e_{i}: i \in I\right\}$ generates $\bigoplus_{i \in I} R\left(n_{i}\right)$, we have

$$
m=f\left(f^{-1}(m)\right)=f\left(\sum_{i} r_{i} e_{i}\right)=\sum_{i} r_{i} f\left(e_{i}\right)=\sum_{i} r_{i} m_{i}
$$

Therefore, $\left\{m_{i}: i \in I\right\}$ is a linearly independent generating set, namely, a basis for M.
$" \Longleftarrow "$ Suppose that M is generated by a linearly independent collection of homogeneous elements $\left\{m_{i}: i \in I\right\}$. Consider the space $\bigoplus_{i \in I} R\left(-\operatorname{deg} m_{i}\right)$. Let e_{i} be the element which has 1 in $R\left(-\operatorname{deg} m_{i}\right)$-coordinate and 0 elsewhere. Clearly, $\left\{e_{i}: i \in I\right\}$ is a basis for $\bigoplus_{i \in I} R\left(-\operatorname{deg} m_{i}\right)$. Define a homomorphism f by

$$
\begin{aligned}
f: \bigoplus_{i \in I} R\left(-\operatorname{deg} m_{i}\right) & \rightarrow M \\
e_{i} & \mapsto m_{i} .
\end{aligned}
$$

We first show that f is an isomorphism. Take distinct elements $r, r^{\prime} \in \bigoplus_{i \in I} R\left(-\operatorname{deg} m_{i}\right)$. Then since $\left\{e_{i}: i \in I\right\}$ is a basis, we have $r=\sum_{i} r_{i} e_{i}$ and $r^{\prime}=\sum_{i} r_{i}^{\prime} e_{i}$ where $r_{i} \neq r_{i}^{\prime}$ for some i. Then

$$
\begin{aligned}
& f(r)=f\left(\sum_{i} r_{i} e_{i}\right)=\sum_{i} r_{i} f\left(e_{i}\right)=\sum_{i} r_{i} m_{i} \\
& f\left(r^{\prime}\right)=f\left(\sum_{i} r_{i}^{\prime} e_{i}\right)=\sum_{i} r_{i}^{\prime} f\left(e_{i}\right)=\sum_{i} r_{i}^{\prime} m_{i} .
\end{aligned}
$$

Since $\left\{m_{i}: i \in I\right\}$ is a basis for M and $r_{i} \neq r_{i}^{\prime}$ for some $i, f(r) \neq f\left(r^{\prime}\right)$. Therefore f is injective. Take an arbitrary element $m \in M$. Then has a unique decomposition $m=\sum_{i} r_{i} m_{i}$. And we have $f\left(\sum_{i} r_{i} e_{i}\right)=\sum_{i} r_{i} f\left(e_{i}\right)=\sum_{i} r_{i} m_{i}=m$. Therefore, f is surjective. To sum up, f is both injective and surjective which implies that f is a isomorphism.

And by the way we define the homomorphism f, f is automatically graded. Therefore, f is a graded isomorphism and thus M is free.

Note that although a free graded R-module M has a homogeneous basis, the rank of a M is not necessarily well-defined. The rank is well-defined if and only if every basis of M has the same cardinality. This is true if R is commutative. Before proving this fact, we need to define what a maximal ideal is.

Definition 22. Let R be a ring and I an ideal of R such that $I \neq R$. I is a maximal ideal of R if for any ideal J with $I \subsetneq J$, either $J=I$ or $J=R$.
we will also take for granted Zorn's lemma without proof. The lemma implies the following.
Lemma 3. Every nontrivial ring R contains a maximal ideal.
Proposition 3. Let R be a commutative graded ring, M be a finitely generated and free graded R-module. Then every basis of M has the same cardinality.

Proof. Let I be an ideal in R. Then $M / I M$ is a free R / I module. Moreover, by Zorn's lemma, we can take I to be a maximal ideal in R. Now we will show that R / I is a field. If $[x] \neq 0$ in R / I, this means that $x \notin I$. Therefore $\langle I, x\rangle$ is an ideal in R which contains I. By definition of a maximal ideal, $\langle I, x\rangle=R$ and thus contains the 1 . Hence, there exists $y \in R$ such that $x y-1 \in I$. This means that $[y]$ is the inverse of $[x]$ in R / I. Therefore, R / I is a field. Therefore, $M / I M$ is a vector space over R / I and the rank of $M / I M$ is well-defined. Since M is free and finitely generated, $M \cong R^{n}$ for some n. Thus, $M / I M \cong(R / I)^{n}$. Therefore, the rank of M is also well-defined and is the same as the rank of the vector space M/IM.

Definition 23. Let R be a ring, $M=\oplus_{n} M_{n}$ be a graded R-module and N a submodule of M. For each $n \in \mathbb{Z}$, let $N_{n}=N \cap M_{n}$. If the family of subgroups $\left\{N_{n}\right\}$ makes N into a graded R-module, we say that N is a graded submodule of M. Note that for any submodule N of $M, R_{n} N_{m} \subseteq N_{n+m}$. Thus, N is graded if and only if $N=\bigoplus_{n} N_{n}$.

Proposition 4. Let R be a graded ring, M a graded R-module and N a graded submodule of M. Then M / N is a graded R-module, and graded by

$$
M / N=\bigoplus_{n}\left(M / N \cap M_{n}\right) .
$$

Lemma 4. Let R be a graded principal ideal domain, M be a graded, finitely generated, and free R-module of rank 1 and N be a graded submodule of M. Then N is also free of rank 1 .

Proof. By definition, M is generated by a single element m of degree t for some $t \in \mathbb{Z}$. Define $S=\{s \in R: s m \in N\}$. Note that if $s_{1}, s_{2} \in S$, then $s_{1} m, s_{2} m \in N$ and $\left(s_{1}+s_{2}\right) m \in N$ which means that $s_{1}+s_{2} \in S$. Also if $s \in S$ and $r \in R$, then $s m \in N$ and $r s m \in N$ which means that $r s \in S$. Hence, S is an ideal in R. Because R is a pid, $S=\langle s\rangle$ for some $s \in R$. Thus, N generated by $s m$. Thus N is generated by $s m$. Next we will show that s is homogeneous. Assume that s is not homogeneous, then we can write s as a sum of at least two homogeneous components of different degree $s=s_{1}+\cdots+s_{k}$. Suppose $\operatorname{deg} s_{1}<\cdots<\operatorname{deg} s_{k}$. Every element $r \in R$ is also of similar form $r=r_{1}+\cdots+r_{l}$ where $\operatorname{deg} r_{1}<\cdots<\operatorname{deg} r_{l}$. So every element in N has the form $r s m=r_{1} s_{1} m+\cdots+r_{l} s_{k} m$ and $\operatorname{deg} r_{1} s_{1} m<r_{l} s_{k} m$. Therefore $N_{n}=M_{n} \cap N=\{0\}$ and $N=\bigoplus_{n} N_{n}=\{0\}$ which is a contradiction. Hence s is homogeneous and N is isomorphic to $R(-\operatorname{deg} s m)$.

Lemma 5. Let R be a ring. If $f: M \rightarrow N$ is a graded homomorphism of graded R-modules, then ker f is a graded submodule of M and $\operatorname{im} f$ is a graded submodule of N.

Proof. Since f is a homomorphism of R-modules, ker f is submodule of M and $\operatorname{im} f$ is a submodule of N. It suffices to show that $\operatorname{ker} f=\bigoplus_{n}\left(\operatorname{ker} f \cap M_{n}\right)$ and that $\operatorname{im} f=$ $\bigoplus_{n}\left(\operatorname{im} f \cap N_{n}\right)$.

Let $m \in \operatorname{ker} f$. We can write m as a sum $m=\sum_{i=1}^{k} m_{i}$ where $m_{i} \in M_{i}$. Note that

$$
0=f(m)=f\left(\sum_{i=1}^{k} m_{i}\right)=\sum_{i=1}^{k} f\left(m_{i}\right)
$$

Since the components m_{i} are homogeneous of different degrees and f is graded, $f\left(m_{i}\right)$ are also homogeneous of different degrees in N. Therefore, we must have $f\left(m_{i}\right)=0$ for all i which means that $m_{i} \in \operatorname{ker} f$ for all i. Therefore, $\operatorname{ker} f \subseteq \bigoplus_{n}\left(\operatorname{ker} f \cap M_{n}\right)$. For the other direction, let $m \in \bigoplus_{n}\left(\operatorname{ker} f \cap M_{n}\right)$. Then $m=\sum_{i=1}^{k} m_{i}$ where each $m_{i} \in\left(\operatorname{ker} f \cap M_{n}\right)$. Since f is a homomorphism,

$$
f(m)=f\left(\sum_{i=1}^{k} m_{i}\right)=\sum_{i=1}^{k} f\left(m_{i}\right)=0
$$

which means that $m \in \operatorname{ker} f$. Therefore, $\operatorname{ker} f=\bigoplus_{n}\left(\operatorname{ker} f \cap M_{n}\right)$.
Let $n \in \operatorname{im} f$. We can write n as a sum $n=\sum_{i=1}^{k} n_{i}$ where $n_{i} \in N_{i}$. As $n \in \operatorname{im} f$, there exists $m \in M$ such that $f(m)=n$. Say $m=\sum_{j=1}^{l} m_{j}$ where $m_{j} \in M_{j}$. Then,

$$
n=f(m)=f\left(\sum_{j=1}^{l} m_{j}\right)=\sum_{j=1}^{l} f\left(m_{j}\right) .
$$

Since the decomposition is unique, we must have $k=l$ and (after reordering) $f\left(m_{i}\right)=n_{i}$ for all i. Thus $n_{i} \in \operatorname{im} f$ for all i which implies that $\operatorname{im} f \subseteq \bigoplus_{n}\left(\operatorname{im} f \cap N_{n}\right)$. For the other direction, let $n \in \bigoplus_{n}\left(\operatorname{im} f \cap N_{n}\right)$. Then $n=\sum_{i=1}^{k} n_{i}$ where each $n_{i} \in\left(\operatorname{imf} \cap N_{n}\right)$. Then for each i there exists m_{i} such that $f\left(m_{i}\right)=n_{i}$. Let $m=\sum_{i=1}^{k} m_{i}$. Since f is a homomorphism,

$$
f(m)=f\left(\sum_{i=1}^{k} m_{i}\right)=\sum_{i=1}^{k} f\left(m_{i}\right)=\sum_{i=1}^{k} n_{i}=n
$$

which means that $n \in \operatorname{im} f$. Therefore, $\operatorname{im} f=\bigoplus_{n}\left(\operatorname{im} f \cap N_{n}\right)$.
Lemma 6. Let R be a commutative ring, $\left\{M_{i}: i=1, \cdots, n\right\}$ be a finite collection of graded R-modules. Then $M=\bigoplus_{i=1}^{n} M_{i}$ is a graded R-module. Moreover, if each M_{i} if free of rank r_{i}, then M is free of rank $\sum_{i} r_{i}$.

Proof. M is obviously a R-module. We need to check that M is graded. For each i, let M_{i} be graded by $M_{i}=\bigoplus_{j} M_{i_{j}}$. Then $M=\bigoplus_{i}\left(\bigoplus_{j} M_{i_{j}}\right)=\bigoplus_{j}\left(\bigoplus_{i} M_{i_{j}}\right)$. If we fix j and pick
$m \in \bigoplus_{i} M_{i_{j}}$, then $m=\left(m_{1}, \cdots, m_{n}\right)$ where $m_{i} \in M_{i_{j}}$ for each i. Take an arbitrary $r \in R$, $r m=\left(r m_{1}, \cdots, r m_{n}\right)$ and for each $i, r m_{i} \in M_{i_{j+1}}$. Thus $r m \in \bigoplus_{i} M_{i_{j+1}}$ which means that M is graded by $M=\bigoplus_{j}\left(\bigoplus_{i} M_{i_{j}}\right)$.

Moreover, if each M_{i} if free of rank r_{i}, then for each i, there exists a basis B_{i} of M_{i}. Then $\cup B_{i}$ is a basis of M and hence M is free of rank $\sum_{i} r_{i}$.

Lemma 7. Given a short exact sequence with maps, q and r as follow:

$$
0 \longrightarrow A \xrightarrow{p} B \xrightarrow{r} C \longrightarrow 0
$$

If there exists a map $u: C \rightarrow B$ such that $r u$ is the identity on C, then B is isomorphic to the direct sum of A and C.

Proof. Every element in B is in the set ker $r+\operatorname{im} u$ since for all b in $B, b=(\operatorname{bur}(b))+u r(b)$. Since if $r(b)=0$ and $u(c)=b$, then $0=r u(c)=c$, the intersection of $\operatorname{ker} r$ and im u is 0 .

By exactness, $\operatorname{im} q=\operatorname{ker} r$, and since q is injective, $\operatorname{im} q$ is isomorphic to A, so A is isomorphic to ker r. Since $r u$ is a bijective, u is injective, and thus $\operatorname{im} u$ is isomorphic to C. So B is the direct sum of A and C.

Lemma 8. Let k be a field and $R=k[x]$ be a polynomial ring with the standard grading, M be a finitely generated free R-module of rank n and N be a graded submodule of M. Then

1. N is free of rank $d \leq n$,
2. There exist a homogeneous basis $\left\{m_{1}, m_{2}, \cdots, m_{n}\right\}$ of M, and nonzero homogeneous elements $\left\{r_{1}, r_{2}, \cdots, r_{d}\right\} \in R$ with $r_{i} \mid r_{i+1}$ for $i=1, \cdots, d-1$ such that $\left\{r_{1} m_{1}, r_{2} m_{2}, \cdots\right.$, $\left.r_{d} m_{d}\right\}$ is a homogeneous basis of N.

Proof. We prove the theorem by induction on n. The case when $n=1$, the theorem holds by lemma 2. Assume the theorem holds for all modules of rank $\leq n-1$. We have $M \cong$ $\bigoplus_{i=1}^{n} k[x]\left(-t_{i}\right)$ where all t_{i} are integers. Therefore, $\left\{m_{1}, \cdots, m_{n}\right\}$ is a basis for M where each m_{i} is homogeneous of degree t_{i}. If $N=\{0\}$, we are done. If $N \neq\{0\}$, consider the projections

$$
\pi_{i}: M \rightarrow k[x]\left(t_{i}\right)
$$

It is easy to check that all these projections are graded homomorphisms. Since $N \neq\{0\}$, $\pi_{i}(N) \neq\{0\}$ for some i. Thus, by lemma $3, \pi_{i}(N)$ is a nonzero graded submodule of $k[x]\left(t_{i}\right)$, which by lemma 2 , is free of rank ≤ 1 and generated by some homogeneous element $x^{d_{i}} \in$ $k[x]\left(t_{i}\right)$. Consider the exact sequence:

$$
0 \longrightarrow \operatorname{ker} \pi_{i} \cap N \longrightarrow N \underset{r_{i} \longrightarrow}{\left.\pi_{i}\right|_{N}} \pi_{i}(N) \longrightarrow 0
$$

Note that $\pi_{i}\left(x^{d_{i}} m_{i}\right)=x^{d_{i}}$. Define the homomorphism φ such that $\varphi\left(x^{d_{i}}\right)=x^{d_{i}} m_{i}$. Since $\pi_{i}(N)$ is generated by $x^{d_{i}}, \varphi$ is well-defined and $\varphi\left(\pi_{i}(N)\right)$ is generated by $x^{d_{i}} m_{i}$. It is easy to check that $\pi_{i} \circ \varphi$ is the identity on $\pi_{i}(N)$. Thus, by the splitting lemma, N is isomorphic to $\left(\operatorname{ker} \pi_{i} \cap N\right) \oplus \pi_{i}(N)$.

We can check that ker $\pi_{i} \cap N$ is a graded submodule of $\operatorname{ker} \pi_{i}$. Since ker π_{i} has rank $\leq n-1$, by the induction hypothesis, ker $\pi_{i} \cap N$ is free of rank $\leq n-1$. By lemma $4, N$ is free of rank $\leq n$. Note that ker π_{i} is a free graded R-module generated by $\left\{m_{1}, \cdots, m_{i-1}, m_{i+1}, \cdots, m_{n}\right\}$. Thus by our induction assumption, there exist homogeneous elements $x^{d_{1}}, \cdots, x^{d_{i-1}}, x^{d_{i+1}}, \cdots, x^{d_{n}} \in$ R such that $\left\{x^{d_{1}} m_{1}, \cdots, x^{d_{i-1}} m_{i-1}, x^{d_{i+1}} m_{i+1}, \cdots, x^{d_{n}} m_{n}\right\}$ is the homogeneous basis for $\operatorname{ker} \pi_{i} \cap N$. Since $\varphi\left(\pi_{i}(N)\right)$ is generated by $x^{d_{i}} m_{i}$, we get that $\left\{x^{d_{1}} m_{1}, \cdots, x^{d_{n}} m_{n}\right\}$ is the homogeneous basis of N. By reordering, the divisibility condition is satisfied.

Note that the homogeneous elements $\left\{r_{1}, r_{2}, \cdots, r_{d}\right\} \in R$ are just powers of x.
Lemma 9. Let R be a graded ring, M, M^{\prime} graded R-modules. Let $\varphi: M \rightarrow M^{\prime}$ be a surjective graded homomorphism with kernel N. Let $\pi: M \rightarrow M / N$ the graded quotient homomorphism. Then there exists a graded isomorphism $\tilde{\varphi}: M / N \rightarrow M^{\prime}$ satisfying $\varphi=\tilde{\varphi} \circ \pi$. In other words, $M / N \cong M^{\prime}$.

Proof. The homomorphism theorem for modules gives us an isomorphism of R-modules $\tilde{\varphi}: M / N \rightarrow M^{\prime}$ satisfying $\varphi=\tilde{\varphi} \circ \pi$. We only need to check that $\tilde{\varphi}$ is graded. Let M be graded by $M=\bigoplus_{n} M_{n}, M^{\prime}$ be graded by $M^{\prime}=\bigoplus_{n} M_{n}^{\prime}$. Then

$$
\tilde{\varphi}\left(M_{n} / N \cap M_{n}\right)=\tilde{\varphi}\left(\pi\left(M_{n}\right)\right)=\varphi\left(M_{i}\right) \subseteq M_{i}^{\prime}
$$

Lemma 10. Let R be a ring, M_{1}, \cdots, M_{n} be graded R-modules and $N_{i} \subseteq M_{i}$ graded submodules. Then

$$
\left(M_{1} \oplus \cdots \oplus M_{n}\right) /\left(N_{1} \oplus \cdots \oplus N_{n}\right) \cong M_{1} / N_{1} \oplus \cdots \oplus M_{n} / N_{n} .
$$

Proof. Consider the homomorphism of $M_{1} \oplus \cdots \oplus M_{n}$ onto $M_{1} / N_{1} \oplus \cdots \oplus M_{n} / N_{n}$ defined by $\left(m_{1}, \cdots, m_{n}\right) \mapsto\left(m_{1}+N 1, \cdots, m_{n}+N_{n}\right)$. The kernel of this map is $N_{1} \oplus \cdots \oplus N_{n} \subseteq$ $M_{1} \oplus \cdots \oplus M_{n}$, so by the lemma 5 ,

$$
\left(M_{1} \oplus \cdots \oplus M_{n}\right) /\left(N_{1} \oplus \cdots \oplus N_{n}\right) \cong M_{1} / N_{1} \oplus \cdots \oplus M_{n} / N_{n} .
$$

Theorem 5. (Structure Theorem for Graded Modules Over Polynomial Rings)

Let $k[x]$ be a polynomial ring with the natural grading and M a finitely generated graded $k[x]$-module of rank n. Then

$$
M \cong k[x]\left(t_{1}\right) /\left\langle x^{d_{1}}\right\rangle \oplus \cdots \oplus k[x]\left(t_{m}\right) /\left\langle x^{d_{m}}\right\rangle \oplus k[x]\left(t_{m+1}\right) \oplus \cdots \oplus k[x]\left(t_{n}\right)
$$

where $x^{d_{i}} \mid x^{d_{i+1}}$ for $i=1, \cdots, m-1$. In other words, $d_{i} \leq d_{i+1}$ for $i=1, \cdots, m-1$.

Proof. Let $\left\{m_{1}, \cdots, m_{n}\right\}$ be a homogeneous generating set of M. We can find such a set by taking the generators to be the elements of M_{n}. Then there exists a surjective graded homomorphism $f: \bigoplus_{t=1}^{n} k[x]\left(t_{i}\right) \rightarrow M$. By lemma 3, ker f is as submodule of $\bigoplus_{t=1}^{n} k[x]\left(t_{i}\right)$. Since $\bigoplus_{t=1}^{n} k[x]\left(t_{i}\right)$ is a free $k[x]$-module, by lemma 6 , there exists a basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of $\bigoplus_{t=1}^{n} k[x]\left(t_{i}\right)$ and homogeneous elements $x^{d_{1}}, \cdots, x^{d_{m}} \in k[x]$ such that $\left\{x^{d_{1}} e_{1}, \cdots, x^{d_{m}} e_{m}\right\}$ is a basis of $\operatorname{ker} f$. By lemma 7 , we have $M \cong \bigoplus_{t=1}^{n} k[x]\left(t_{i}\right) / \operatorname{ker} f$. The theorem follows from lemma 8, taking $r_{i}=0$ for $m<i \leq n$.

Using Theorem 4, this translates immediately yo the structure theorem of persistence space of finite type, which is Theorem 3 in the previous section.

2 Computational Methods

2.1 Smith Normal Form Codes

While learning the technique of topological data analysis, we have developed an program in C++ which computes the Smith normal form of matrices over polynomial rings.

Definition 24. Let A be a nonzero $m \times n$ matrix over a principal ideal domain R. There exist invertible $m \times m$ and $n \times n$-matrices S, T so that the product SAT is

$$
\left(\begin{array}{ccccccc}
a_{1} & 0 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & a_{2} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \ddots & & & & 0 \\
\vdots & \vdots & & a_{r} & & & \vdots \\
\vdots & \vdots & & & 0 & & \vdots \\
\vdots & \vdots & & & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & \cdots & 0
\end{array}\right)
$$

and the diagonal elements α_{i} satisfy $\alpha_{i} \mid \alpha_{i+1} \forall 1 \leq i<r$. This matrix is the Smith normal form of the matrix A.

Why is the computation of Smith norm form involved in topological data analysis? Consider an R-module M given by n generators and m relations. Then M is a quotient of R^{n} by $T\left(R^{m}\right)$, where T is the matrix of relations. Putting this matrix in Smith normal form can be achieved by row and column operations, i.e. by basis changes in R^{n} and R^{m}, which do not affect the isomorphism class of the module. Thus, the existence of Smith normal form gives a proof of the ungraded analog of the structure theorem, and its computation is the central algorithmic step in computing homology with coefficients in a principal ideal domain.

The procedure of computing the Smith normal form over a Euclidean domain such as $k[x]$ involves three steps.

Step I: Suppose we take a non-zero matrix A as the input. By interchanging the rows and columns, we can move an element of smallest degree, as the $(1,1)^{t h}$ element. Now bring the first row, to the form $\left(a_{11}, 0, \cdots, 0\right)$ as follows. If an element in the first row is a multiple of a_{11}, we subtract a suitable multiple of the first column from that column. Otherwise, if
$a_{1 k}$ is not a multiple of a_{11}, then we write $a_{1 k}=q a_{11}+r$ where $\operatorname{deg}(r)<\operatorname{deg}\left(a_{11}\right)$. Then we subtract p times of the first column from the $k^{\text {th }}$ column and interchange the first column and the $k^{\text {th }}$ column. Now repeat the process, until we get all zeroes in the first row, except the first one. We can do similar row operations on the first column to obtain a matrix of the form,

$$
\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & b_{m 1} & \cdots & b_{m n}
\end{array}\right)
$$

Step II: Now, if all the entries $b_{i j}$ are multiples of a_{11}, we apply step I to the matrix $B=\left[b_{i j}\right]$. Otherwise, if the entry $b_{i j}$ is not a multiple of a_{11}, then we add the $i^{\text {th }}$ row to the first row. Repeat the step I to make all other entries in the first row and column zero. Since, each time we are reducing the degree of a_{11}, we must get a matrix of the form above such that $a_{1} 1$ divides all $b_{i j}$ in finite steps.

Step III: Repeat steps I and II to the matrix $B=\left[b_{i j}\right]$.
To give an example, let us consider the matrix

$$
A=\left(\begin{array}{cc}
x^{2} & x-1 \\
x & x^{2}
\end{array}\right)
$$

Pick one of the polynomials with the lowest degree. In our case, a_{12} and a_{21} both have lowest degrees, so we can pick either one. Let's Pick A_{12}.

Swap columns so that the pivot becomes the $(1,1)^{\text {th }}$ element. In our case, we need to swap the first and the second columns. We now have

$$
\left(\begin{array}{cc}
x-1 & x^{2} \\
x^{2} & x
\end{array}\right) .
$$

Write all the polynomials in the first row as $a_{1 k}=q a_{11}+r$ where $\operatorname{deg}(r)<\operatorname{deg}(a 11)$. In our case:

$$
\left(\begin{array}{cc}
x-1 & (x-1)(x+1)+1 \\
x^{2} & x
\end{array}\right)
$$

Then subtract $x+1$ times the first column from second column and then interchange those two columns. Now we have

$$
\left(\begin{array}{cc}
1 & x-1 \\
-x^{3}-x^{2}+x & x^{2}
\end{array}\right)
$$

Then we subtract $x-1$ times the first column from second column to bring a_{12} to 0 .

$$
\left(\begin{array}{cc}
1 & 0 \\
-x^{3}-x^{2}+x & -x^{4}+x^{2}-x
\end{array}\right) .
$$

Then we subtract $-x^{3}-x^{2}+x$ times the first row from second row to bring a_{21} to 0 .

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -x^{4}+x^{2}-x
\end{array}\right)
$$

Finally, we need to check that a_{11} divides a_{22}, which is does in our case. Therefore the matrix above is the Smith normal form for A.

The code that I wrote to implement this algorithm is shown in the appendix.

2.2 Algorithms

In this section, we will first explain the procedure of an algorithm which computes the persistent homology, then give an example and finally explain why this algorithm works. The procedure involves three steps.

Step I: We first list all simplices that appear at some point in the filtration. Then sort them in increasing degree and dimension. The degree of a simplex is the proximity parameter ϵ at which it appears in the filtration of Rips complex. It does not matter if we sort by degree first or dimension first. Label all the simplices starting with index 0. Every simplex is associated with a boolean variable which is called "pivot mark" and is initialized to all False. Every simplex is also associated with a pointer which is initialized to Null.

Step II: Repeat the following steps for every simplex in index order:

1. Write out its boundary.
2. "Remove pivots" from the boundary, this has two stages:
(a) Look through the boundary. If any simplex appears whose "pivot mark" is False, replace it by 0 in the boundary.
(b) If the resulting reduced boundary is 0 , we are done. Otherwise, iterate the following process until te reduced boundary becomes 0 or the algorithm tells us to stop.
i. Select the simplex in the reduced boundary whose index is greatest. Call this simplex z.
ii. Look at the pointer for z. If the pointer is Null, then exit the loop. If the pointer is not Null, subtract an appropriate multiple of the reduced boundary of the the simplex to which the pointer points to zero out the coefficient of z in the reduced boundary. Now go back to step i.
3. The "remove pivots" step returns a reduced boundary for the current simplex. If this is 0 , set the "pivot mark" to True. If z is the simplex of highest index in the reduced boundary, set the pointer of z to the index of the current simplex.

Step III: Go through the simplices whose pointer mark is True. Let k be the current simplex. If the pointer of k is Null, add to the homology in dimension $\operatorname{dim} k$ an interval from $\operatorname{deg} k$ to ∞. If the pointer of k points to a simplex l, then add to the homology in dimension $\operatorname{dim} k$ an interval from $\operatorname{deg} k$ to $\operatorname{deg} l$.

Let's consider an example which we have seen in section 1.3.

Figure 7: Example of the algorithm

Label the upper left vertex by a, the upper right vertex by b, the lower left vertex by c and the lower right vertex by d. We first go through step I and write out all the information we have in the table below. In this example, sorting by degree first and by dimension first give us the same ordering. In general, when the algorithm is computing a simplex, all its subsimplices have already been considered be the algorithm no matter we sort by degree first or dimension first, because if a simplex appear at time t, all of its subsimplices must appear at times smaller than or equal to t.

Index	Simplex	Degree	Pivot Mark	Boundary	Pointer
0	a	0	F	0	N
1	b	0	F	0	N
2	c	0	F	0	N
3	d	0	F	0	N
4	$a c$	1	F	$a-c$	N
5	$b d$	1	F	$b-d$	N
6	$a b$	2	F	$a-b$	N
7	$c d$	2	F	$c-d$	N
8	$a d$	$\sqrt{5}$	F	$a-d$	N
9	$b c$	$\sqrt{5}$	F	$b-c$	N
10	$a b c$	$\sqrt{5}$	F	$a b-a c+b c$	N
11	$a b d$	$\sqrt{5}$	F	$a b-a d+b d$	N
12	$a c d$	$\sqrt{5}$	F	$a c-a d+c d$	N
13	$b c d$	$\sqrt{5}$	F	$b c-b d+c d$	N
14	$a b c d$	$\sqrt{5}$	F	$a b c-a b d+$	N
14			$a d c-b c d$	F	

Table 1: Initial state

The boundaries of simplices a, b, c, d are already 0 , so we set the "pivot" mark to True and we are done with these simplices.

For simplex $a c$, its boundary $a-c$ contains no simplices with "pivot mark" False. The simplex with the greatest index is c. The "pivot mark" of c is True and the pointer is Null, so we are done with the "remove pivots" step. Then we set the pointer of c to 4 . Similar procedures happen for simplices $b d$ and $a b$. The boundaries of $b d, a b$ are unchanged and we set the pointer of d to 5 and b to 6 .

For simplex $c d$, its boundary $c-d$ contains no simplices with "pivot mark" False. The simplex with the greatest index is d. The "pivot mark" of d is True and the pointer is 5 . The reduced boundary of simplex number 5 is $b-d$. So we subtract $b-d$ from $c-d$ to eliminate d. The reduced boundary of $c d$ is now $c-b$. The simplex with the greatest index is now c. The pointer of c is 4 , so we subtract -1 times $a-c$ from $c-b$. The reduced boundary is now $a-b$. The simplex with the greatest index is now b. The pointer of b is 6 , so we subtract $a-b$ from $a-b$. The reduced boundary of $c d$ is now 0 , so we need to set the "pivot mark" of $c d$ to True. Similar procedures happen for simplices $a d$ and $b c$. Their
boundaries are reduced to 0 and we need to set their "pivot mark" to True. The updated table is presented below.

Index	Simplex	Degree	Pivot Mark	Boundary	Reduced Boundary	Pointer
0	a	0	T	0	0	N
1	b	0	T	0	0	6
2	c	0	T	0	0	4
3	d	0	T	0	0	5
4	$a c$	1	F	$a-c$	$a-c$	N
5	$b d$	1	F	$b-d$	$b-d$	N
6	$a b$	2	F	$a-b$	$a-b$	N
7	$c d$	2	T	$c-d$	0	N
8	$a d$	$\sqrt{5}$	T	$a-d$	0	N
9	$b c$	$\sqrt{5}$	T	$b-c$	0	N
10	$a b c$	$\sqrt{5}$	F	$a b-a c+b c$		N
11	$a b d$	$\sqrt{5}$	F	$a b-a d+b d$		N
12	$a c d$	$\sqrt{5}$	F	$a c-a d+c d$		N
13	$b c d$	$\sqrt{5}$	F	$b c-b d+c d$		N
14	$a b c d$	$\sqrt{5}$	F	$a b c-a b d+$		N
$14 c-b c d$		0				

Table 2: State after consider 0- and 1-simplices

For simplex $a b c$, its boundary is $a b-a c+b c$ and $a b, a c$ both have "pivot mark" False, so we replace them with 0 . The reduced boundary is now $b c$. The simplex with the greatest index is $b c$. The "pivot mark" of $b c$ is True and the pointer is Null, so we are done with the "remove pivots" step. Then we set the pointer of $b c$ to 10 . Similar procedures happen for simplices $a b d$ and $a b$. The boundaries of $b d, a b$ are reduced to $-a d, c d$ and we set the pointer of $a d$ to 11 and $c d$ to 12 . For simplex $b c d$, if we follow the steps correctly, the boundary will be reduced to 0 and we need to set its "pivot mark" to True.

For the simplex $a b c d$, its boundary is $a b c-a b d+a d c-b c d$. We reduce the boundary to -bcd because all the other simplices appeared in the boundary have "pivot mark" True. The simplex with the greatest index is $b c d$. The "pivot mark" of $b c d$ is True and the pointer is Null, so we are done with the "remove pivots" step. Then we set the pointer of bcd to 14 . The updated table is presented below.

Index	Simplex	Degree	Pivot Mark	Boundary	Reduced Boundary	Pointer
0	a	0	T	0	0	N
1	b	0	T	0	0	6
2	c	0	T	0	0	4
3	d	0	T	0	0	5
4	$a c$	1	F	$a-c$	$a-c$	N
5	$b d$	1	F	$b-d$	$b-d$	N
6	$a b$	2	F	$a-b$	$a-b$	N
7	$c d$	2	T	$c-d$	0	12
8	$a d$	$\sqrt{5}$	T	$a-d$	0	11
9	$b c$	$\sqrt{5}$	T	$b-c$	0	10
10	$a b c$	$\sqrt{5}$	F	$a b-a c+b c$	$b c$	N
11	$a b d$	$\sqrt{5}$	F	$a b-a d+b d$	$-a d$	N
12	$a c d$	$\sqrt{5}$	F	$a c-a d+c d$	$c d$	N
13	$b c d$	$\sqrt{5}$	T	$b c-b d+c d$	0	14
14	$a b c d$	$\sqrt{5}$	F	$a b c-a b d+$	$-b c d$	N

Table 3: State after completion of step II

Finally, we can compute the homology. In dimension 0 , we have four intervals because there are four simplices in dimension 0 with "pivot mark" True. According the step III of the algorithm, the four intervals are $[0, \infty],[0,2],[0,1],[0,1]$. In dimension 1 , we have three intervals which are $[2, \sqrt{5}],[\sqrt{5}, \sqrt{5}],[\sqrt{5}, \sqrt{5}]$. In dimension 2 , we have one interval which is $[\sqrt{5}, \sqrt{5}]$. The interval $[\sqrt{5}, \sqrt{5}]$ is trivial. The result we get is consistent with the previous barcode representation which is shown below.

So why does this algorithm work? Our goal is to compute the homology of the chain complex

$$
\cdots C_{k+1} \xrightarrow{\partial_{k+1}} C_{k} \xrightarrow{\partial_{k}} C_{k-1} \cdots
$$

as a graded $k[x]$-module where k is a field. The process is to inductively find homogeneous bases for each C_{k} such that, with respect to these bases, for C_{k} and C_{k-1}, the boundary matrix has the Smith normal form

Figure 8: Barcode for the Example

$$
\left(\begin{array}{ccccccc}
x^{d_{1}} & 0 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & x^{d_{2}} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \ddots & & & & 0 \\
\vdots & \vdots & & x^{d_{m}} & & & \vdots \\
\vdots & \vdots & & & 0 & & \vdots \\
\vdots & \vdots & & & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & \cdots & 0
\end{array}\right)
$$

It will follow that the homology in dimension $k-1$ has the form

$$
k[x]\left(t_{1}\right) /\left\langle x^{d_{1}}\right\rangle \oplus \cdots \oplus k[x]\left(t_{m}\right) /\left\langle x^{d_{m}}\right\rangle \oplus \text { free terms }
$$

where t_{1}, t_{2}, \cdots are the degrees of the generator and the number of free terms is determined by the rank of $\operatorname{ker} \partial_{k-1}$.

However, because of the special properties of homogeneous ideals in $k[x]$ (namely, they are totally ordered by inclusion), it is enough to reduce the matrices successively to lower triangular form by column operations. The row operations to get rid of the entries below the diagonal will automatically exist without changing the pivot. The algorithm described before is actually a shorthand for certain elementary row or column operations on the boundary matrix:

Step II:

1. No operations happen in this step.
2. (a) Since $\partial^{2}=0$, if a simplex is a pivot column in the boundary matrix running from
that simplex, then it is not map to a generator of ker ∂_{k} where k is dimension of the simplex.
(b) i. No operations happen in this step.
ii. This step is a shorthand for a elementary column operation. We are subtracting an appropriate multiple of the column, which corresponds to pointer of the simplex with the greatest index, from another column, which correspond to the current simplex.

After step II and possibly some swaps between columns and row, we are guaranteed to get a lower triangular boundary matrix and the elementary row and column operations only change the bases for C_{k}, but leave the homology groups unchanged.

After we have finished step II, the information in the table represents that there are bases for the chain groups C_{0}, \cdots, C_{n} such that:

1. each row of the table corresponding to a k-simplex $k \leq n$ represents a basis vector consisting of that simplex plus a linear combination of k-simplices that are of lower index in the table,
2. the boundary matrices $\partial: C_{k} \rightarrow C_{k+1}$ are in Smith normal form,
3. if the "pivot mark" for a given k-simplex σ is False, then the corresponding basis vector is part of the basis for \mathbb{Z}_{k} (the k-cycle), i.e. corresponds to a zero diagonal in the Smith normal form. When this is the case, the pointer points to a $(k+1)$-simplex whose corresponding basis vector has boundary containing σ plus simplices of lesser index,
4. if the "pivot mark" for a given k-simplex σ is True, then the boundary of the associated basis vector is nonzero. In this case the Smith normal form of the boundary matrix going from C_{k} to C_{k-1} contains a diagonal element x^{l} sending the basis vector associated to σ to the basis vector associated to the "reduced boundary" simplex with the highest degree. The value of l is the difference between the degrees of these two simplices.

We can verify by induction on n that, if the above statementsare true up to dimension n, and then after we excute the algorithm on $(n+1)$-simplices only, these statements will be true up to dimension $n+1$ also. Therefore, the homology is computed from the data by the process described in step III.

2.3 Persistent Homology Codes

Because the limited time for this project, instead of writing the complete package of codes which compute barcodes from data sets, we use one of the available packages in Matlab javaPlex written by Computational Topology workgroup at Stanford University. There are two main functionalities of javaPlex: the automated construction of filtered complexes from geometric data and the computation of the persistent homology of filtered chain complexes of vector spaces, implementing the algorithm discussed in the previous section. We first create a .mat file which contains a $m \times n$ matrix which represents our data set - m points in \mathbb{R}^{n}. Then we apply a function to construct filtered complexes from the .mat file. Then we apply a second function which computes the persistent homology of filtered chain complexes of vector spaces which we just got. Finally, we plot the barcodes using the plot function in matlab.

3 Examples

3.1 Students' Performance in a Math Course

We have used the javaplex codes to analyze the students performance in an introductory math course Math110 in Penn State. The data set contains 1000 data points in \mathbb{R}^{30}. Each dimension corresponds to performance of a particular assignment. First we consider only the good students (i.e. students who finished all the assignments) in this data set. The obtained barcode is as follow.

Figure 9: Barcodes for good students

The barcode in dimension 0 shows that there are two connected components until around 0.8. Then we did a cluster analysis on this data set and the centroid of the two clusters that we observed are very close in coordinates except for the last one. When looking back to the original data set, we noticed that a lot of low scores appear in the last coordinate which is unusual. One possible interpretation is that many good students were already guaranteed a grade A even without doing the last assignment, so they didn't care about the last assignments. Moreover, we thought we might detect a long barcode in dimension

1 which means that there is a circle in the data set. A potential explanation is that there exists two groups of assignments and students randomly prioritize one of the two groups, but then, only if the have mastered the priority group, do they work on the other one. But the evidence for a barcode in dimension 1 is not strong.

The next thing we did is normalizing the assignments scores and then running the analysis again. By normalizing, we mean that we set the full score of each assignment to 1 , and compute each student's score percentage. Since every assignment has a different full score, we may be able to capture more interesting structure by doing so.

Figure 10: Barcodes for good students after normalization

However, it turned out that normalization made no difference. The barcodes before and after normalization is all most the same except for some random noise. The results are shown below.

The last thing we did is filling the no shows with the average score of the all students' scores on that assignments. However, the barcodes show that all the interesting structures are smoothed out by replacing the no shows by averages. The result is shown below.

Figure 11: Barcodes after replacing no shows by averages

3.2 Cyclo-octane Molecule Conformations

First we need some terms to understand this example. The conformation of a molecule is specification of the relative positions of all atoms in \mathbb{R}^{3}. Typical parameterizations include coordinates of atom centers or torsional angles. The second parametrization is usually used for proteins, but in our example, we will use the coordinates of atom centers. The conformation space is the space of all conformations.

Figure 12: Example of a conformation of cyclo-octane from [8]

The cyclo-octane molecule $\mathrm{C}_{8} \mathrm{H}_{16}$ consists of a ring of 8 carbons atoms, each bonded to a pair of hydrogen atoms. The locations of the carbon atoms in a conformation determine the locations of the hydrogen atoms via energy minimization. Each conformation is represented by a point in \mathbb{R}^{24}. The conformation space of cyclo-octane is the union of a sphere with a Klein bottle, glued together along two circles of singularities. In a paper published in 2012, Zomorodian used persistent homology efficiently recover the homology groups of the conformation space of cyclo-octane molecules. Another similar example is shown in [8]. In this example, they begin with a sample of 6,040 experimental points on the conformation space (this data is publicly available at Shawn Martin's webpage http://www.sandia.gov/ smartin/software.html). The resulting barcode is as follow.

Figure 13: Barcodes for the conformation space of cyclo-octane

The homology groups as implied by the dominating barcodes is the same as the homology groups of the union of a sphere with a Klein bottle, glued together along two circles of singularities.

4 Conclusion

Although we have not found anything interesting for students performance in the introductory math course, we have learned, through reading extensive materials and experimenting with datasets that, topological data analysis is really a powerful tool. We saw its powerfulness in detecting structures and discovering insights from really complex data. Also, the ability to combining theoretical math knowledge in various fields such as algebra and topology into a program which can extract information from a dataset is an exciting experience.

Appendix

```
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define BASEPRIME 7
#define MAXDEG 99
#define MACRO 5
//BASEPRIME - order of coefficient field;
//MAXDEG - highest degree we can handle
int invert(int n)
// Computes the inverse of n in the field
{
int t, t1, r, r1, q, x;
t = 0; t1 = 1; r = BASEPRIME; r1 = n % BASEPRIME;
while (r1 != 0)
{
q}=\textrm{r}/\textrm{r}1
x = t; t = t1; t1 = x - q* t1;
x = r; r = r1; r1 = x - q* r1;
}
if (r>1)
{
printf("\n\_Modular\_division_by\_zero");
exit(2);
}
if (t <0) { t += BASEPRIME; }
return(t);
}
struct poly // Structure to store polynomials
{
```

```
int degree;
int coeff[MAXDEG];
};
struct matrix
{
int col;
int row;
struct poly entry [MACRO][MACRO];
};
void initialize(struct poly *p)
{
int i;
p}->>\mathrm{ degree = - 1;
for (i = 0; i < MAXDEG; i++)
{
p}->>\operatorname{coeff[i] = 0;
}
}
void readpoly(struct poly *result)
//Read a polynomial from the keyboard.
{
int i, m, d;
initialize(result);
for (i = 0; i < MAXDEG; ++i)
{
result }->\mathrm{ coeff[i] = 0;
}
printf("\n_Enter_degree_ofっpolynomial: "");
scanf_s("%i",&d);
if (d>MAXDEG)
{
```



```
exit(5);
}
result }->\mathrm{ degree = d;
for (i = 0; i <= d; ++i)
{
```



```
scanf_s("%i",&m);
```

```
result }->\mathrm{ coeff[i] = m;
}
}
void writepoly(struct poly p1)
// Write a polynomial to the screen.
{
int i;
if (p1.degree == -1)
{
printf("0");
}
else
{
for (i = 0; i <= p1.degree; ++i)
{
if (p1.coeff[i] != 0)
{
if (i=0)
{
printf("%i", p1.coeff[i]);
}
else
{
printf("%ix^%i", p1.coeff[i], i);
}
if (i<p1.degree) { printf("+"); };
}
}
}
}
void writepolyfile(struct poly p1, FILE *out)
// Write a polynomial to file.
{
int i;
if (p1.degree =-1)
{
fprintf(out, "0");
}
else
{
for (i = 0; i <= p1.degree; ++i)
```

```
{
if (p1.coeff[i] != 0)
{
if (i=0)
{
fprintf(out, "%i", p1.coeff[i]);
}
else
{
fprintf(out, "%ix^%i", p1.coeff[i], i);
}
if (i < p1.degree) { fprintf(out, "+"); };
}
}
}
}
void neg(struct poly *result, struct poly p1)
{
int i;
initialize(result);
result }->\mathrm{ degree = p1.degree;
for (i = 0; i < MAXDEG; i++)
{
result }->\mathrm{ coeff[i] = BASEPRIME - p1.coeff[i];
}
}
void add(struct poly *result, struct poly p1, struct poly p2)
//Add two polynomials. We pass a pointer to where the result is stored.
{
int i, d;
initialize(result);
if (p1.degree > p2.degree) d = p1.degree;
else d = p2.degree;
result }->\mathrm{ degree = - 1;
for (i=0; i < = d; ++i)
{
result }->\mathrm{ coeff[i] = (p1.coeff[i] + p2.coeff[i]) % BASEPRIME;
if (result }->\mathrm{ coeff[i] != 0)
{
```

```
result }->\mathrm{ degree = i;
}
}
}
void mult(struct poly *result, struct poly p1, struct poly p2)
// Multiply two polynomials.
{
int i, j, d;
initialize(result);
d = p1.degree + p2.degree;
if (d>MAXDEG)
{
printf("\n」Degree^overflowっerror\n");
exit(1);
}
for (i=0; i < = d; ++i)
{
result ->coeff[i] = 0;
for (j = 0; j <= i; + + )
{
result }->\mathrm{ coeff[i] = (result }->\mathrm{ >coeff[i] + p1.coeff[j] * p2.coeff[i - j])
% BASEPRIME;
}
if (result }->\mathrm{ coeff[i] != 0)
{
result }->\mathrm{ degree = i;
}
}
}
void divide(struct poly *quot, struct poly *remd, struct poly a, struct poly b)
// Divide two polynomials (long division).
{
int i, j, d, q, v;
for (i = 0; i < MAXDEG; ++i )
{
quot }->\mathrm{ coeff[i] = 0;
remd }->\mathrm{ coeff[i] = a.coeff[i];
}
remd->degree = a.degree;
if (b.degree < 0)
{
```

```
printf("\n\lrcornerPolynomial」division\lrcornerby\iotazero");
exit(3);
}
q = invert(b.coeff[b.degree]);
quot->degree = (remd->degree - b.degree);
while (remd->degree >= b.degree) //while division is possible
{
v = q*(remd }->\mathrm{ coeff[remd }->\mathrm{ degree]) % BASEPRIME;
quot->coeff[remd ->degree - b.degree] = v;
for (i = 0; i <= b.degree; ++i)
{
remd->coeff[i + (remd->degree - b.degree)] =
(remd->coeff[i + (remd->degree - b.degree)] - (b.coeff[i])*v) % BASEPRIME;
if (remd->coeff[i + (remd->degree - b.degree)] < 0) {
remd ->coeff[i + (remd->degree - b.degree )] += BASEPRIME;
}
}
// Find the degree of the remainder
d = -1;
for (j = 0; j <= remd->degree; ++j)
{
if ((remd->coeff[j])>0)
{
d = j;
}
}
remd->degree = d;
// Find the degree of the quotient
d = -1;
for (j = 0; j <= quot->degree; ++j)
{
if ((quot->coeff[j])>0)
{
d = j;
}
}
quot->degree = d;
}
}
void tracematrix(matrix M)
{
int i, j;
printf("\n");
```

```
for (i = 0; i < M.row; i++)
{
for (j = 0; j < M.col; j++)
{
writepoly(M. entry[i][j]);
printf(";");
}
printf("\n");
}
printf(".\n");
}
int main(void)
{
//initialization
struct matrix M;
struct poly pivot, p, rem, quo, nquo, m;
int i, j, k, t, a, pivotrow, pivotcol;
bool allzero, alldivides;
FILE *in, *out;
M.row = 0;
M.col = 0;
for (i = 0; i < MACRO; i++)
{
for (j = 0; j < MACRO; j++)
{
M.entry[i][j]. degree = - 1;
for (k = 0; k < MAXDEG; k++)
{
M. entry[i][j].coeff[k]=0;
}
}
}
pivot.degree = MAXDEG;
p.degree = - 1;
rem.degree = -1;
quo.degree = - ; ;
nquo.degree = - 1;
```

```
m.degree = - 1;
for (i = 0; i < MAXDEG; ++i)
{
pivot.coeff[i] = 0;
p.coeff[i] = 0;
rem.coeff[i] = 0;
quo.coeff[i] = 0;
nquo.coeff[i] = 0;
m.coeff[i] = 0;
}
i, j, k, t, a, pivotrow, pivotcol = 0;
allzero = false;
alldivides = false;
fopen_s(&in, "matrix1.txt", "r");
fopen_s(&out, "SNF1.txt", "w");
//input
fscanf_s(in, "%i", &M.row);
fscanf_s(in, "%i", &M.col);
for ( i = 0; i < M.row; i++)
{
for ( j = 0; j < M.col ; j++)
{
fscanf_s(in, "%i", &M.entry[i][j].degree);
for ( k = 0; k <= M.entry[i][j].degree; k++)
{
fscanf_s(in, "%i", &M.entry[i][j].coeff[k]);
a = (M.entry[i][j].coeff[k]+100*BASEPRIME) % BASEPRIME;
M.entry[i][j].coeff[k] = a;
}
}
}
```

//start computing
if (M. row > M. col)
\{
$\mathrm{a}=\mathrm{M} . \mathrm{col}$;
\}

```
else
{
a = M. row;
}
for (t = 0; t < a; t++)
{
do
{
//choosing the pivot
pivot.degree = MAXDEG;
for (i = t; i < M.row; i++)
{
for (j = t; j < M.col; j++)
{
if (M.entry[i][j].degree < pivot.degree && M.entry[i][j].degree!=-1)
{
pivot = M.entry[i][j];
pivotrow = i;
pivotcol = j;
}
}
}
//swaping rows and columns so that pivot is at (t,t)-th position
for (i = t; i < M.row; i++)
{
p = M. entry[i][t];
M.entry[i][t] = M.entry[i][pivotcol];
M.entry[i][pivotcol] = p;
}
for (j = t; j < M.col; j++)
{
p = M. entry[t][j];
M.entry[t][j] = M.entry[pivotrow][j];
M.entry[pivotrow][j] = p;
}
allzero = false;
//eliminating entries
while (!allzero)
```

```
{
// eliminate entries to the right of the pivot
for (j = t+1; j < M.col; j++)
{
do
{
divide(&quo, &rem, M. entry[t][j], M.entry[t][t]);
for (i = t; i < M.row; i++)
{
neg(&nquo, quo);
mult(&m, nquo, M.entry[i][t]);
add(&p, M.entry[i][j], m);
M.entry[i][j] = p;
}
if (rem.degree != -1)
{
for (i = t; i < M.row; i++)
{
p = M. entry[i][t];
M.entry[i][t] = M.entry[i][j];
M.entry[i][j] = p;
}
}
} while (rem.degree != -1);
}
//eliminate entries under the pivot
for (i = t+1; i < M.row; i++)
{
do
{
divide(&quo, &rem, M. entry[i][t], M.entry[t][t]);
for (j = t; j < M.col ; j++)
{
neg(&nquo, quo);
mult(&m, nquo, M.entry[t][j]);
add(&p, M. entry[i][j], m);
M.entry[i][j] = p;
}
if (rem.degree != -1)
```

```
{
for (j = t; j < M.col; j++)
{
p = M. entry[t][j];
M.entry[t][j] = M.entry[i][j];
M.entry[i][j] = p;
}
}
while (rem.degree != -1);
}
//check if all entries to the right of the pivot are still zero
allzero = true;
for (j = t+1; j < M.col; j++)
{
if (M.entry[t][j].degree != -1)
{
allzero = false;
}
}
}
alldivides = true;
if (t != a - 1)
{
for (i = t + 1; i < M.row; i++)
{
for (j = t + 1; j < M.col; j++)
{
divide(&quo, &rem, M. entry[i][j], M.entry[t][t]);
if (rem.degree != -1)
{
for (k = t; k < M.col; k++)
{
p = M. entry[t][k];
M.entry[t][k] = M.entry[i][k];
M.entry[i][k] = p;
}
alldivides = false;
break;
}
}
if (!alldivides)
```

```
{
break;
}
}
}
} while (!alldivides);
}
//output
fprintf(out, "The\lrcornerdiagonalьentries 」are:\n");
for (i = 0; i < a; i++)
{
writepolyfile(M. entry[i][i], out);
fprintf(out, "\n");
}
fclose(in);
fclose(out);
exit(0);
}
```


Bibliography

[1] Carlsson, G., Ishkhanov, T., de Silva V., and Zomorodian A. (2006). On the local behavior of spaces of natural images.
[2] Ghrist, R. (n.d.) Barcodes: The Persistent Topology of Data.
Retrieved from https://www.math.upenn.edu/~ghrist/preprints/barcodes.pdf
[3] Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press.
[4] Lesnick, M. (2013). Studying the Shape of Data Using Topology.
Retrieved from https://www.ias.edu/ideas/2013/lesnick-topological-data-analysis
[5] Munkres, J. R. (1984) Elements of Algebraic Topology.
[6] Simplicial complex. (n.d.). Wikipedia.
https://en.wikipedia.org/wiki/Simplicial_complex
[7] Shastri, P. (May 2014). Lectures on Modules over Principal Ideal Domains. Retrieved from http://www.imsc.res.in/~knr/14mayafs/Notes/ps.pdf
[8] Tausz, A., \& Vejdemo-Johansson, M., \& Adams, H. (2014). JavaPlex: A research software package for persistent (co)homology. Hong, H., \& Yap, C. Proceedings of ICMS 2014 (pp. 129-136). Software available at http://appliedtopology.github.io/javaplex/
[9] Zomorodian, A., Carlsson, G. (2005). Computing Persistent Homology. Retrieved from http://dl.acm.org/citation.cfm?id=1044846
[10] Zhu, X. (n.d.). Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing.
Retrieved from http://pages.cs.wisc.edu/~jerryzhu/pub/homology.pdf

Hangyu Zhou

2013-2017	Pennsylvania State University.
	Bachelor of Science in Mathematics, Minor in Physics
	Schreyer Honor College
	Honor Thesis
Title	Topology and Data
Supervisors	John Roe
Description	This thesis describes how topological techniques are used in data analysis, includes codes which demonstrates these techniques, and contains application to an students performance in an introductory math course.
	Experience
2015,2016	MASS Program, Pennsy/vania State University.
	Mathematics Advanced Study Semester
	Course Detail:
	- Introduction to Applied Algebraic Geometry
	- Classic Mechanics and Calculus of Variations
	- Lie Groups in Two Three and Four Dimensions
	- Hypercomplex Numbers
	- An Introduction to Dynamics From a Topological Geometric Viewpoint
	- Colloquium Lectures
	- Interdisciplinary Seminar
	Awards
2015,2016	Graduate with Distinction in MASS Program
2016,2017	William B. Forest Honors Schclarship In Mathematics
	Computer skills
Basic	Mathematica
Intermediate	LaTEX, Office, C++

