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Abstract

Topological data analysis is a recently developed technique to analyze datasets in Euclidean

space. This new technique enables us to analyze datasets which are high-dimensional, in-

complete and noisy. The motivation of topological data analysis is to study the shape of the

data. To see the shape from a discrete set of data points, many algorithms require a choice

of proximity. However, this parameter is usually hard to decide and we need some other

information to determine what proximity to use. The main insight of persistent homology is

that we should be looking at all proximities altogether, but it is hard to transform this large

amount of information into an understandable and easy-to-present form. In topological data

analysis, the idea of homology solves this problem. Briefly, we assume that structures that

persist over a long range of proximities are real structures of the dataset, while structures

which only persist for a short range are considered to be noise. In this thesis, we will discuss

the mathematical tools that are necessary to understand topological data analysis, introduce

how a particular algorithm works, and apply this technique to analyze some real-world data.
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1 Mathematical Introduction

1.1 From Data to Simplicial Complexes

In this paper, by “data” we mean a finite set of points in some Euclidean space; we call the

set of data the point cloud. As an easy example, consider the figure below.

Figure 1: A point cloud

We see that the data points seem to break into three different clusters. Even without noise,

the clustering is only visible on a certain range of scales. And in real life, the data are not

as nice as shown in figure 1. We always encounter some noise as shown below and we would

like to be able to see this clustering behavior even with noise.

Figure 2: A point cloud with noise

For our purpose, we introduce a parameter ε which help us complete the point cloud to a

simplicial complex with data points as vertices. The edges are determined by proximity and

ε is the measure of proximity.

Definition 1. Given a colection of points {xn} in Euclidean space Rn, the Rips complex,

Rε, is the simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of

points {xn}k0 which are pairwise within distance ε.

There are some other ways to define a simplicial complex from a point cloud, but from a

computation point of view, the Rips complex is less expensive because it is the maximal
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among all simplicial complexes with a given 1-skeleton. Thus, the combinatorics of the

1-skeleton completely determines the Rips complex.

Figure 3: Example of Rips complex with different choice of parameter ε from [2]

The structure of the Rips complex varies as we vary ε. For sufficiently small ε, the complex

is a discrete set; for sufficiently large ε, the complex is a single high-dimensional simplex. So

a natural question to ask is: which parameter ε should we choose in order to capture the

right structure? Consider the example in figure 3 above. The point cloud is a sampling of

points in a planar annulus. As shown in the figure, it seems that it is really hard to decide

which ε to choose. When ε is large enough to remove the gap from within the structure of

the annulus, the large hole in the middle is also filled in.

1.2 Homology

Definition 2. A set {v0, · · · vn} of points of Rn is said to be geometrically independent

if for any scalars ti, the equations

n∑
i=0

ti = 0 and
n∑
i=0

tivi = 0

imply that t0 = t1 = · · · = tn = 0.
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Clearly, a one-point set is always geometrically independent. It is an easy exercise to show

that in general the set {v0, · · · vn} is geometrically independent if and only if the vectors

v1 − v0, · · · , vn − v0

are linearly independent. Thus, two distinct points form a geometrically independent set in

Rn, so do three non-collinear points, four non-coplanar points, and so on.

Definition 3. Given a geometrically independent set {v0, · · · vn} in Rn, we define the n-

simplex ∆ spanned by v0, · · · vn to be the set of all points x of Rn such that

x =
n∑
i=0

tivi , where
n∑
i=0

ti = 1

and ti ≥ 0 for all i. The numbers ti are uniquely determined by x and are called the

barycentric coordinates of the point x of ∆ with respect to v0, · · · vn.

For example,a 0-simplex is a point; a 1-simplex is a line segment; a 2-simplex is a triangle;

a 3-simplex is a tetrahedron.

Definition 4. The points v0, · · · vn that span ∆ are called the vertices of ∆. The number

n is called the dimension of ∆. Any simplex spanned by a subset of {v0, · · · vn} is called a

face of ∆. The faces of ∆ different from ∆ itself are called the proper faces of ∆ and the

union of all proper faces is called the boundary of ∆, denoted by ∂∆. The open simplex

∆◦ is ∆− ∂∆, the interior of ∆.

Now we are ready to define a simplicial complex.

Definition 5. A simplicial complex K in Rn is a collection of simplices in Rn such that:

1. Every face of a simplex of K is in K.

2. The intersection of any two simplices of K is a face of each of them.

In figure 4, K1, K2 and K4 are all simplicial complexes, while K3 is not.

Definition 6. A subcomplex of K is a subcollection of K that contains all faces of its

elements. A particular subcomplex of K is the collection of all simplices of K of dimension

at most p; it is called the p-skeleton of K.
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Figure 4: Examples of simplicial complexes (K1, K2 and K4)

Definition 7. Let ∆ be a simplex. Define two orderings of its vertex set to be equivalent

if they differ from one another by an even permutation. If dim∆ > 0, the orderings of the

vertices fall into two equivalence classes. Each of these classes is called an orientation of

∆. If dim∆ = 0, then there is only one class and hence only one orientation of ∆. A simplex

∆ together with an orientation is called an oriented simplex.

From this point on, we will use v0 · · · vn to denote the simplex spanned by {v0, · · · , vn}, use

[v0, · · · , vn] to denote the oriented simplex, and use (v0, · · · , vn) to denote the equivalence

class of the particular ordering.

Definition 8. Let K be a simplicial complex. A p-chain on K with values in a ring R is a

function c from the set of oriented p-simplices of K to R, such that:

1. c(∆) = −c(∆′) if ∆ and ∆′ are same simplex with opposite orientation.

2. c(∆) = 0 for all but finitely many oriented p-simplices.

The group of p-chains of K is denoted by Cp(K), with the addition defined by adding the

values. if p < 0 or p >dimK, we let Cp(K) be the trivial group.

If ∆ is an oriented simplex, the elementary chain c corresponding to ∆ is the function such

that: c(∆) = 1 and c(∆′) = −1 if ∆′ and ∆ are the same simplex with opposite orientation

and 0 otherwise. By abuse of notation, we sometimes also use ∆ to denote the elementary

p-chain corresponding to the oriented simplex ∆. Then we can write ∆′ = −∆.

Theorem 1. Cp(K) is free abelian. A basis for Cp(K) can be obtained by orienting each

p-simplex and using the corresponding elementary chains as a basis.

Now we have a sequence of free abelian groups, and we can define a map along the chain by

sending each simplex to its “boundary”.
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Definition 9. Define the homomorphism

∂p : Cp(K)→ Cp−1(K)

by

∂p(∆) = ∂p[v0, · · · , vp] =

p∑
i=0

(−1)i[v0, · · · , v̂i, · · · , vp],

where v̂i means that the vertex vi is removed from the list. ∂p is called a boundary oper-

ator.

Since Cp(K) is the trivial group when p < 0, the map ∂p is trivial for p ≤ 0. It is an easy

exercise to check ∂p(−∆) = −∂p(∆) and thus ∂p is well-defined.

Theorem 2. ∂p−1 ◦ ∂p = 0.

Proof.

∂p−1∂p[v0, · · · , vn] =

p∑
i=0

(−1)i∂p−1[v0, · · · , v̂i, · · · , vn]

=
∑
j<i

(−1)i(−1)j[· · · , v̂j, · · · , v̂i, · · · ] +
∑
j>i

(−1)i(−1)j−1[· · · , v̂i, · · · , v̂j, · · · ]

= 0

The last step is true because each term appears twice, with opposite signs. The sequence of

chains together with the boundary maps is call a chain complex. Now we can define the

homology group.

Definition 10. The group Hp(K) =Ker∂p/Im∂p+1 is the pth homology group of K.

For example, suppose that K is the boundary of a triangle, with three 0-simplices v1, v2, v3

and three 1-simplices e1, e2, e3. Note that the triangle itself is not part of K, i.e. K does not

contain 2-simplices. Since ∂1(e1) = v1−v2, ∂1(e2) = v2−v3, ∂1(e3) = v3−v1 = −∂1(e1)−∂1(e2)
and {v1 − v2, v2 − v3, v2} is a basis for C0, it follows that H0(K) is isomorphic to Z and is

generated by v2. Since there are no 2-simplices, H1(K) is equal to ker(∂1) , which is infinite

cyclic generated by e1 +e2 +e3 since ∂1(ae1 + be2 + ce3) = (a− c)v1 +(b−a)v2 +(c− b)v3 = 0

only if a = b = c. The groups Hn(K) are 0 for n ≥ 2 since there are simplices in these

dimensions. Thus,

Hn(K) =

Z for n = 0, 1

0 for n ≥ 2.
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1.3 Persistent Homology

Although homology is a strong tool, it is not sufficient to consider only the homology of a

complex associated to a point cloud at a particular ε. Thus, it is a mistake to ask which

value of ε is optimal. In fact, the correct thing to do is to consider all ε together. This leads

to the idea of persistent homology.

Definition 11. Given a simplicial complex K, a filtration is a totally ordered set of sub-

complexes Ki of K, indexed by the nonnegative integers, such that if i ≤ j then Ki ⊆ Kj.
The total ordering itself is called a filter.

In our case, the filtration is given by the sequence of Rips complexes with different proximity

ε and we have the natural inclusion map defined along the sequence.

Let D ⊆ Rn be a point cloud. For ε > 0, let Rε(D) be the Rips complex of D at proximity

ε. If we take coefficients in some field k, then we can view the chain complex of Rε(D) as

a chain complex of k-modules, in other words, vector spaces over k. Let Rm
ε (D) denote the

m-chains of the complex Rε(D). To define persistent homology, we introduce the idea of

varying ε. Let

ε1 < ε2 < · · ·

be a sequence of ε-values tending to ∞. We abbreviate Rn(D) for Rεn(D). Then we have a

sequence of vector spaces

Rm
1 (D)→ Rm

2 (D)→ Rm
3 (D)→ · · ·

and also a sequence of chain complexes

...
...

...

∂

y ∂

y ∂

y
Rm−1

1 (D)
f1−−−→ Rm−1

2 (D)
f2−−−→ Rm−1

3 (D)
f3−−−→ · · ·

∂

y ∂

y ∂

y
Rm

1 (D)
f1−−−→ Rm

2 (D)
f2−−−→ Rm

3 (D)
f3−−−→ · · ·

∂

y ∂

y ∂

y
Rm+1

1 (D)
f1−−−→ Rm+1

2 (D)
f2−−−→ Rm+1

3 (D)
f3−−−→ · · ·

∂

y ∂

y ∂

y
...

...
...
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The diagram above commutes. In the diagram, each column is a chain complex, and the

chain maps fi connect chain complexes of successively larger simplicial complexes in the

filtration together. Since the filtration of Rips complexes is linked by inclusion, the chain

maps are induced by the inclusion maps.

Definition 12. A sequence of vector spaces V1 → V2 → · · · together with maps fn : Vn →
Vn+1 is called a persistence vector space. A sequence of chain complexes connected by

chain maps is called a persistence complex.

In the next section, we will show how a persistence vector space can be regarded as a graded

module over the polynomial ring k[x]. This will allow us to use the structure theory for

modules over k[x] to classify persistence vector spaces. As an immediate consequence of this

discussion, we have the following lemma.

Lemma 1. The homology spaces of a persistence complex are persistence vector spaces.

We therefore want to seek a classification of persistence vector spaces (which we abbreviate as

persistence spaces from this point on). This can be done if we add some finiteness conditions.

Definition 13. A persistence space V1
f1−→ V2

f2−→ · · · is of finite type if

1. all the vector spaces Vi are finite dimensional

2. all but finitely many of the maps fi are isomorphisms

Lemma 2. The chain spaces, and therefore the homology spaces, associated with the Rips

complex of finite point cloud D are of finite type.

Proof. This is clear for Rips complexes themselves because the Rips complexes become stay

for sufficiently large ε. Thus, for sufficiently large ε, the homology of the Rips complex is

that of a point which completes the proof.

Definition 14. For n1 ≤ n2, n1, n2 ∈ N, the persistence space Q(n1, n2) has vector spaces

Q(n1, n2)i =

k if n1 ≤ i ≤ n2

0 otherwise

with the maps between the k’s being isomorphisms and others zero. We allow n2 = +∞.

Theorem 3. Every persistence space of finite type is isomorphic to a unique finite direct

sum of spaces of the type Q(n1, n2).
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Proof. This is a direct result of the structure theorem which will be proved in the next

section.

The barcode representation of such a space has one bar starting at n1 and ending at n2 for

each Q(n1, n2) summand.

To give an example, the figure above shows four points (0,0), (0,1), (2,1), (2,0) and the Rips

complex with different ε (1,2,
√

5 respectively).

Figure 5: Rips complex with ε = 1, 2,
√

5

The barcode representation of the homology groups for the figure above is shown below.

The x-axis is ε. Each horizontal bar represents the birthdeath of a separate homology class.

Longer bars correspond to more robust topological structure in the data.

Figure 6: Example of barcodes

The top panel shows H0. At ε = 0 there are four bars for the four disconnected vertices. At

ε = 1 two edges appear, reducing the number of connected components to two. This is why

the top two bars die. At ε = 2, the vertices forms a rectangle and becomes fully connected,

so one more bar dies. The remaining bar represents the one vertex that grabs everything to

eventually become the fully connected component. It never dies. The bottom panel shows

H1. In the example above, a homology class corresponding to the hole is born at ε = 2,

when the rectangle becomes connected. It persists until ε =
√

5 and dies because the Rips

complex becomes the solid tetrahedron. This is represented by the single short bar.
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1.4 Structure Theorem for Persistence Spaces

Definition 15. Let R be a ring, M ,N be R-modules. The direct sum A⊕B = {(a, b) : a ∈
A, b ∈ B} is a module under component wise operations: for any a ∈ A,b ∈ B and r ∈ R,

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) and r(a, b) = (ra, rb). This extends to a direct sum

of finitely many R-modules. However, for a direct sum of infinitely many R-modules, all

elements have all but finitely many components equal to 0.

Definition 16. A ring R is a graded ring, if there is a given family of subgroups {Rn}n∈Z
of R such that

1. R =
⊕

nRn,

2. RnRm ⊆ Rn+m for all n,m.

Note that any ring R is a graded ring with the trivial grading R0 = R and Rn = 0, for

all n 6= 0. As another example, let k be a field and x1, · · · , xd be variables over k. For

p = {p1, · · · , pd} ∈ Nd, let xp = xp11 · · ·x
pd
d . Then the polynomial ring R = k[x1, · · · , xd] =⊕

nRn is a graded ring, where

Rn = {
∑
p∈Nd

rpx
p : rp ∈ R and p1 + · · ·+ pd = n}.

This is called the standard grading on the polynomial ring k[x1, · · · , xd].

Definition 17. Let R be a graded ring and M an R-module. We say that M is a graded

R-module if there is a given family of subgroups {Mn}n∈Z of M such that

1. M =
⊕

nMn,

2. RnMm ⊆Mn+m for all n,m.
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An nonzero element m ∈ M is homogeneous of degree n if m ∈ Mn, for some n ∈ Z. We

denote the degree of m by degm. If m ∈ M is a nonzero element, then we can express it

uniquely as a finite sum
∑

imi, where each mi is homogeneous. These mi are called the

homogeneous components of m.

Theorem 4. let k be a field. A persistence space over k is a graded k[x]-module.

Proof. If we have a persistence space:

V1
f1−→ V2

f2−→ · · ·

Let V = V1 ⊕ V2 ⊕ · · · . If we let k act by scalar multiplication is the usual way and

x · (v1, v2, · · · ) = (0, f1(v1), f2(v2), · · · ), then V becomes a graded module over k[x] with

homogeneous parts V1, V2, · · · . For the other directions, if we have a graded k[x]-module V

with homogeneous parts V1, V2, · · · , then we can get a sequence of vector spaces V1 −→ V2 −→
· · · and the maps between the vector spaces are defined by the action of x on V . Because

x is a homogeneous element in k[x] of degree one, multiplication by x must necessarily be

represented by linear maps from Vj to Vj+1.

Definition 18. Let M be a graded R-module and n an integer. M shifted by n, denoted

by M(n), is defined to be equal to M as an R-module, but with its grading defined by

M(n)k = Mn+k.

Definition 19. Let R be a graded ring and M,N graded R-modules. Let f : M → N be

an R-module homomorphism. Then f is a graded homomorphism if f(Mn) ⊆ Nn for

all n. In addition, f is a graded isomorphism if f is a graded homomorphism and an

isomorphism.

From now on, when we say two graded modules are isomorphic, we always mean graded

isomorphic.

Proposition 1. Let R be a graded ring and M,N graded R-modules. Let f : M → N be

an R-module graded isomorphism, then the following are true:

1. f(Mn) = Nn for all n,

2. f−1 is also a graded isomorphism.

Proof. 1. Pick an arbitrary element b ∈ Nn. Since f is an isomorphism, there exists a ∈M
such that f(a) = b. Write a as a finite sum a =

∑
i ai where each ai is homogeneous.
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Since f is a graded homomorphism, f(a) =
∑

i f(ai) ∈ Nn and f(ai) ∈ Ni. Since

Ni ∩ Nj = {0} if i 6= j, we get that f(ai) = 0 and thus ai = 0 for all i 6= n. Hence,

a = an ∈Mn.

2. We want to show that that f−1(Nn) ⊆ Mn. Pick an arbitrary element a ∈ f−1(Nn).

Then f(a) ∈ Nn = f(Mn) by (1). Then f(a) = f(a′) for some a′ ∈ Mn. Since f is an

isomorphism and thus one-to-one, a = a′ ∈Mn.

Definition 20. Let R be a ring, M be a graded R-module. If there is a function from I to

Z which maps i to ni and a graded isomorphism

f :
⊕
i∈I

R(ni)→M,

then M is free.

Definition 21. LetR be a ring, M be a finitely generated gradedR-module. Let {m1, · · · ,mn}
be a generating set of M . If this set is also linearly independent, then it is a basis of M . If

in addition, every element in the set is homogeneous, we call the set a homogeneous basis

of M . The rank of M is the cardinality of a basis of M (i.e. the number of elements in M).

Proposition 2. Let R be a ring, M be a graded R-module. Then M is free if and only if

it has a homogeneous basis.

Proof. “ =⇒ ” Assume that M if free. Then by definition there exists an isomorphism

f :
⊕

i∈I R(ni)→M . Let ei be the element which has 1 in R(ni)-coordinate and 0 elsewhere

and mi = f(ei). Clearly, {ei : i ∈ I} is a basis for
⊕

i∈I R(ni). We will show that {mi : i ∈ I}
is a basis for M . Since f is graded and ei are homogeneous for all i, mi are homogeneous

for all i. If
∑

i rimi = 0 where ri ∈ R for all i. Since f is a graded isomorphism, f−1 is also

a graded isomorphism by proposition 1. Thus,

f−1(
∑
i

rimi) =
∑
i

rif
−1(mi) =

∑
i

riei = f(0) = 0.

Since the set of all ei is linearly independent, we get that ri = 0 for all i which means

that {mi : i ∈ I} is also linearly independent. To show that {mi : i ∈ I} generates M ,

take an arbitrary element m ∈ M . Since f−1 is an isomorphism and {ei : i ∈ I} generates⊕
i∈I R(ni), we have

m = f
(
f−1(m)

)
= f

∑
i

riei

 =
∑
i

rif(ei) =
∑
i

rimi.
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Therefore, {mi : i ∈ I} is a linearly independent generating set, namely, a basis for M .

“ ⇐= ” Suppose that M is generated by a linearly independent collection of homoge-

neous elements {mi : i ∈ I}. Consider the space
⊕

i∈I R(− degmi). Let ei be the element

which has 1 in R(− degmi)-coordinate and 0 elsewhere. Clearly, {ei : i ∈ I} is a basis for⊕
i∈I R(− degmi). Define a homomorphism f by

f :
⊕
i∈I

R(− degmi)→M

ei 7→ mi.

We first show that f is an isomorphism. Take distinct elements r, r′ ∈
⊕

i∈I R(− degmi).

Then since {ei : i ∈ I} is a basis, we have r =
∑

i riei and r′ =
∑

i r
′
iei where ri 6= r′i for

some i. Then

f(r) = f(
∑
i

riei) =
∑
i

rif(ei) =
∑
i

rimi,

f(r′) = f(
∑
i

r′iei) =
∑
i

r′if(ei) =
∑
i

r′imi.

Since {mi : i ∈ I} is a basis for M and ri 6= r′i for some i, f(r) 6= f(r′). Therefore f is

injective. Take an arbitrary elementm ∈M . Then has a unique decompositionm =
∑

i rimi.

And we have f(
∑

i riei) =
∑

i rif(ei) =
∑

i rimi = m. Therefore, f is surjective. To sum

up, f is both injective and surjective which implies that f is a isomorphism.

And by the way we define the homomorphism f , f is automatically graded. Therefore, f is

a graded isomorphism and thus M is free.

Note that although a free graded R-module M has a homogeneous basis, the rank of a M

is not necessarily well-defined. The rank is well-defined if and only if every basis of M has

the same cardinality. This is true if R is commutative. Before proving this fact, we need to

define what a maximal ideal is.

Definition 22. Let R be a ring and I an ideal of R such that I 6= R. I is a maximal ideal

of R if for any ideal J with I ( J , either J = I or J = R.

we will also take for granted Zorn’s lemma without proof. The lemma implies the following.

Lemma 3. Every nontrivial ring R contains a maximal ideal.

Proposition 3. Let R be a commutative graded ring, M be a finitely generated and free

graded R-module. Then every basis of M has the same cardinality.
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Proof. Let I be an ideal in R. Then M/IM is a free R/I module. Moreover, by Zorn’s

lemma, we can take I to be a maximal ideal in R. Now we will show that R/I is a field. If

[x] 6= 0 in R/I, this means that x /∈ I. Therefore 〈I, x〉 is an ideal in R which contains I. By

definition of a maximal ideal, 〈I, x〉 = R and thus contains the 1. Hence, there exists y ∈ R
such that xy − 1 ∈ I. This means that [y] is the inverse of [x] in R/I. Therefore, R/I is a

field. Therefore, M/IM is a vector space over R/I and the rank of M/IM is well-defined.

Since M is free and finitely generated, M ∼= Rn for some n. Thus, M/IM ∼= (R/I)n.

Therefore, the rank of M is also well-defined and is the same as the rank of the vector space

M/IM .

Definition 23. Let R be a ring, M = ⊕nMn be a graded R-module and N a submodule

of M . For each n ∈ Z, let Nn = N ∩ Mn. If the family of subgroups {Nn} makes N

into a graded R-module, we say that N is a graded submodule of M . Note that for any

submodule N of M , RnNm ⊆ Nn+m. Thus, N is graded if and only if N =
⊕

nNn.

Proposition 4. Let R be a graded ring, M a graded R-module and N a graded submodule

of M . Then M/N is a graded R-module, and graded by

M/N =
⊕
n

(M/N ∩Mn).

Lemma 4. Let R be a graded principal ideal domain, M be a graded, finitely generated,

and free R-module of rank 1 and N be a graded submodule of M . Then N is also free of

rank 1.

Proof. By definition, M is generated by a single element m of degree t for some t ∈ Z. Define

S = {s ∈ R : sm ∈ N}. Note that if s1, s2 ∈ S, then s1m, s2m ∈ N and (s1 + s2)m ∈ N
which means that s1 + s2 ∈ S. Also if s ∈ S and r ∈ R, then sm ∈ N and rsm ∈ N

which means that rs ∈ S. Hence, S is an ideal in R. Because R is a pid, S = 〈s〉 for

some s ∈ R. Thus, N generated by sm. Thus N is generated by sm. Next we will show

that s is homogeneous. Assume that s is not homogeneous, then we can write s as a sum

of at least two homogeneous components of different degree s = s1 + · · · + sk. Suppose

deg s1 < · · · < deg sk. Every element r ∈ R is also of similar form r = r1 + · · · + rl where

deg r1 < · · · < deg rl. So every element in N has the form rsm = r1s1m + · · · + rlskm and

deg r1s1m < rlskm. Therefore Nn = Mn ∩ N = {0} and N =
⊕

nNn = {0} which is a

contradiction. Hence s is homogeneous and N is isomorphic to R(− deg sm).

Lemma 5. Let R be a ring. If f : M → N is a graded homomorphism of graded R-modules,

then ker f is a graded submodule of M and imf is a graded submodule of N .
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Proof. Since f is a homomorphism of R-modules, ker f is submodule of M and imf is

a submodule of N . It suffices to show that ker f =
⊕

n (ker f ∩Mn) and that imf =⊕
n (imf ∩Nn).

Let m ∈ ker f . We can write m as a sum m =
∑k

i=1mi where mi ∈Mi. Note that

0 = f(m) = f(
k∑
i=1

mi) =
k∑
i=1

f(mi).

Since the components mi are homogeneous of different degrees and f is graded, f(mi) are

also homogeneous of different degrees in N . Therefore, we must have f(mi) = 0 for all i

which means that mi ∈ ker f for all i. Therefore, ker f ⊆
⊕

n (ker f ∩Mn). For the other

direction, let m ∈
⊕

n (ker f ∩Mn). Then m =
∑k

i=1mi where each mi ∈ (ker f ∩Mn).

Since f is a homomorphism,

f(m) = f(
k∑
i=1

mi) =
k∑
i=1

f(mi) = 0

which means that m ∈ ker f . Therefore, ker f =
⊕

n (ker f ∩Mn).

Let n ∈ imf . We can write n as a sum n =
∑k

i=1 ni where ni ∈ Ni. As n ∈ imf , there exists

m ∈M such that f(m) = n. Say m =
∑l

j=1mj where mj ∈Mj. Then,

n = f(m) = f(
l∑

j=1

mj) =
l∑

j=1

f(mj).

Since the decomposition is unique, we must have k = l and (after reordering) f(mi) = ni

for all i. Thus ni ∈ imf for all i which implies that imf ⊆
⊕

n (imf ∩Nn). For the other

direction, let n ∈
⊕

n (imf ∩Nn). Then n =
∑k

i=1 ni where each ni ∈ (imf ∩Nn). Then for

each i there exists mi such that f(mi) = ni. Let m =
∑k

i=1mi. Since f is a homomorphism,

f(m) = f(
k∑
i=1

mi) =
k∑
i=1

f(mi) =
k∑
i=1

ni = n

which means that n ∈ imf . Therefore, imf =
⊕

n (imf ∩Nn).

Lemma 6. Let R be a commutative ring, {Mi : i = 1, · · · , n} be a finite collection of graded

R-modules. Then M =
⊕n

i=1Mi is a graded R-module. Moreover, if each Mi if free of rank

ri, then M is free of rank
∑

i ri.

Proof. M is obviously a R-module. We need to check that M is graded. For each i, let Mi

be graded by Mi =
⊕

jMij . Then M =
⊕

i

(⊕
jMij

)
=
⊕

j

(⊕
iMij

)
. If we fix j and pick
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m ∈
⊕

iMij , then m = (m1, · · · ,mn) where mi ∈ Mij for each i. Take an arbitrary r ∈ R,

rm = (rm1, · · · , rmn) and for each i, rmi ∈ Mij+1
. Thus rm ∈

⊕
iMij+1

which means that

M is graded by M =
⊕

j

(⊕
iMij

)
.

Moreover, if each Mi if free of rank ri, then for each i, there exists a basis Bi of Mi. Then

∪Bi is a basis of M and hence M is free of rank
∑

i ri.

Lemma 7. Given a short exact sequence with maps, q and r as follow:

0 −→ A
p−−−→ B

r−−−→ C −→ 0

If there exists a map u : C → B such that ru is the identity on C, then B is isomorphic to

the direct sum of A and C.

Proof. Every element in B is in the set ker r+ imu since for all b in B, b = (bur(b)) + ur(b).

Since if r(b) = 0 and u(c) = b, then 0 = ru(c) = c, the intersection of ker r and imu is 0.

By exactness, imq = ker r, and since q is injective, imq is isomorphic to A, so A is isomorphic

to ker r. Since ru is a bijective, u is injective, and thus imu is isomorphic to C. So B is the

direct sum of A and C.

Lemma 8. Let k be a field and R = k[x] be a polynomial ring with the standard grading,

M be a finitely generated free R-module of rank n and N be a graded submodule of M .

Then

1. N is free of rank d ≤ n,

2. There exist a homogeneous basis {m1,m2, · · · ,mn} of M , and nonzero homogeneous el-

ements {r1, r2, · · · , rd} ∈ R with ri|ri+1 for i = 1, · · · , d−1 such that {r1m1, r2m2, · · · ,
rdmd} is a homogeneous basis of N .

Proof. We prove the theorem by induction on n. The case when n = 1, the theorem holds

by lemma 2. Assume the theorem holds for all modules of rank ≤ n − 1. We have M ∼=⊕n
i=1 k[x](−ti) where all ti are integers. Therefore, {m1, · · · ,mn} is a basis for M where

each mi is homogeneous of degree ti. If N = {0}, we are done. If N 6= {0}, consider the

projections

πi : M → k[x](ti).

It is easy to check that all these projections are graded homomorphisms. Since N 6= {0},
πi(N) 6= {0} for some i. Thus,by lemma 3, πi(N) is a nonzero graded submodule of k[x](ti),

which by lemma 2, is free of rank ≤ 1 and generated by some homogeneous element xdi ∈
k[x](ti). Consider the exact sequence:
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0 kerπi ∩N N πi(N) 0
πi|N

ϕ

Note that πi(x
dimi) = xdi . Define the homomorphism ϕ such that ϕ(xdi) = xdimi. Since

πi(N) is generated by xdi , ϕ is well-defined and ϕ(πi(N)) is generated by xdimi. It is easy

to check that πi ◦ϕ is the identity on πi(N). Thus, by the splitting lemma, N is isomorphic

to (ker πi ∩N)⊕ πi(N).

We can check that kerπi∩N is a graded submodule of ker πi. Since kerπi has rank ≤ n−1, by

the induction hypothesis, ker πi∩N is free of rank ≤ n−1. By lemma 4, N is free of rank ≤ n.

Note that kerπi is a free graded R-module generated by {m1, · · · ,mi−1,mi+1, · · · ,mn}. Thus

by our induction assumption, there exist homogeneous elements xd1 , · · · , xdi−1 , xdi+1 , · · · , xdn ∈
R such that {xd1m1, · · · , xdi−1mi−1, x

di+1mi+1, · · · , xdnmn} is the homogeneous basis for

kerπi ∩ N . Since ϕ(πi(N)) is generated by xdimi, we get that {xd1m1, · · · , xdnmn} is the

homogeneous basis of N . By reordering, the divisibility condition is satisfied.

Note that the homogeneous elements {r1, r2, · · · , rd} ∈ R are just powers of x.

Lemma 9. Let R be a graded ring, M , M ′ graded R-modules. Let ϕ : M → M ′ be a

surjective graded homomorphism with kernel N . Let π : M → M/N the graded quotient

homomorphism. Then there exists a graded isomorphism ϕ̃ : M/N →M ′ satisfying ϕ = ϕ̃◦π.

In other words, M/N ∼= M ′.

Proof. The homomorphism theorem for modules gives us an isomorphism of R-modules

ϕ̃ : M/N → M ′ satisfying ϕ = ϕ̃ ◦ π. We only need to check that ϕ̃ is graded. Let M be

graded by M =
⊕

nMn,M ′ be graded by M ′ =
⊕

nM
′
n. Then

ϕ̃(Mn/N ∩Mn) = ϕ̃(π(Mn)) = ϕ(Mi) ⊆M ′
i

Lemma 10. Let R be a ring, M1, · · · ,Mn be graded R-modules and Ni ⊆ Mi graded

submodules. Then

(M1 ⊕ · · · ⊕Mn)/(N1 ⊕ · · · ⊕Nn) ∼= M1/N1 ⊕ · · · ⊕Mn/Nn.

Proof. Consider the homomorphism of M1 ⊕ · · · ⊕Mn onto M1/N1 ⊕ · · · ⊕Mn/Nn defined

by (m1, · · · ,mn) 7→ (m1 + N1, · · · ,mn + Nn). The kernel of this map is N1 ⊕ · · · ⊕ Nn ⊆
M1 ⊕ · · · ⊕Mn, so by the lemma 5,

(M1 ⊕ · · · ⊕Mn)/(N1 ⊕ · · · ⊕Nn) ∼= M1/N1 ⊕ · · · ⊕Mn/Nn.
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Theorem 5. (Structure Theorem for Graded Modules Over Polynomial Rings)

Let k[x] be a polynomial ring with the natural grading and M a finitely generated graded

k[x]-module of rank n. Then

M ∼= k[x](t1)/〈xd1〉 ⊕ · · · ⊕ k[x](tm)/〈xdm〉 ⊕ k[x](tm+1)⊕ · · · ⊕ k[x](tn)

where xdi |xdi+1 for i = 1, · · · ,m− 1. In other words, di ≤ di+1 for i = 1, · · · ,m− 1.

Proof. Let {m1, · · · ,mn} be a homogeneous generating set of M . We can find such a set

by taking the generators to be the elements of Mn. Then there exists a surjective graded

homomorphism f :
⊕n

t=1 k[x](ti)→M . By lemma 3, ker f is as submodule of
⊕n

t=1 k[x](ti).

Since
⊕n

t=1 k[x](ti) is a free k[x]-module, by lemma 6, there exists a basis {e1, · · · , en} of⊕n
t=1 k[x](ti) and homogeneous elements xd1 , · · · , xdm ∈ k[x] such that {xd1e1, · · · , xdmem}

is a basis of ker f . By lemma 7, we have M ∼=
⊕n

t=1 k[x](ti)/ ker f . The theorem follows

from lemma 8, taking ri = 0 for m < i ≤ n.

Using Theorem 4, this translates immediately yo the structure theorem of persistence space

of finite type, which is Theorem 3 in the previous section.
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2 Computational Methods

2.1 Smith Normal Form Codes

While learning the technique of topological data analysis, we have developed an program in

C++ which computes the Smith normal form of matrices over polynomial rings.

Definition 24. Let A be a nonzero m × n matrix over a principal ideal domain R. There

exist invertible m×m and n× n-matrices S, T so that the product SAT is



a1 0 0 · · · · · · · · · 0

0 a2 0 · · · · · · · · · 0

0 0
. . . 0

...
... ar

...
...

... 0
...

...
...

. . .
...

0 0 0 · · · · · · · · · 0


and the diagonal elements αi satisfy αi | αi+1 ∀ 1 ≤ i < r. This matrix is the Smith normal

form of the matrix A.

Why is the computation of Smith norm form involved in topological data analysis? Consider

an R-module M given by n generators and m relations. Then M is a quotient of Rn by

T (Rm), where T is the matrix of relations. Putting this matrix in Smith normal form can be

achieved by row and column operations, i.e. by basis changes in Rn and Rm, which do not

affect the isomorphism class of the module. Thus, the existence of Smith normal form gives

a proof of the ungraded analog of the structure theorem, and its computation is the central

algorithmic step in computing homology with coefficients in a principal ideal domain.

The procedure of computing the Smith normal form over a Euclidean domain such as k[x]

involves three steps.

Step I: Suppose we take a non-zero matrix A as the input. By interchanging the rows and

columns, we can move an element of smallest degree, as the (1, 1)th element. Now bring the

first row, to the form (a11, 0, · · · , 0) as follows. If an element in the first row is a multiple

of a11, we subtract a suitable multiple of the first column from that column. Otherwise, if
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a1k is not a multiple of a11, then we write a1k = qa11 + r where deg(r) < deg(a11). Then we

subtract p times of the first column from the kth column and interchange the first column

and the kth column. Now repeat the process, until we get all zeroes in the first row, except

the first one. We can do similar row operations on the first column to obtain a matrix of the

form,


a11 0 · · · 0

0 b22 · · · b2n
...

...
. . .

...

0 bm1 · · · bmn


Step II: Now, if all the entries bij are multiples of a11, we apply step I to the matrix B = [bij].

Otherwise, if the entry bij is not a multiple of a11, then we add the ith row to the first row.

Repeat the step I to make all other entries in the first row and column zero. Since, each

time we are reducing the degree of a11, we must get a matrix of the form above such that

a11 divides all bij in finite steps.

Step III: Repeat steps I and II to the matrix B = [bij].

To give an example, let us consider the matrix

A =

(
x2 x− 1

x x2

)
.

Pick one of the polynomials with the lowest degree. In our case, a12 and a21 both have lowest

degrees, so we can pick either one. Let’s Pick A12.

Swap columns so that the pivot becomes the (1, 1)th element. In our case, we need to swap

the first and the second columns. We now have(
x− 1 x2

x2 x

)
.

Write all the polynomials in the first row as a1k = qa11 + r where deg(r) < deg(a11). In our

case:

(
x− 1 (x− 1)(x+ 1) + 1

x2 x

)
.
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Then subtract x+ 1 times the first column from second column and then interchange those

two columns. Now we have

(
1 x− 1

−x3 − x2 + x x2

)
.

Then we subtract x− 1 times the first column from second column to bring a12 to 0.

(
1 0

−x3 − x2 + x −x4 + x2 − x

)
.

Then we subtract −x3 − x2 + x times the first row from second row to bring a21 to 0.

(
1 0

0 −x4 + x2 − x

)
.

Finally, we need to check that a11 divides a22, which is does in our case. Therefore the matrix

above is the Smith normal form for A.

The code that I wrote to implement this algorithm is shown in the appendix.

2.2 Algorithms

In this section, we will first explain the procedure of an algorithm which computes the

persistent homology, then give an example and finally explain why this algorithm works.

The procedure involves three steps.

Step I: We first list all simplices that appear at some point in the filtration. Then sort them

in increasing degree and dimension. The degree of a simplex is the proximity parameter

ε at which it appears in the filtration of Rips complex. It does not matter if we sort by

degree first or dimension first. Label all the simplices starting with index 0. Every simplex

is associated with a boolean variable which is called ”pivot mark” and is initialized to all

False. Every simplex is also associated with a pointer which is initialized to Null.

Step II: Repeat the following steps for every simplex in index order:

1. Write out its boundary.
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2. “Remove pivots” from the boundary, this has two stages:

(a) Look through the boundary. If any simplex appears whose “pivot mark” is False,

replace it by 0 in the boundary.

(b) If the resulting reduced boundary is 0, we are done. Otherwise, iterate the fol-

lowing process until te reduced boundary becomes 0 or the algorithm tells us to

stop.

i. Select the simplex in the reduced boundary whose index is greatest. Call this

simplex z.

ii. Look at the pointer for z. If the pointer is Null, then exit the loop. If the

pointer is not Null, subtract an appropriate multiple of the reduced boundary

of the the simplex to which the pointer points to zero out the coefficient of z

in the reduced boundary. Now go back to step i.

3. The “remove pivots” step returns a reduced boundary for the current simplex. If this

is 0, set the “pivot mark” to True. If z is the simplex of highest index in the reduced

boundary, set the pointer of z to the index of the current simplex.

Step III: Go through the simplices whose pointer mark is True. Let k be the current simplex.

If the pointer of k is Null, add to the homology in dimension dim k an interval from deg k to

∞. If the pointer of k points to a simplex l, then add to the homology in dimension dim k

an interval from deg k to deg l.

Let’s consider an example which we have seen in section 1.3.

Figure 7: Example of the algorithm

Label the upper left vertex by a, the upper right vertex by b, the lower left vertex by c and

the lower right vertex by d. We first go through step I and write out all the information

we have in the table below. In this example, sorting by degree first and by dimension first

give us the same ordering. In general, when the algorithm is computing a simplex, all its

subsimplices have already been considered be the algorithm no matter we sort by degree first

or dimension first, because if a simplex appear at time t, all of its subsimplices must appear

at times smaller than or equal to t.
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Index Simplex Degree Pivot Mark Boundary Pointer

0 a 0 F 0 N

1 b 0 F 0 N

2 c 0 F 0 N

3 d 0 F 0 N

4 ac 1 F a− c N

5 bd 1 F b− d N

6 ab 2 F a− b N

7 cd 2 F c− d N

8 ad
√

5 F a− d N

9 bc
√

5 F b− c N

10 abc
√

5 F ab−ac+bc N

11 abd
√

5 F ab−ad+bd N

12 acd
√

5 F ac−ad+cd N

13 bcd
√

5 F bc−bd+cd N

14 abcd
√

5 F
abc−abd+

adc− bcd
N

Table 1: Initial state

The boundaries of simplices a, b, c, d are already 0, so we set the “pivot” mark to True and

we are done with these simplices.

For simplex ac, its boundary a − c contains no simplices with ”pivot mark” False. The

simplex with the greatest index is c. The “pivot mark” of c is True and the pointer is Null,

so we are done with the “remove pivots” step. Then we set the pointer of c to 4. Similar

procedures happen for simplices bd and ab. The boundaries of bd, ab are unchanged and we

set the pointer of d to 5 and b to 6.

For simplex cd, its boundary c − d contains no simplices with ”pivot mark” False. The

simplex with the greatest index is d. The “pivot mark” of d is True and the pointer is 5.

The reduced boundary of simplex number 5 is b − d. So we subtract b − d from c − d to

eliminate d. The reduced boundary of cd is now c− b. The simplex with the greatest index

is now c. The pointer of c is 4, so we subtract −1 times a − c from c − b. The reduced

boundary is now a − b. The simplex with the greatest index is now b. The pointer of b is

6, so we subtract a− b from a− b. The reduced boundary of cd is now 0, so we need to set

the “pivot mark” of cd to True. Similar procedures happen for simplices ad and bc. Their
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boundaries are reduced to 0 and we need to set their “pivot mark” to True. The updated

table is presented below.

Index Simplex Degree Pivot Mark Boundary
Reduced

Boundary
Pointer

0 a 0 T 0 0 N

1 b 0 T 0 0 6

2 c 0 T 0 0 4

3 d 0 T 0 0 5

4 ac 1 F a− c a− c N

5 bd 1 F b− d b− d N

6 ab 2 F a− b a− b N

7 cd 2 T c− d 0 N

8 ad
√

5 T a− d 0 N

9 bc
√

5 T b− c 0 N

10 abc
√

5 F ab−ac+bc N

11 abd
√

5 F ab−ad+bd N

12 acd
√

5 F ac−ad+cd N

13 bcd
√

5 F bc−bd+cd N

14 abcd
√

5 F
abc−abd+

adc− bcd
N

Table 2: State after consider 0- and 1-simplices

For simplex abc, its boundary is ab − ac + bc and ab, ac both have ”pivot mark” False, so

we replace them with 0. The reduced boundary is now bc. The simplex with the greatest

index is bc. The “pivot mark” of bc is True and the pointer is Null, so we are done with the

“remove pivots” step. Then we set the pointer of bc to 10. Similar procedures happen for

simplices abd and ab. The boundaries of bd, ab are reduced to −ad, cd and we set the pointer

of ad to 11 and cd to 12. For simplex bcd, if we follow the steps correctly, the boundary will

be reduced to 0 and we need to set its “pivot mark” to True.

For the simplex abcd, its boundary is abc − abd + adc − bcd. We reduce the boundary to

−bcd because all the other simplices appeared in the boundary have “pivot mark” True. The

simplex with the greatest index is bcd. The “pivot mark” of bcd is True and the pointer is

Null, so we are done with the “remove pivots” step. Then we set the pointer of bcd to 14.

The updated table is presented below.
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Index Simplex Degree Pivot Mark Boundary
Reduced

Boundary
Pointer

0 a 0 T 0 0 N

1 b 0 T 0 0 6

2 c 0 T 0 0 4

3 d 0 T 0 0 5

4 ac 1 F a− c a− c N

5 bd 1 F b− d b− d N

6 ab 2 F a− b a− b N

7 cd 2 T c− d 0 12

8 ad
√

5 T a− d 0 11

9 bc
√

5 T b− c 0 10

10 abc
√

5 F ab−ac+bc bc N

11 abd
√

5 F ab−ad+bd −ad N

12 acd
√

5 F ac−ad+cd cd N

13 bcd
√

5 T bc−bd+cd 0 14

14 abcd
√

5 F
abc−abd+

adc− bcd
−bcd N

Table 3: State after completion of step II

Finally, we can compute the homology. In dimension 0, we have four intervals because

there are four simplices in dimension 0 with “pivot mark” True. According the step III of

the algorithm, the four intervals are [0,∞], [0, 2], [0, 1], [0, 1]. In dimension 1, we have three

intervals which are [2,
√

5], [
√

5,
√

5], [
√

5,
√

5]. In dimension 2, we have one interval which is

[
√

5,
√

5]. The interval [
√

5,
√

5] is trivial. The result we get is consistent with the previous

barcode representation which is shown below.

So why does this algorithm work? Our goal is to compute the homology of the chain complex

· · ·Ck+1
∂k+1−−→ Ck

∂k−→ Ck−1 · · ·

as a graded k[x]-module where k is a field. The process is to inductively find homogeneous

bases for each Ck such that, with respect to these bases, for Ck and Ck−1, the boundary

matrix has the Smith normal form
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Figure 8: Barcode for the Example



xd1 0 0 · · · · · · · · · 0

0 xd2 0 · · · · · · · · · 0

0 0
. . . 0

...
... xdm

...
...

... 0
...

...
...

. . .
...

0 0 0 · · · · · · · · · 0


.

It will follow that the homology in dimension k − 1 has the form

k[x](t1)/〈xd1〉 ⊕ · · · ⊕ k[x](tm)/〈xdm〉 ⊕ free terms

where t1, t2, · · · are the degrees of the generator and the number of free terms is determined

by the rank of ker ∂k−1.

However, because of the special properties of homogeneous ideals in k[x] (namely, they

are totally ordered by inclusion), it is enough to reduce the matrices successively to lower

triangular form by column operations. The row operations to get rid of the entries below the

diagonal will automatically exist without changing the pivot. The algorithm described before

is actually a shorthand for certain elementary row or column operations on the boundary

matrix:

Step II:

1. No operations happen in this step.

2. (a) Since ∂2 = 0, if a simplex is a pivot column in the boundary matrix running from
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that simplex, then it is not map to a generator of ker ∂k where k is dimension of

the simplex.

(b) i. No operations happen in this step.

ii. This step is a shorthand for a elementary column operation. We are subtract-

ing an appropriate multiple of the column, which corresponds to pointer of

the simplex with the greatest index, from another column, which correspond

to the current simplex.

After step II and possibly some swaps between columns and row, we are guaranteed to get

a lower triangular boundary matrix and the elementary row and column operations only

change the bases for Ck, but leave the homology groups unchanged.

After we have finished step II, the information in the table represents that there are bases

for the chain groups C0, · · · , Cn such that:

1. each row of the table corresponding to a k-simplex k ≤ n represents a basis vector

consisting of that simplex plus a linear combination of k-simplices that are of lower

index in the table,

2. the boundary matrices ∂ : Ck → Ck+1 are in Smith normal form,

3. if the “pivot mark” for a given k-simplex σ is False, then the corresponding basis

vector is part of the basis for Zk (the k-cycle), i.e. corresponds to a zero diagonal in

the Smith normal form. When this is the case, the pointer points to a (k+ 1)-simplex

whose corresponding basis vector has boundary containing σ plus simplices of lesser

index,

4. if the “pivot mark” for a given k-simplex σ is True, then the boundary of the associated

basis vector is nonzero. In this case the Smith normal form of the boundary matrix

going from Ck to Ck−1 contains a diagonal element xl sending the basis vector associated

to σ to the basis vector associated to the “reduced boundary” simplex with the highest

degree. The value of l is the difference between the degrees of these two simplices.

We can verify by induction on n that, if the above statementsare true up to dimension n,

and then after we excute the algorithm on (n + 1)-simplices only, these statements will be

true up to dimension n+ 1 also. Therefore, the homology is computed from the data by the

process described in step III.
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2.3 Persistent Homology Codes

Because the limited time for this project, instead of writing the complete package of codes

which compute barcodes from data sets, we use one of the available packages in Matlab —

javaPlex written by Computational Topology workgroup at Stanford University. There are

two main functionalities of javaPlex: the automated construction of filtered complexes from

geometric data and the computation of the persistent homology of filtered chain complexes

of vector spaces, implementing the algorithm discussed in the previous section. We first

create a .mat file which contains a m× n matrix which represents our data set — m points

in Rn. Then we apply a function to construct filtered complexes from the .mat file. Then we

apply a second function which computes the persistent homology of filtered chain complexes

of vector spaces which we just got. Finally, we plot the barcodes using the plot function in

matlab.
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3 Examples

3.1 Students’ Performance in a Math Course

We have used the javaplex codes to analyze the students performance in an introductory

math course Math110 in Penn State. The data set contains 1000 data points in R30. Each

dimension corresponds to performance of a particular assignment. First we consider only the

good students (i.e. students who finished all the assignments) in this data set. The obtained

barcode is as follow.

Figure 9: Barcodes for good students

The barcode in dimension 0 shows that there are two connected components until around

0.8. Then we did a cluster analysis on this data set and the centroid of the two clusters

that we observed are very close in coordinates except for the last one. When looking back

to the original data set, we noticed that a lot of low scores appear in the last coordinate

which is unusual. One possible interpretation is that many good students were already

guaranteed a grade A even without doing the last assignment, so they didn’t care about

the last assignments. Moreover, we thought we might detect a long barcode in dimension
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1 which means that there is a circle in the data set. A potential explanation is that there

exists two groups of assignments and students randomly prioritize one of the two groups,

but then, only if the have mastered the priority group, do they work on the other one. But

the evidence for a barcode in dimension 1 is not strong.

The next thing we did is normalizing the assignments scores and then running the analysis

again. By normalizing,we mean that we set the full score of each assignment to 1, and

compute each student’s score percentage. Since every assignment has a different full score,

we may be able to capture more interesting structure by doing so.

Figure 10: Barcodes for good students after normalization

However, it turned out that normalization made no difference. The barcodes before and after

normalization is all most the same except for some random noise. The results are shown

below.

The last thing we did is filling the no shows with the average score of the all students’ scores

on that assignments. However, the barcodes show that all the interesting structures are

smoothed out by replacing the no shows by averages. The result is shown below.
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Figure 11: Barcodes after replacing no shows by averages

3.2 Cyclo-octane Molecule Conformations

First we need some terms to understand this example. The conformation of a molecule

is specification of the relative positions of all atoms in R3. Typical parameterizations in-

clude coordinates of atom centers or torsional angles. The second parametrization is usually

used for proteins, but in our example, we will use the coordinates of atom centers. The

conformation space is the space of all conformations.

Figure 12: Example of a conformation of cyclo-octane from [8]
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The cyclo-octane molecule C8H16 consists of a ring of 8 carbons atoms, each bonded to a

pair of hydrogen atoms. The locations of the carbon atoms in a conformation determine the

locations of the hydrogen atoms via energy minimization. Each conformation is represented

by a point in R24. The conformation space of cyclo-octane is the union of a sphere with a

Klein bottle, glued together along two circles of singularities. In a paper published in 2012,

Zomorodian used persistent homology efficiently recover the homology groups of the confor-

mation space of cyclo-octane molecules. Another similar example is shown in [8]. In this

example, they begin with a sample of 6,040 experimental points on the conformation space

(this data is publicly available at Shawn Martin’s webpage http://www.sandia.gov/ smart-

in/software.html). The resulting barcode is as follow.

Figure 13: Barcodes for the conformation space of cyclo-octane

The homology groups as implied by the dominating barcodes is the same as the homology

groups of the union of a sphere with a Klein bottle, glued together along two circles of

singularities.
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4 Conclusion

Although we have not found anything interesting for students performance in the introduc-

tory math course, we have learned, through reading extensive materials and experimenting

with datasets that, topological data analysis is really a powerful tool. We saw its powerfulness

in detecting structures and discovering insights from really complex data. Also, the ability

to combining theoretical math knowledge in various fields such as algebra and topology into

a program which can extract information from a dataset is an exciting experience.
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Appendix

#include <s t d i o . h>

#include <s t d l i b . h>

#include <s tdboo l . h>

#define BASEPRIME 7

#define MAXDEG 99

#define MACRO 5

//BASEPRIME − order o f c o e f f i c i e n t f i e l d ;

//MAXDEG − h i g h e s t degree we can handle

int i n v e r t ( int n)

// Computes the in v e r s e o f n in the f i e l d

{
int t , t1 , r , r1 , q , x ;

t = 0 ; t1 = 1 ; r = BASEPRIME; r1 = n % BASEPRIME;

while ( r1 != 0)

{
q = r / r1 ;

x = t ; t = t1 ; t1 = x − q∗ t1 ;

x = r ; r = r1 ; r1 = x − q∗ r1 ;

}
i f ( r>1)

{
p r i n t f ( ”\n Modular d i v i s i o n by zero ” ) ;

e x i t ( 2 ) ;

}
i f ( t<0) { t += BASEPRIME; }
return ( t ) ;

}

struct poly // S t ruc tu re to s t o r e po lynomia l s

{
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int degree ;

int c o e f f [MAXDEG] ;

} ;

struct matrix

{
int c o l ;

int row ;

struct poly entry [MACRO] [MACRO] ;

} ;

void i n i t i a l i z e ( struct poly ∗p)
{
int i ;

p−>degree = −1;
for ( i = 0 ; i < MAXDEG; i++)

{
p−>c o e f f [ i ] = 0 ;

}
}

void readpoly ( struct poly ∗ r e s u l t )
//Read a po lynomia l from the keyboard .

{
int i , m, d ;

i n i t i a l i z e ( r e s u l t ) ;

for ( i = 0 ; i < MAXDEG; ++i )

{
r e su l t−>c o e f f [ i ] = 0 ;

}
p r i n t f ( ”\n Enter degree o f polynomial : ” ) ;

s c a n f s ( ”%i ” , &d ) ;

i f (d>MAXDEG)

{
p r i n t f ( ”\n Degree too l a r g e ” ) ;

e x i t ( 5 ) ;

}
r e su l t−>degree = d ;

for ( i = 0 ; i <= d ; ++i )

{
p r i n t f ( ”\n Enter c o e f f i c i e n t o f X to the power %i : ” , i ) ;

s c a n f s ( ”%i ” , &m) ;



35

r e su l t−>c o e f f [ i ] = m;

}
}

void wr i t epo ly ( struct poly p1 )

// Write a po lynomia l to the screen .

{
int i ;

i f ( p1 . degree == −1)
{
p r i n t f ( ”0” ) ;

}
else

{
for ( i = 0 ; i <= p1 . degree ; ++i )

{
i f ( p1 . c o e f f [ i ] != 0)

{
i f ( i == 0)

{
p r i n t f ( ”%i ” , p1 . c o e f f [ i ] ) ;

}
else

{
p r i n t f ( ”%ixˆ%i ” , p1 . c o e f f [ i ] , i ) ;

}
i f ( i<p1 . degree ) { p r i n t f ( ”+” ) ; } ;

}
}
}

}

void w r i t e p o l y f i l e ( struct poly p1 , FILE ∗out )
// Write a po lynomia l to f i l e .

{
int i ;

i f ( p1 . degree == −1)
{
f p r i n t f ( out , ”0” ) ;

}
else

{
for ( i = 0 ; i <= p1 . degree ; ++i )
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{
i f ( p1 . c o e f f [ i ] != 0)

{
i f ( i == 0)

{
f p r i n t f ( out , ”%i ” , p1 . c o e f f [ i ] ) ;

}
else

{
f p r i n t f ( out , ”%ixˆ%i ” , p1 . c o e f f [ i ] , i ) ;

}
i f ( i < p1 . degree ) { f p r i n t f ( out , ”+” ) ; } ;

}
}
}

}

void neg ( struct poly ∗ r e su l t , struct poly p1 )

{
int i ;

i n i t i a l i z e ( r e s u l t ) ;

r e su l t−>degree = p1 . degree ;

for ( i = 0 ; i < MAXDEG; i++)

{
r e su l t−>c o e f f [ i ] = BASEPRIME − p1 . c o e f f [ i ] ;

}
}

void add ( struct poly ∗ r e su l t , struct poly p1 , struct poly p2 )

//Add two po lynomia l s . We pass a po in t e r to where the r e s u l t i s s t o r ed .

{
int i , d ;

i n i t i a l i z e ( r e s u l t ) ;

i f ( p1 . degree > p2 . degree ) d = p1 . degree ;

else d = p2 . degree ;

r e su l t−>degree = −1;
for ( i = 0 ; i <= d ; ++i )

{
r e su l t−>c o e f f [ i ] = ( p1 . c o e f f [ i ] + p2 . c o e f f [ i ] ) % BASEPRIME;

i f ( r e su l t−>c o e f f [ i ] != 0)

{



37

r e su l t−>degree = i ;

}
}
}

void mult ( struct poly ∗ r e su l t , struct poly p1 , struct poly p2 )

// Mu l t i p l y two po lynomia l s .

{
int i , j , d ;

i n i t i a l i z e ( r e s u l t ) ;

d = p1 . degree + p2 . degree ;

i f (d>MAXDEG)

{
p r i n t f ( ”\n Degree over f l ow e r r o r \n” ) ;
e x i t ( 1 ) ;

}
for ( i = 0 ; i <= d ; ++i )

{
r e su l t−>c o e f f [ i ] = 0 ;

for ( j = 0 ; j <= i ; ++j )

{
r e su l t−>c o e f f [ i ] = ( r e su l t−>c o e f f [ i ] + p1 . c o e f f [ j ] ∗ p2 . c o e f f [ i − j ] )

% BASEPRIME;

}

i f ( r e su l t−>c o e f f [ i ] != 0)

{
r e su l t−>degree = i ;

}
}
}

void d iv id e ( struct poly ∗quot , struct poly ∗remd , struct poly a , struct poly b)

// Divide two po lynomia l s ( long d i v i s i o n ) .

{
int i , j , d , q , v ;

for ( i = 0 ; i < MAXDEG; ++i )

{
quot−>c o e f f [ i ] = 0 ;

remd−>c o e f f [ i ] = a . c o e f f [ i ] ;

}
remd−>degree = a . degree ;

i f (b . degree < 0)

{
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p r i n t f ( ”\n Polynomial d i v i s i o n by zero ” ) ;

e x i t ( 3 ) ;

}
q = inv e r t (b . c o e f f [ b . degree ] ) ;

quot−>degree = ( remd−>degree − b . degree ) ;

while ( remd−>degree >= b . degree ) // wh i l e d i v i s i o n i s p o s s i b l e

{
v = q∗( remd−>c o e f f [ remd−>degree ] ) % BASEPRIME;

quot−>c o e f f [ remd−>degree − b . degree ] = v ;

for ( i = 0 ; i <= b . degree ; ++i )

{
remd−>c o e f f [ i + ( remd−>degree − b . degree ) ] =

( remd−>c o e f f [ i + ( remd−>degree − b . degree ) ] − (b . c o e f f [ i ] ) ∗ v ) % BASEPRIME;

i f ( remd−>c o e f f [ i + ( remd−>degree − b . degree ) ] < 0) {
remd−>c o e f f [ i + ( remd−>degree − b . degree ) ] += BASEPRIME;

}
}
// Find the degree o f the remainder

d = −1;
for ( j = 0 ; j <= remd−>degree ; ++j )

{
i f ( ( remd−>c o e f f [ j ])>0)

{
d = j ;

}
}
remd−>degree = d ;

// Find the degree o f the quo t i en t

d = −1;
for ( j = 0 ; j <= quot−>degree ; ++j )

{
i f ( ( quot−>c o e f f [ j ])>0)

{
d = j ;

}
}
quot−>degree = d ;

}
}

void t racematr ix ( matrix M)

{
int i , j ;

p r i n t f ( ”\n” ) ;
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for ( i = 0 ; i < M. row ; i++)

{
for ( j = 0 ; j < M. co l ; j++)

{
wr i t epo ly (M. entry [ i ] [ j ] ) ;

p r i n t f ( ” ; ” ) ;

}
p r i n t f ( ”\n” ) ;
}
p r i n t f ( ” .\n” ) ;
}

int main (void )

{

// i n i t i a l i z a t i o n

struct matrix M;

struct poly pivot , p , rem , quo , nquo , m;

int i , j , k , t , a , pivotrow , p i v o t c o l ;

bool a l l z e r o , a l l d i v i d e s ;

FILE ∗ in , ∗out ;

M. row = 0 ;

M. c o l = 0 ;

for ( i = 0 ; i < MACRO; i++)

{
for ( j = 0 ; j < MACRO; j++)

{
M. entry [ i ] [ j ] . degree = −1;
for ( k = 0 ; k < MAXDEG; k++)

{
M. entry [ i ] [ j ] . c o e f f [ k ] = 0 ;

}
}
}

pivot . degree = MAXDEG;

p . degree = −1;
rem . degree = −1;
quo . degree = −1;
nquo . degree = −1;



40

m. degree = −1;

for ( i = 0 ; i < MAXDEG; ++i )

{
pivot . c o e f f [ i ] = 0 ;

p . c o e f f [ i ] = 0 ;

rem . c o e f f [ i ] = 0 ;

quo . c o e f f [ i ] = 0 ;

nquo . c o e f f [ i ] = 0 ;

m. c o e f f [ i ] = 0 ;

}

i , j , k , t , a , pivotrow , p i v o t c o l = 0 ;

a l l z e r o = fa l se ;

a l l d i v i d e s = fa l se ;

f open s (&in , ”matrix1 . txt ” , ” r ” ) ;

f open s (&out , ”SNF1 . txt ” , ”w” ) ;

// input

f s c a n f s ( in , ”%i ” , &M. row ) ;

f s c a n f s ( in , ”%i ” , &M. co l ) ;

for ( i = 0 ; i < M. row ; i++)

{
for ( j = 0 ; j < M. co l ; j++)

{
f s c a n f s ( in , ”%i ” , &M. entry [ i ] [ j ] . degree ) ;

for ( k = 0 ; k <= M. entry [ i ] [ j ] . degree ; k++)

{
f s c a n f s ( in , ”%i ” , &M. entry [ i ] [ j ] . c o e f f [ k ] ) ;

a = (M. entry [ i ] [ j ] . c o e f f [ k ]+100∗BASEPRIME) % BASEPRIME;

M. entry [ i ] [ j ] . c o e f f [ k ] = a ;

}
}
}

// s t a r t computing

i f (M. row > M. co l )

{
a = M. co l ;

}
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else

{
a = M. row ;

}

for ( t = 0 ; t < a ; t++)

{

do

{
// choos ing the p i v o t

pivot . degree = MAXDEG;

for ( i = t ; i < M. row ; i++)

{
for ( j = t ; j < M. co l ; j++)

{
i f (M. entry [ i ] [ j ] . degree < pivot . degree && M. entry [ i ] [ j ] . degree !=−1)
{
pivot = M. entry [ i ] [ j ] ;

pivotrow = i ;

p i v o t c o l = j ;

}
}
}

// swaping rows and columns so t ha t p i v o t i s a t ( t , t )− th p o s i t i o n

for ( i = t ; i < M. row ; i++)

{
p = M. entry [ i ] [ t ] ;

M. entry [ i ] [ t ] = M. entry [ i ] [ p i v o t c o l ] ;

M. entry [ i ] [ p i v o t c o l ] = p ;

}

for ( j = t ; j < M. co l ; j++)

{
p = M. entry [ t ] [ j ] ;

M. entry [ t ] [ j ] = M. entry [ pivotrow ] [ j ] ;

M. entry [ pivotrow ] [ j ] = p ;

}

a l l z e r o = fa l se ;

// e l im ina t i n g e n t r i e s

while ( ! a l l z e r o )
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{
// e l im ina t e e n t r i e s to the r i g h t o f the p i v o t

for ( j = t+1; j < M. co l ; j++)

{
do

{
d iv id e (&quo , &rem , M. entry [ t ] [ j ] , M. entry [ t ] [ t ] ) ;

for ( i = t ; i < M. row ; i++)

{
neg(&nquo , quo ) ;

mult(&m, nquo , M. entry [ i ] [ t ] ) ;

add(&p , M. entry [ i ] [ j ] , m) ;

M. entry [ i ] [ j ] = p ;

}

i f ( rem . degree != −1)
{
for ( i = t ; i < M. row ; i++)

{
p = M. entry [ i ] [ t ] ;

M. entry [ i ] [ t ] = M. entry [ i ] [ j ] ;

M. entry [ i ] [ j ] = p ;

}
}
} while ( rem . degree != −1);
}

// e l im ina t e e n t r i e s under the p i v o t

for ( i = t+1; i < M. row ; i++)

{
do

{
d iv id e (&quo , &rem , M. entry [ i ] [ t ] , M. entry [ t ] [ t ] ) ;

for ( j = t ; j < M. co l ; j++)

{
neg(&nquo , quo ) ;

mult(&m, nquo , M. entry [ t ] [ j ] ) ;

add(&p , M. entry [ i ] [ j ] , m) ;

M. entry [ i ] [ j ] = p ;

}

i f ( rem . degree != −1)
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{
for ( j = t ; j < M. co l ; j++)

{
p = M. entry [ t ] [ j ] ;

M. entry [ t ] [ j ] = M. entry [ i ] [ j ] ;

M. entry [ i ] [ j ] = p ;

}
}
} while ( rem . degree != −1);
}

// check i f a l l e n t r i e s to the r i g h t o f the p i v o t are s t i l l zero

a l l z e r o = true ;

for ( j = t+1; j < M. co l ; j++)

{
i f (M. entry [ t ] [ j ] . degree != −1)
{
a l l z e r o = fa l se ;

}
}
}

a l l d i v i d e s = true ;

i f ( t != a − 1)

{
for ( i = t + 1 ; i < M. row ; i++)

{
for ( j = t + 1 ; j < M. co l ; j++)

{
d iv id e (&quo , &rem , M. entry [ i ] [ j ] , M. entry [ t ] [ t ] ) ;

i f ( rem . degree != −1)
{
for ( k = t ; k < M. co l ; k++)

{
p = M. entry [ t ] [ k ] ;

M. entry [ t ] [ k ] = M. entry [ i ] [ k ] ;

M. entry [ i ] [ k ] = p ;

}
a l l d i v i d e s = fa l se ;

break ;

}
}

i f ( ! a l l d i v i d e s )
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{
break ;

}
}
}
} while ( ! a l l d i v i d e s ) ;

}

// output

f p r i n t f ( out , ”The d iagona l e n t r i e s are :\n” ) ;
for ( i = 0 ; i < a ; i++)

{
w r i t e p o l y f i l e (M. entry [ i ] [ i ] , out ) ;

f p r i n t f ( out , ”\n” ) ;
}

f c l o s e ( in ) ;

f c l o s e ( out ) ;

e x i t ( 0 ) ;

}
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