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Chapter 1

Introduction

1.1 Structures of the 3D Genome

The human genome is often thought of as an abstract string of nucleotides, with little consideration
given to the complex,-8imensional orgamation of DNA in the nucleus. Howevehg advent of
chromatin capture assays, such as 3&Cnd MicreC, has allowed for a more comprehensive
understanding of the structure of tgenome. Chromatin organizationaskey driver of many
genomic functions. Heterochromatin and euchromatin are key players in gene regulation.
Chromosome segregation is associatet the replication cycleAt the end of mitosis, even after

the decompression of the chromosomes, teey to occupyparticularregions of the nucleus

(Meaburn & Misteli, 2007,)

Topologically Associated Domains (TADs) characterize eoresd chromatin compartments.
TADs representlarge domains constituting at least 6 nuclear subcompartments. These

subcompartmestare correlated with different patterns of histone modifications (Rao et al., 2015)

Lamina Associated Domains (LADs) anchor the DNA to the nuclear enveldpe nuclear
envelope drives and maintains the organization of chromatin by this anchoringpbéperDNA.

LADs are associated with low levels of gene expression (Guelen et al., 2013).

Even enhancepromoter looping involves chromatin structure. Chromatin organization and
structure is a thredimensional process, and so the key to fully understgrits related genomic

processes lies in threBkmensional analysis.



1.2 Chromatin Capture

Chromatin capture was first explored in 2002 with the development of the 3C assay, on which
other chromatin capture assays are based (Dekker, 2002). The protagesiviagy the isolation

of intact nuclei, which are then subjected to formaldehyde fixation. The crosslinked DNA is
subsequently sequenced, producing hybrid reads aligning to regions géribene thatare
physically touching in theucleus(Dekker, 2002).The assay takes a group of nuclei, the 3D
organization of which are not identical, so while two segments of DNA may be proximal enough
for crosslinking in one nucleus, this may not be the case in another. The higher the frequency of
crosslinked interacti®) the more commonly two pieces of DNA occur together ipdpeilation

of nuclei The core assumption of the assay is therefore that interaction frequency is directly,

positively related to &limensional proximity in the nucleus (Dekker, 2002).

The 3C asay is described as a etteone capture procedure as it captures only interactions
betweertwo individual loci, for which the sequences of both must already be known (Stadhouders
2013). Several variants of the original assay exist. 4C expands the qapttedure such that all
interactions with a known locus of interest are sequenced intallecapture. 5C explores many

loci of interest and captures many of the interactions with each of these loci in dcamaagy
capture. HiC analysis allows for lato-all capture of interactions, using higfroughput

sequencing technology and genome alignment (Stadhouders 2013).

1.3 Hi-C analysis

Hi-C analysis is a powerful chromatin capture variant in that it captures interactions between loci

in a pairwise fasbn across the entire genome (Liebermfaden 2009). The fundamental



3
procedure is the same as that of 3C, with modifications to allow for capture of all pairs of

interactngloci. The procedure begins with the isolation of intact nuclei and crosslinkioggn
formaldehyde exposure. The DNA is then cut with restriction enzymes. The free ends are tagged,
then ligated. The DNA is then sheared and pulled by its tag. The result is hybrid fragniev#s of

that have beerigated together (Rao 2014). These rehdse two portions, each aligning to a
different portion of the genome. The reads are sequenced and aligned. The aligned sequences
represent regions of tlgeenome thatvere in close enough proximity to one another in the nucleus

for an adjacent formaldehydiekage to occur. This process is illustratedrigurel.

Figure 1: Hi-C Protocol

A Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using
restriction and mark pull down biotin paired-ends
enzyme with biotin Nhel

AG

L

'TCGR

Hindlll

Modified from Lieberman-Aiden et al., 2009

Figure 1: Hi-C Protocol
The procedure is as shown, proceeding left to right. The final paired end reads, once sequenced, are aligned the
two locations. That pair of locations then represent andatien.

1.3.1 Hi-C data

The HiC procedure produces billions of reads, even after screening and alggahgofwhich

repreent individual interactions. The data is processed by binning the genomeridtiws with
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the bin sizeébased on the resolution of the data E®ery interacting genomic locus falls into a

certain bin. For any givehin, there may be zero or many intefagtloci within its genomic
window. The interaction frequency of a given bin represents the number of loci within that bin that
interact with other loci. The interaction frequency between any pair of bins then represents the

frequency with which loci withn their respective genomic windows interact

This data lends itself to representation as a matrix. The matrix has on its axes the bins from the
entire genome, or genomic window of interest, and each index is the interaction count between the
two bins. Thematrices are symmetrical with respect to the diagonal, and sparse. The sparsity is

simply due tofew interactions occurring betwe@airs of binsthat lie far aparbn the genome.

The matrices are then displayed as a heat map, with coloring based elatike magnitudes of

the interaction countSigure2A (Heinz et al., 2010)

It is important to note that the underlying data structure of the heat map is still a matrix with an
interaction count for each pair of nodes. This mahas each row or column can be taken as a

vector, representing the interactien count be



Figure 2: Hi-C Data and Normalization
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Figure 2: Hi-C Data and Normalization

The HiC interaction matrices are often visualized as heat Wampresents a raw interaction count matrix, note

pronounced diagonal sign@.represents an observed over expected interaction matrixthadtdne diagonal signal is n
longer presentC represents the log scale values of the raw interaction counts. While there is still a diagonal signal
it is significantly less overpowerin@ represents a matrix of the correlation of the norredlinteraction ratios. All three
of these are viable transformations/normalizations foCHilata, and there are several other methods. These heat
depict interactions on chromosome 1 of human embryonic stem cells

1.3.2 Hi-C Data Normalization Methods

As seen irFigure2, the diagonal of the interaction matrix is the dominant feature. This is because
neighboringbinson thegenome whose interactions are represented on the diagonal, are in close
3D proximity due to the linear comaint. DNA that is close together on the linear genasnalso

close together in the 3D genome, producing an abundance of reads on the diagonal. Additionally,

reads along the diagonal are produced bylggfion effects, in which digested fragments of
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crosslinked DNA are ligated to the other sheared end of the linear fragment, rather thah ends

the adjacent crosslinked fragment.

This is only one of severéctors thatan impact HiC data. The dominant diagonal is of special
interest because the gazfl Hi-C assays is often to uncover lerange interactions. The long
range interactions are much more infrequent than the-sdrgge interactions, so normalizing by
the expected count can amplify the signal of significant long range interactions. Teheevenal
useful mrmalizationand transformatiomethods, a few of which are illustratedFigure2 (Heinz

et al., 2019

In analyzing HiC data, data prprocessing can be necessary, and can help extract desired
information, but it is important to understand what this preprocessing is doing to the data, as well

as what the processing is forcing the data to describe.

Note that the various methods of normalization and the quality of the data are not considered by
thetool described herein, it will produce results based on whatever data is input, and the output
will reflect the topology of the dataspace. It is therefore necessary to be aware of how data

processing is impacting the meaning of the data.

1.4 Dimensiondity Reduction

Dimensionality reduction is the process of taking higinensional data and generating
observations on a low dimensional (2D or 3D) manifold where the observations can be more
intuitively understood (Rowei000). It is crucial that the neant observations on the produced

manifold, or description space, are representative of the higher order data structure, gRO0is
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If the goal is to understand the data, then dimensionality reduction is useless if it does not preserve

the topology bthe highdimensional space.

The key component of dimensionality reduction algorithms fsiretion thatmaintains the
relationships between similar data points (L2@07). Highdimensional data vectors can be
compared to each other, using Pearson @irosl, cosine similarity, Euclidean distance, et0d
those high dimensional vectors most similar to one anstheuldalso be close together, at the

end of dimensionality reduction, in the description space (Ro2@u®)

1.5 SeltOrganizing Map Algorithm

The SelfOrganizing Map (SOM) algorithm is an unsupervised -logar dimensionality
reductionalgorithm thatalso preserves topology (Le2007). The SOM takes the form of a static

grid or lattice of nodes. The grid is the 2D space upon which thedmgénsional data set is
projected. Each node also has a weight vector of the same dimensionality as these high
di mensional data vectors in a dat a-dsnensignalwhi c h
dataspacekohonen 2012. The basic schent the occupation of a dataspace by a defined gird

is shown inFigure3.



Figure 3: SOM Training
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Figure 3: SOM Training

Depicted herés a web of nodes progressing to occupy the data space (blue), as in SOM training. The connected
relationship of neighboring nodes remains the same throughout training, but the position in data space of each nod
The projection space woufiill be a rectangular grid, but it would represent the topology of the blue polygon on that

1.5.1 SOM Initialization

The basic SOM training proceeds as follows. Initializing theéesdbegins by first defining the

value of the weight vector for each node. This can be done by randomizing the values, or assigning
them tobeequalto data points in the dataset. Another popular method is to assign the node weight
vectors such that thegftect the general structure of the data set from the start; this, however,
requires extensive prior understanding of the data set, and is therefore not always possible

(Kohonen 2012.

The initialized nodes also must populate a structured lattice, satdhéhconnections and distance
between each are known. This is necessary because the grid onto which the dataset is to be
projectedaimsto represent the topology of the dataset, meaning nodes close together on the 2D

projection mustlsobe close togethian dataspace. The relationships between each node on the
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lattice are used to impose an order to the nodes in dataspace. Before training begins, then, these

relationships must be defined. Often, they are simply defined as the distance between the nodes on
the projection space. The hexagonal grid is preferred to rectangular and square grids because in
the hexagonal case each node has six neighbors with minimum distance, rather tlis@efour
Figured4). This allows ér a more elastic conformation to the dataspace, while maintaining regular

structure.

Figure 4: Neighborhoods br SOM Grids
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Figure 4: Neighborhoods for SOM Grids

Two neighborhood sides are represented here. The hexagonal grid shows that there are 6 direct neighbors By |
and that the distance between nodes radiates out in shells. The rectangular grid shows similar shells, but there
direct neighbors for each node. Note that in the depicted shell there are 4 nodes which are closest to the node in
4,0n the corners, which are not of equal distance. This distance disparity, along with the reduced number of direct n
makes the rectangular grid inferior to the hexagonal for SOM projection grids.

1.5.2 SOM Training

There are two main variants of training a Setfyanizing Map: the basic SOM, and thetched
SOM. The batched SOM more readily lends itself to threaded training, mésaioiged training

can be completed fastét.5 Training).
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The batched training proceeds in two steps, repeated for a definedmuafriibrations. In the first

step, the assignment step, the data points are assigned to the node whose weight vector is most
similar (see2.5.1.1 Similarity Metrig to the vector of the data point; this vector is then the best

matching unit (BMU) Kohonen 2012.

The update step comes second, and the weight vector of each node is updated to reflect the
assignment of the data points. Each data point is considered in the updating of each node. The

weight vectors of each node argdated by:

Where:

1 sis the current iteration

1 W, isthe weight vector of node

1 nis the number of data points in the set
1 X is the data vector of data pojnt

1 hiusis the neighborhood function

Theneighborhood function, denotedfagsis defined as follows:

Where:

9 iis theis the node being updated
1 uis the BMU (node) of the data point being considered

I sis the current iteration
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1 ois the distancen theSOM gridbetween nodeisandu

9 Uis the variance of the Gaussian kernel for the current iteration

f Us)is the learning rate for the current iteration

The learning rate and variance are parameters that can be changed for different training protocols,
but, in general, both shrink ovdime from an initial value to a final value either linearly or
exponentially.The gradual reduction of the variance allows for the neighborhood function to
assign shrinking weights to further neighbors once the training hesqaled for several iterations.

Data points from highly distant nodes have little impact on the weight vector once the map has

been allowed to adopt the general structure of the data.

It is necessary to shrink the learning rate over time, because th@r8alfizing Maphas no
defined enepoint in training. Therefore, it must be restricted such that training slows and stops as
it reaches the defined number of iterations. This produces the trained B@We®), which

reflects thestructure of the data set.
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Figure 5: Trained SOM

Figure 5: Trained SOM

The panels above represenfl data space (left) and trained SOM (right). Data points in the data space are ¢
according to the node to which they are assigned. The two starred nodes are connected to their neighbors by bla
the data space. The neighboring nodes hasigraesd data points which are close together in the data space. This is
pronounced in the case of purple node, but indeed the green node is neighboring nodes with relatively similar dat

1.6Lorenz Curve Analysis & Gini Coefficient

Assessing resource inequality is an important topic in the fields of economics, sociology and
politics, and the Gini coefficient iselatively common way to express resource disparity
guantitatively (Catalano et al. 2009). The description of the distribution of resources begins by
constructing the Lorenz curve, which plots the cumulative percentage of the resource occupied
against the emulative percentage of the population occupying that resource (Harch 1997). It is

important to note that the population is summed from poorest to richest in terms of resource
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occupation, producing an increasing trend in cumulative percent resource motppatpercent

population.

The Lorenz curve is compared to a specific case of distribution, often simply the case in which the
resource is equally distributed (Catalano et al. 2009). The area under the comparison case is
maximized in this situation of el distribution, because, as shownFigure 6, any unequal

distribution of a resource will produce a curve below the line of equal distribution.

The area between the Lorenz and comparison curves is known as the Gini indeateh grea
between these curves, which produces a large index, indicates a larger gap between the distribution
of the resource and the ideal or expected distribution described by the comparison case. In a
common example, the Lorenz curve of income distidouis compared to the case of completely
equal distribution. The larger the Gini index, the less equally distributed the income. The Gini
index is normalized by dividing the index by the area under the comparison case. This yields the
Gini coefficient, which, like the Gini index, grows with the resource disparity. An example of these

curves,ncludingthe calculation of the coefficients shown inFigure®6.
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Figure 6: Gini Coefficient

100%

A = Gini Index

Gini Coefficient = a
A+

Cumulative share of income earned

>
100%
Cumulative share of people from lowest to highest incomes
Modified from Pandey, Nathwani, 1996

Figure 6: Gini Coefficient

On the graph above, the linéequality represents the comparison curve in the perfect equality case. The Lorenz cu
marks the true, unequal distribution of wealth. The grey area marked as A, between the equality comparison and
Lorenz curve, represents the Gini index. The latige Gini index, the greater the disparity between the equality case
the actual distribution. The Gini coefficient is produced by dividing the Gini index by the total area below the equa

comparison. A larger Gini coefficient comes from a largei @itex, which indicates a more unequal distribution of
wealth.

In cases of cunative wealth distribution across populations, individuals represent such a small
fraction of the total population that the Lorenz curve is effectively continhouggver integration
is not required for area under curve calculatighs;areas aréound geometrically using finite

intervals(Figure7).
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Though most commonly the comparison case of interest is that of equality, if another distribution

of a resource is expected, the comparison curve can take anothefl fa Gini coefficient then

still represents the degree of difference between the expected or ideal distribution and the observed
distribution. In cases of wealth distribution disparity, the United Nations suggest Gini coefficients
larger than 0.40 are nsidered highly unequally distributed (Catalano et al. 2009). Howgner,

cutoff is arbitrary, and so cannot be considered absolute
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Figure 7: Gini Calculation

Gini Coeficient for Tip Share

100 = Equality Area = 3200+1350+450 = 5000
Laren? Area = 250045254+150 = 3175

&

A Gini Index = 5000 - 3175 = 1875
Gini Coefficient = 1875/5000
0.365

60
—8— Lorenz
Curve
40
—8—Equal
20 Distribution
(]

] 20 40 (1) 80 100
Cumulative Percentage of Employees

Position Percent of Percent of Cumulative | Cumulative
Employees Tip Share Employee Tip Share
0 0 0 0

Cumulative Percentage of Tip Share

None

Bushoy 30 10 30 10
Hostess 30 15 60 25
Waiter 40 75 100 100

Figure 7: Gini Calculation

The table above includes sample data for distribution of employee population and tip share among the three fron
restaurant positions. The Lorenz curveduhsn this data and the linear comparison curve are plotted on the graph
the table. The area under each segment of the curve was calculated geometrically, and is labeled on the graph. T
these areas were used to calculate the Gini Caafficas shown in green.
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Chapter 2

Methods: Training a Chromatin Interaction SOM

2.1 Overview

The Self-Organizing Map implementatiatescribed hergakes an input matrix of HC chromatin
interaction data, raw or normalized, and outputs a trained SOMadrich is a 2D representation

of thechromatin interaction spa@s depicted by the high dimensibmgpout data. The oputgrid

can then take additional data sets, in the form of genomic coordinates and weights, and provide
visual and quantitative analysis about the distribution of those coordinate®matin interaction

space The implementation mritten in Java.

2.2 Input Data

The input data must be in the form of a-tidineated DxD matrix, where D is the number of
genomichins in the data sdt.e. related to the resolution of the-Biexperiments)The matrix

must begin with a row of logindicating thecoordinates ofhe genorit loci covered by each bin.

Every row after that must start with the region covered by thefddloywed byHi-C interaction

couns with every other binThe interaction count does not have to strictly be a count.iEdek

takes the form of a double, and can reflect any transformation or normalization performed on the
matrix prior to training A portion of a small sample matrix is shownHigure 8. Bins with no

data, meaning zero interactewith all other bins, are not considered in training, and trained maps

will not reflect the genomic loci contained in those bins.



Figure 8: Data Set

chrl:0-499999
chr1:500000-939999
chr1:1000000-1499999
chri:1500000-1599999
chr1:2000000-2499999
chri1:2500000- 2599999
chr1:3000000-3499939
chr1:3500000-3999999
chr1:4000000-4499999
chr1:4500000-4999939
chr1:5000000-5499999
chri1:5500000-5599999
chr1:6000000-6499999
chr1:6500000-6999999
chrl1:7000000- 7499999
chr1:7500000-7999939
chr1:8000000-8499999
chri:8500000-8599999
chr1:9000000-5499999
chr1:9500000-9599999

chr1:0-499999

0.010473129
0.004442765
0.003349629
0.0045397421
0.005487543
0.004029231

0.00437567
0.005289881
0.003113762
0.002413496
0.001383812
0.001538142
0.016844723
0.020116697
0.005894779

0.00835128
0.008938111
0.016537788
0.017244812
0.025300034

Figure 8: Data Set
Shown is only a small portion of an input data set. First row and first column both indicate the genomic location of
in question. The indices represent the interaction frequencies. The frequenciastemeairnumbers, because this matt
has been normalized.

2.3 Calling the Training Program

The program takes as parameters:

M callfort r ai

1 x-dimension of the gridint)

1 y-dimension of the grid (int)

chr1:500000-999999 chr1:1000000-1499999 chr1:1500000-1999999

0.004442765
0.921265936
1.402032226
0.976721437

0.7415618
0.345715183
0.491566131
0.609676754
0.364120124
0.278162765
0.294446484
0.509242707
1.198212385
1.329048617
0.535835668
0.780075804
1.014680562
1.240162928
1.134019758
1.502762177

ning

0.003349629
1.402032226
1.872505583
1.493553194
0.886890471
0.419783392
0.594765192
0.800090073
0.449564731
0.354977762
0.390258207
0.655264101
1.671644538
1.874994733
0.746221213
1.104589569

1.42653661
1.607621467
1.544058708
2.206613447

(String

0.004597421
0.976721437
1.493553194
2.056700943

1.48304736
0.800104622
1.284059649
1.442379462
0.764402602

0.60675964
0.584531822
1.293249273
3.226843842
3.602061864

1.52891285
2.080323247
2.249412533
2.601562632
2.540877046
2.808801442

chr1:2000000-2499999

0.005487543
0.7415618
0.886890471
1.48304736
2.029409767
1.509390346
2.106155516
1.909292585
1.089066143
0.949747209
0.960459671
1.979297044
3.957032864
3.371653588
1.504124504
2.37027636
2.161177916
2.227467045
2.1535594
2.16506943

1 initial variance of the neighborhood kernal (double)

1 final variance of the neighborhogérnal (double)

1 number of iterations (int)

1 number of mapfor quality contol (int) (see2.6 Quality Catrol)

1 desiredsimilarity metric(int)

o O for Pearson Correlation
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chr1:2500000-2999999 chr1:3000000-3499999

0.004029231
0.345715183
0.419783392
0.800104622
1.509390346
1.200779624
1.876728643
1.002604935

1.64109764
1.804579391
2.119375288
2.828141689
2.284346834
1.760313617
2.339884147
2.218250161
1.238204069
1.101644861
1.366106636
0.992287802

[ATraino])

0.00437567
0.491566131
0.594765192
1.284055649
2.106155516
1.876728643

1.63331023
1.465224031
1.527126424
1.498115863
1.431826495

3.29475541
3.813396826
2.541787696
2.667456365
2.618642908
1.573393907
1.508917008
1.819230046
1.228947335
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o0 1 for Cosine Similarity

1 nameof the output magString)
1 path to the input matrix

1 number of available processors
Example of the command line call for training:

1 java - Xmx38G MultiMap Train 5 0501.20.2 1000 10 1 "My Map" "My
Matrix" 40

MultiMap is the package in which the code for training resides. -Xnex38G argument is

required to handle memory load. This call will produce a 50x50 map (2500 total nodes) named
AMy Mapo based tdre titMy OMattaiixo file. Training
with a kernel variance shrinking from 1.2 to 0.2. Ten maps will be trained for quality control, and
training will occupy 40 processors (or the maximum available). Note that learningmatéaken

as a parameter, and ranges from 1 to 0.01 over the course of training in all cases.

2.4 Initialization

The first step in training is to load the data set into memory. The regions covered by each bin are
saved in a vector of magnitude D, whilégraction counts are saved in a separate DxD matrix.
The entire data set is loaded into memory. An additiordindensional vector is then created
which stores the magnitude of each data vector. This is used in comparing data points to nodes.
Unlike the nales, however, the data point vectors do not change during training, so it is prudent to

calculate and save these magnitudes for use throughout training.
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Each node on the grid then given a weight vector equal to that of a random data point. The

weight vecto of each node is then stored in a NxD matrix, where N is the number of nodes on the
grid. Then the neighborhood is calculated. The neighborhood is represented as an NxN matrix in
which the pairwise distance between modesaved. The grid is static, duese distances do not
change throughout training. These neighborhoods are illustratédure9. Note that the grid is

toroidal, so sides and corners defined to bexdjacent.

An additional NxD matrix of Boolean values is desh but not yet filled, to hold the value (true
or false)corresponding tevhether a data point is assigned to a node. An emgtiynignsional

vector is also created to store the number of assigned data points for each node.

Figure 9: Neighborhoods

Figure 9: Neighborhoods

On each grid above a different node is indicated in black. For each black node, the neighborhood is indicated by the
colors. Each shell represents an incremerttistince. Note that the grid is toroidal, so that when radiations reach an
they continue on the opposite edge.
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2.5Training

The training protocol is sped up by splitting the jobs required among available proceasors
multi-threading, in which each thread has a processor with which it computes a fraction of the task
at hand. In general, morgqeessors mean faster training. The batched implementation of the
training protocol was selected because it lends itself to -tuéadingby breakingraininginto

two repeatedteps: assignment and upslat

2.5.1 Assignment

Assigning data points tnodes proceeds by first calculating and storing the magnitude of each
nodeds weight vector. Then the data points ar
compared to every node. The most similar node is determined. The assignment matrix is the
updated to refl ect e ac hvedabecouatingptleiumbterbosassiggeds B MU ,

data pointgor each nodés incremented andecremented to reflect the same.

2.5.1.1 Similarity Metric

The BMU of each data point is determined to be the node with the weight vecter lufjkiest
similarity to the data vector. There are two similarity metrics available for training: cosine
similarity and Pearson correlation. Euclidean distasec®t used because with highmensional
vectors, even sparse vectaas is the case with K& dda, can produce numbers too large to be
easily handled by Java. The cosine similarity and Pearson correlation are both invariant to scaling,

but only Pearson correlation is invariant to shi@sd C o n20i2)y.However, in HiC datg zero
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is always the mimum number of interactionsnd thusshifts are of n@oncern Cosine similarity

is used by default, but either can be used effectively, and indeed there is no noticeable difference
between maps trained wisliternativesimilarity metrics é.1 Parameter OptimizatiprBothscores

range from1 to 1, wth 1reflectingidentical vectors

2.5.2 Update

The update step begins by calculating the neighborhood term for each distance value. This is done

all at once becaugbe weighs are the same for adlquivalentpairwise distances

Ohn |1 2Q
Then, nodaipdate are split among all available threads. Each node is updated as follows:

B Qi
B Q'

The implementation here gfferent fran the basic batch implementation of the update in its
inclusion of thedy term, which reflects the number of data points assigned to theunadech is

the BMU of the considered data poiiricreasingthe weight on nodes with many assigned data
points ircreasesheir influence on the maplodes with many data points, a high data density, are
better able tanore effectivelyrecruit adjacent nodes to occupy some of the density. This makes

for smoother maps with a better spread of data points.
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2.6 Quality Control

It can be hard to assess the degree of success of a training run. In general, there are a few values
that can describe this success. The first igjthadity. Two quality scores are generated at the end

of training, the cosine similarity quality, arRRearson correlation quality. Both values are the
average of the similarity scarbetween each data point aheirassigned nodeHolding the size

of the dataset and the size of the grid constant, a higher quality score indicates a more

representative ap (Mortazaviet al., 2013)

The second metric &ability. The calculation of this metric ibereason fotraining several maps

Once all maps in the set are trained, the one with the highest quality score is taken as the best map.
Then each pair of da points assigned to the same node in the best map is takestabhigy

metric is then calculated as the proportion of theses that are found on the othlieined maps

in the same or directly neighboring nodes. Again, with the grid and dataesthsiz equal, the

higher the value the better. This metric gives an insight into how consisterdgmoduciblethe

resuling map is. No two maps will ever produce the exact same output because of the randomized
initialization. However, a high stabilitgcore indicates #ttraining will reliably produce the same

trends if performed again. If the number of maps parameter is set to 1, this quality control metric

is set to zero for output, as it cannot be calcul@attazaviet al., 2013)

The final qualiy control metric is the proportion of the nodes left empty at the end of training.
High data point density can make it hard to interpret the trained SOM, so in general the more
spread out the data points are among the nodes, the better. Empty nodés tinalickata points

may not be spread especially well. This metric is perhaps least important, because empty nodes

can bereflectiveof the topology of the data set, but all else equal, the smaller this value the better.
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2.7 Terminating Training

Convergences imposed by shrinking the learning rate &minel variance until the specified
number of iterations is reached. At the end of training of all maps, the quality control metrics are
calculated. Only the SOM with the highest quality score tpuduA text file is generated in the
directory from which the program was called, with the indicated name of the SOM, as well as the
training parameters and the quality control metrics. In the text file, each node lists its position on
the grid, and thgenomicbins associated with it. The genomic coordinates of the bins are parsed
with commas, and th8OM node grid locations are separated by tabs. All high dimensional data
vectors are lost, leaving only the set of genomic loci, and their positions gridh&n example

output is shown irrigure10. The trained map can then be u$edfurther analyses as described

in the next chapter.

It is prudent to discuss, specifically, what the trained map represents. dhef goe map is to
reveal structug of the chromatin in the nucleus, which is-di®ensional process. However, the
topology preserved by the dimensionality reduction is that of thedigensional HiC input

data. Thanput Hi-C data does notgint a perfect picture of the chromatin organization, which is
why data manipulations and normalizations are necessary to make inferences from that data. The
information about structure of chromatin in the@lidata is preserved through training, but any
artifact or other erroneous structures will also be preserved. It is important to remember that, while
the organization of the chromatin is of interest, it is the topology of tii& dtita that is preserved

and represented on the output, not the topologhehucleus itself. The trained SOM therefore

only represents the 3D organization of the chromatin in so far as4@Gerput data dae
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Figure 10: Trained SOM Output

A

.| My Map SOM (50x50), 1-0.3, 1000.0, 2, 0.8685, 0.7422, 0.8048, 0.4708

B
50x50
Sigma:1.0->0.3
[0,0] () [1,0] ()

[0.1) (chr9:44500000-44749999, chr9:44750000-449999993, [1,1] ()
[0,2] (chr9:25000000- 25249999, chr9:31000000-31249999, [1,2] ()

[0,3] ) [1,3] (chr12:42500000-42749999, chr12:42750000-42999999, chr12:45500000-45749939, chr12:46000000-46249999,
[0.4) ) (1.4 (chr12:58000000-58249999, chr12:64750000-64999339, chr12:65000000-65249999, chr12:68500000-68749999,
[0,5] () [1.5] ()

[0,6] () [1.6] (chr23:152000000- 152249999, chr23:152250000-152499999, chr23:152500000-152749999)

[0,7] () 1,7 ()

[0,8] (chr23:152750000-152999999) [1,8] (chr23:153000000-153249999)

[0.9] () [1,9] ()

[0,10]  (chr23:39250000-33499999) [1,10]  (chr23:39500000-39749999)

[0 () [1,11]  (chr23:39750000-39999999)

(0121 () [1,12]  (chr23:40000000-40249999)

[0,13] () [1,13] ()

[0,14]  (chr6:38000000-38249999, chr6:38250000-38499999, [1,18] ()

[01s] () [1,15]  (chr23:41250000-41499999)

[0,16]  (chr23:44500000-44749999, chr23:44750000-449999¢[1,16] ()

[0171 () [117]  (chr13:19000000-19249999, chr13:32000000-32249999, chr13:33750000-33999999, chr13:34000000-24249999,

Figure 10: Trained SOM Output

A shows the output file naming system. The parameters in the output file name are, from left téXrigbti€® x 6y
node$), Gnitial Kernelvariancé dinal Kernelvariancd Gteration€) thumber of maps &cosine qualitg dPearson quality
Gtability§ dPercent unoccupié®B shows the structure of the output SOM file itself. The outputcfiletains only the
coordinate of each node, and which bins are assigned to that node. All interaction frequency and weight vectors &
they are no longer needed
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Chapter 3

Methods: Usinga Trained Chromatin Interaction SOM

3.1Viewing

The trained map can be used by invoking the

follows:

7 java - Xmx38G BatchMap View
1 java -Xmx38G BatchMap View 01

This will present an empty hexagonal grid wotietext field andour buttons.The first invocation
specifies no columns for searched data files]enthie second one does specify columns. These
parameters are discussed further beldke text field is tespecifyillustration of the whole map,

a random sample of the bins, or a single chromosome. Entering théntext field yields a view

of the whole map, entering. yields a randomized set of bins, and entering any other number
presents only bins from that chromosor8ex chromosomes, assumed to take the form of either
X or Y, are referred to numerically 4sand 2 more than the highest numbered autosome. For
example, in a human set, the X chromosome would be referred to as chromosome 23, and the Y
chromosome would be number 24. Mitochondrial loci are not included in the training of the map
nor the output othe map under the assumption that nuclear DNA cannot physically interact with
mitochondrial DNA in cellsif there is no chromosome ofetlieferred taaumber, the hexagonal

grid will be empty. Thechr button colors the map according to the number entetedhetext

field. The grid is a heatmap such that the more data points of the indicated criteria, énéhdark

shade of red. These options are illustrateldigure11.
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In all cases of projection on the map, the coloring of tduen is a heat mapping based on the total

weight on the nodevheredarkerred indicates a higher weightdensity Each nodeds wei
sum of the weights of the bins in that node. The weight of a bin can be one of two things, in cases

of a weighted dat®et being projected, each indicated locus in the data set has both an assigned bin
and a weight. That Dbi nos loouswemlitst Alterrativeélyhvetimoutt he s
weights, the heanapping is simply a count of loci assigned to the bid,ant he nodeds we
then the sum of those counts. In the case of chromosome mapping, each bin is considered its own
locus, and all bins are weighted equally, so the coloration is a representation of the distribution of

bins from the specified chromosome
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Figure 11: Functionality of the Chrome Button

[ searcn | searchz | viwswsp | cw Joz2 |~ Searcn | _soarcaz | vwswap | e o

Figure 11: Chrome Button

A shows the empty grid displayed upon opening the SOMdiilapon enter an out of bounds chromosome nunibgihows
the full map, representing all bing.shows only the bins from chromosome 6 of this example K562 $Ddiows a random
set of the bins. Note that the structure and density of the random set thiatow§ the full map irB.

There arefour different optionsfor viewing selected data. The basic one is a simple heat map
ranging from white to red. The second is a heat map from white tbuedettingnodes with no
qualifying bins or nodes with weights of less than 1% of the maximally weighted niodesitch

the color of the background. The third and fourth viewing options are the same as the first and

second, respectively, except that the edges did¢kagons are painted, and the cewfigenomic
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Asear cho
assumed to contain loci in the first column, and weights in the second column. If integer parameters

Each panel shows the display of chromosome 13 from the K562 sample/S€&idws the default vievB shows the same
view, but with all nodes containing rary few indicated bins colored the same as the baukgd.C andD show the same
on the maplf no integer parameters were included in\tewinvocation, each search data file is
are used, the first integer refers to the column containing the loci, and the second integer refers to

views asA andB, respectively, but the lines of the grid are shown, and the count of bins in each node is are displaye:

Figure 12: View Swap Button

The
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the weights. If the second integerls then thdoci are assumed to be equally weightéakch line

in search filesndicates an instance of a genomic activitiie accepted format is talelimited,
wherethelocusc ol umn descri bes the | ocat weaghtcolumn t he f
indicates thewveight or count of that activitgs a double or integelf signals in the experiment

cover a range, rather than a single pos4ition,
end | ocuso and each bin con washaredad thd weightflfomt r an

that rangeA sample projection of a genomic activity is showrrigure13.

Figure 13: Functionality of the Search Button

A B

Figure 13: Search Button

A shows the default view of the full map of a K562 sample SBI4.displaying he relative weight of bins assigned to ea
node, as indicated by a sample GIS&Y file, weighted-dun in this case. The relatively unequal distribution of the weigh
the SOM suggests that there may be an unequal distribution of this transcripiiornféice nucleus.

The fAsearch 20 butt onorthe selection af two files| Both are thea t al
displayed on the grid, one colored in blue, the other in red.eHaikles an assessment of whether
two activities areco-localized in chromatin interaction spacehe same file restrictions for the

fiseartbn batd true for i see dirsehun&dhnis Hustratedim . A v
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Figurel4. These views generate a basic Gini coefficient, and display it in the top right corner (see

3.2.9).

Figure 14: Functionality of the Search 2 Button

A B

&

- - e s s e e s mmememmeesmmmmmomom o=l

Figure 14: Search 2Button

A shows the projection of two separate GI§i€g experiments for the same protein, Pol2. The high degree of greyish |
on the map indicates a large degree of overlap. There is a lot of red, withoutf&laé,owhich suggests also that tt
experiment projected in red had higher cover&8gghows two separate projected GlI8Bq experiments, Pol2 and p300, wi
only a small amount of overlap, yielding distinct areas of blue and red.

3.2Batched Data Projection

The Use function of the tool is meant to expedite the discovery of potential 3D structures or
chromatinsegregations in the nucleughe functionis meantto be invoked from the command
line, without needing to open any GW@iven a directory ofiles and a map, the Use function will
search each fileni the directory and project that data set onto the map. It then calculates Gini
coefficient value for eactiata set, and saves a text file tabulating these values for each file in the

directory. Additionally, if desired, a PN€@rmatimage will be saved in a newly created directory
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for each file in the directory. The image will be the same in appearancehasview function

were being used, and the Search button were invoked on the respective dragpis=t3)

The Use function can be wused by invoking the

follows:

1 java -Xmx38G BatchMap Use 0 My Mapé oMy Data Directoryo 0 1 1

The directory containing the data sets must have datasets in the same form as those in the Search
button function, containing the location and weight of signals specified by the first and second
integer argumenjsespetively. Again, if the second integer is set-ig all indicated loci receive

equal weightsThe third integer argument specifies whether images for each dataset are desired: a

value of 1 will generate images, a value of 0 will not.

3.2.1 Gini Coefficient Calculations

For each data setivo Gini coefficients are caltated, a basic and normalized coefficient. Both
calculations start from the mapping of the data set on to the trained SOM. Each signal in the data
set has a genomic locus and a weight. Each nagleas a weight equal to the sum of the weights

of the loci contained in the bins assignedhat node. Théorenzcurve for both calculated Gini

coefficientsareconstructed with the nodes as the populatmal the weight as theealth.

For the basic @ii coefficient calculation, theorenzcurve is compared to a curve as if each bin
contains equal weight. The bins are not evenly distributed amongst the nodes on the map due to
the structure of the genome indicated by theCHnput data. It is thereforeot desirable to

calculate Gini coefficients based on the comparison curve of the diagonal. A more reasonable
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comparison is talistribution of bins among nodetiis way differences in distribution due to the

distribution of bins on the map is not conseter leaving only differences in distribution

attributable to location in the data space.

There is, however, one issue with the basic Gini coeffioidr@n working with weighted datan

a givenweighteddata set, since the weight of each signal diffeiis, @xpected that there will be

an unequal distribution of the weight simply due to these differences. Even if the loci are
approximately evenly distributed across the bins, one especially strong signal can enrich a single
node, inflating the Gini coeffient The normalized Gini coefficienquards against this by
compaing to an areawhich includes an expected distribution given the set of weights. The
comparison curve is constructed by taking the weights of each signal from the data set and
assigning thaweight to a random bjnthen using the same protocol as ttmenz curve
construction A thousand of these randomized areas are calculated and averaged, the standard
deviation is also calculated to be used later. This average represents the expestaof degqual
distribution attributable to both the unequal distribution of bins among nodes and the unequal

distribution of weights among signals.

Another way to avoid this issue is to invoke ttheoption for the weight column. This causes the
program o treat all indicated loci as having equal weights, removing any issues caused by the
distribution of weights among loci. This is a reasonable approach if, for the dataset at hand, there
is an expectation that all loci have contributed a sigaificsignal. For example, if a dataset is
filtered to remove all locihatare not statistically significant, it may be apt to treat all remaining

data points as equivalent.



34
The Gini coefficients are then calculated as the difference between the arethehdernzcurve

and the area under the comparison curves, divided by the area under the comparison curves. A
third value is also calculated as the difference betwedrottemzarea and mean area as calculated

for the normalized Gini coefficient, divideoly the calculated standard deviation. Though the
distribution of weight among random bins is not explicitly normal, daigulation yields &-

scorelike valuethatrepresents the likelihood that the unequal distribution of weight could have
arisen stridy by chanceHigher value®f the Zscore and the two Gini coefficientslicate higher

degrees of unequal distribution of signal, which in turn suggests localization or clustering of some
kind for theassessedenomic activity A sample graph of the cugs used to calculate the Gini

coefficients is shown ifrigure 15.

Figure 15: Sample Gini Coefficient Calculation Plot

c-Jun Chip Seq Gini Coefficients Plot

0.9 |
08
0.7
0.6
05 =L orenz Curve

Basic Comparison Curve
04

Normalized Comparison Curve

Cumulative Proportion of Total Signal

0.5 0.55 0.6 0.65 0.7 0.75 08 0.85 0.8 0.95 1

Cumulative Proportion of Total Nodes

Figure 15: Gini Coefficient Calculation Plot

This graph depicts the curves used to calculate the Gini coefficients for a projected genomic activity dataseh(eSeq

used in this example). The blue curve plots the distribution of weight among the nodes. The orangetsithe gtpected
unequal distribtion due only to the distribution of the bins, and the green curve plots the unequal distribution expect:
both the unequal distribution of bins among the nodes and the unequal distribution of weights among the bins.

between the orange andiublcurves is used to calculate the basic Gini coefficient, and the area between the green i
curves is used to calculate the normalized Gini Coefficient.
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3.2.2Batch UseOutput

After Z-values and Gini coefficients have been calculated for each dataset inettterglirthe
program will output a text file. This text file will be tab delineated, with each line containing the
file name of the dataset, the basic Gini coefficient, the normalized Gini coefficient afwdhee

for each file.

If the argument to prodecpictures is invokedhe file will be saved in a newly created directory
namedrenfAnal ysi s, 0 along with the generated PN

desired, the text file will be saved in the directory from which the program is invoked.
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Chapter 4

Results

4.1 Parameter Optimization

To determine which parameters are best for training theCBghinizing Map on HC data sets,

several sets of parameters were tested on various test sets. The parameters tested included grid
size, learning rate, Gasian Kernel Variance, similarity metric, and number of iterations. The best

set of parameters was originally defined as that which produced, in order of importance, the highest
quality scores, highest stability score, and had the lowest percentagetphengs. Additionally,

maps were checked by eye to assure that each combination grattuaberrant resustnot

apparent in the summary statistics

In generalthe implementatiorshows a robust preservation of results across parameter settings.
The simlarity metrics each produced almost identical quality scores with other parameters held
constantas shownn Tablel. Number of iterations, though more is always bet&rds to show

no significant improvement in ternas outputafter 1000 iterationgKohonen, 2012)In order to

ensure training time is not too long, 1000 iterations has been set as the default. However, with

larger data sets, in the interest of time, fewer may be successfully employed.
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Table 1: Parameter Optimization

Similarity X Y Cos Pears Stability Percent
metric

Pearson 12 12 0.6281 0.6071 0.9068 0.5833
Cosine 12 12 0.6294 0.6091 0.885 0.618
Pearson 14 14 0.6748 0.6575 0.9212 0.6224
Cosine 14 14 0.6764 0.659 0.9039 0.6275
Pearson 16 16 0.7183 0.7037 0.9471 0.625
Cosine 16 16 0.722 0.7087 0.9384 0.621
Pearson 18 18 0.7552 0.7438 0.9604 0.5%6
Cosine 18 18 0.7509 0.7384 0.9547 0.6358
Pearson 20 20 0.7811 0.7713 0.9574 0.5975
Cosine 20 20 0.7804 0.7699 0.9573 0.61
Pearson 50 50 0.8701 0.7444 0.8236 0.4536
Cosine 50 50 0.8719 0.7472 0.8348 0.436

Table 1: Parameter Optimization

The similarity metric column indicatgfor the tested map, wtt similarity metric was used to train. The X and Y colum
indicate the dimensions of the trained map. Cos and Pears columns indicate the cosine quality and Pearson quality, re
for the trained map. Stability indicates the stability metric dated for the trained map. Percent indicates the pert
unoccupied quality metric.

The data used to train the map=ed 12x12 to 20x20 were from a Yeast data set, with only 3000
bins Hsiehet al., 2015). This data set was used for the smaller maps to ensure the trained maps

did not produce erroneous metrics due to overpopulation of the nodes; too small a map may not b
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able to adequately capture the topology of a large dataset. The 50x50 maps were trained on the

same, larger human K562 dataset presentdiK562 HiC Data Aralysis

Note that the table appears to presentiact of fractionally better stability scores for maps trained
with the Pearson correlation similarity metric, and a fractionally lower percent of unoccupied
nodes for those trained with the cosine similarity metrics. However, these trends are notipresent i

all pairings, and the fractional differences are small enough to not be considered significant.

The size of the grid was not optimized. The grid size, as it expandiendltoincrease the quality

and decrease the stability. The stability decreaseause it only considers nodes and direct
neighbors, and on larger grids, even somewhat similar data points may be split apart by the number
of available nodeHowever, in cases when theapsin comparison is too small, the stability will
increaseas size increaseas seen iMablel. This occurs because, when there are too few nodes

to capture the data space, the trained map cannot faithfully reflect the topology of the dataset.
Therefore, two maps of that size, trained separately, cénenexpected to capture the dataset in

the same way

The quality score goes up for the same reason, with more nodes to occupy the dataspace, it is easier
fordi ffering data points to occupy a single no
netwak is generally preferred, as this allows for a better spredé amore intuitive layout. The
drawbacks, however, are that larger maps take longer to train, and may introduce unnecessary
empty space. 50x50 is the default grid sire the current implemeation but some
experimentation may be necessary to find a network that has the right balance of empty space and

spread for any given dataset.
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A linear decay rate was chosen as the optimum decay rate, over an exponential decay rate, because

the resultant mps were identical in terms of quality and stability, and as well as to the eye. The
exponential decay functions took several additional operations to complete at each iteration, so in

the interest of training time, linear decay was selected.

The Gaussiakernel variance showed a similar pattern to that of the similarity meTiatde 2

shows the weights by distance for several kernel variances.

Table 2: Kernel Variance Weights

Variance Distance Weight
5 0 1
5 1 0.980199
5 2 0.923116
5 3 0.83527
2 0 1
2 1 0.882497
2 2 0.606531
2 3 0.324652
1 0 1
1 1 0.606531
1 2 0.135335
0.8 0 1
0.8 1 0.457833
0.8 2 0.043937
0.8 3 0.000884
0.4 0 1
0.4 1 0.043937
0.4 2 3.73E06
0.4 3 6.1E13
0.2 0 1
0.2 1 3.73E06
0.2 2 1.93E22

As is shown in the table, there is a significant difference in the weighilmated by neighboring

nodes fronthe neighborhood function between a variance of 5 and a variance of 0.2. The objective
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of the neighborhood functionnd the variance, is to start out by giving somewhat significant

weight to surrounding nodes, and sfking to almost insignificant weights from surrounding
nodes as training proceeds. This is achieappropriately bythe defaultbehaviorof variance
shrirking from 1.0 to 0.2Therehave beemo significant differencesbservedvhen changinghe
variance starting and ending parametgrghtly. This breaks down with extreme valuder
example maps with starting and ending variances of greater than 4 shoavked reduction in
stability. However, because training was found to be robust wlitite changing of this parameter,

it is changeable for usefgarying this parameter may help to achieve a desired result with certain

data sets.

4.2 K562 HiC Data Analysis

To explore the genomic processes of human K562 cells, @ ddita set from Raet al. was

first normalized according to a very basic normalization protocol, outlined.2rl Data
Normalization The dataset contained 2,155 noremptychromatininteraction vectorscovering

the human genome with a bin size of R6f. The data set was then used to train a 50 x 50 SOM
over 1000 iterations, with n=@o train two maps for a stability metyjcand a Kernel vance
ranging from 1 to 0.2The Pearson correlation similarity metric was ugéwk training process
took 46 hours employing 40 processdriis produced a map withGa8704cosine quality score
0.7442Pearson quality scor®.8184stability scoreand44.16% empty nodesThe whole map

can be seen iRigurel16, as well as individual chromosomes projected onto the whole map
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Figure 16: K562 Trained SOM

Figure 15: K562 Trained SOM
This figure presentthe whole map (top left) produced from training on the O/E normalized K562 dataset, as well ¢

individual chronesome. Chromosomes are known to be segregated in the nucleus, so they are expected to be seg
the SOM, even in O/E sets when the diagonal signal has been removed.








































































