

ii

TABLE OF CONTEN TS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Introduction ... 1

1.1 Structures of the 3D Genome ... 1
1.2 Chromatin Capture ... 2
1.3 Hi-C analysis .. 2
1.3.1 Hi-C data ... 3
1.3.2 Hi-C Data Normalization Methods ... 5
1.4 Dimensionality Reduction .. 6
1.5 Self-Organizing Map Algorithm .. 7

1.5.1 SOM Initialization ... 8
1.5.2 SOM Training ... 9

1.6 Lorenz Curve Analysis & Gini Coefficient .. 12

Chapter 2 Methods: Training a Chromatin Interaction SOM 17

2.1 Overview .. 17
2.2 Input Data ... 17
2.3 Calling the Training Program ... 18
2.4 Initialization ... 19
2.5 Training .. 21

2.5.1 Assignment .. 21
2.5.2 Update ... 22

2.6 Quality Control .. 23
2.7 Terminating Training ... 24

Chapter 3 Methods: Using a Trained Chromatin Interaction SOM 26

3.1 Viewing .. 26
3.2 Batched Data Projection ... 31

3.2.1 Gini Coefficient Calculations .. 32
3.2.2 Batch Use Output .. 35

Chapter 4 Results ... 36

4.1 Parameter Optimization ... 36
4.2 K562 Hi-C Data Analysis .. 40

4.2.1 Data Normalization ... 42
4.2.2 ChIP-Seq Analysis .. 42
4.2.3 Histone Mark Analysis .. 46

iii

Chapter 5 Discussion ... 50

Appendix A Complete K562 ChIP-seq Gini Coefficient Table 53

Appendix B Code .. 60

BIBLIOGRAPHY .. 61

iv

LIST OF FIGURES

Figure 1: Hi-C Protocol ... 3

Figure 2: Hi-C Data and Normalization ... 5

Figure 3: SOM Training ... 8

Figure 4: Neighborhoods for SOM Grids .. 9

Figure 5: Trained SOM .. 12

Figure 6: Gini Coefficient .. 14

Figure 7: Gini Calculation ... 16

Figure 8: Data Set .. 18

Figure 9: Neighborhoods ... 20

Figure 10: Trained SOM Output .. 25

Figure 11: Functionality of the Chrome Button ... 28

Figure 12: Functionality of the View Swap Button ... 29

Figure 13: Functionality of the Search Button ... 30

Figure 14: Functionality of the Search 2 Button .. 31

Figure 15: Sample Gini Coefficient Calculation Plot .. 34

Figure 16: K562 Trained SOM .. 41

Figure 17: Example Projections of ChIP-seq Data onto the Trained K562 SOM 44

Figure 18: Pol3 ChIP-seq Projections .. 45

Figure 19: Example Projections of Histone Mark ChIP-seq onto The K562 SOM 48

v

LIST OF TABLES

Table 1: Parameter Optimization ... 37

Table 2: Kernel Variance Weights ... 39

Table 3: Chromatin Segregation of Protein-DNA Interactions .. 43

Table 4: Nuclear Segregation of Histone Marks .. 47

Table 5: K562 ChIP-seq Gini Coefficients .. 53

vi

ACKNOWLEDGEMENTS

Gratitude and Appreciation to:

Dr. Mahony

For mentoring me and guiding my growth as a student and researcher

The Mahony Lab

For being an environment of helpful, supportive and insightful individuals

Dr. Santy and Dr. Howell

For advising me and helping me throughout my time at Penn State

Mrs. Bytheway

For convincing me that coding could be a useful skill for someone pursuing biology

Mom, Dad and Ryan

 For your ongoing, unending love and support

1

Chapter 1

Introduction

1.1 Structures of the 3D Genome

The human genome is often thought of as an abstract string of nucleotides, with little consideration

given to the complex, 3-dimensional organization of DNA in the nucleus. However, the advent of

chromatin capture assays, such as 3C, Hi-C and Micro-C, has allowed for a more comprehensive

understanding of the structure of the genome. Chromatin organization is a key driver of many

genomic functions. Heterochromatin and euchromatin are key players in gene regulation.

Chromosome segregation is associated with the replication cycle. At the end of mitosis, even after

the decompression of the chromosomes, they tend to occupy particular regions of the nucleus

(Meaburn & Misteli, 2007).

Topologically Associated Domains (TADs) characterize conserved chromatin compartments.

TADs represent large domains constituting at least 6 nuclear subcompartments. These

subcompartments are correlated with different patterns of histone modifications (Rao et al., 2015).

Lamina Associated Domains (LADs) anchor the DNA to the nuclear envelope. The nuclear

envelope drives and maintains the organization of chromatin by this anchoring of peripheral DNA.

LADs are associated with low levels of gene expression (Guelen et al., 2013).

Even enhancer-promoter looping involves chromatin structure. Chromatin organization and

structure is a three-dimensional process, and so the key to fully understanding its related genomic

processes lies in three-dimensional analysis.

2

1.2 Chromatin Capture

Chromatin capture was first explored in 2002 with the development of the 3C assay, on which

other chromatin capture assays are based (Dekker, 2002). The protocol begins with the isolation

of intact nuclei, which are then subjected to formaldehyde fixation. The crosslinked DNA is

subsequently sequenced, producing hybrid reads aligning to regions of the genome that are

physically touching in the nucleus (Dekker, 2002). The assay takes a group of nuclei, the 3D

organization of which are not identical, so while two segments of DNA may be proximal enough

for crosslinking in one nucleus, this may not be the case in another. The higher the frequency of

crosslinked interactions, the more commonly two pieces of DNA occur together in the population

of nuclei. The core assumption of the assay is therefore that interaction frequency is directly,

positively related to 3-dimensional proximity in the nucleus (Dekker, 2002).

The 3C assay is described as a one-to-one capture procedure as it captures only interactions

between two individual loci, for which the sequences of both must already be known (Stadhouders

2013). Several variants of the original assay exist. 4C expands the capture procedure such that all

interactions with a known locus of interest are sequenced in a one-to-all capture. 5C explores many

loci of interest and captures many of the interactions with each of these loci in a many-to-many

capture. Hi-C analysis allows for all -to-all capture of interactions, using high-throughput

sequencing technology and genome alignment (Stadhouders 2013).

1.3 Hi-C analysis

Hi-C analysis is a powerful chromatin capture variant in that it captures interactions between loci

in a pairwise fashion across the entire genome (Lieberman-Aiden 2009). The fundamental

3

procedure is the same as that of 3C, with modifications to allow for capture of all pairs of

interacting loci. The procedure begins with the isolation of intact nuclei and crosslinking through

formaldehyde exposure. The DNA is then cut with restriction enzymes. The free ends are tagged,

then ligated. The DNA is then sheared and pulled by its tag. The result is hybrid fragments of DNA

that have been ligated together (Rao 2014). These reads have two portions, each aligning to a

different portion of the genome. The reads are sequenced and aligned. The aligned sequences

represent regions of the genome that were in close enough proximity to one another in the nucleus

for an adjacent formaldehyde linkage to occur. This process is illustrated in Figure 1.

Figure 1: Hi -C Protocol

1.3.1 Hi-C data

The Hi-C procedure produces billions of reads, even after screening and aligning, each of which

represent individual interactions. The data is processed by binning the genome into windows with

Figure 1: Hi-C Protocol
The procedure is as shown, proceeding left to right. The final paired end reads, once sequenced, are aligned the genome in

two locations. That pair of locations then represent an interaction.

4

the bin size based on the resolution of the data set. Every interacting genomic locus falls into a

certain bin. For any given bin, there may be zero or many interacting loci within its genomic

window. The interaction frequency of a given bin represents the number of loci within that bin that

interact with other loci. The interaction frequency between any pair of bins then represents the

frequency with which loci within their respective genomic windows interact.

This data lends itself to representation as a matrix. The matrix has on its axes the bins from the

entire genome, or genomic window of interest, and each index is the interaction count between the

two bins. The matrices are symmetrical with respect to the diagonal, and sparse. The sparsity is

simply due to few interactions occurring between pairs of bins that lie far apart on the genome.

The matrices are then displayed as a heat map, with coloring based on the relative magnitudes of

the interaction counts Figure 2A (Heinz et al., 2010).

It is important to note that the underlying data structure of the heat map is still a matrix with an

interaction count for each pair of nodes. This means that each row or column can be taken as a

vector, representing the interaction count between that columnôs bin and all other bins.

5

Figure 2: Hi -C Data and Normalization

1.3.2 Hi-C Data Normalization Methods

As seen in Figure 2, the diagonal of the interaction matrix is the dominant feature. This is because

neighboring bins on the genome, whose interactions are represented on the diagonal, are in close

3D proximity due to the linear constraint. DNA that is close together on the linear genome is also

close together in the 3D genome, producing an abundance of reads on the diagonal. Additionally,

reads along the diagonal are produced by self-ligation effects, in which digested fragments of

Figure 2: Hi-C Data and Normalization
The Hi-C interaction matrices are often visualized as heat map. A represents a raw interaction count matrix, note the

pronounced diagonal signal. B represents an observed over expected interaction matrix, note that the diagonal signal is no

longer present. C represents the log scale values of the raw interaction counts. While there is still a diagonal signal present,

it is significantly less overpowering. D represents a matrix of the correlation of the normalized interaction ratios. All three

of these are viable transformations/normalizations for Hi-C data, and there are several other methods. These heat maps

depict interactions on chromosome 1 of human embryonic stem cells

6

crosslinked DNA are ligated to the other sheared end of the linear fragment, rather than ends of

the adjacent crosslinked fragment.

This is only one of several factors that can impact Hi-C data. The dominant diagonal is of special

interest because the goal of Hi-C assays is often to uncover long-range interactions. The long-

range interactions are much more infrequent than the short-range interactions, so normalizing by

the expected count can amplify the signal of significant long range interactions. There are several

useful normalization and transformation methods, a few of which are illustrated in Figure 2 (Heinz

et al., 2010).

In analyzing Hi-C data, data pre-processing can be necessary, and can help extract desired

information, but it is important to understand what this preprocessing is doing to the data, as well

as what the processing is forcing the data to describe.

Note that the various methods of normalization and the quality of the data are not considered by

the tool described herein, it will produce results based on whatever data is input, and the output

will reflect the topology of the dataspace. It is therefore necessary to be aware of how data

processing is impacting the meaning of the data.

1.4 Dimensionality Reduction

Dimensionality reduction is the process of taking high-dimensional data and generating

observations on a low dimensional (2D or 3D) manifold where the observations can be more

intuitively understood (Roweis, 2000). It is crucial that the resultant observations on the produced

manifold, or description space, are representative of the higher order data structure (Roweis, 2000).

7

If the goal is to understand the data, then dimensionality reduction is useless if it does not preserve

the topology of the high-dimensional space.

The key component of dimensionality reduction algorithms is a function that maintains the

relationships between similar data points (Lee, 2007). High-dimensional data vectors can be

compared to each other, using Pearson correlation, cosine similarity, Euclidean distance, etc., and

those high dimensional vectors most similar to one another should also be close together, at the

end of dimensionality reduction, in the description space (Roweis, 2000)

1.5 Self-Organizing Map Algori thm

The Self-Organizing Map (SOM) algorithm is an unsupervised non-linear dimensionality

reduction algorithm that also preserves topology (Lee, 2007). The SOM takes the form of a static

grid or lattice of nodes. The grid is the 2D space upon which the high-dimensional data set is

projected. Each node also has a weight vector of the same dimensionality as those high-

dimensional data vectors in a data set, which represents the nodeôs location in the high-dimensional

dataspace (Kohonen, 2012). The basic schema of the occupation of a dataspace by a defined gird

is shown in Figure 3.

8

Figure 3: SOM Training

1.5.1 SOM Initialization

The basic SOM training proceeds as follows. Initializing the nodes begins by first defining the

value of the weight vector for each node. This can be done by randomizing the values, or assigning

them to be equal to data points in the dataset. Another popular method is to assign the node weight

vectors such that they reflect the general structure of the data set from the start; this, however,

requires extensive prior understanding of the data set, and is therefore not always possible

(Kohonen, 2012).

The initialized nodes also must populate a structured lattice, such that the connections and distance

between each are known. This is necessary because the grid onto which the dataset is to be

projected aims to represent the topology of the dataset, meaning nodes close together on the 2D

projection must also be close together in dataspace. The relationships between each node on the

Figure 3: SOM Training
Depicted here is a web of nodes progressing to occupy the data space (blue), as in SOM training. The connectedness and

relationship of neighboring nodes remains the same throughout training, but the position in data space of each node changes.

The projection space would still be a rectangular grid, but it would represent the topology of the blue polygon on that space.

9

lattice are used to impose an order to the nodes in dataspace. Before training begins, then, these

relationships must be defined. Often, they are simply defined as the distance between the nodes on

the projection space. The hexagonal grid is preferred to rectangular and square grids because in

the hexagonal case each node has six neighbors with minimum distance, rather than four (see

Figure 4). This allows for a more elastic conformation to the dataspace, while maintaining regular

structure.

Figure 4: Neighborhoods for SOM Grids

1.5.2 SOM Training

There are two main variants of training a Self-Organizing Map: the basic SOM, and the batched

SOM. The batched SOM more readily lends itself to threaded training, meaning batched training

can be completed faster (2.5 Training).

Figure 4: Neighborhoods for SOM Grids
Two neighborhood sides are represented here. The hexagonal grid shows that there are 6 direct neighbors for each node,

and that the distance between nodes radiates out in shells. The rectangular grid shows similar shells, but there are only 4

direct neighbors for each node. Note that in the depicted shell there are 4 nodes which are closest to the node in black, and

4, on the corners, which are not of equal distance. This distance disparity, along with the reduced number of direct neighbors,

makes the rectangular grid inferior to the hexagonal for SOM projection grids.

10

The batched training proceeds in two steps, repeated for a defined number of iterations. In the first

step, the assignment step, the data points are assigned to the node whose weight vector is most

similar (see 2.5.1.1 Similarity Metric) to the vector of the data point; this vector is then the best

matching unit (BMU) (Kohonen, 2012).

The update step comes second, and the weight vector of each node is updated to reflect the

assignment of the data points. Each data point is considered in the updating of each node. The

weight vectors of each node are updated by:

ὡ ί ρ
В Ὤȟȟὼ

В Ὤȟȟ

Where:

¶ s is the current iteration

¶ Wv is the weight vector of node i

¶ n is the number of data points in the set

¶ xj is the data vector of data point j

¶ hi,u,s is the neighborhood function

The neighborhood function, denoted as hi,u,s is defined as follows:

Ὤȟȟ ‌ί Ὡz

Where:

¶ i is the is the node being updated

¶ u is the BMU (node) of the data point being considered

¶ s is the current iteration

11

¶ o is the distance on the SOM grid between nodes i and u

¶ ů is the variance of the Gaussian kernel for the current iteration

¶ Ŭ(s) is the learning rate for the current iteration

The learning rate and variance are parameters that can be changed for different training protocols,

but, in general, both shrink over time from an initial value to a final value either linearly or

exponentially. The gradual reduction of the variance allows for the neighborhood function to

assign shrinking weights to further neighbors once the training has proceeded for several iterations.

Data points from highly distant nodes have little impact on the weight vector once the map has

been allowed to adopt the general structure of the data.

It is necessary to shrink the learning rate over time, because the Self-Organizing Map has no

defined end-point in training. Therefore, it must be restricted such that training slows and stops as

it reaches the defined number of iterations. This produces the trained SOM (Figure 5), which

reflects the structure of the data set.

12

Figure 5: Trained SOM

1.6 Lorenz Curve Analysis & Gini Coefficient

Assessing resource inequality is an important topic in the fields of economics, sociology and

politics, and the Gini coefficient is relatively common way to express resource disparity

quantitatively (Catalano et al. 2009). The description of the distribution of resources begins by

constructing the Lorenz curve, which plots the cumulative percentage of the resource occupied

against the cumulative percentage of the population occupying that resource (Harch 1997). It is

important to note that the population is summed from poorest to richest in terms of resource

Figure 5: Trained SOM
The panels above represent a 2D data space (left) and trained SOM (right). Data points in the data space are colored

according to the node to which they are assigned. The two starred nodes are connected to their neighbors by black lines in

the data space. The neighboring nodes have assigned data points which are close together in the data space. This is more

pronounced in the case of purple node, but indeed the green node is neighboring nodes with relatively similar data points.

13

occupation, producing an increasing trend in cumulative percent resource occupation per percent

population.

The Lorenz curve is compared to a specific case of distribution, often simply the case in which the

resource is equally distributed (Catalano et al. 2009). The area under the comparison case is

maximized in this situation of equal distribution, because, as shown in Figure 6, any unequal

distribution of a resource will produce a curve below the line of equal distribution.

The area between the Lorenz and comparison curves is known as the Gini index. A greater area

between these curves, which produces a large index, indicates a larger gap between the distribution

of the resource and the ideal or expected distribution described by the comparison case. In a

common example, the Lorenz curve of income distribution is compared to the case of completely

equal distribution. The larger the Gini index, the less equally distributed the income. The Gini

index is normalized by dividing the index by the area under the comparison case. This yields the

Gini coefficient, which, like the Gini index, grows with the resource disparity. An example of these

curves, including the calculation of the coefficients, is shown in Figure 6.

14

Figure 6: Gini Coefficient

In cases of cumulative wealth distribution across populations, individuals represent such a small

fraction of the total population that the Lorenz curve is effectively continuous, however integration

is not required for area under curve calculations; the areas are found geometrically using finite

intervals (Figure 7).

Figure 6: Gini Coefficient

On the graph above, the line of equality represents the comparison curve in the perfect equality case. The Lorenz curve

marks the true, unequal distribution of wealth. The grey area marked as A, between the equality comparison and the

Lorenz curve, represents the Gini index. The larger the Gini index, the greater the disparity between the equality case and

the actual distribution. The Gini coefficient is produced by dividing the Gini index by the total area below the equality

comparison. A larger Gini coefficient comes from a large Gini index, which indicates a more unequal distribution of

wealth.

15

Though most commonly the comparison case of interest is that of equality, if another distribution

of a resource is expected, the comparison curve can take another form. The Gini coefficient then

still represents the degree of difference between the expected or ideal distribution and the observed

distribution. In cases of wealth distribution disparity, the United Nations suggest Gini coefficients

larger than 0.40 are considered highly unequally distributed (Catalano et al. 2009). However, this

cutoff is arbitrary, and so cannot be considered absolute.

16

Figure 7: Gini Calculation

Figure 7: Gini Calculation
The table above includes sample data for distribution of employee population and tip share among the three front of house

restaurant positions. The Lorenz curve based on this data and the linear comparison curve are plotted on the graph above

the table. The area under each segment of the curve was calculated geometrically, and is labeled on the graph. The totals of

these areas were used to calculate the Gini Coefficient, as shown in green.

17

Chapter 2

Methods: Training a Chromatin Interaction SOM

2.1 Overview

The Self-Organizing Map implementation described here takes an input matrix of Hi-C chromatin

interaction data, raw or normalized, and outputs a trained SOM grid, which is a 2D representation

of the chromatin interaction space as depicted by the high dimensional input data. The output grid

can then take additional data sets, in the form of genomic coordinates and weights, and provide

visual and quantitative analysis about the distribution of those coordinates in chromatin interaction

space. The implementation is written in Java.

2.2 Input Data

The input data must be in the form of a tab-delineated DxD matrix, where D is the number of

genomic bins in the data set (i.e. related to the resolution of the Hi-C experiments). The matrix

must begin with a row of loci, indicating the coordinates of the genomic loci covered by each bin.

Every row after that must start with the region covered by the bin, followed by Hi-C interaction

counts with every other bin. The interaction count does not have to strictly be a count. Each index

takes the form of a double, and can reflect any transformation or normalization performed on the

matrix prior to training. A portion of a small sample matrix is shown in Figure 8. Bins with no

data, meaning zero interactions with all other bins, are not considered in training, and trained maps

will not reflect the genomic loci contained in those bins.

18

Figure 8: Data Set

2.3 Calling the Training Program

The program takes as parameters:

¶ call for training (String [ñTrainò])

¶ x-dimension of the grid (int)

¶ y-dimension of the grid (int)

¶ initial variance of the neighborhood kernal (double)

¶ final variance of the neighborhood kernal (double)

¶ number of iterations (int)

¶ number of maps for quality control (int) (see 2.6 Quality Control)

¶ desired similarity metric (int)

o 0 for Pearson Correlation

Figure 8: Data Set
Shown is only a small portion of an input data set. First row and first column both indicate the genomic location of the bin

in question. The indices represent the interaction frequencies. The frequencies are fractional numbers, because this matrix

has been normalized.

19

o 1 for Cosine Similarity

¶ name of the output map (String)

¶ path to the input matrix

¶ number of available processors

Example of the command line call for training:

¶ java - Xmx38G MultiMap Train 5 0 50 1.2 0.2 1000 10 1 "My Map" "My
Matrix" 40

MultiMap is the package in which the code for training resides. The -Xmx38G argument is

required to handle memory load. This call will produce a 50x50 map (2500 total nodes) named

ñMy Mapò based on the data in the ñMy Matrixò file. Training will proceed for 1000 iterations,

with a kernel variance shrinking from 1.2 to 0.2. Ten maps will be trained for quality control, and

training will occupy 40 processors (or the maximum available). Note that learning rate is not taken

as a parameter, and ranges from 1 to 0.01 over the course of training in all cases.

2.4 Initialization

The first step in training is to load the data set into memory. The regions covered by each bin are

saved in a vector of magnitude D, while interaction counts are saved in a separate DxD matrix.

The entire data set is loaded into memory. An additional D-dimensional vector is then created

which stores the magnitude of each data vector. This is used in comparing data points to nodes.

Unlike the nodes, however, the data point vectors do not change during training, so it is prudent to

calculate and save these magnitudes for use throughout training.

20

Each node on the grid is then given a weight vector equal to that of a random data point. The

weight vector of each node is then stored in a NxD matrix, where N is the number of nodes on the

grid. Then the neighborhood is calculated. The neighborhood is represented as an NxN matrix in

which the pairwise distance between nodes is saved. The grid is static, so these distances do not

change throughout training. These neighborhoods are illustrated in Figure 9. Note that the grid is

toroidal, so sides and corners are defined to be adjacent.

An additional NxD matrix of Boolean values is created, but not yet filled, to hold the value (true

or false) corresponding to whether a data point is assigned to a node. An empty N-dimensional

vector is also created to store the number of assigned data points for each node.

Figure 9: Neighborhoods

Figure 9: Neighborhoods
On each grid above a different node is indicated in black. For each black node, the neighborhood is indicated by the radiating

colors. Each shell represents an increment of distance. Note that the grid is toroidal, so that when radiations reach an edge,

they continue on the opposite edge.

21

2.5 Training

The training protocol is sped up by splitting the jobs required among available processors via

multi-threading, in which each thread has a processor with which it computes a fraction of the task

at hand. In general, more processors mean faster training. The batched implementation of the

training protocol was selected because it lends itself to multi-threading by breaking training into

two repeated steps: assignment and update.

2.5.1 Assignment

Assigning data points to nodes proceeds by first calculating and storing the magnitude of each

nodeôs weight vector. Then the data points are split among available threads. Each data point is

compared to every node. The most similar node is determined. The assignment matrix is then

updated to reflect each data pointôs new BMU, and the vector counting the number of assigned

data points for each node is incremented and decremented to reflect the same.

2.5.1.1 Similarity Metric

The BMU of each data point is determined to be the node with the weight vector of the highest

similarity to the data vector. There are two similarity metrics available for training: cosine

similarity and Pearson correlation. Euclidean distance is not used because with high-dimensional

vectors, even sparse vectors, as is the case with Hi-C data, can produce numbers too large to be

easily handled by Java. The cosine similarity and Pearson correlation are both invariant to scaling,

but only Pearson correlation is invariant to shifts (OôConnor, 2012). However, in Hi-C data, zero

22

is always the minimum number of interactions, and thus shifts are of no concern. Cosine similarity

is used by default, but either can be used effectively, and indeed there is no noticeable difference

between maps trained with alternative similarity metrics (4.1 Parameter Optimization). Both scores

range from -1 to 1, with 1 reflecting identical vectors.

2.5.2 Update

The update step begins by calculating the neighborhood term for each distance value. This is done

all at once because the weights are the same for all equivalent pairwise distances.

Ὤȟȟ ‌ί Ὡz

Then, node updates are split among all available threads. Each node is updated as follows:

ὡ ί ρ
В ὨὬȟȟὼ

В ὨὬȟȟ

The implementation here is different from the basic batch implementation of the update in its

inclusion of the du term, which reflects the number of data points assigned to the node u, which is

the BMU of the considered data point. Increasing the weight on nodes with many assigned data

points increases their influence on the map. Nodes with many data points, a high data density, are

better able to more effectively recruit adjacent nodes to occupy some of the density. This makes

for smoother maps with a better spread of data points.

23

2.6 Quality Control

It can be hard to assess the degree of success of a training run. In general, there are a few values

that can describe this success. The first is the quality. Two quality scores are generated at the end

of training, the cosine similarity quality, and Pearson correlation quality. Both values are the

average of the similarity scores between each data point and their assigned nodes. Holding the size

of the dataset and the size of the grid constant, a higher quality score indicates a more

representative map (Mortazavi et al., 2013).

The second metric is stability. The calculation of this metric is the reason for training several maps.

Once all maps in the set are trained, the one with the highest quality score is taken as the best map.

Then each pair of data points assigned to the same node in the best map is taken. The stability

metric is then calculated as the proportion of these pairs that are found on the other trained maps

in the same or directly neighboring nodes. Again, with the grid and data set sizes held equal, the

higher the value the better. This metric gives an insight into how consistent and reproducible the

resulting map is. No two maps will ever produce the exact same output because of the randomized

initialization. However, a high stability score indicates that training will reliably produce the same

trends if performed again. If the number of maps parameter is set to 1, this quality control metric

is set to zero for output, as it cannot be calculated (Mortazavi et al., 2013).

The final quality control metric is the proportion of the nodes left empty at the end of training.

High data point density can make it hard to interpret the trained SOM, so in general the more

spread out the data points are among the nodes, the better. Empty nodes indicate that data points

may not be spread especially well. This metric is perhaps least important, because empty nodes

can be reflective of the topology of the data set, but all else equal, the smaller this value the better.

24

2.7 Terminating Training

Convergence is imposed by shrinking the learning rate and kernel variance until the specified

number of iterations is reached. At the end of training of all maps, the quality control metrics are

calculated. Only the SOM with the highest quality score is output. A text file is generated in the

directory from which the program was called, with the indicated name of the SOM, as well as the

training parameters and the quality control metrics. In the text file, each node lists its position on

the grid, and the genomic bins associated with it. The genomic coordinates of the bins are parsed

with commas, and the SOM node grid locations are separated by tabs. All high dimensional data

vectors are lost, leaving only the set of genomic loci, and their positions on the grid. An example

output is shown in Figure 10. The trained map can then be used for further analyses as described

in the next chapter.

It is prudent to discuss, specifically, what the trained map represents. The goal of the map is to

reveal structure of the chromatin in the nucleus, which is a 3-dimensional process. However, the

topology preserved by the dimensionality reduction is that of the high-dimensional Hi-C input

data. The input Hi-C data does not paint a perfect picture of the chromatin organization, which is

why data manipulations and normalizations are necessary to make inferences from that data. The

information about structure of chromatin in the Hi-C data is preserved through training, but any

artifact or other erroneous structures will also be preserved. It is important to remember that, while

the organization of the chromatin is of interest, it is the topology of the Hi-C data that is preserved

and represented on the output, not the topology of the nucleus itself. The trained SOM therefore

only represents the 3D organization of the chromatin in so far as the Hi-C input data does.

25

Figure 10: Trained SOM Output

Figure 10: Trained SOM Output
A shows the output file naming system. The parameters in the output file name are, from left to right (óX nodesô x óY

nodesô), óinitial Kernel varianceô- ófinal Kernel varianceô, óiterationsô, ónumber of mapsô, ócosine qualityô, óPearson qualityô,

óstabilityô, óPercent unoccupiedô B shows the structure of the output SOM file itself. The output file contains only the

coordinate of each node, and which bins are assigned to that node. All interaction frequency and weight vectors are lost, as

they are no longer needed

26

Chapter 3

Methods: Using a Trained Chromatin Interaction SOM

3.1 Viewing

The trained map can be used by invoking the ñviewò argument in the BatchMap package as

follows:

¶ java - Xmx38G BatchMap View

¶ java - Xmx38G BatchMap View 0 1

This will present an empty hexagonal grid with one text field and four buttons. The first invocation

specifies no columns for searched data files, while the second one does specify columns. These

parameters are discussed further below. The text field is to specify illustration of the whole map,

a random sample of the bins, or a single chromosome. Entering 0 into the text field yields a view

of the whole map, entering -1 yields a randomized set of bins, and entering any other number

presents only bins from that chromosome. Sex chromosomes, assumed to take the form of either

X or Y, are referred to numerically as 1 and 2 more than the highest numbered autosome. For

example, in a human set, the X chromosome would be referred to as chromosome 23, and the Y

chromosome would be number 24. Mitochondrial loci are not included in the training of the map

nor the output of the map under the assumption that nuclear DNA cannot physically interact with

mitochondrial DNA in cells. If there is no chromosome of the referred to number, the hexagonal

grid will be empty. The chr button colors the map according to the number entered into the text

field. The grid is a heatmap such that the more data points of the indicated criteria, the darker the

shade of red. These options are illustrated in Figure 11.

27

In all cases of projection on the map, the coloring of the nodes is a heat mapping based on the total

weight on the node, where darker red indicates a higher weight density. Each nodeôs weight is the

sum of the weights of the bins in that node. The weight of a bin can be one of two things, in cases

of a weighted dataset being projected, each indicated locus in the data set has both an assigned bin

and a weight. That binôs weight is then the sum of assigned locus weights. Alternatively, without

weights, the heat mapping is simply a count of loci assigned to the bin, and the nodeôs weight is

then the sum of those counts. In the case of chromosome mapping, each bin is considered its own

locus, and all bins are weighted equally, so the coloration is a representation of the distribution of

bins from the specified chromosome.

28

Figure 11: Functionality of the Chrome Button

There are four different options for viewing selected data. The basic one is a simple heat map

ranging from white to red. The second is a heat map from white to red, but setting nodes with no

qualifying bins, or nodes with weights of less than 1% of the maximally weighted nodes, to match

the color of the background. The third and fourth viewing options are the same as the first and

second, respectively, except that the edges of the hexagons are painted, and the counts of genomic

Figure 11: Chrome Button
A shows the empty grid displayed upon opening the SOM file, or upon enter an out of bounds chromosome number. B shows

the full map, representing all bins. C shows only the bins from chromosome 6 of this example K562 SOM. D shows a random

set of the bins. Note that the structure and density of the random set mirrors that of the full map in B.

29

bins in each node are displayed. These viewing options are toggled through using the ñView Swapò

button. These views are illustrated in Figure 12.

Figure 12: Functionality of the View Swap Button

The ñsearchò button opens a dialog where the user can select a set of genomic coordinates to view

on the map. If no integer parameters were included in the View invocation, each search data file is

assumed to contain loci in the first column, and weights in the second column. If integer parameters

are used, the first integer refers to the column containing the loci, and the second integer refers to

Figure 12: View Swap Button
Each panel shows the display of chromosome 13 from the K562 sample SOM. A shows the default view. B shows the same

view, but with all nodes containing no or few indicated bins colored the same as the background. C and D show the same

views as A and B, respectively, but the lines of the grid are shown, and the count of bins in each node is are displayed.

30

the weights. If the second integer is -1, then the loci are assumed to be equally weighted. Each line

in search files indicates an instance of a genomic activity. The accepted format is tab-delimited,

where the locus column describes the location in the form ñchr#:locusò and the weight column

indicates the weight or count of that activity as a double or integer. If signals in the experiment

cover a range, rather than a single position, then the location can be described as ñchr#:start locus-

end locusò and each bin contained in that range will be given an equal share of the weight from

that range. A sample projection of a genomic activity is shown in Figure 13.

Figure 13: Functionality of the Search Button

The ñsearch 2ò button opens a dialog that allows for the selection of two files. Both are then

displayed on the grid, one colored in blue, the other in red. This enables an assessment of whether

two activities are co-localized in chromatin interaction space. The same file restrictions for the

ñsearchò button hold true for ñsearch 2ò button. A view of the ñsearch 2ò function is illustrated in

Figure 13: Search Button
A shows the default view of the full map of a K562 sample SOM. B is displaying the relative weight of bins assigned to each

node, as indicated by a sample ChIP-Seq file, weighted c-Jun in this case. The relatively unequal distribution of the weight on

the SOM suggests that there may be an unequal distribution of this transcription factor in the nucleus.

31

Figure 14. These views generate a basic Gini coefficient, and display it in the top right corner (see

3.2.1).

Figure 14: Functionality of the Search 2 Button

3.2 Batched Data Projection

The Use function of the tool is meant to expedite the discovery of potential 3D structures or

chromatin segregations in the nucleus. The function is meant to be invoked from the command

line, without needing to open any GUI. Given a directory of files and a map, the Use function will

search each file in the directory and project that data set onto the map. It then calculates Gini

coefficient value for each data set, and saves a text file tabulating these values for each file in the

directory. Additionally, if desired, a PNG-format image will be saved in a newly created directory

Figure 14: Search 2 Button
A shows the projection of two separate ChIP-Seq experiments for the same protein, Pol2. The high degree of greyish purple

on the map indicates a large degree of overlap. There is a lot of red, without a lot of blue, which suggests also that the

experiment projected in red had higher coverage. B shows two separate projected ChIP-Seq experiments, Pol2 and p300, with

only a small amount of overlap, yielding distinct areas of blue and red.

32

for each file in the directory. The image will be the same in appearance as if the View function

were being used, and the Search button were invoked on the respective data set (Figure 13)

The Use function can be used by invoking the ñUseò argument in the BatchMap package as

follows:

¶ java - Xmx38G BatchMap Use òMy Mapó òMy Data Directoryó 0 1 1

The directory containing the data sets must have datasets in the same form as those in the Search

button function, containing the location and weight of signals specified by the first and second

integer arguments, respectively. Again, if the second integer is set to -1, all indicated loci receive

equal weights. The third integer argument specifies whether images for each dataset are desired: a

value of 1 will generate images, a value of 0 will not.

3.2.1 Gini Coefficient Calculations

For each data set, two Gini coefficients are calculated, a basic and normalized coefficient. Both

calculations start from the mapping of the data set on to the trained SOM. Each signal in the data

set has a genomic locus and a weight. Each node is given a weight equal to the sum of the weights

of the loci contained in the bins assigned to that node. The Lorenz curve for both calculated Gini

coefficients are constructed with the nodes as the population, and the weight as the wealth.

For the basic Gini coefficient calculation, the Lorenz curve is compared to a curve as if each bin

contains equal weight. The bins are not evenly distributed amongst the nodes on the map due to

the structure of the genome indicated by the Hi-C input data. It is therefore not desirable to

calculate Gini coefficients based on the comparison curve of the diagonal. A more reasonable

33

comparison is to distribution of bins among nodes; this way differences in distribution due to the

distribution of bins on the map is not considered, leaving only differences in distribution

attributable to location in the data space.

There is, however, one issue with the basic Gini coefficient when working with weighted data; in

a given weighted data set, since the weight of each signal differs, it is expected that there will be

an unequal distribution of the weight simply due to these differences. Even if the loci are

approximately evenly distributed across the bins, one especially strong signal can enrich a single

node, inflating the Gini coefficient. The normalized Gini coefficient guards against this by

comparing to an area which includes an expected distribution given the set of weights. The

comparison curve is constructed by taking the weights of each signal from the data set and

assigning that weight to a random bin, then using the same protocol as the Lorenz curve

construction. A thousand of these randomized areas are calculated and averaged, the standard

deviation is also calculated to be used later. This average represents the expected degree of unequal

distribution attributable to both the unequal distribution of bins among nodes and the unequal

distribution of weights among signals.

Another way to avoid this issue is to invoke the -1 option for the weight column. This causes the

program to treat all indicated loci as having equal weights, removing any issues caused by the

distribution of weights among loci. This is a reasonable approach if, for the dataset at hand, there

is an expectation that all loci have contributed a significant signal. For example, if a dataset is

filtered to remove all loci that are not statistically significant, it may be apt to treat all remaining

data points as equivalent.

34

The Gini coefficients are then calculated as the difference between the area under the Lorenz curve

and the area under the comparison curves, divided by the area under the comparison curves. A

third value is also calculated as the difference between the Lorenz area and mean area as calculated

for the normalized Gini coefficient, divided by the calculated standard deviation. Though the

distribution of weight among random bins is not explicitly normal, this calculation yields a Z-

score-like value that represents the likelihood that the unequal distribution of weight could have

arisen strictly by chance. Higher values of the Z-score and the two Gini coefficients indicate higher

degrees of unequal distribution of signal, which in turn suggests localization or clustering of some

kind for the assessed genomic activity. A sample graph of the curves used to calculate the Gini

coefficients is shown in Figure 15.

Figure 15: Sample Gini Coefficient Calculation Plot

Figure 15: Gini Coefficient Calculation Plot
This graph depicts the curves used to calculate the Gini coefficients for a projected genomic activity dataset (c-Jun ChIP-Seq

used in this example). The blue curve plots the distribution of weight among the nodes. The orange curve plots the expected

unequal distribution due only to the distribution of the bins, and the green curve plots the unequal distribution expected from

both the unequal distribution of bins among the nodes and the unequal distribution of weights among the bins. The area

between the orange and blue curves is used to calculate the basic Gini coefficient, and the area between the green and blue

curves is used to calculate the normalized Gini Coefficient.

35

3.2.2 Batch Use Output

After Z-values and Gini coefficients have been calculated for each dataset in the directory, the

program will output a text file. This text file will be tab delineated, with each line containing the

file name of the dataset, the basic Gini coefficient, the normalized Gini coefficient and the Z-value

for each file.

If the argument to produce pictures is invoked, the file will be saved in a newly created directory

named ñLorenz Analysis,ò along with the generated PNG images. Otherwise, if pictures are not

desired, the text file will be saved in the directory from which the program is invoked.

36

Chapter 4

Results

4.1 Parameter Optimization

To determine which parameters are best for training the Self-Organizing Map on Hi-C data sets,

several sets of parameters were tested on various test sets. The parameters tested included grid

size, learning rate, Gaussian Kernel Variance, similarity metric, and number of iterations. The best

set of parameters was originally defined as that which produced, in order of importance, the highest

quality scores, highest stability score, and had the lowest percentage of empty nodes. Additionally,

maps were checked by eye to assure that each combination produced no aberrant results not

apparent in the summary statistics.

In general, the implementation shows a robust preservation of results across parameter settings.

The similarity metrics each produced almost identical quality scores with other parameters held

constant, as shown in Table 1. Number of iterations, though more is always better, tends to show

no significant improvement in terms of output after 1000 iterations (Kohonen, 2012). In order to

ensure training time is not too long, 1000 iterations has been set as the default. However, with

larger data sets, in the interest of time, fewer may be successfully employed.

37

Table 1: Parameter Optimization

Similarity

metric

X Y Cos Pears Stability Percent

Pearson 12 12 0.6281 0.6071 0.9068 0.5833

Cosine 12 12 0.6294 0.6091 0.885 0.618

Pearson 14 14 0.6748 0.6575 0.9212 0.6224

Cosine 14 14 0.6764 0.659 0.9039 0.6275

Pearson 16 16 0.7183 0.7037 0.9471 0.625

Cosine 16 16 0.722 0.7087 0.9384 0.621

Pearson 18 18 0.7552 0.7438 0.9604 0.5956

Cosine 18 18 0.7509 0.7384 0.9547 0.6358

Pearson 20 20 0.7811 0.7713 0.9574 0.5975

Cosine 20 20 0.7804 0.7699 0.9573 0.61

Pearson 50 50 0.8701 0.7444 0.8236 0.4536

Cosine 50 50 0.8719 0.7472 0.8348 0.436

The data used to train the maps sized 12x12 to 20x20 were from a Yeast data set, with only 3000

bins (Hsieh et al., 2015). This data set was used for the smaller maps to ensure the trained maps

did not produce erroneous metrics due to overpopulation of the nodes; too small a map may not be

Table 1: Parameter Optimization
The similarity metric column indicates, for the tested map, which similarity metric was used to train. The X and Y columns

indicate the dimensions of the trained map. Cos and Pears columns indicate the cosine quality and Pearson quality, respectively,

for the trained map. Stability indicates the stability metric calculated for the trained map. Percent indicates the percent

unoccupied quality metric.

38

able to adequately capture the topology of a large dataset. The 50x50 maps were trained on the

same, larger human K562 dataset presented in 4.2 K562 Hi-C Data Analysis.

Note that the table appears to present a trend of fractionally better stability scores for maps trained

with the Pearson correlation similarity metric, and a fractionally lower percent of unoccupied

nodes for those trained with the cosine similarity metrics. However, these trends are not present in

all pairings, and the fractional differences are small enough to not be considered significant.

The size of the grid was not optimized. The grid size, as it expands, will tend to increase the quality

and decrease the stability. The stability decreases because it only considers nodes and direct

neighbors, and on larger grids, even somewhat similar data points may be split apart by the number

of available nodes. However, in cases when the maps in comparison is too small, the stability will

increase as size increases, as seen in Table 1. This occurs because, when there are too few nodes

to capture the data space, the trained map cannot faithfully reflect the topology of the dataset.

Therefore, two maps of that size, trained separately, cannot be expected to capture the dataset in

the same way.

The quality score goes up for the same reason, with more nodes to occupy the dataspace, it is easier

for differing data points to occupy a single node, and shape that nodeôs weight vector. A larger

network is generally preferred, as this allows for a better spread and a more intuitive layout. The

drawbacks, however, are that larger maps take longer to train, and may introduce unnecessary

empty space. 50x50 is the default grid size in the current implementation, but some

experimentation may be necessary to find a network that has the right balance of empty space and

spread for any given dataset.

39

A linear decay rate was chosen as the optimum decay rate, over an exponential decay rate, because

the resultant maps were identical in terms of quality and stability, and as well as to the eye. The

exponential decay functions took several additional operations to complete at each iteration, so in

the interest of training time, linear decay was selected.

The Gaussian kernel variance showed a similar pattern to that of the similarity metrics. Table 2

shows the weights by distance for several kernel variances.

Table 2: Kernel Variance Weights

Variance Distance Weight

5 0 1

5 1 0.980199

5 2 0.923116

5 3 0.83527

2 0 1

2 1 0.882497

2 2 0.606531

2 3 0.324652

1 0 1

1 1 0.606531

1 2 0.135335

0.8 0 1

0.8 1 0.457833

0.8 2 0.043937

0.8 3 0.000884

0.4 0 1

0.4 1 0.043937

0.4 2 3.73E-06

0.4 3 6.1E-13

0.2 0 1

0.2 1 3.73E-06

0.2 2 1.93E-22

As is shown in the table, there is a significant difference in the weight contributed by neighboring

nodes from the neighborhood function between a variance of 5 and a variance of 0.2. The objective

40

of the neighborhood function, and the variance, is to start out by giving somewhat significant

weight to surrounding nodes, and shrinking to almost insignificant weights from surrounding

nodes as training proceeds. This is achieved appropriately by the default behavior of variance

shrinking from 1.0 to 0.2. There have been no significant differences observed when changing the

variance starting and ending parameters slightly. This breaks down with extreme values, for

example, maps with starting and ending variances of greater than 4 show a marked reduction in

stability. However, because training was found to be robust to the slight changing of this parameter,

it is changeable for users. Varying this parameter may help to achieve a desired result with certain

data sets.

4.2 K562 Hi-C Data Analysis

To explore the genomic processes of human K562 cells, the Hi-C data set from Rao, et al. was

first normalized according to a very basic normalization protocol, outlined in 4.2.1 Data

Normalization. The data set contained 12,155 non-empty chromatin-interaction vectors, covering

the human genome with a bin size of 250Kbp. The data set was then used to train a 50 x 50 SOM

over 1000 iterations, with n=2 (to train two maps for a stability metric), and a Kernel variance

ranging from 1 to 0.2. The Pearson correlation similarity metric was used. The training process

took 46 hours employing 40 processors. This produced a map with a 0.8704 cosine quality score,

0.7442 Pearson quality score, 0.8184 stability score, and 44.16% empty nodes. The whole map

can be seen in Figure 16, as well as individual chromosomes projected onto the whole map.

41

Figure 16: K562 Trained SOM

Figure 15: K562 Trained SOM
This figure presents the whole map (top left) produced from training on the O/E normalized K562 dataset, as well as each

individual chromosome. Chromosomes are known to be segregated in the nucleus, so they are expected to be segregated on

the SOM, even in O/E sets when the diagonal signal has been removed.

