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ABSTRACT 

 

Unmanned Aerial Vehicles have become increasingly popular in many different sectors 

of industry. Specifically, as drone prices continue to decrease, agriculturalists are becoming more 

interested in capturing aerial data of their orchards and fields. Farmers who would like to 

automate tasks such as surveying rows of trees for blossom coverage or counting apples in an 

orchard are beginning to look towards drone technology as a possible solution. This research 

focuses on creating image processing algorithms for specific agricultural settings using a DJI 

Phantom III quadcopter. Three specific types of agricultural settings were the subject of the 

research; images of blossoming apple tree orchards, images of apple orchards in harvest season, 

and high altitude images of Christmas tree farms. The computer vision algorithms would read 

each set of images in, and batch process each for their attributes, respectively. Blossoming apple 

orchards proved the easiest for the automated object inspection (AOI). Characteristics such as 

number of rows, number of trees in a row, and apple tree blossom canopy coverage could be 

determined. Apple orchards images during harvest proved more difficult, as tree bunching 

created difficult shapes for the algorithms to identify individual trees. Properties such as number 

of rows and number of apples per row were determined. A graphical user interface (GUI) 

provided Christmas tree farmers a method to analyze tree density in a specific area of their field. 

The program was successful in counting all the trees within a specific region of field that the user 

would choose through their computer mouse. This paper explores the role of image processing in 

small to medium scale agriculture, and the algorithms that were created for the task of AOI. A 

discussion of further research regarding how AOI for agricultural images could be improved is 

provided as well. 
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Chapter 1: An Introduction to Image Processing within the Agricultural Sector 

 

Beginning in the 1980’s, drone technology was first introduced to large scale farming 

operations as a way to quickly and efficiently gauge plant health over large distances. Drones 

made scanning fields for unhealthy crops a quick endeavor, and sophisticated image stitching 

software was developed alongside to help process images and create a map of plant health for the 

area the drone flew. Employing drones for this task has now become a fairly common practice 

within large scale agriculture. Drone technology has only begun to be explored by small and 

medium scale farmers to determine the health and characteristics of their crops, however. While 

many plant-health indexing methods exist, a ‘Normalized Difference Vegetation Index’ (NDVI) 

image is used commonly as a means of gauging plant health with UAVs [1].  

Though the topic of drones produces mild contention among some social circles, few can 

deny the presence of the drone market. By 2018, approximately 600,000 commercial drones are 

estimated to be airborne and flying missions [2]. Drone technology is now being explored not 

just for NDVI image analysis on fields, but also for other agricultural operations as well. 

Through integrating drones with agriculture, researchers and farmers hope a solution can be 

created that cuts farming costs associated with land and crop maintenance. Due to the continual 

improvement of GPS accuracy within newer drone units, flying autonomous missions are on 

track to become increasingly easier to implement and execute. Though NDVI images can be very 

helpful to gage plant health, new agricultural methods using drone technology are being 

developed with techniques other than NDVI image analysis to find crop attributes. This could be 
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especially significant for the small to medium scale farmer looking for cost and time saving 

solutions to menial time-consuming counting tasks. Image based drone technology can play a 

particularly useful role for identifying what proportion of a tree is covered in blossoms, or to 

count fruit on the tree. Autonomous drone technology has the promise to start performing these 

time-consuming tasks farmers would once have to complete on their own, or hire a worker to 

accomplish. Due to the competitive pricing of new drone units, agricultural drone units and 

software could form a unique method for smaller scale farmers to automate lengthy and tedious 

tasks.  

With current drone quadcopter models running less than $1000 [3], the cost of a drone 

based agricultural systems is financially feasible for smaller scale farming operations to employ. 

Flying missions over smaller sized fields also proves advantageous for the farmer, as it can be 

done on as little as a single battery charge. Though NDVI image operations are relatively well 

explored, other machine vision algorithms have not been standardized to such an extent. For 

drone-based agriculture to effectively expand to the small to medium scale farmer, robust 

algorithms and software that can process aerial agricultural image content must be developed.  

For an agricultural drone to be useful for a small scale farmer, it must be able to 

accomplish a task for a farmer with equal or less financial and physical effort. That is, the 

opportunity cost of using the drone must be less than the opportunity cost of manually 

accomplishing the task. These tasks could include identifying geographic locations of orchard 

rows, counting fruit, counting crops, finding unhealthy crops, identifying blossom canopy 

coverage, etc. If a UAV is able to gather the photos either autonomously or driven by the 

farmer’s guidance, then computer vision algorithms could be constructed to process the field 
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data. If the algorithms produced closely matching or better results when compared to the human 

eye, then the computer vision algorithm could be said to have equivalent efficacy.  

To test how well an automated set of programs could accomplish the task of object 

identification, C++ classes of agricultural image processing algorithms were created. UAV 

images for apple and Christmas tree farms were then fed to the computer vision (CV) algorithms 

for analysis. Figure 1 below shows a typical test image the CV algorithms were given. The apple 

orchard images (both blossom and at harvest) were taken at a close proximity to the canopy 

whereas the Christmas tree images were taken at a higher level above ground. For the scope of 

this research, five main tasks were tested using CV algorithms. The algorithms would be tested 

on how well they were able to identify individual rows, identify individual trees, identify 

blossom canopy coverage, identify the number of apples per tree, and lastly count and identify 

the number of Christmas trees within a region of a high-altitude image.  

Apple Orchard Blossoms Apple Trees at Harvest Christmas Trees 

   

Figure 1: A Preview of Apple Orchard, Apple Orchard at Harvest, and Christmas Tree Photos Processed 

 

Three separate C++ classes were created to meet the challenges posed by the three 

different types of images. The ‘BlossomOrchard’ class was used for image processing when the 

apple trees were still in blossom. The class object would read in an image, find each row within 

an image, count the number of trees within the first row of the image, identify all blossoms on 
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each tree within the first row, and determined its blossom canopy coverage. The ‘AppleOrchard’ 

class dealt with the apple trees at harvest. The AppleOrchard class would read an image, identify 

each row of an image and count the number of apples within the first row. Statistics such as 

mean apple size, standard deviation and variance were collected per image to estimate the mean 

apple size. The ‘ChristmasTree’ class was used for all Christmas tree counting operations. This 

class had the responsibility of allowing a user to select a specific region of their image, and then 

have all of the Christmas trees within that area counted. Each class, their tasks, and overall 

outcomes will be discussed in Chapters 4 to 7.  

A DJI Phantom III drone was used for image capture. The Phantom III is a standard 

quadcopter drone equipped with a high resolution HD camera capable of taking high quality 12 

megapixel photos [2]. The Phantom III provides advanced stabilization control during flight 

patterns and can fly smoothly even with powerful winds. At $700, it is affordable for purchase 

for many small to medium scale farmers. It is GPS driven and can autonomously fly back to the 

point of origin with a single button command. For orchard image capture, the drone was 

manually flown up and down orchard rows at approximately 30 feet altitude with the camera 

facing towards the orchard trees at a downwards 45-degree angle. For Christmas Trees, the drone 

was flown at 200 feet above ground level (AGL) with the camera pointing directly downwards. 

Once taken, the images were stored and batch processed to test whether the CV algorithms were 

able to identify the image’s physical traits.  

The C/C++ language was chosen due to its strength within computer vision applications. 

The C++ language can be compiled into exceptionally fast assembly language, with very little 

overhead. In most cases, a well programmed C++ script can achieve approximately 90% of the 

run time the same code programmed directly into assembly language is able to achieve. The 
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advantage of C++ to higher level languages like Python or Java is efficiency. Most computer 

vision libraries are written innately in C++ and then ‘wrapped’ into other languages. For 

example, the MATLAB programming language relies on C based code to carry out all 

instructions typed into its editor or command window. Similarly, most computer vision libraries 

written in Python and Java (such as the widely used OpenCV) depend on underlying C code 

wrapped in high level Python or Java function handles, respectively. Using C++ provides fast 

execution, as well as access to professional level open source CV libraries. 

C++ was used in conjunction with the OpenCV library and Visual Studio 2013 to 

develop the algorithms and classes. OpenCV proved to be an extremely valuable tool for all 

image processing operations, as well as a powerful pairing to C++’s useful standard template 

library (STL). The next section introduces basic image processing theory, color spaces, C++ STL 

and OpenCV libraries necessary to understand the theory, methodology, and findings of the 

research. Once some basic image processing and methodology is introduced, a discussion of the 

classes and image analysis environment used to process the apple orchard and Christmas tree 

images will be had. 
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Chapter 2: An Introduction to Image Processing Theory, STL and OpenCV 3 

 

An Introduction to Image Processing Theory:  

To better understand computer vision, it is helpful to first understand basic theory of how 

humans perceive images. Unlike a computer, the human eye effortlessly takes in lighting, 

brightness, shapes and color information from the surroundings. This information is sorted 

immediately into different cognitive containers and checked for significance. There are four 

noticeable characteristics of our visual system [4]. Our visual system is first sensitive to low 

frequency content. Low frequency content correlates to visual content that does not change pixel 

value rapidly. High frequency content would then refer to regions with corners and edges which 

fluctuate in intensity more severely. Second, our visual system is more sensitive to changes in 

brightness than to changes in color, as well as changes in motion. Third, human visual systems 

are exceptional at deciphering if an object is moving even if our focus is not directly on the 

object. Lastly, the visual system is very good at finding any noticeably distinguishable features, 

such as a brushstroke of yellow on a dark black background.  

While the human visual system is good at locating contours and objects, it is exceptional 

at quickly distinguishing objects; a task that a computer finds very hard to accomplish. For 

example, when a person enters a room, he or she may see other people, furniture, bright lighting, 

and all sorts of devices. While sorting out the visuals within the room would not prove 

challenging to the person, this would be a very tough task for a computer. Much research has 
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been devoted to further understanding what makes humans so good at recognizing objects, and 

machines quite poor at the task [4].  

Visual data processing and object recognition for humans occurs in the ventral visual 

stream. This part of the brain takes visual data and instantly sorts it for any particularly important 

features [4]. Researchers have found the human brain does not use factors such as size of an 

object, illumination or orientation to normally decipher objects; even if a person is swinging 

upside down, a table is still a table. Humans recognize objects using relative geometries within 

the object in part with distinguishing its other notable characteristics. In fact, to process objects 

with greater complexity, complex cells within the visual cortex are trained to process the visual 

data. As people go about their day to day lives, they continually train their object recognition 

system, and do it so well we do not even have to think about performing such operations.  

Machines unfortunately do not have all the advantages of the human brain. Many 

mysteries still remain regarding how data is stored upon entering the human visual system, 

making it difficult to effectively mimic such storage techniques with a computer. Computers 

store an image’s content as a discrete matrix of data points. This makes object recognition for a 

computer difficult, since an image of a chair from the front may look nothing like the data 

pattern of the chair from the side. Image size, orientation and brightness all make it difficult for a 

computer to identify whether an object is related to another. Since a holistic picture for how our 

brain deals with object has not yet been discovered, programming a computer to identify objects 

as the human brain does becomes problematic.  

One method would be to store all perspectives, angles, brightness of the object, but such a 

method would not be practical if many objects needed to be considered (not to mention 

computationally expensive). Machine learning algorithms could prove beneficial to recognize 
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various object shapes, but due to the limited time and resource, such a technique was postponed 

for further research. To identify objects from one another, specific object properties such as 

color, size, shape and brightness must be manipulated in order to find specific objects within a 

given agricultural image. Robust algorithms to store large amounts of image data were developed 

using the open source C++ computer vision library ‘OpenCV’ in conjunction with the Standard 

Template Library for storage and container efficiency.  

Open Source Computer Vision (OpenCV) is a library of templated computer algorithms 

aimed at solving real time computer vision tasks. Originally written for C++, OpenCV uses the C 

language’s speed and effectiveness to build fast code. While other languages support OpenCV 

such as Python and Java, the library is written natively in C++ and follows the C++ Standard 

Template Library (STL), allowing for seamless implementation with the STL. OpenCV has over 

2500 optimized algorithms, which rely on various classes and functions the CV library has 

defined. A basic overview of the commonly used OpenCV functions, classes, and image 

processing theory will briefly be touched upon and discussed. See Appendix A for the select list 

of library functions used, respectively.  

As briefly mentioned, all images are stored in computer vision programs as matrices, 

with each pixel encapsulating a unique attribute of physical space. Numbers within the matrix 

stand for a measured wavelength intensity for a discrete patch of the surroundings, as seen in a 

typical RGB image. The numbers can also represent a wavelength range as seen with 

panchromatic devices [4]. Each number value is considered to be a small part of the image and 

what is known as a pixel. A pixel can store either a single value as seen with a grayscale image, 

or can be composed of different channels. For example, Figure 2 below shows number values 

corresponding to a grayscale image and a RGB image. The gray scale image to the left can be 
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represented by numbers usually within the 0 to 255 range and consists of a single channel. RGB 

images however have three times the information density due to the red, blue, and green 

channels that make up the image, with data values similarly ranging from 0 to 255.  

 

Figure 2: Example of Gray and RGB Image Storage 

 

 Depending on what type of image a user wishes to store, the data contents will be stored 

in computer memory slightly differently. Computer memory can be conceptualized as a long 

straight line of data points. Any three channel array will have the same organizational pattern as 

the RGB array. Since a grayscale image is a single channel array, it will not have a RGB 

channel, but instead a single value for each pixel between 0-255. Each pixel can be accessed in 

memory through using the value equation seen in Figure 3 below. 

 

 

Figure 3:  Illustration of Image Memory Storage Pattern and Equation 

 

 



10 

 

 

Introduction to OpenCV 3: 

 

Before results can be discussed, an introduction to the theory that make image processing 

possible using OpenCV and C++ should first be mentioned. Computer vision requires a strong 

knowledge of dynamic programming as well as image processing theory. Without such, new 

image processors may find it difficult to create useful algorithms. The next two sections list 

important functions, classes and algorithms for image processing agricultural data. 

 For beginners, the most widely used tool in image processing is the matrix. The OpenCV 

Mat class stores data just like a matrix does. It is the primary storage tool for reading an image 

into an image processing environment. The Mat class can be thought of as an n-dimensional 

single or multi-channel array [4]. Like any matrix, the Mat class has the ability to undergo matrix 

multiplication, addition, subtraction, inversion and transposition. A Mat object can be assigned 

an image matrix with the OpenCV function ‘cv::imread()’, or it can be assigned to any set of 

values the user wishes through its class constructor. The Mat class mimics the template pattern of 

STL containers such as ‘vector< >’ and can store most image types. If an image needs to be 

processed, the Mat class should be used.  

The Mat class has a few member functions that are widely used with OpenCV matrix 

operations and support random access to the Mat elements. Table 1 below defines the most 

important four member functions associated with the Mat class. 
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Table 1: Common OpenCV ‘cv::Mat’ Class Member Functions 

begin() Function returns an iterator pointing to the first data value in the array. 

end() Function returns an iterator pointing to one past the last data value in 

the array. The contents of end() is undefined and should not be 

accessed. 

copyTo(Mat& m) Function performs a deep copy on the current matrix contents. Stores 

the copy within the parameter matrix “m”. 

at<>() Template function returns a reference to the specified array element. 

This function is used for safe random access of Mat object pixels. 

  

The Moments class is widely used for finding object locations and object areas. The most 

common method for using the moments class is to convert an object’s contours into a moment 

object. Using the moment class is challenging for inexperienced C++ programmers since it relies 

on knowledge of multidimensional dynamic memory containers, STL iterators, and OpenCV 

functions such as findContours() and moments(). Table 2 below gives a list of steps to instantiate 

the moments class, along with a source code example in Appendix A. 

Consider the task of finding the location of an apple within an image using the OpenCV 

moment method for object recognition. It is assumed that a vector with the apple’s contours have 

already been determined. To extract the apple’s coordinates, a pointer to a vector of contour 

points should be created. If there are multiple contours within the multidimensional contours 

vector, a looping mechanism should be implemented to extract all of the various contours from 

the vector, and the iterator should be incremented with each loop. A moment object must be 

declared using the notation from step 2 using a matrix cast within the parameter for the moments 

function. Once casted, the function cv::moments() will convert a casted Mat to a moment object. 

The moment class is significant since it has important member properties m00, m01, and m10, 
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which are used extensively to find an object’s area and center. Table 2 below depicts how to use 

the moment class to find area and center of an object.  

 

Table 2:  List of Operations for Converting Contours 

1. Instantiate iterator pointing to contours vector<vector<Point> >:: iterator it = 

contours.begin() 

2. Declare Moment Object: Moments M = moments((Mat)*it) 

3. Find object area double area = M.m00 

4. Store object center in a point object (x,y) Point center 

=Point(M.m10/M.m00,M.m01/m00) 

 

The Rect template class stores rectangular coordinates through use of its constructor and 

member properties. The Rect class is widely used as a method to crop one image into an area of 

interest for the user or program. Image coordinates are saved into a rectangle object, and used as 

a parameter in the Mat class constructor. Figure 4 below introduces how an image matrix can be 

cropped into a smaller image matrix using the ROI technique. 

 

Figure 4: Using the cv::Rect Class to Crop Image 

The Point class is a simple yet useful template class for holding x and y image points. 

The class has two properties ‘x’ and ‘y’ that are used for storing x and y image values, as seen in 

the above ROI example.  

The Scalar class is a simple template class which can hold up to a maximum of 4 values. 

The Scalar class is generally used along with Hue Saturation Value (HSV) and RGB 

morphological operations to conduct image binarization. Scalars are used as a means of 
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transporting the upper and lower cutoff values that allows an image to be binarized in OpenCV. 

Image binarization is an extremely important concept that will be discussed in Chapter 3. 

Color space conversion and image filtering plays a pivotal role in AOI algorithms. One of 

the most common techniques for conducting color-based object detection in OpenCV is through 

the function cv::cvtColor(). The function allows a user to switch an images color space from one 

type to another. Color based object detection using the Hue Saturation Value color space was an 

important method for locating objects for this research project. Figure 5 below illustrates the 3D 

representation of a HSV color-wheel. The HSV color space is a cylindrical coordinate 

representation of points in an RGB color model [5]. The HSV color space is preferable to using 

image based analysis within the RGB color space since it aligns more closely with how people 

experience color. In an HSV color space, the ‘Hue’ of the color refers to the pure color of the 

object. For example, even if an object has a light red color, its hue value will correspond to a 

perfect red nevertheless.  

 

Figure 5: Visualization of the HSV Color Space 

 

Hue is described on its color wheel by a rotation to the number that represents the 

position of the color [6]. In OpenCV, the values for Hue are from 0-180. Saturation represents a 

radial move outwards on the color wheel. Colors that have full saturation are located further 

radially outwards than colors with less saturation [6]. In OpenCV, saturation values range from 0 
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(white) to 255 (fully saturated), respectively. Value described how light the color is, and refers to 

a vertical translation on the HSV color wheel. Values range from 0 (black) to 255 (white) in 

OpenCV. Figure 6 below illustrates how to navigate the HSV color space. 

 

 

Figure 6: Navigating the HSV Color Space 

 

Since HSV is simply a transformation of the RGB color space, the HSV values found 

after conversion will always depend upon the initial red, green and blue values of the image [7]. 

While using images converted into the HSV color space is useful for computer vision tasks, great 

care must be taken to properly filter out substantial noise from the image. OpenCV 

morphological functions such as thresholding, dilation, blurring, and erosion are employed to 

smooth data. The end goal of using the HSV color space is to take a read in RGB image and 

transform it into a binarized thresholded image with only the object of interest remaining within 

the image. This process is covered in great detail within the next chapter and used extensively 

within each object recognition algorithm.  
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Introduction to the C++ Standard Template Library (STL): 

 

Lastly, a brief overview of the STL will be mentioned as it is used in many computer 

vision source code examples. OpenCV follows the C++ standard to create a seamless integration 

for all CV functions and STL library containers. This is exceptionally important for image 

processing within stochastic environments like apple orchards. Within each image, it can never 

be precisely predicted exactly how many apples, blossoms, trees, or rows will be found. 

Therefore, it is impossible to pre-allocate how large an array should be, or how many objects will 

be found within a given image. Furthermore, if objects are accidentally filtered out, predicting 

quantities of objects is further muddied. Luckily, due to STL’s dynamic memory containers, this 

does not pose any problem, as containers can grow and shrink as more or less elements need to 

be added and removed.  

A formal definition of template may be needed at this time. A template can be thought of 

like a placeholder. Similar to how a school lunch box can contain any type of food, a template 

class can contain any type of parameter it is initialized with. Instead of creating one type of class 

that uses an integer, and another similar class that uses a double, a template class can be created 

which can be instantiated with any type of parameter (integer, double, or even a string). This 

type parameterization allows for great code re-usability and faster code creation. Templates can 

be used to define both classes and functions, making it possible to enact powerful sorting and 

numerical operations on a data container [5]. 

The vector class meets the need of a dynamic memory container for computer vision 

tasks. Instead of declaring an array with an initial quantity of elements, a template container 

known as a vector can be initialized. The vector class is a sequence container capable of random 
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memory access with dynamic memory allocation. Table 3 below illustrates commonly used 

member functions of the vector class.  

 

Table 3: Member Functions Commonly Used in the std::Vector Class 

begin() Function returns an iterator pointing to the first element of the container 

end() Function returns an iterator pointing to one past the last data value in the 

array. The contents of end() is undefined and should not be accessed. 

size() Function returns the current size of the container 

erase() Erases elements within the container. Commonly used as part of the 

remove-erase idiom as discussed below 

push_back() Places an item into the vector container 

pop_back() Deletes the last element. 

 

Not only does the vector class allow for template use, but also has a special pointer that 

can access its data members. An iterator is a special data access tool inherent to each of the main 

sequence container classes. The iterator serves as a pointer to a specific data member within the 

container, but can be incremented or decremented to loop through the whole data set. The vector 

functions begin() and end() are used to return the start and end memory locations of the vector, 

and used extensively for computer vision data storage.  

Sorting data is another crucial task in computer vision. The STL library uses a template 

sorting function sort(), which sorts data within an STL container such as vector, according to a 

user-provided sorting predicate. STL sorting predicates may be fairly esoteric to the 

inexperienced C++ programmer, but serve as powerful tools for writing single line code. Sorting 

predicates even work with large multidimensional arrays of data in a single line call to sort. 

Figure 7 below depicts a functor, which can be used as a Boolean sorting predicate by 

overloading the operator(). The functor is then used as an instruction set for sorting the content 
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of a vector container. Functors serves as quick methods to instruct the sort function how to 

arrange the data members. 

 

Figure 7: Example of a Functor Used with Standard Template Library Sorting 

Figure 8 below depicts how this functor was implemented as a means of sorting a vector 

of data. The sort function is given the range of data value memory addresses that should be 

sorted, along with specific sorting instructions provided by the functor. 

 

Figure 8: Sorting an Object Container Using a Sorting Functor 

 

Many times in CV applications, data points need to be added and removed from a vector 

continuously. For example, if a program required all repeat values within a vector to be removed, 

one technique could be to loop through the array and delete repeated data points through random 

iterator access. However, this may result in undefined program behavior. Instead, safe STL 

functions can be used to safely remove any items from a vector. Figure 9 below shows how 

elements were safely found, stored, and then removed from the desired vector through using the 

‘erase remove‘ idiom, which assures safe element removal from an STL container. 

 

Figure 9: Erase-Remove Idiom Used for Safe Data Removal from Container 
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With a basic understanding of the main components that make C++ computer vision 

possible, a discussion of how the UAV’s images were analyzed is provided in the next chapter. 

Visual Studios and OpenCV 3 were used to create an image analysis environment (IAE) where 

unique properties of each orchard and field image could be discovered and analyzed. The 

environment employed a graphical user interface (GUI) for user interaction, tracker bars and 

sliders for testing morphological operations, as well as mouse and keyboard events to run 

binarization and AOI algorithms on the image sets. The image analysis environment (IAE) was 

crucial to discovering specific image characteristics for AOI. In addition to a discussion IAE 

creation, important OpenCV morphological operations, filtering algorithms, binarization and 

thresholding techniques will also be discussed. See Appendix A or 

https://github.com/natsnyder1/AppleOrchard for the full IAE source code. 
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Chapter 3: The Image Analysis Environment 

 

All source code and examples were created through using Visual Studio 2013 and 

OpenCV 3. Visual Studio provides an ideal environment to run, debug, and edit source code for 

machine vision projects. OpenCV 3 fits very well into the Visual Studio framework after the 

correct libraries are linked to the project. Visual Studio 2013 and OpenCV 3 are a recommended 

pairing for beginner CV applications. 

A basic image analysis environment can be composed of three parts. Code is first called 

to read a selected image into memory and set image variables. Next, functions that set up a 

graphical user interface (GUI) are called to allow interaction with the captured image. This is 

particularly useful, since a user can see how a certain morphological operation affects their 

image, and simply slide a tracker bar back to undo the transform. Lastly, mouse and keyboard 

events are used to call and execute automated object inspection (AOI) algorithms on the image. 

Mouse and keyboard events are very useful for deciding which operations to run on an image at 

any single instant. OpenCV provides the keyboard function “cv::waitKey()” which returns an 

ASCII integer corresponding to the user’s pressed computer key . The function will return -1 if 

no keyboard key is pressed. Users should implement keyboard, mouse, and user interface events 

to make their IAE more robust.  

Crafting computer vision code is tedious however. The ‘Image Analysis Environment’ is 

the basic code skeleton beginning image processors would form to start analyzing their images. 

The main purpose of creating the IAE is to build interactive image software to test 

morphological operations for each of the blossom, apple, and Christmas tree image AOI. By 

creating a well-structured, reusable GUI equipped with functionality to adjust image values and 
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toggle image operations on and off, finding important image parameters becomes drastically less 

time consuming.  

 OpenCV erosion, dilation, blur, color space conversion, binarization and thresholding 

functions proved significant for accurate AOI. Each of the apple, blossom, and Christmas tree 

images were subjected to such morphological transformations to convert their color space, filter, 

and binarize. Each concept is explained through the image analysis example provided in Figure 

10. 

Read-In Image Binarization of Green Blocks Output of Found Green Blocks 

   

Figure 10: Example of Automated Object Inspection Process 

Suppose a user wishes to develop a script to automatically count how many green objects 

are in the ’Read-in’ Image above. To accomplish the task, he or she would need to develop a 

program closely resembling one a typical image analysis environment would employ. The block 

example serves as a simple introduction to understand the functions and theory that make 

computer vision for agricultural applications possible, and will be used to introduce these 

concepts.  

For CV operations involving object recognition, an RGB to HSV color space transform is 

typically first performed. As previously mentioned, the HSV color space is particularly useful for 

image analysis and object recognition. Once an image is converted into the HSV color space, an 
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upper and lower range of hue, saturation, and value points should be determined to filter out 

colors and objects not of interest. All pixel values that fall outside of the range will be filtered 

out, leaving a binarized image remaining as seen in the middle section of Table 5. Any pixel 

value that falls within the specified range is given a value of 1, whereas any pixel that falls 

outside of the range is given a value of 0. Therefore, if a HSV range of values that solely 

correspond to green are found, what remains is a binarized image with only the green objects of 

interest in white. By converting the image to the HSV color space, a specified range of HSV 

values can be found to threshold the image into a foreground and background. 

However, not all thresholding works exactly as planned. The right picture in Figure 11 

depicts a common issue when binarizing an image using HSV color ranges. If two objects are 

close to one another, and both have the same color, the binarized image may appear as though 

the two objects are joined. In Figure 11, the upper right corner of the middle block and lower left 

corner of the right-most block are connected by a thin line. This is problematic if the objective of 

a program is to count objects or determine coordinate locations. While the human eye can clearly 

tell the two objects are not joined together, a computer does not possess the same cognitive 

reasoning skills.  

 The answer to this dilemma lies within the OpenCV dilate, erode, and blur 

functions. Dilatation is used to increase the size of a binarized object. Applying a dilation 

function will in essence wrap a thin layer of pixels around the contour of an object. The erode 

function on the other hand is used in essence to peel a layer off of an object. If the object is small 

enough, the erode function will destroy the object. Erosion is a powerful filtering tool in image 

processing, as unsmoothed data can lead to undesirable results and inaccurate findings. Using a 
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simple erosion function with a large kernel could solve the problem for the red blocks 

binarization image in Figure 11.  

Blurring an image is another common pre-processing function used for filtering noisy 

image data. Blurring smooths the high frequency noise, and is commonly used for pre-processing 

an image before finding contours of an object so noisy pixel data will not affect contour 

locations. While blurring is a very useful filtering tool, erosion is typically the agent used to 

separate overlapping objects as seen in Figure 11. A more mathematically dense description of 

each function can be found on the OpenCV filtering reference page. Once an image’s color space 

is converted, binarized, and filtered, objects remaining in the foreground can be tested for certain 

criteria and classified.  

 

RGB Image Without HSV Conversion Yellow Block Binarization Red Block Binarization 

   

Figure 11: Binarization of the Yellow and Red Blocks 

 

Tracker bars and GUI events can be useful for determining the HSV range of values for 

filtering out background objects. To initialize a tracker bar object in OpenCV, a call-back 

function must be provided. The call-back function is executed each time the position of a tracker 

bar is changed. Figure 11 above shows how changing the range of HSV max and min values 

leads to different colored blocks in the foreground of the binarized image. By using both the 

tracker bars to manipulate the upper and lower HSV values as well as the function cv::inRange() 

to binarize the image pixels using those values, the user can visually see which objects from the 
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RGB image appear in the foreground of the threshold image. Since the binarized image contains 

the pixel locations of each foreground object, the objects can be analyzed to determine whether 

or not it classifies as an object of interest. In our case, the binarized objects have all the 

properties of the colored blocks, and would be considered an identified object. 

Thresholding an image into a foreground and background makes identifying objects and 

their classifying their properties possible when using a color-based approach for image 

processing [8]. Once an object’s threshold image is found, its area, center point, and shape can be 

determined. Checking object properties after binarizing an image is very important. With any 

AOI algorithm, some noisy image data will inevitably slip through. Having a set of conditions 

each foreground object must meet will help filter out skewed data, or at least alert the program 

that an object does not meet the proper specifications. Figure 12 below illustrates how several 

objects within a UAV image of an apple orchard should be excluded.  

 

Figure 12: Unintended Binarization of Cinder Blocks and Posts in Blossom Foreground 

 

If the objective is to count individual apple blossoms and determine the average blossom 

size, the inclusion of objects such as the cinder blocks, post, or white pipe would drastically 

skew the results. Since some objects, like the cinder blocks and piping, appear to have a similar 

color to the blossoms, they will appear in the foreground of the binarized image. It then becomes 

the programmer’s job to use various conditions in order to filter out these objects from the 

results.  
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Although a finalized AOI script will not contain slider bars for users to manually adjust 

HSV max-min values, the image analysis environment is critical in helping find what image 

attributes are significant for a given task. By setting up the IAE with mouse events, UI features, 

and other morphological operations, various CV functions can first be tested before being 

implemented. In the blocks example above, the same set of image operations were applied to 

colored blocks for object recognition; color space conversion, morphological operation, filtering, 

binarization, and finally output. This technique was used repeatedly for each set of UAV 

agricultural images. Now that a basic introduction to computer vision theory and programming is 

covered, the next three chapters will discuss the results of the UAV AOI algorithms. Apple 

orchard images are discussed first, followed by a discussion of Christmas tree counting. The full 

source code to set up an IAE for Visual Studios 2013 with OpenCV 3 can be found on 

https://github.com/natsnyder1/AppleOrchard. 
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Chapter 4: Image Processing Blossoming Apple Trees 

 

Consider Figure 13 below. This is a typical UAV image taken from the DJI Phantom III 

quadcopter from approximately 30 feet altitude with a camera pitch of 45 degrees down. To 

collect data for image processing, the drone was manually flown down the center of each orchard 

row. Images were taken every six feet by the camera attached to the underside of the drone.  

 

Figure 13: Illustration of Blossoms Taken From UAV 

 Computer vision AOI algorithms were created to process various characteristics of the 

apple orchard trees. ‘Blossom canopy coverage’ is a commonly used term by orchard farmers to 

describe how dense a tree is covered with blossoms. Depending on the quantity of blossoms an 

apple tree has, its crop yield will vary. If a tree is seen to have a high blossom canopy coverage, 

a farmer would then expect the tree to produce a larger quantity of slightly smaller apples. If a 

tree has a low blossom canopy coverage, a farmer would then expect the tree to produce a 

smaller quantity of slightly larger apples. Depending on whether the farmer wishes to harvest the 

apples for juicing or the fresh fruit market, a certain type of apple is preferable. Apples with 

smaller sizes tend to be used for juicing, whereas larger, more aesthetically pleasing apples are 

brought to market. Managing blossom coverage becomes important then for determining whether 
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a tree requires blossom thinning. Because apple trees can grow up to 30 feet tall, seeing a full 

view of the tree canopy is sometimes not possible from the ground.  

A UAV was used to test whether aerial AOI with OpenCV could identify the same traits 

and objects a farmer would during an orchard inspection. The UAV was manually flown 

between each row to capture low altitude images as seen in Figure 13. Computer vision scripts 

would then extract the physical characteristics of the image and analyze the orchard data. 

Realistically, in order for a farmer to implement this strategy over a physical inspection 

themselves, the UAV must perform the flight mission autonomously. Autonomous orchard 

missions requires GPS slightly more precise than what is currently available today. GPS drift 

exacerbates UA flight accuracy due to day-to-day longitude and latitude position changes. 

Maneuvering through orchard rows at low altitude requires exact flight planning. Further sensors 

and external control units would be required to assure precise flight of the drone, which was 

outside the scope of the research.  

For blossom image processing, several goals must be accomplished for apple orchard 

AOI. Each row within the image first must be identified. Since only the trees within the first row 

of each image are of importance, the first row should be copied into a new image matrix. Next, 

each tree is identified and their coordinates are stored, respectively. Once tree locations are 

found, blossom binarization and object filtering is required to remove any objects that are not 

blossoms. The blossom canopy coverage of the trees can then be found, along with statistics of 

the blossom canopy coverage for individual trees. Each step will be covered in detail below.  

The C++ class ‘BlossomOrchard’ was used for all blossom image processing. Each 

image was read into a CV script to initialize a BlossomOrchard object. The object would then 

subsequently call a set of functions on its image to determine characteristics such as number of 
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rows, number of trees, and blossom statistics per image. Finding the first row of orchard trees 

was the first major task for the computer vision script. The task was accomplished through using 

the classes member function ‘findRowLocations’. Figure 14 below illustrates what a binarized 

image of the rows looked like.   

 

Figure 14: Binarization of Blossom Orchard UAV Image 

 

 

As discussed in Chapter 3, the RGB image taken from the UAV was converted into the 

HSV color space. Since identifying rows is the first main objective, the image must be searched 

for characteristics corresponding to the row locations. Large patches of dirt between grass rows 

are characteristic of ground. Therefore, the image can be searched for HSV values corresponding 

to brown. A pre-determined HSV range of values was selected using the image analysis 

environment for all row binarization for blossom images. The filtered and binarized foreground 

on the right of Figure 14 resembles areas of the image that correspond to HSV values within the 

specified range. Unlike the block example in chapter three, the binarized image appears to have 

thousands of small objects instead of a couple well defined ones. This presents a challenge for 

AOI, as the aggregated grouping and spacing of each object is what is important, not individual 

pixels.  
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Figure 15 below depicts two strategies that can be employed to tackle this problem. One 

solution is to apply a heavy dilation to the binarized image, if a high enough kernel value is used, 

then the majority of pixels will merge together as a single object. Sorting out which objects are 

rows, and which smaller pixels groups are noise becomes relatively easy if the coordinate 

locations and areas of the objects are tested. The second method is to use a horizontal binning 

strategy to compare areas with high and low foreground density. Since the foreground pixels 

have large spacing between the rows, finding where one row starts and ends becomes a matter of 

testing how dense a row of image pixels is when compared to the average. 

The first strategy is that shown in the left path of Figure 15. While a machine learning 

approach could be taken, the strategy used here tested how well the images content matched a 

predefined range of HSV values. After the RGB image was read into program memory, it was 

converted into the HSV color space. Once converted, the pixels were tested against a range of 

HSV values resembling light to dark brown.  
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Figure 15: Two Separate Methods Used to Locate First Three Rows 

 

 The desired outcome was to filter out any green and keep earth shades in the image. The 

first strategy took advantage of a heavy dilation to merge neighboring pixels together. The 

OpenCV functions cv::dilate(), cv::erode(), and cv::medianBlur() were used in combination to 

remove smaller objects. Each remaining object was then sorted to see whether or not it met the 

predetermined characteristics of a row, and then tested for if it was the first row. If the object did 
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not meet the criteria of a row then it was removed from the queue. Once the first row was found, 

the image was cropped and analyzed for specific tree attributes. 

The second strategy took advantage of the relative spacing of the pixels as seen in Figure 

15. Rather than focusing on converging neighboring pixels together, the image was analyzed to 

sum how many white pixels were within each region. Each image was 4000 pixels wide by 3000 

pixels tall. The image was sliced into 200 horizontal bins, leaving 15 rows of pixels in each bin. 

Each of the 15*4000 pixel bins were counted to see whether the pixel value was part of the 

binary foreground. If it was, the pixel was counted. The total count of each of the 200 foreground 

bins was stored for comparison. Figure 16 illustrates a clear pattern seen after the binning is 

complete. It becomes fairly recognizable that the areas corresponding to a higher-than-average 

pixel count (green line) are rows. Moreover, the closest row to the UAV always corresponds to 

the right-most output of the horizontal binning. 

 

 

Figure 16: Horizontal Binning Image Output 

 

Using horizontal binning for row recognition proved to be a valuable and highly accurate 

technique. Sorting the image foreground based on areas worked well for all blossom images, but 
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failed to report accurate results for apple orchards. The main difference between the two 

algorithms was their response to disorder within an image. The apple orchard images were not 

maintained with the same level of care the blossom images were. The multiple ground patches 

within the binarized foreground image of trick the algorithm into thinking there are multiple first 

rows. This leads the algorithm into thinking the image contained bad data, and therefore no 

decisions for row location will be made. The horizontal binning technique is much more 

forgiving, since only the relative vertical locations of the foreground objects are of concern. The 

horizontal binning method was chosen for all row recognition purposes, and was seen to report 

highly accurate results. In most cases, the findRowLocations function was able to find the first 

three or even four rows. The image was next cropped to show only the first row and processed to 

find how many trees were in the first row. 

Discovering individual trees proved to be quite challenging, and had mixed results. While 

the majority of blossom images could be processed for tree identification, apple images at 

harvest had several traits that made tree inspection difficult. Removing the background proved 

challenging since both the tree's canopy and surrounding grass had almost identical colors. Tree 

bunching made autonomously finding where one tree ended, and another began almost 

impossible for some images. Figure 17 below illustrates when tree bunching made discovering 

individual trees impossible. Even the human eye has trouble identifying where one tree ends and 

the next begins.  
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Figure 17: The Effects of Tree Bunching for AOI 

 

The algorithms findTreesAreaMethod and findTreesTrunkMethod in the 

BlossomOrchard class were used to identify two apple tree traits; the tree trunk coordinates and 

the outer edge of the tree’s canopy. Used together, the AOI algorithms were able to locate where 

one tree began and the next ended. In cases where the edge of one tree’s canopy drastically 

intersected with the edge of its neighbor, the algorithms would report the pair as a single tree. 

Figures 18 and 19 below depicts the output from the BlossomOrchard’s AOI algorithms.  

 

Figure 18: Row Detected by the Blossom Orchard Member Function findRowLocations() 

 

 

Figure 19: AOI for Individual Blossoming Apple Trees 
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When used in conjunction, the ‘findTree’ functions listed above were able to accurately 

locate trees. Identifying the start and end coordinates of a tree allowed the program to collect 

individual tree characteristics such as blossom canopy coverage and mean blossom size. 

However, having the AOI algorithms search for individual trees was found to be highly 

inaccurate in some cases. Figure 20 below depicts the output only from the 

findTreesAreaMethod, and how the algorithm grouped the data from its search as two large trees, 

not multiple smaller ones. 

 

Figure 20: The Effect of Tree Bunching for Individual Tree Inspection 

 

After individual tree locations were mapped (or attempted), the last task for the 

BlossomClass was to find the location, area and count of how many blossoms were on each tree. 

This last set of algorithms served to test whether the photos from the UAV could locate blossoms 

and predict whether a certain tree would need thinning. Due to the complications that tree 

bunching raises, the locations, areas, and count of blossoms were reported on a per row basis, not 

per tree. Figure 21 below illustrates the output from the findBlossomCount function. Figure 21 

depicts the count on a per row basis, not per tree. 

Figure : Identification of single trees for blossom images 
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Figure 21: Identification of 1074 Blossoms in Blossoming Apple Image 

 

Mean blossom size and standard deviation was calculated to identify areas of the image 

with large bunches of blossoms. If a blossom was reported as being over two standard deviations 

above the mean, then it was safe to assume the neighboring blossoms were bunched together. 

This property was easily detected, and was used to determine whether the trees within a given 

image needed thinning or not. In the case where individual tree identification was possible, the 

function could predict blossom bunching on a per tree basis instead.  

One interesting attribute of the blossom images was the presence of other agricultural 

equipment. In many cases of blossom binarization, objects such as posts, poles, and tubes would 

sometimes be identified incorrectly. Figure 22 below depicts a binarized blossom image where 

three cinder blocks, a pole and post slipped into the foreground. 

 

Figure 22: Unwanted objects Within Foreground of Binarized Image 
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The undesired farm equipment has larger object areas than the individual blossoms.  

Finding the undesired objects was done by iterating through the blossom vector array and 

comparing the object’s size against two standard deviations above the interquartile mean. Once 

the objects were removed from the binarized image, blossom statistics could be gathered.  
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Chapter 5: Image Processing Apple Trees During Harvest 

Apple orchard image processing was conducted similar to blossom processing. A UAV 

was flown above the tree canopies and between each orchard row. The UAV would take photos 

every six feet with a camera pitch of 45 degrees downwards. Figure 23 below depicts a typical 

image taken from the Phantom III for apple tree processing. 

 

Figure 23: UAV Image Capture of Apple Orchard at Harvest 

 

Apples grow differently based on their tree’s characteristics. If a tree has many blossoms, 

the tree will tend to grow a large quantity of smaller apples. Conversely, if a tree has fewer 

blossoms, the tree will tend to grow a smaller quantity of larger apples. Depending on what 

purpose the farmer has for the apples, the apple trees must be cared for differently. The goal for 

the AppleOrchard class of functions was to determine how accurately each image could be 

processed using AOI algorithms. The class was assigned three main objectives: identify each of 

the rows in the image, identify the individual trees, and lastly count all the apples within the 

image. The AppleOrchard class followed a similar pattern to that of the BlossomOrchard class. 
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Each image was first analyzed for row locations. Once row locations were discovered, individual 

trees were identified. Lastly, each image was counted for the number of apples that it contained.  

As discussed in Chapter 4, the findRowLocations function was used for both image 

classes to identify where individual rows were located. Rows were found to be identified very 

accurately for this set of images as well. Figure 24 below depicts the results of row recognition 

for the AppleOrchard class (left) and the BlossomOrchard class (right). Notice how even though 

the orchard is much less maintained when compared to the BlossomOrchard images, the 

algorithms are still able to find rows. This indicates the algorithm can be used in multiple 

environments with similar success. 

 

 Figure 24:  Rows Identification for Apples at Harvest (left) and Blossom Apples (right) 

 

 

Finding individual trees did not work as well for the AppleOrchard photos as it had for 

the BlossomOrchard set of images. While locating individual trees may appear an easy task for 

humans, the task proves much more daunting for a computer to solve.  Since no two trees look 

identical, having an algorithm test for a specific property or color generally yields unfavorable 

results. While accurately identifying individual apple trees would be helpful in collecting 

individual tree statistics, finding the exact count of apples per tree is not completely necessary. 

Since farmers weigh apples by the row, knowing total apple count per tree would not be as useful 
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as knowing the total apple count per row. Therefore, the strategy to find each tree and the count 

of apples per tree was abandoned. Instead, only the first row would be found and the count of 

apples per whole image was determined. Furthermore, since the apple images contained more 

tree bunching per image than the blossom images, finding the apple count per row was a more 

accurate statistic to gather as well.  

Figure 25 below depicts the typical output of an apple image when counting the number 

of apples per image. The strategy here is to apply a HSV transformation to the RGB image and 

binarize the result to check whether or not the image has yellow and red objects within it. If the 

objects turn out to have small circular red or yellow objects within it, than the image is known to 

contain red or yellow apples, respectively. 

 

 

Figure 25: Apple Identified Through HSV Color-Space Conversion and Binarization 

 

Statistics such as mean, median, and standard deviation were gathered per apple image to 

help identify apple traits per image. Figure 25 illustrates how individual tree identification is 

nearly impossible for both AOI algorithms as well as the human eye when trees are heavily 

bunched together. After the count of apples is determined, the AppleOrchard class will return the 

count, mean apple size, apple standard deviation, and row coordinates to the user, per image. 

One area that still remains to be improved is accurately counting all apples in a row through still 
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images. Since some apples are captured by multiple images, they are counted additional times. 

Different flight or image processing techniques could be developed during future research (as 

discussed in Chapter 7) to combat this set back.  
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Chapter 6: Image Processing Christmas Trees Captured by UAV 

 

Christmas tree counting used the Phantom III flown at approximately 200 feet altitude to 

capture birds-eye-view images of Christmas tree farms. The UAV was flown autonomously to 

gather data for analysis. The goal of high altitude Christmas tree image capture was to provide 

farmers alternative methods to more traditional land maintenance and surveillance techniques. 

Manually counting the number of trees in a certain section will certainly prove a lengthy task if 

the farm is large. Instead, employing a UAV that can fly missions of 200 feet in altitude would 

enable a farmer to view his or her farm from an aerial perspective, removing the need to 

manually inspect a section of his farm to count quantity of trees. If the UAV was paired with 

computer vision algorithms that could tell the farmer the exact count of trees within a certain 

area of the field, then the automated process could end up saving the farmer many tedious hours 

of manually counting trees.  

To test this process, a set of computer vision classes and functions were created using 

OpenCV.  A GUI was created to allow a user to select certain areas of the image that he or she 

wished to find the total quantity of trees within. By allowing the farmer to interact with the 

images of his field, he or she would be able to map how many trees are in each block of their 

fields with relatively little effort of their part.  

The ‘ChristmasTree’ C++ class was designed to process Christmas tree images taken 

from high altitude UAV flights. The class had three main tasks. First, the class would read a 



41 

user’s image of choice into the analysis environment and display it on screen. Next, the class 

would use drawing functions to allow the user to select on their image exactly the area they 

would like the program to count trees within. Once the user selected the area he or she wished to 

have counted, the program would then crop the image to the user’s specifications, threshold the 

content, and count the quantity of trees within that region. The function returned the original 

image as well as the processed image with red dots over all of the trees counted. The total count 

was displayed in the top left-hand corner for the user to view. Figure 26 below depicts how a 

user would select the region of their field they wanted counted.  

 

Figure 26: User’s Selection of Region to be Counted (red circles) 

 

The ChristmasTree class was the only one of the three classes that incorporated graphical 

user interfaces for the user. In the case of apple orchards, using a GUI to inspect each image 

would not make any sense, as viewing each image would take just as long for a farmer as 

walking through the orchard themselves. The Christmas tree counting mission does not require 

low-altitude flight to inspect individual fruit, however. Using a GUI along with overhead images 

allowed for a user to quickly find the count of trees within a segment of their image, as well as 

receive visual confirmation that each tree was counted as expected.  
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Though the tree counting algorithms were able to identify and count individual trees, 

there were some complications with tree bunching and mistakenly filtering smaller trees. Similar 

to individual tree recognition for in season apple orchard images, Christmas trees that were very 

close together posed a problem for the computer vision algorithms. Objects that touched or 

overlapped were found to be recognized as a single object, rather than two. To combat this, an 

erosion operation was applied to the image to help detach overlapping objects. While this 

technique was met with some success, one major complication arose if a heavy erosion was 

applied. Due to the various shades of green inherent to different species of trees, some trees did 

not threshold as strong as others. When applying an erosion to the image, smaller objects and 

less defined trees were occasionally filtered. Figure 27 below illustrates this phenomenon, and 

depicts how some trees are partially filtered when the image is thresholded.  

 

Figure 27: Thresholding of High Altitude Christmas Tree Farm 

  

Another issue was the similar foreground and background colors within the image. Since 

the grass behind the trees was a similar shade of green, distinguishing between the object of 

interest and the background proved difficult at times. In some cases, patches of grass that were 

especially close in color and shape were mistakenly categorized as trees. Figure 28 below 

demonstrates how the threshold image depicts patches of grass, which in turn are mistakenly 

added to the total count of objects identified.  
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Figure 28: Output of ‘ChristmasTree’ Class Tree-Counting Algorithm  

 

Despite these setbacks, most trees were accurately processed using the ChristmasTree 

class. When bunched up trees appeared as one large object in the threshold image, and the area 

was two standard deviations above the mean, a function was called to automatically divide the 

object into the correct number of underlying trees. In Figure 28, there are 154 trees within the 

image. The algorithm found there to be 159, leaving an error of 3.25% between estimated and 

actual. Potential solutions to the problems seen within Christmas tree image processing as well 

as apple orchard images will be discussed in the next chapter. While the results of the computer 

vision algorithms show promise for autonomously processing the contents of agricultural images, 

much work is still to be done to bring this type of service to market. Algorithm speed, accuracy, 

as well as efficiency can all be improved with further research. 
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Chapter 7: Future Work and Research 

 

Though the AOI algorithms developed using OpenCV show promise for autonomously 

recognizing agricultural attributes such as orchard rows, individual trees and their fruit, there is 

still much work needed before this small scale autonomous UAV system would be ready for 

commercial use. While most image characteristics were determined accurately, each set of 

images contained obstacles that future research should explore. This section will highlight the 

shortcomings of each C++ class, and where room is left for future improvements to be made.  

Most notably, color-based image processing was used as a means of transforming, 

thresholding, and identifying objects. Color-based image processing is one of two largely 

explored methods when image processing is the topic of discussion. As mentioned, Machine 

Learning (ML) is largely used to teach a computer to recognize a pixel-based pattern by 

exposing the algorithm to a large set of training data. With more training data, the algorithm 

gains more exposure to the different variations the object can have. In the case of a picture with 

the word “Hello” inside it, the algorithm would test each letter to see which characters A-Z the 

image’s pixels best represent. The algorithm would then take its best guess, basing its decision 

off of the previous data it was fed. Machine learning, while more complex, could prove useful 

for agricultural images where certain characteristics repeat from one image to another. High 

altitude Christmas tree recognition would benefit from machine learning algorithms to better 

determine locations of trees and help reduce miscounting sections of bunched or overlapping 

trees. Conversely, the stochastic nature of the apple orchard may prevent machine learning from 

being useful for object recognition here. Due to the large amount of variability seen in apple 
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images, ML algorithms may not be able to find patterns amongst the low-altitude images as 

easily as high altitude images.  

Selecting accurate flight paths for the UAV will play a critical role in moving this 

technology forwards. Though the UAV was able to capture crisp images of the orchard at both 

low and high altitudes, these images were not captured autonomously. Image capture missions 

must be flown autonomously for the UAV-AOI algorithm combination to be most useful to 

farmers. The problem currently arises with flying low-altitude missions. Since the UAV relies on 

GPS to navigate itself when set in its autonomous mode, the GPS must be highly accurate to fly 

precision missions. Because obtaining accurate images is contingent upon an unhindered flight 

path, if the associated GPS drift offsets the drone several feet in either direction, the drone could 

mistakenly fly into an orchard tree. For low-altitude missions to become autonomous, a real time 

sensory system could be added to detect whether the UAV is headed towards a collision or not. 

Alternatively, if GPS accuracy improves to just a couple of feet, then low-altitude missions will 

be one step closer to autonomy without a sensory system. 

The most accurate data was gathered from the blossom images. Rows, individual trees, 

and blossom density could all be found. Blossom images yield better results due to their even 

spacing between rows and trees. Unlike the in-season apple images, the tree’s white blossoms 

stood out and made identifying where the canopy of one tree ended and the next started a simple 

color transformation task. Even when neighboring tree canopies overlapped, individual trees 

could still be found through searching for the tree’s trunk and then comparing it to the location of 

its neighbor’s trunks. If excessive bunching between trees is observed, then the results appeared 

similar to Figure 29 below. Better methods must be developed to deal with image analysis for 

overlapping trees before this system could be implemented. 
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Figure 29: Incorrect Identification of Individual Christmas Trees 

 

The in-season apple orchard images proved to be the most difficult for AOI. Unlike the 

blossoming apple trees, the in-season apple trees had large sections of bunching, further 

exacerbated by poorly maintained rows. This additional clutter took away from being able to 

identify the start and end of single trees. While rows could still be found with high levels of 

precision, accurately counting apples within a row through still images proved problematic. 

Since images were only taken six feet laterally apart, many apples appear as repeats in their 

neighbor’s images. A possible alternate method could be video capture instead of discrete image 

capture for the apple images, repeated apples would not appear within the count.  

Lastly, high altitude Christmas tree counting could be improved two fold. Since the 

objective of tree counting was to allow a user the ability to count trees within a certain region of 

their farm, better GUI functions to zoom in and scroll over the image would help the farmer 

navigate through their image more accurately. Better methods to de-bunch cluttered trees still 

remains for improvement as well. Machine learning methods should be explored to predict tree 

count as well, but may be problematic due to limited training data and large variability of field 

layout.  

Overall, this research project aimed to develop methods for autonomous object 

inspection. The findings have shown that the UAV-AOI system has the potential to find image 

characteristics even in very stochastic of environments. This system could be built to have full 
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autonomy, allowing for minimal effort on the farmer’s part. The UI could allow novice computer 

users to take advantage of the output from the high level computer vision algorithms created with 

no programming knowledge. Future work could include aiming to have the UAV make a full 

autonomous low-altitude flight and then send the data to the terminal computer for image 

processing. A database could also be developed to store the information found within each of the 

images, not just for the program’s execution. For easy access, an online SQL database could 

store the information and act as the login point for farmers to see their field’s analysis. Using 

Python based OpenCV with SQL for a database would be an effective combination, and easily 

ported from the C++ source code created for this research project.  

Over 2500 lines of code were developed within the BlossomOrchard, AppleOrchard, and 

ChristmasTree classes. Full source code for the ‘Image Analysis Environment’ can be found in 

full in Appendix A. The three constructed C++ classes, examples, and source photos can all be 

found on https://github.com/natsnyder1/AppleOrchard. 

 

https://github.com/natsnyder1/AppleOrchard
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Appendix A: Full Source Code for The Image Analysis Environment 

 

 
// Function Prototypes 

Mat blurImage_Image_Analysis(Mat inputImg); 
Mat convertRGB2HSV_Image_Analysis(Mat sourceImg); 
Mat erodeImage_Image_Analysis(int HSV_ERODE, Mat sourceImg); 
Mat dilateImage_Image_Analysis(int HSV_DILATE, Mat sourceImg); 
void snagKeyboardEvents(int &keyboardChoice); 
void on_trackbar(int, void*); 
void setUpTrackerBars(void); 
void thresh_callback(int, void*); 
void calcBGRHisto(Mat& inputImg); 
void calcHSVHisto(Mat& bgrImg); 
 
// This Project is intended to be used to do soft coded image analysis. Desired 

result is to find values and properties of images using a HSV color transformation  
 
// These are the changeable HSV Values used for Quick Image Analysis 
int H_LOW = 0; 
int H_HIGH = 255; 
int S_LOW = 0; 
int S_HIGH = 255; 
int V_LOW = 0; 
int V_HIGH = 255; 
int HSV_DILATE = 1; 
int HSV_ERODE = 1; 
int HSV_BLUR = 1; 
int key; 
int ESCAPE_KEY = 27; 
 
// Boolean Gates 
bool toggleHSV = false; 
bool toggleXmasTrees = false; 
bool countObjects = false; 
bool allowEnterance = false; 
 
// General Purpose Counter and Matrices 
int _counter = 0; 
Mat BGRImg,HSVImg,ThresholdImg; 
 
int main() 
{    
 // Read in Image 
 BGRImg = 

imread("Z:\\Desktop\\Honors_Thesis\\ImageAnalysisLab\\Photos\\UnprocessedImages\\Picture2
.jpg"); 

 // Call the tracker bar function to initialize trackerbars 
 setUpTrackerBars(); 
 // Create a named window to display the image on screen  
 namedWindow("ImageWindow", CV_WINDOW_NORMAL); //this is to show image...we 

want to output image into file 
 
while ((key = waitKey(50)) != ESCAPE_KEY) 
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{   
snagKeyboardEvents(key); 
 
  // We need to do a conversion between the BGR Full color image and 

the HSV image 
  // Use HSV image and run through the inRange function to filter out 

unwanted pixels. Creates a binarized image 
  ThresholdImg = convertRGB2HSV_Image_Analysis(BGRImg); // Returns the 

threshold image using the trackervalues we updated 
  ThresholdImg = blurImage_Image_Analysis(ThresholdImg); 
  // We need to check if the user wishes to toggle an event on or off 

with a key on his keyboard. Setup which keys youd like to use in snagKeyboardEvents 
function. This is simply a skeleton below where any keyboard event code can be inserted 
into 

  if (toggleHSV) 
  {  
   imshow("ImageWindow", ThresholdImg); 
   // do something 
    
  } 
  else 
  { 
   imshow("ImageWindow", BGRImg); 
   // do something 
  } 
  if (countObjects) 
  { 
   countObjects = !countObjects; 
   // do something 
   } 
   
  if (toggleXmasTrees) 
  { 
   toggleXmasTrees = !toggleXmasTrees; 
    // do something 
  } 
 
} 
// clean up 
destroyAllWindows(); 
 
} 
 
Mat convertRGB2HSV_Image_Analysis(Mat sourceImg) 
{ 
 // HSV Values for Morphological Operations 
 Mat Threshold, HSVImg, Threshold_Temp; 
 cvtColor(BGRImg, HSVImg, CV_BGR2HSV); 
 inRange(HSVImg, Scalar(H_LOW,S_LOW,V_LOW), Scalar(H_HIGH,S_HIGH,V_HIGH), 

Threshold_Temp); // turn hsv into threshold 
 Threshold_Temp = dilateImage_Image_Analysis(HSV_DILATE, Threshold_Temp); // 

dilate 
 Threshold = erodeImage_Image_Analysis(HSV_ERODE, Threshold_Temp);   // 

erode 
 return Threshold; 
} 
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Mat dilateImage_Image_Analysis(int HSV_DILATE, Mat sourceImg) 
{ 
 Mat outputImage; 
 // Create the structuring element for dilation 
 Mat element = getStructuringElement(0, Size(2 * HSV_DILATE + 1, 2 * 

HSV_DILATE + 1), 
  Point(HSV_DILATE, HSV_DILATE)); 
 dilate(sourceImg, outputImage, element); 
 return outputImage; 
} 
 
Mat erodeImage_Image_Analysis(int HSV_ERODE, Mat sourceImg) 
{ 
 Mat outputImg; 
 // Create the structuring element for erosion 
 Mat element = getStructuringElement(1, Size(2 * HSV_ERODE + 1, 2 * 

HSV_ERODE + 1), 
  Point(HSV_ERODE, HSV_ERODE)); 
 // Erode the image using the structuring element 
 erode(sourceImg, outputImg, element); 
 return outputImg; 
} 
 
Mat blurImage_Image_Analysis(Mat inputImg) 
{ 
 // Simply blur the image to different values, which will be used to 

determine if the blurred filter Image will  
 // lead to better image recognition 
 Mat blurredImage; 
 medianBlur(inputImg, blurredImage, HSV_BLUR); 
 return blurredImage; 
} 
 
void setUpTrackerBars(void) 
{ 
 // Need to call the window in the same function as the trackbars themselves 
 namedWindow("TrackerBarWindow", CV_WINDOW_NORMAL); 
  
 // HSV Values 
 createTrackbar("H_MIN", "TrackerBarWindow", &H_LOW, H_HIGH, on_trackbar); 
 createTrackbar("H_MAX", "TrackerBarWindow", &H_HIGH, H_HIGH, on_trackbar); 
 createTrackbar("S_MIN", "TrackerBarWindow", &S_LOW, S_HIGH, on_trackbar); 
 createTrackbar("S_MAX", "TrackerBarWindow", &S_HIGH, S_HIGH, on_trackbar); 
 createTrackbar("V_MIN", "TrackerBarWindow", &V_LOW, V_HIGH, on_trackbar); 
 createTrackbar("V_MAX", "TrackerBarWindow", &V_HIGH, V_HIGH, on_trackbar); 
  
 //Dilate, Erode, and threshhold 
 createTrackbar("Dilate", "TrackerBarWindow", &HSV_DILATE, 50, on_trackbar); 
 createTrackbar("Erode", "TrackerBarWindow", &HSV_ERODE, 50, on_trackbar); 
 createTrackbar("Blur", "TrackerBarWindow", &HSV_BLUR, 50, on_trackbar); 
} 
 
void on_trackbar(int, void*) 
{ 
 /* 
 When you drag the trackerbar across the screen, the referenced value you 

enter is used to gauge. 
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 */ 
 // We want to make sure these values are never zero 
 if (HSV_DILATE == 0) 
  HSV_DILATE = 1; 
 if (HSV_ERODE == 0) 
  HSV_ERODE = 1; 
 if (HSV_BLUR % 2 == 0) 
  HSV_BLUR += 1; 
} 
 
void snagKeyboardEvents(int &keyboardChoice) 
{ 
 // hitting the keyboard key t will show the HSV image and not the regular 

image 
 if (keyboardChoice == 't') 
 { 
  toggleHSV = !toggleHSV; 
 } 
 // by toggling the keyboard key f we will run a full analysis on the 

filefolder of images 
 if (keyboardChoice == 'f') 
 { 
  toggleXmasTrees = !toggleXmasTrees; 
 } 
 // by pressing the letter c, count the objects 
 if (keyboardChoice == 'c') 
 { 
  countObjects = !countObjects; 
 } 
} 
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