
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF MATHEMATICS

STRUCTURE OF ATTRACTOR REGION FOR NATURAL EXTENSION
MAP ASSOCIATED WITH P -ADIC CONTINUED FRACTIONS

ADAM ZYDNEY
Spring 2011

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree

in Mathematics
with honors in Mathematics.

Reviewed and approved∗ by the following:

Svetlana Katok
Professor of Mathematics
Thesis Supervisor, Honors Advisor

Misha Guysinsky
Senior Lecturer
Thesis Supervisor

* Signatures are on file in the Schreyer Honors College.

Abstract

This thesis investigates the behavior of repeated iterations of a map F on two p-adic

numbers, ultimately proving the existence of an attractor region for this map and describing

that region. A description is also given of the behavior of the map on points inside and

outside of the attractor region. First, the p-adic numbers are introduced as an alternative

(to the real numbers) completion of the rationals, and definitions are given for canonical

expansions, p-adic integers, and p-adic units. Also laid out are the means for arithmetic of

p-adic numbers relevant to computing F .

With the addition of a non-injective “digit reversing” map from p-adic numbers to real

numbers, a computer program (written in Java) produces several graphs of the behavior

of F for various initial points. Using these plots as a guideline, analytic proofs are then

developed to rigorously show the behavior of F , specifically the existence and description of

its attractor region.

i

Table of Contents

Abstract i

Table of Contents ii

List of Figures iii

Acknowledgements iv

1 Introduction to p-adic Numbers 1

1.1 Norm and Distance 1

1.2 p-adic Expansions 1

1.3 p-adic Integers and Units 2

1.4 Arithmetic of p-adic Numbers 3

2 The Natural Extension Map 4

2.1 Motivation From Continued Fractions 4

2.2 Terminating Cases 4

3 Graphing p-adic Numbers 5

3.1 Multiple Expansions 5

3.2 Graphical Interpretation of F 6

4 Describing the Attractor Region 8

4.1 Using Real Image 8

4.2 Using p-adic Expansions 9

5 Unit Squares 10

6 Ending Up in the Attractor Region 13

6.1 Moving Left 13

6.2 Moving Right 14

6.3 The y = x Exception 16

7 Staying in the Attractor Region 17

7.1 From the Left to the Bottom 17

7.2 From the Bottom to the Top 17

7.3 From the Top to the Left 18

8 Conclusion and Future Work 21

References 22

Appendix 23

ii

List of Figures

1 Attractor Region for Q3 out to 32 9

2 Attractor Region for Q3 out to 33 10

3 Attractor Region for Q3 out to 34 11

4 Attractor Region for Q5 out to 52 12

5 Attractor Region for Q7 out to 73 13

6 Squares Map to Squares, Q3 out to 32 14

7 Division of the First Quadrant 14

8 Iteration for a Point in R6, Q7 out to 72 15

9 Bottom Strip Maps to Top Strips, Q3 out to 33 18

10 Bottom Strip Maps to Top Strips, Q7 out to 74 19

11 Down and to the Left, Q3 out to 33 20

iii

Acknowledgements

I would like to thank my advisor, Professor Svetlana Katok, for her guidance and support,

as well as for proposing this project. I would also like to thank Misha Guysinsky for helping

with the specifics of this research, which was done in Summer 2009 as part of Penn State’s

Research Experience for Undergraduates program in collaboration with Natasha Potashnik

and Steve Wolf. Lastly, I am grateful to my family and friends for all of their support

throughout my undergraduate career.

iv

1. Introduction to p-adic Numbers

The real numbers R are the completion of the rational numbers using the Euclidean norm.

The p-adic numbers, denoted Qp, are the completion of the rationals using the p-adic norm

defined below.

1.1. Norm and Distance

For any prime p, the order of a non-zero integer x is defined as the greatest power of p

which divides x. Put another way,

For x = c · pn, where c ∈ Z, n ∈ N, and (c, p) = 1, ordp x = n.

For integers x ∈ Z, the p-adic norm is defined as

|x|p =

0 if x = 0,

p−ordpx if x 6= 0,

and for rational numbers x = a/b, a, b ∈ Z, |x|p = |a|p/|b|p.

For any integer x = c pn as defined before, |x|p = p−n.

Notice that | · |p can take only a discrete set of values, {pn, n ∈ Z} ∪ {0}.

Since Q is a field, the distance induced by the p-adic norm is

dp(x, y) = |x− y|p.

1.2. p-adic Expansions

Recall that a sequence {xn} converges to a if

lim
n→∞

d(xn, a) = 0.

So whether a sequence converges or not depends on the distance being used.

Consider the sequence {xn} = {pn}. Under the Euclidean norm (absolute value), this

sequence clearly diverges. But under the p-adic norm, we know that

dp(xn, 0) = |xn|p = |pn|p = p−n.

limn→∞ p
−n = 0, so the sequence {pn} actually converges to 0!

Consider the infinite series

d−mp
−m + d−m+1p

−m+1 + · · ·+ d0 + d1p+ d2p
2 + · · · ,

1

where di ∈ {0, 1, . . . , p− 1} and d−m 6= 0. The partial sums of this series,

Sn =
∑n
−m dip

i, form a Cauchy sequence.

Because Qp is complete, Sn converges in Qp (i.e., there is an a ∈ Qp such that dp(Sn, a)→ 0

as n → ∞). So every series of the form
∑∞
−mdip

i represents a single a ∈ Qp. As it turns

out, the converse is also true − every element of Qp can be represented by a unique series

of that form, called the of a p-adic number, called the canonical p-adic expansion of a.

From now on, every number x ∈ Qp will be expressed as an expansion in base p:

x = . . . an . . . a1a0.a−1a−2 . . . a−m =
∞∑

i=−m

aip
i,

where ai ∈ {0, 1, . . . , p − 1} and a−m 6= 0. The dot between a0 and a−1 is called a “radix

point,” the generalization of the decimal point to base p expansions.

There are several important properties of this expansion:

• Expansions have a finite number of digits to the right of the radix point, but they

can have an infinite number of digits to the left.

• The order and the norm of x are immediately ascertainable from this expansion:

ordpx = −m and |x|p = pm.

• No ± sign is needed – even negative numbers can be expressed this way.

• This representation is unique – there is exactly one expansion for every number.

For positive rational numbers whose ordinary (Euclidean) base p expansions terminate,

the p-adic expansions are identical. For example, for k ∈ N, the p-adic expansion of pk is

10 . . . 0︸ ︷︷ ︸
k zeros

, and 1
pk is 0. 0 . . . 0︸ ︷︷ ︸

k zeros

1.

Rational numbers whose real base p expansions do not terminate are more complicated.

1.3. p-adic Integers and Units

The set of p-adic integers Zp is the completion of the integers with respect to the p-adic

norm. They can be equivalently defined as any of the following:

Zp = {x ∈ Qp

∣∣ ordpx ≥ 0 }
= {x ∈ Qp

∣∣ |x|p ≤ 1 }
= {x ∈ Qp

∣∣x = . . . a2a1a0. }

It is worth noting that there are numbers in Zp ∩ Q which are not in Z. These include

any fractions a/b where a, b ∈ Z, b > 0, and b is relatively prime to p; the solutions to

2

x2 = 2, x ∈ Qp, p 6= 2; and numbers such as
∑∞

i=0 p
i(i+3)/2 = . . . 1000100101, which have no

real analogues at all.

The set of p-adic units Z×p is the set of invertible elements of Zp. Equivalently,

Z×p = {x ∈ Qp

∣∣ ordpx = 0 }
= {x ∈ Qp

∣∣ |x|p = 1 }
= {x ∈ Qp

∣∣x = . . . a2a1a0., a0 6= 0 }

Any p-adic number x can be written as x = pnu, u ∈ Z×p , where n = ordpx. Also, x ∈ pZp

if and only if x−1 ∈ Qp\ Zp. One simple explanation of this is that

|x|p|x−1|p = |xx−1|p = |1|p = 1,

so |x|p < 1 if and only if |x−1|p > 1.

1.4. Arithmetic of p-adic Numbers

Addition, subtraction, and multiplication can all be calculated with p-adic expansions in

much the same way as they are with Euclidean base p expansions.

Finding −x for x = . . . a2a1a0 amounts to finding the (p− 1)’s complement of x up until

the left-most non-zero digit. For example, the p-adic expansion of −1 is an infinite tail of

(p−1)′s to the left of the radix point. It is convenient to define the digit q = p−1 so that −1

can be expressed as . . . qqq. Note that any subtraction can be done using addition because

p-adic expansions do not include + or − signs. For example, x− 1 ≡ x+ . . . qqq.

Division of p-adic numbers is a little different from Euclidean division. Rather than provide

a general division algorithm however, we will work exclusively with the algorithm for finding

a reciprocal. One must only worry about finding reciprocals of p-adic units because for

x /∈ Z×p , x = pnu, u ∈ Z×p , and x−1 = p−nu−1.

To find the reciprocal of u = . . . a2a1a0., a0 6= 0:

1. Let d = . . . d1d0 = u.

2. For each digit ai of u (starting with i = 0):

i. Find the digit ci for which ci · d0 ≡ 1 (mod p).

ii. Redefine d as d = p(dold − ci · u) ∈ Zp.

3. The p-adic unit . . . c2c1c0. = u−1.

3

2. The Natural Extension Map

The main focus of this thesis is the properties of the natural extension map

F : Qp ×Qp → Qp ×Qp given by

F (x, y) =

(
1
x
, 1

y

)
if x ∈ pZp(

x− 1
|x|p , y −

1
|x|p

)
if x ∈ Qp\ Zp

In particular, we wish to describe a set which is an attractor region for F .

To prove that a set A ⊂ Q2
p is an attractor region, we must prove

Condition 1. For every (x, y) ∈ Q2
p ∃ N ≥ 0 s.t. FN(x, y) ∈ A.

Condition 2. If (x, y) ∈ A, then for any n > 0, F n(x, y) ∈ A.
Condition 3. There is no subset A′ ⊂ A for which Conditions 1 and 2 hold.

Note that F is not well defined when x = 0. Also, the notations (x′, y′) = F (x, y) and

(x(n), y(n)) = F n(x, y) are often used.

2.1. Motivation From Continued Fractions

The map F is the natural extension of the one dimensional map f : Qp → Qp given by

f(x) =

1/x if x ∈ pZp

x− 1
|x|p if x ∈ Qp\ Zp

This function is analogous to the real function g : R+ → R+

g(x) =

1/x if 0 < x < 1

x− 1 if x ≥ 1

which has significant connections to real continued fractions as described by Katok and

Ugarcovici [2].

2.2. Terminating Cases

In some cases, F n(x, y) does not end up in A because the iteration of F terminates first.

That is, there is an N > 0 for which FN+1(x, y) is not well-defined. For the natural extension

map, this is when FN(x, y) ∈ {0} ×Qp.

4

Several points will eventually encounter this problem. Any x =
∑0

i=−n aip
i = a0.a1 . . . a−n

will eventually lead to x(m) = 0 because F only subtracts from the one’s place and from

places to the right of the radix point.

Although it is convenient to say that F : Q2
p → Q2

p, F should really be defined only on

the subset of Q2
p for which F n(x, y) is well-defined for all n > 0. In all future references to

Qp and Q2
p, it is assumed that points for which F n(x, y) is eventually not well-defined are

not included.

3. Graphing p-adic Numbers

Graphing a p-adic number is inherently difficult because Qp is unordered. We make heavy

use of the following (non-injective) map ϕ : Qp → R+ to investigate F :

ϕ(. . . a1a0.a−1 . . . a−m) = a−m . . . a−1a0.a1 . . .

ϕ

(
∞∑

i=−m

aip
i

)
=

∞∑

i=−m

aip
−i

Since we will be graphing points on a plane, we will also use ϕ : Q2
p → R+2

defined as simply

ϕ(x, y) = (ϕ(x), ϕ(y)).

Because Zp = Z×p t pZp, any p-adic number is in one of three sets: Z×p , pZp, or Qp\ Zp.

The map ϕ can easily differentiate between these three sets:

For x ∈ pZp, ordpx> 0, |x|p< 1, and 0≤ ϕ(x) < 1.

For x ∈Z×p , ordpx= 0, |x|p = 1, and 1≤ ϕ(x) <p.

For x ∈Qp\ Zp, ordpx< 0, |x|p> 1, and p≤ ϕ(x) <∞.

3.1. Multiple Expansions

One significant difference between Qp and R is that one real number can have two different

expansions while p-adic numbers cannot. Consider the following two expansions of a rational

number r in base p:

r1 = a−m . . . a−1a0.a1 . . . an−1an, an 6= 0

r2 = a−m . . . a−1a0.a1 . . . an−1a
′
nqqq . . . , where a′n = an − 1

The pre-image of r under ϕ consists of two distinct p-adic numbers:

ϕ(x1) = ϕ(anan−1 . . . a1a0.a−1 . . . a−m) = r1

ϕ(x2) = ϕ(. . . qqqa′nan−1 . . . a1a0.a−1 . . . a−m) = r2

5

Since F operates either by inversion or by subtraction of 1
|x|p , we only need to consider how

x1 and x2 will be treated by these two operations. Specifically, we need to see if x1 and x2

have the same norm.

The order of x is the smallest (most negative) i for which ai 6= 0. If i 6= n, then ai is

the same for x1 and x2, and |x1|p = |x2|p = p−i. If ordpx1 = n, there are two possibilities:

(1) an = 1, in which case |x1|p = p−n and |x2|p = p−n−1, or (2) an 6= 1, in which case

|x1|p = |x2|p = p−n.

So |x1|p 6= |x2|p occurs only when ordpx1 = n and an = 1.

If n ≥ 0, If n < 0,

x1 = 10 . . . 0︸ ︷︷ ︸
n zeros

= pn

x2 = . . . qq00 . . . 0︸ ︷︷ ︸
n+1 zeros

= −pn+1

x1 = 0.0 . . . 0︸ ︷︷ ︸
n−1

1 = pn

x2 = . . . qqq.
︷ ︸︸ ︷
q . . . q = −pn

F n(x1, y) will terminate within two iterations for both cases above. F n(x2, y) will be

periodic in x.

3.2. Graphical Interpretation of F

Here we consider the possible relationships between ϕ(x, y) and ϕ(F (x, y)) when F op-

erates by subtraction. Let

x = . . . a1a0.a−1 . . . a−n and

y = . . . b1b0.b−1 . . . b−m.

Then (x′, y′) = (x− 1
|x|p , y −

1
|x|p) = (x− p−n, y − p−n). Also let

∆x = ϕ(x′)− ϕ(x) and

∆y = ϕ(y′)− ϕ(y).

This notation is a little odd in that ∆x is a real number even though x is p-adic, but writing

∆ϕ(x) would be even worse.

Theorem 1. Let ∆x = ϕ(x′) − ϕ(x) and ∆y = ϕ(y′) − ϕ(y), and assume that F operates

by subtraction.

(i) In all cases, ∆x = −|x|p.
(ii) If bn 6= 0, then ∆y < 0 and ∆y = ∆x.

(iii) If bn = 0, then ∆y > 0 and |∆y| > |∆x|.

6

These statements each have a graphical interpretation:

(i) F always moves the image under ϕ of (x, y) to the left by |x|p.

(ii) When bn 6= 0, ϕ(x, y) moves downward along a line of slope 1.

(iii) When bn = 0, ϕ(x, y) moves upward along a line whose slope has an absolute value

greater than 1.

Proof of Part (i): This is pure digit manipulation:

ϕ(x′) = (a−n − 1)a−n+1. . .a−1a0.a1 . . .

ϕ(x) = a−n a−n+1. . .a−1a0.a1 . . .

∆x = −1 0 . . . 0 0 .

= −pn

= −|x|p because n = −ordpx

�

Proof of Part (ii): Since ordpx = n, bn must be non-zero if ordpx = ordpy. Then

x = . . . a1a0.a−1. . . a−n+1a−n

y = . . . b1 b0 .b−1 . . . b−n+1b−n

Subtract 0 . 0 . . . 0 1

y′ = . . . b1 b0 .b−1 . . . b−n+1(b−n − 1)

ϕ(y′) = (b−n − 1)b−n+1. . .b0.b1. . .

ϕ(y) = b−n b−n+1. . .b0.b1. . .

∆y = −1 0 . . . 0 . = ∆x

If ordpx < ordpx, we must specify that bn 6= 0. In this case,

x = . . . a1a0.a−1. . . a−n+1 a−n

y = . . . b1 b0 .b−1 . . . b−n+1 b−n . . . b−m

Subtract 0 . 0 . . . 0 1

y′ = . . . b1 b0 .b−1 . . . b−n+1(b−n − 1). . . b−m

ϕ(y′) = b−m. . . (b−n − 1)b−n+1. . .b0.b1. . .

ϕ(y) = b−m. . . b−n b−n+1. . .b0.b1. . .

∆y = −1 0 . . . 0 . = ∆x

�

Proof of Part (iii): As stated before, bn cannot equal 0 if ordpx = ordpy. If ordpx < ordpy,

we must specify that bn = 0. Then

7

x = . . . a1a0.a−1. . . a−n+1a−n

y = . . . b1 b0 .b−1 . . . b−n+1 0 . . . b−m

Subtract 0 . 0 . . . 0 1

y′ = . . . b′1 b
′
0 .b′−1 . . . b′−n+1 q . . . b−m

ϕ(y′) = b−m. . . qb′−n+1. . .b
′
0.b
′
1. . .

ϕ(y) = b−m. . . 0b−n+1. . .b0.b1. . .

∆y = q 0 . . . 0 .

∆y > 1 0 . . . 0 . = −∆x

If ordpx > ordpy, bn must be 0, and

x = . . . a1a0.a−1. . . a−m a−m−1. . . b−n+1b−n

y = . . . b1 b0 .b−1 . . . b−m

Subtract 0 . 0 . . . 0 0 . . . 0 1

y′ = . . . b1 b0 .b−1 . . . (b−m − 1) q . . . q q

ϕ(y′) = q. . . q (b−m − 1)b−m+1. . .b0.b1. . .

ϕ(y) = b−m b−m+1. . .b0.b1. . .

∆y = q. . . (q − 1) q 0 . . . 0 .

∆y > 1 0 . . . 0 . = −∆x

�

4. Describing the Attractor Region

The attractor region A is comprised of three disjoint sections:

A = A∗
⊔ (

(Qp\ Zp)× pZp

) ⊔ {
(x, y) ∈ Q2

p

∣∣∣ y = x
}

Although A can be dealt with using p-adic expansions exclusively, it is useful and quite

interesting to examine the image of A under ϕ. See Figures 2 through 5 on pages 10 through

13 for more graphs of ϕ(A) for various Qp at various magnifications.

4.1. Using Real Image

A∗ is most easily defined via its image under ϕ and the new function ` : N→ N

`(k) =

k − 1 if k ≤ p

k mod p if k > p and p 6 | k
p `(k/p) if k > p and p | k

8

Qp\ ZpZ×ppZp

pZp

Z×p

Qp\ Zp

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
︸
︷︷
︸︸
︷︷
︸ ︸
︷︷
︸

 .
..

 ...

A∗

pZp × (Qp\ Zp)

y = x

Figure 1. Attractor Region for Q3 out to 32

Graphically, `(k) is the length of a bar which spans ϕ(y) ∈ [k − 1, k) for k > p. For

k ≤ p, `(k) has no physical significance − its value is simply what is necessary for p`(k/p)

to evaluate correctly. A∗ is then the set of points for which ϕ(x) < `(k).

A∗ =
{

(x, y) ∈ Q2
p

∣∣∣ y /∈ Zp, ϕ(x) < `
(
bϕ(y)c+ 1

)}

This definition of A∗ is not ideal because it depends on the map ϕ. Also, what ϕ(x) ≤
`
(
bϕ(y)c+ 1

)
says about the p-adic numbers x and y is unclear.

4.2. Using p-adic Expansions

There is an alternative description of A∗ which uses only p-adic expansions. This is an

improvement over only describing ϕ(A∗), but this purely p-adic description is really no more

elegant or intuitive.

Let y = . . . y1y0.y−1 . . . y−N ∈ Qp \ Zp. Find a digit c and a non-negative integer m as

follows:

• If y0 6= q, then c = y0 + 1 and m = 0.

9

Figure 2. Attractor Region for Q3 out to 33

• If y0 = q,

◦ Find M such that y−i = q for i = {0, . . . ,M − 1} and y−M 6= q.

◦ If M = N + 1, then c = q and m = M − 1.

◦ If M = N , then c = y−M and m = M .

◦ If M < N , then c = y−M + 1 and m = M .

Let x = . . . a1a0.a−1 . . . a−n.

A∗ =
{

(x, y) ∈ Q2
p

∣∣∣ n < m
}⋃{

(x, y) ∈ Q2
p

∣∣∣ n = m, a−n < c)
}

This description was derived from the first description of A∗. One relation between the

two descriptions is that `(k) = cpm.

5. Unit Squares

Since the attractor region’s image is made up entirely of unit squares, it is sensible to look

at the pre-image under ϕ of unit squares and intervals.

Theorem 2. F maps unit squares to unit squares, provided that the original unit square is

not in the first column.

10

Figure 3. Attractor Region for Q3 out to 34

Proof: Consider a unit interval [k − 1, k), k ≥ 1. Let k − 1 = an . . . a1a0 in base p. If

ϕ(x) ∈ [k − 1, k), then ϕ(x) = k − 1 + r for some r ∈ [0, 1). Let r = 0.r−1r−2 . . . in base p.

Then

ϕ(x) = an . . . a1a0.r−1r−2 . . .

x = . . . r−2r−1a0.a1 . . . an

x = . . . x2x1x0.x−1 . . . x−n, where xi =

r−i i > 0

a−i i ≤ 0

By similar reasoning, if ϕ(y) ∈ [j − 1, j), then j = bm . . . b0, ϕ(y) = j − 1 + s for some

s ∈ [0, 1), and y = . . . s−2s−1b0.b1 . . . bm. Now ϕ(x, y) is in the unit square [k−1, k)×[j−1, j).

Assume that j, k > 1 (this means the square is not in the first column). From the

expansion of x, it is clear that |x|p = pn, so F will subtract p−n from x and y to get

11

Figure 4. Attractor Region for Q5 out to 52

x′ and y′. Because k − 1 > 0 and j − 1 > 0, the subtraction algorithm will stop before r−1

and s−1, leaving

x′ = . . . r−2r−1a
′
0.a
′
1 . . . a

′
n

y′ = . . . s−2s−1b
′
0.b
′
1 . . . b

′
m

ϕ(x′) = a′n . . . a
′
1a
′
0.r−1r−2 . . . = k′ + r for some k′

ϕ(y′) = b′m . . . b
′
1b
′
0.s−1s−2 . . . = j′ + s for some j′

Thus (x′, y′) ∈ [k′ − 1, k′)× [j′ − 1, j′), which is also a unit square. So F does map unit

squares to unit squares, provided that the original unit square is not in the first column. �

In fact, this proof yields an even stronger statement. The translation

∆x = ϕ(x′)− ϕ(x) = (k′ + r)− (k + r) = k′ − k

does not depend on r (and likewise ∆y does no depend on s), so F moves every point within

a unit square identically to the same location within the new unit square. Figure 6 shows

an example in which green points are mapped to blue points.

12

Figure 5. Attractor Region for Q7 out to 73

6. Ending Up in the Attractor Region

Condition 1 of A being an attractor region is that for every (x, y) ∈ Q2
p ∃ N ≥ 0 such

that FN(x, y) ∈ A.

6.1. Moving Left

F only inverts when x ∈ pZp, which is when ϕ(x) < 1. If ϕ(x) ≥ 1, F subtracts, which

is represented graphically by moving to the left. ϕ(y′) could move up or down relative to

ϕ(y), but subtracting from the leftmost digit of x leads to a decrease in the rightmost digit

of ϕ(x), so ϕ(x′) < ϕ(x) for all ϕ(x) ≥ 1.

Recall that Qp = pZp t Z×p t (Qp\ Zp). The first Quadrant (which is the codomain of ϕ)

can therefore be divided easily into nine sections as shown in Figure 7 (the shaded areas are

part of the attractor region).

If F moves ϕ(x, y) leftwards until ϕ(x) < 1, then F n(x, y) must at some point end up

in one of the three leftmost regions: R1, R4, or R7. R1 ⊂ A, so we only need to show that

points in R4 and R7 eventually end up in the attractor region.

13

Figure 6. Squares Map to Squares, Q3 out to 32

p

R1 R2 R3

R4 R5 R6

1

R7 R8 R9

0 1 p

pZp Z×p Qp\ Zp

︸
︷︷
︸ ︸
︷︷
︸

︸
︷︷
︸

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

pZp

Z×p

Qp\ Zp

 .
..

 ...

Figure 7. Division of the First Quadrant

6.2. Moving Right

For R4, x ∈ pZp and y ∈ Z×p . The next point will be

(x′, y′) =

(
1

x
,

1

y

)
∈ (Qp\ Zp)× Z×p = R6.

14

So the next question is how points in R6 are mapped by F . Figure 8 shows an example of

the iteration of F for a point in R6 until F n(x, y) ∈ A.

Figure 8. Iteration for a Point in R6, Q7 out to 72

Theorem 3. Given any (x, y) ∈ R6, F
n(x, y) ∈ R1 for some n > 0.

This will actually be proven by demonstrating an even stronger statement:

Claim. Given (x, y) ∈ R6, not only is FN(x, y) ∈ R1 for some N > 0, but y(n) /∈ Zp for

any n < N . In other words, the image ϕ(F n(x, y)) hits the leftmost column before passing

below the line ϕ(y) = p.

Proof: For (x, y) ∈ R6, |x|p > 1. Because p-adic norms can only be zero or powers of p,

|x|p ≥ p. By Part (i) of Theorem 1, ∆x = ϕ(x′)− ϕ(x) = −|x|p, so ∆x ≤ −p.
By Parts (ii) and (iii), either ∆y = ∆x (moving down) or ∆y < −∆x (moving up). If the

former is true,

ϕ(y′)− ϕ(y) ≤ −p
ϕ(y′) ≤ ϕ(y)− p.

But ϕ(y) < p, so this would mean that ϕ(y′) < 0, which is impossible. Thus ϕ(x, y) must

move up, and it will do so along a line whose slop is less than −1. Therefore, ϕ(x(n), y(n))

15

would have to move back down along a line of slope greater than +1 in order for y(N) to

be less than p for some N . Part (ii) of Theorem 1 states that so long as F operates by

subtraction, ϕ(x(n), y(n)) can only move downwards along a line whose slope is exactly 1, so

ϕ(y(n)) cannot be less than p for any n unless F operates by inversion instead of subtraction.

This would require F n(x, y) to be in R1, R4, or R7, but only R1 can be reached without

ϕ(y(n)) being less than p. So F n(x, y) ∈ R1 for some n. �

6.3. The y = x Exception

We still have to deal with how points in R7 end up in the attractor region. F maps

(x, y) ∈ R7 = (pZp)2 to (x′, y′) ∈ R3 = (Qp\ Zp)2 by inversion. If (x(n), y(n)) ends up in R1

or R4 from there, we already know that FN(x, y) will be in A for some N. So what about if

the points ends up back in R3?

Theorem 4. If F maps (x, y) ∈ R3 7→ (x′, y′) ∈ R7, then either FN(x, y) ∈ R1 ∪ R4 for

some N > 0 or y = x. In other words, (x(n), y(n)) cannot go back and forth between R3 and

R7 indefinitely unless y = x.

Proof: This is proven by showing that for any point (x, y) ∈ R7 for which y 6= x, the

distance between x and y increases as a result of the eventual inversion. This is in fact true

for any normed field, as described generally by the following lemma.

Lemma. Let X be a field and let d : X → R+ be a distance. For x, e ∈ X \ {0} such that

|x| < 1 and |x+ e| < 1, then

d

(
1

x
,

1

x+ e

)
> d(x, x+ e).

Proof of Lemma: First, note that the original distance d(x, y) = d(x, x + e) = |e|. Now

describe the distance of the inverses in terms of the original distance.

d

(
1

x
,

1

x+ e

)
=

∣∣∣∣
1

x
− 1

x+ e

∣∣∣∣

=

∣∣∣∣
x+ e

x(x+ e)
− x

x(x+ e)

∣∣∣∣

=

∣∣∣∣
x+ e− x
x(x+ e)

∣∣∣∣

=
|e|

|x||x+ e|

16

d

(
1

x
,

1

x+ e

)
=
d(x, x+ e)

|x||x+ e|

= α · d(x, x+ e), where α =
1

|x||x+ e|

Since |x| < 1 and |x + e| < 1 by assumption, α must be greater than 1, and d
(

1
x
, 1

x+e

)

must be greater than d(x, x+ e). �

To apply this to our situation, let y = x + e. Since e 6= 0, y 6= x. Also, |x| < 1 and

|x+ e| < 1 means that |x|p < 1 and |y|p < 1, which puts (x, y) in R7. The equation

d

(
1

x
,

1

x+ e

)
> d(x, x+ e) becomes d

(
1

x
,

1

y

)
> d(x, y),

so for any (x, y) ∈ R7 for which x 6= y, F n(x, y) will diverge from y = x, eventually resulting

in FN(x, y) ∈ R1 ∪R4 for some N . �

7. Staying in the Attractor Region

7.1. From the Left to the Bottom

Points in R1, the leftmost column of A, are mapped by F to R9, the bottom strip in A.

R1 = pZp × (Qp\ Zp), so for (x, y) ∈ R1,

(x′, y′) =

(
1

x
,

1

y

)
∈ (Qp\ Zp)× pZp = R9.

7.2. From the Bottom to the Top

Theorem 5. Points in the bottom strip (R9) are mapped by F to bars whose images are

just below pn. Specifically, if y ∈ pZp and ϕ(x) ∈ [pn−1, pn), then ϕ(y′) ∈ [pn − 1, pn) and

ϕ(x′) = ϕ(x)− pn−1.

Figures 9 and 10 show examples of this mapping. In these figures, green points are

connected to their images (blue points) by orange lines. Because each unit square maps to a

unit square (Theorem 2), the connections are shown for just one point in each unit square.

Proof:

If ϕ(x) ∈ [pn−1, pn) = [10 . . . 0︸ ︷︷ ︸
n−1

, 100 . . . 0︸ ︷︷ ︸
n

), then ϕ(x) = an−1 . . . a1a0, an−1 6= 0.

17

Figure 9. Bottom Strip Maps to Top Strips, Q3 out to 33

Let k = ϕ(x)− pn−1 = (an−1 − 1)an−2 . . . a1a0. Let ϕ(y) = 0.b1b2 To find y′,

x = a0.a1. . . an−1

y = . . . b1 0 .

Add . . . q q . q . . . q

y′ = . . . c1 q . q . . . q

So ϕ(y′) = q . . . qq︸ ︷︷ ︸
n

.c1 . . . ∈ [pn − 1, pn).

To find x′,

x = a0.a1. . . an−2 an−1, an−1 6= 0

Subtract 0 . 0 . . . 0 1

x′ = a0.a1. . . an−2 (an−1 − 1)

So ϕ(x′) = (an−1 − 1)an−2 . . . a1a0 = k = ϕ(x)− pn−1. �

7.3. From the Top to the Left

Theorem 6. If (x, y) ∈ A∗, x /∈ pZp, then ϕ(x′) < ϕ(x) and ϕ(y′) < ϕ(y). In other words,

F moves ϕ(x, y) down and to the left.

18

Figure 10. Bottom Strip Maps to Top Strips, Q7 out to 74

Proof: As the proof of Part (ii) of Theorem 1 showed, mapping down and to the left occurs

when ordpx ≤ ordpy. Figure 11 shows several examples of this mapping (green points map

to their connected blue points).

Let k = bϕ(y)c + 1. Because the bars in A∗ don’t start until above ϕ(y) = p, k ≥ p + 1.

Using `(k) as defined on page 8,

p ≤ k − 1 < ϕ(y) < k

1 < ϕ(x) < `(k)

If ϕ(y) = bn . . . b1b0.b−1 . . ., the fact that ϕ(y) ≥ p means that bi 6= 0 for some i > 0. Then

y = . . . b−1b0.b1 . . . bn, and ordpy > 0.

If k 6≡ 0 (mod p), `(k) = k mod p.

1 < ϕ(x) < k mod p < p

ϕ(x) = a0.a−1 . . . , a0 6= 0

x = . . . a−1a0.

ordpx = 0.

19

Figure 11. Down and to the Left, Q3 out to 33

If k ≡ 0 (mod p), then k = cpm for some c > 0 relatively prime to p and some exponent

m ≥ 0. Via its recursive formula,

`(k) = p`(cpm−1) = p2`(cpm−2) = · · · = pm`(c).

This formula holds for all m ≥ 0. Since c is coprime to p, `(c) is c− 1 if c ≤ p or c mod p if

c > p. Either way,

1 < ϕ(x) < `(k) = pm`(c)

ϕ(x) = am . . . a1a0, am < `(c)

x = a0.a1 . . . am

ordpx ≤ 0.

Whether k is divisible by p or not, ordpx ≤ 0 and ordpy > 0, so by Part (ii) of Theorem 1,

∆x = ∆y < 0, which is movement down and to the left. �

20

8. Conclusion and Future Work

This thesis does conclusively prove the existence of an attractor region for the given p-adic

natural extension map. This region is describable in purely p-adic terms, but that description

is motivated by its image under the digit-reversing map ϕ.

There are three apparent areas of the natural extension map F which are not fully explored

in this thesis. The set of all initial points for which F n is eventually undefined for some n

(that is, when x(n−1) = 0) is not fully described here. Page 4 gives one form of x-value for

which x(m) = 0 for some m, but there may or may not be other x-values with this property.

Additionally, the set of all initial points for which the behavior of F is eventually periodic

is not described here, nor is the exact motion of points with periodic orbits.

The digit manipulation techniques used here may be helpful in answering the above ques-

tions. The computer storage, arithmetic, and graphing techniques (the code for which is

partially shown in the Appendix) may have applications for any number of further problems

involving p-adic analysis.

21

References

[1] Svetlana Katok, p-adic Analysis Compared with Real, AMS Student Mathematical Library 37 (2007).

[2] Svetlana Katok and Ilie Ugarcovici, Structure of Attractors for (a, b)-continued Fraction Transformations,

Journal of Modern Dynamics 4 (2010).

[3] Matthew Moore, p-adic Continued Fractions, Undergraduate Research Assistantship, Univ. of Arizona,

May 4, 2006.

22

Appendix

The following Java classes are all written by Adam Zydney for the purpose of experimental data collection
involving p-adic numbers.

A zero value is represented by a PadicZero object. p-adic integers are stored as a finite sequence of digits
in the PadicInteger class. Every other p-adic number is stored using the PadicNumber class as a product
u × pm, where u is a p-adic integer and m is an integer (positive or negative). All three of these classes
extend the base class Padic, which defines some common methods and leaves others as abstract.

All Padic objects also internally store the value of p, and attempts to do arithmetic operations on numbers
with two different values for p will result in a runtime error. Because only a finite number of digits are used
for any number, a Padic object can only perfectly represent a small subset of p-adic numbers.

Note that this appendix does not include various other classes and execution code used in the creation of
this thesis (code to, for example, create a graph with prime power axis markings, draw the attractor region,
plot points, or iterate the natural extension map). While essential to the development of this thesis, such
code would be less useful for others wanting to do computer simulations with p-adic numbers.

public abstract class Padic
{

public abstract Padic plus(Padic other);
public Padic minus(Padic other) { return this.plus(other.negative()); }
public abstract Padic times(Padic other);
public abstract Padic timesPrimeToPower(int m);
public Padic dividedBy(Padic other) { return this.times(other.reciprocal()); }

public abstract Padic negative();
public abstract Padic reciprocal();

public abstract int getOrder();
public abstract int getPrime();
public double getNorm() { return Math.pow(getPrime(), -getOrder()); }

public double distanceTo(Padic other) { return this.minus(other).getNorm(); }
public static double distance(Padic a, Padic b) { return a.distanceTo(b); }

public abstract double flipToReal();

protected abstract PadicUnit asUnit();

// If possible, returns this number as a PadicNumber. For a PadicZero, returns null.
protected abstract PadicNumber asNumber();

protected abstract boolean isZero();

// Returns the digits of this number’s p-adic expansion in String format.
// This string may contain a radix point.
protected abstract String digitString();

// Returns a representation of this number’s p-adic expansion. An attempt is made to
// replacing most of the periodic segment of an expansion with an ellipsis (...).
public String toString()
{

String str = digitString();

23

if (str.charAt(0) == ’.’) return "0" + str;
if (!str.contains(".")) str += ".";

for (int L = 1; L < str.length()/3; L++)
{

// L is period length
String period = str.substring(0, L);
String triple = period + period + period + period + period;
if (str.startsWith(triple))
{

str = str.substring(5*L);
while (str.startsWith(period))

str = str.substring(L);
//int reps = Math.max(2*L, 3);
//return "..." + repeat(period, reps/L) + str;
return "(" + period + ")" + str;

}
}
return str;

}

public static Padic convert(int n, int p) { return build(Integer.toString(n, p), p); }

public static Padic convertRational(int a, int b, int p)
{

Padic numerator = Padic.convert(a, p);
Padic denominator = Padic.convert(b, p);
return numerator.dividedBy(denominator);

}

public static Padic convertFromFlip(int n, int p)
{

String s = Integer.toString(n, p);
s = (new StringBuilder(s)).reverse().toString();
return build(s, p).timesPrimeToPower(1 - s.length());

}

public static Padic convertFromFlipDual(int n, int p) { return null; }

protected static Padic create(char[] digits, int p) { return build(new String(digits), p); }

// Creates a p-adic number from a given finite p-adic expansion. This expansion may contain
// a radix point and may begin with a negative sign.
public static Padic build(String finite, int p)
{

if (finite.charAt(0) == ’-’)
{

Padic x = buildPeriodic("0", finite.substring(1), p);
return x.negative();

}
else

return buildPeriodic("0", finite, p);
}

24

// Creates a p-adic number from a given periodic p-adic expansion. This expansion may contain
// a radix point in the non-repeating section, but not a negative sign. The p-adic number
// returned has the period appended to the right of the finite p-adic expansion as many times
// as allowed by the precision of this data type. Because Padic objects use a finite number
// of digits internally, the resulting number is only an approximation of the true periodic
// p-adic number.
public static Padic buildPeriodic(String period, String finite, int p)
{

if (finite.contains("."))
{

while (finite.charAt(finite.length()-1) == ’0’)
finite = finite.substring(0, finite.length()-1);

int place = finite.indexOf(".");
int k = finite.length() - place - 1;

String f2 = finite.substring(0, place) + finite.substring(place+1);
return new PadicNumber(new PadicUnit(period, f2, p), -k);

}
else
{

finite = period + finite;

int m;
for (m = 0; finite.charAt(finite.length()-1) == ’0’ && finite.length()>1; m++)

finite = finite.substring(0, finite.length()-1);

try {
if (Integer.parseInt(period, p) == 0 && Integer.parseInt(finite, p) == 0)

return new PadicZero(p);
} catch (Exception ex) { }

PadicUnit u = new PadicUnit(period, finite, p);
return (m == 0) ? u : new PadicNumber(u, m);

}
}

protected static String repeat(String s, int n)
{

StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++)

sb.append(s);
return sb.toString();

}

protected static int parseDigit(char digit, int p)
{

int d;
try { d = Integer.parseInt(Character.toString(digit), p); }
catch (NumberFormatException ex) { d = 0; }
return d;

}

25

public static void setUnitPrecision(int length) { PadicUnit.LENGTH = length; }

public static int getUnitPrecision() { return PadicUnit.LENGTH; }

public abstract boolean equals(Padic other);
}

public class PadicZero extends Padic
{

private int prime;

public PadicZero(int p) { prime = p; }

public Padic plus(Padic other) { return other; }
public Padic times(Padic other) { return this; }
public Padic timesPrimeToPower(int m) { return this; }
public Padic negative() { return this; }

public Padic reciprocal() { throw new ArithmeticException("/ by zero"); }

public int getOrder() { return Integer.MAX_VALUE; }

public int getPrime() { return prime; }

public double flipToReal() { return 0; }

protected PadicUnit asUnit() { return null; }

protected PadicNumber asNumber() { return null; }

protected boolean isZero() { return true; }

protected String digitString() { return "0"; }

public String toString() { return "0"; }

public boolean equals(Padic other) { return other.isZero(); }
}

public class PadicUnit extends Padic
{

protected char[] digits;
protected int prime;

protected static int LENGTH = 300;

protected PadicUnit(char ch, int p) { this(Character.toString(ch), p); }

public PadicUnit(char[] ds, int p) { digits = ds; prime = p; }

protected PadicUnit(int value, int p) { this("0", Integer.toString(value, p), p); }

protected PadicUnit(String finite, int p) { this("0", finite, p); }

26

protected PadicUnit(String period, String finite, int p)
{

prime = p;
digits = new char[LENGTH];
int index = LENGTH - 1;
for (int i = finite.length()-1; i >= 0 && index >= 0; index--)

digits[index] = finite.charAt(i--);
for (int i = period.length()-1; index >= 0; index--)
{

digits[index] = period.charAt(i);
if (i == 0)

i = period.length()-1;
else

i--;
}

}

public Padic plus(Padic other)
{

if (other.isZero())
return this;

if (other.asUnit() == null)
return other.asNumber().plus(this);

// Now adding two p-adic units. The result may or may not be a p-adic unit.

char[] sum = addByDigits(this.digits, other.asUnit().digits, prime);
return Padic.create(sum, prime);

}

protected static char[] addByDigits(char[] adigits, char[] bdigits, int p)
{

char[] sum = new char[LENGTH];
char carry = ’0’;
for (int i = LENGTH-1; i >= 0; i--)
{

String s = addDigits(adigits[i], bdigits[i], carry, p);
carry = s.charAt(0);
sum[i] = s.charAt(1);

}
return sum;

}

private static String addDigits(char d1, char d2, char d3, int p)
{

int a = Padic.parseDigit(d1, p);
int b = Padic.parseDigit(d2, p);
int c = Padic.parseDigit(d3, p);
String sum = Integer.toString(a+b+c, p);
return (sum.length() == 1) ? "0" + sum : sum;

}

27

public Padic times(Padic other)
{

if (other.isZero())
return other;

PadicUnit u = other.asUnit();
if (u != null)

return timesUnit(u);
else

return asNumber().timesNumber(other.asNumber());
}

protected PadicUnit timesUnit(PadicUnit other)
{

Padic temp = new PadicZero(prime);
for (int i = 0; i < LENGTH; i++)
{

char digit = other.digits[LENGTH-1 - i];
Padic partialProduct = this.timesDigit(digit);
temp = temp.plus(partialProduct.timesPrimeToPower(i));

}
return temp.asUnit();

}

private Padic timesDigit(char digit)
{

if (digit == ’0’) return new PadicZero(prime);
if (digit == ’1’) return this;

char[] sum = new char[LENGTH];
char[] carry = new char[LENGTH];
int d = Padic.parseDigit(digit, prime);

for (int i = LENGTH - 1; i >= 0; i--)
{

int a = Integer.parseInt(Character.toString(digits[i]), prime);
int s = (d*a) % prime;
int c = (d*a)/prime;
sum[i] = Integer.toString(s, prime).charAt(0);
carry[i] = Integer.toString(c, prime).charAt(0);

}

Padic s = Padic.create(sum, prime);
Padic c = Padic.create(carry, prime).timesPrimeToPower(1);
return s.plus(c);

}

public Padic timesPrimeToPower(int m) { return new PadicNumber(this, m); }

public Padic negative()
{

char[] flipped = new char[LENGTH];

28

for (int i = 0; i < LENGTH; i++)
{

String ch = Character.toString(digits[i]);
int f = (prime-1) - Integer.parseInt(ch, prime);
flipped[i] = Integer.toString(f, prime).charAt(0);

}
PadicUnit u = new PadicUnit(flipped, prime);
return u.plus(new PadicUnit("1", prime));

}

public Padic reciprocal()
{

char[] rec = new char[LENGTH];

char a = digits[LENGTH - 1];
Padic d = new PadicUnit(’1’, prime);

for (int i = 0; i < LENGTH;)
{

char c = modularSolve(a, d.asUnit());
PadicUnit cx = this.timesUnit(new PadicUnit(c, prime));
d = d.minus(cx);
rec[LENGTH-1 - i] = c;

if (d.isZero())
{

for(int j = 0; j < LENGTH-2-i; j++)
rec[j] = ’0’;

break;
}

int m = d.getOrder();
d = d.asNumber().unit;
for (int j = i+1; j < i+m && j < LENGTH; j++)

rec[LENGTH-1 - j] = ’0’;
i += m;

}

char[] recFixed = ATTEMPT_FIX(rec, prime);
return new PadicUnit(recFixed, prime);

}

private static char[] ATTEMPT_FIX(char[] rec, int p)
{

int cut = 10;
int reps = 4;
String str = (new String(rec)).substring(cut);

for (int L = cut/reps+1; L < str.length()/reps; L++)
{

// L is period length
String period = str.substring(0, L);
String repeated = repeat(period, reps);

29

if (str.startsWith(repeated))
{

String fix = repeated.substring(repeated.length() - cut);
return (fix + str).toCharArray();

}
}
return rec;

}

private static char modularSolve(char a, PadicUnit b)
{ return modularSolve(a, b.digits[LENGTH-1], b.getPrime()); }

// Solves a*c = b (mod p) for c.
private static char modularSolve(char a, char b, int p)
{

int a0 = Integer.parseInt(Character.toString(a), p);
int bi = Integer.parseInt(Character.toString(b), p) % p;
for (int c = 0; c < p; c++)

if (a0*c % p == bi)
return Integer.toString(c, p).charAt(0);

throw new ArithmeticException("Unsolvable modular equation: " + a +
" * c = " + b + " (mod " + p +") for c");

}

public int getOrder() { return 0; }
public int getPrime() { return prime; }

public double flipToReal()
{

double r = 0;
for (int i = 0; i < LENGTH; i++)
{

char digit = digits[LENGTH-1 - i];
int d = 0;
try { d = Integer.parseInt(Character.toString(digit), prime); }
catch (Exception ex) { }
r += d*Math.pow(prime, -i);

}
return r;

}

protected PadicUnit asUnit() { return this; }
protected PadicNumber asNumber() { return new PadicNumber(this, 0); }
protected boolean isZero() { return false; }

// Returns u * p^L + v
protected static PadicUnit sumToUnit(PadicUnit u, int L, PadicUnit v)
{

String upL = (new String(u.digits)) + repeat("0", L);
upL = upL.substring(upL.length() - LENGTH);
char[] sum = addByDigits(upL.toCharArray(), v.digits, u.prime);
return new PadicUnit(sum, u.prime);

}

30

protected String digitString()
{

String str = new String(digits);
while (str.charAt(0) == ’0’)

str = str.substring(1);
return str;

}

public boolean equals(Padic other)
{

PadicUnit u = other.asUnit();
return u != null && u.digits == digits;

}
}

public class PadicNumber extends Padic
{

protected PadicUnit unit;
protected int order;

public PadicNumber(PadicUnit u, int m) { unit = u; order = m; }

public Padic plus(Padic other)
{ return other.isZero() ? this : this.plusNumber(other.asNumber()); }

public Padic plusNumber(PadicNumber other)
{

int m = getOrder(), n = other.getOrder();

if (m < n)
return other.plus(this);

else if (m == n)
{

Padic s = unit.plus(other.unit);
if (s.isZero())

return s;
PadicNumber t = s.asNumber();
// s = x+y = w * p^k
if (t.getOrder() == -m)

return t.unit;
else

return new PadicNumber(t.unit, t.getOrder()+m);
}
else
{

// u = unit * p^(m-n) + other.unit
PadicUnit u = PadicUnit.sumToUnit(unit, m-n, other.unit);
return new PadicNumber(u.asUnit(), n);

}
}

public Padic times(Padic other)
{ return other.isZero() ? other : this.timesNumber(other.asNumber()); }

31

public Padic timesNumber(PadicNumber other)
{

PadicUnit u = this.unit.timesUnit(other.unit);
int m = this.getOrder() + other.getOrder();
return (m == 0) ? u : new PadicNumber(u, m);

}

public Padic timesPrimeToPower(int m)
{ return order+m == 0 ? unit : new PadicNumber(unit, order+m); }

public Padic negative()
{ return new PadicNumber(unit.negative().asUnit(), order); }

public Padic reciprocal()
{ return new PadicNumber(unit.reciprocal().asUnit(), -order); }

public int getOrder() { return order; }

public int getPrime() { return unit.getPrime(); }

public double flipToReal()
{ return unit.flipToReal() * Math.pow(unit.getPrime(), -order); }

protected PadicUnit asUnit() { return (order == 0) ? unit : null; }

protected PadicNumber asNumber() { return this; }

protected boolean isZero() { return false; }

protected String digitString()
{

String str = unit.digitString();

if (order == 0)
return str;

else if (order > 0)
return str + repeat("0", order);

else
{

int n = -order;
if (n < str.length())
{

String iPart = str.substring(0, str.length() - n);
String dPart = str.substring(str.length() - n);
return iPart + "." + dPart;

}
else
{

int extraZeros = n - str.length(); // order is negative
return "." + repeat("0", extraZeros) + str;

}
}

}

32

public boolean equals(Padic other)
{

PadicNumber n = other.asNumber();
return n != null && order == n.order && unit.equals(n.unit);

}
}

As a small example of how this code can be used, the following lines print out the first 9 iterations of F
starting with the initial 5-adic point (. . . 4440, 0.1).

int prime = 5;
Padic x = Padic.convert(-prime, prime); // -p = -10 base p = ...qqq0.
Padic y = Padic.build("0.1", prime);

for (int i = 0; i < 2*prime; i++)
{

System.out.println("F^" + i + "(x, y) = (" + x + ", " + y + ")");

Padic[] pt = F(x, y); // The static method F(Padic x, Padic y) is defined elsewhere.
x = pt[0]; y = pt[1];

}

The output of this code shown below (with spacing altered to align radix points) gives an example of a
periodic orbit: F 9(x, y) = (x, y).

F^0(x, y) = ((4)0., 0.1)
F^1(x, y) = ((4).4, 10.)
F^2(x, y) = ((4).3, 4.4)
F^3(x, y) = ((4).2, 4.3)
F^4(x, y) = ((4).1, 4.2)
F^5(x, y) = ((4)., 4.1)
F^6(x, y) = ((4)3., 3.1)
F^7(x, y) = ((4)2., 2.1)
F^8(x, y) = ((4)1., 1.1)
F^9(x, y) = ((4)0., 0.1)

33

Academic Vita

Adam Zydney

adam.zydney@gmail.com

Education
Pennsylvania State University, May 2011.
Bachelor of Science in Mathematics,

General Option, Computer Science Application
Thesis Title: Structure of Attractor Region for Natural Extension

Map Associated with p-adic Continued Fractions
Thesis Supervisor: Svetlana Katok

Experience State College Area School District
Elementary Math Curriculum Selection Committee.
Member, Summer 2010 – Fall 2010.

John Hopkins Center for Talented Youth.
Teaching Assistant, Cryptology, Summer 2010.

Pennsylvania State University.
Grader, Honors Discrete Math, Honors Real Analysis, Fall 2009 – Fall 2010.

Mathematics Advanced Study Semester (MASS) Program.
Fellow, Fall 2009.

Penn State Dance Marathon.
Lead Database Developer, 2009 – 2011.

Penn State Mathematics Research Experience for Undergraduates.
Researcher, Summer 2009.

Penn State Student Support Services Program.
Tutor, Fall 2008.

Penn State Quiz Bowl Student Organization.
Founder and President, 2008 – 2011.

State College Area High School.
Co-author, Editor, Vector Calculus Textbook, Summer 2007.

Awards Diamond of Wisdom Award, 2011
Outstanding MASS Research Projects, 2009
Dean’s List, all semesters
Schreyer Honors College Scholar

Skills LATEX, Mathematica, MATLAB, PHP, MySQL,
HTML, Java, JavaScript, CSS, C++

	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Introduction to p-adic Numbers
	Norm and Distance
	p-adic Expansions
	p-adic Integers and Units
	Arithmetic of p-adic Numbers

	The Natural Extension Map
	Motivation From Continued Fractions
	Terminating Cases

	Graphing p-adic Numbers
	Multiple Expansions
	Graphical Interpretation of F

	Describing the Attractor Region
	Using Real Image
	Using p-adic Expansions

	Unit Squares
	Ending Up in the Attractor Region
	Moving Left
	Moving Right
	The y = x Exception

	Staying in the Attractor Region
	From the Left to the Bottom
	From the Bottom to the Top
	From the Top to the Left

	Conclusion and Future Work
	References
	Appendix

