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Abstract 

The ever-growing field of non-invasive diagnostic technologies is continually 

providing new insights into in vivo biological processes, requiring joint efforts among 

researchers in medicine, science, and engineering.  One of these emerging technologies, 

Magnetic Resonance Elastography (MRE), uses an imaging technique to measure the 

elasticity of biological tissues subject to mechanical stresses.  The resulting strains are 

measured using Magnetic Resonance Imaging (MRI) and the related elastic modulus is 

computed from models of tissues mechanics.  The elastic modulus contains important 

information about the pathology of the imaged tissues.  For example, fibrotic tissue in the 

liver is much less elastic than healthy tissue, and malignant tumors are more elastic than 

benign tumors.  Thus, MRE can help in tumor detection, determination of characteristics 

of disease, and in assessment of rehabilitation.  The biomechanical models used so far in 

MRE are classic macroscopic models which do not incorporate any relevant information 

about the electro-chemical processes that take place in the microstructure of the tissue.  A 

novel multiscale model is presented that may differentiate not only between healthy and 

diseased tissues but also between benign and malignant tumors.  The tissue is modeled as 

a triphasic material of porous, viscoelastic solid filled with interstitial fluid and dissolved 

ions.  A recently-developed homogenization technique for materials with evolving 

microstructure was used to approximate a periodic microscopic structure. 

Keywords: computational modeling, tri-phasic model, cancer, brain tissue, magnetic 

resonance elastography, non-invasive diagnostic procedures 
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Chapter 1. Introduction 

The ever-growing field of non-invasive diagnostic technologies is continually 

providing new insights into in vivo biological processes, requiring joint efforts among 

researchers in medicine, science, and engineering.  One of these emerging technologies, 

Magnetic Resonance Elastography (MRE), uses an imaging technique to measure the 

elasticity of biological tissues subject to mechanical stresses.
11, 12

 The resulting strains are 

measured using magnetic resonance imaging and the related elastic modulus is computed 

from models of tissues mechanics. The elastic modulus contains important information 

about the pathology of the imaged tissues. Thus, MRE can help in tumor detection, 

determination of characteristics of disease, and in assessment of rehabilitation. 

Figure 1.1 demonstrates the difference between 

two current diagnostic technologies and MRE, which are 

all images of the same sample of prostate tissue with a 

malignant tumor.  The first image (a) is a standard 

pathology sample, while the second image (b) is a 

Magnetic Resonance image (MRI), and both require a 

highly trained professional to accurately interpret the 

results.  The third image (c) is an MR elastogram, which 

clearly demonstrates the location of the tumor, matching 

the conclusions drawn from the pathology sample.  The 

dark hole in the last two images results from the 

placement of the actuator, which creates the waves 

propagating through the tissue needed for MRE.  If MRE 

were used to measure tissue within a living person 

instead of an in vitro tissue sample, the actuator would 

not be inserted into the person though.  For example, if 

Figure 1.1: Three images of the same malignant tumor in a prostate tissue sample, shown by 

a) the black outline in a pathology sample, b) MR image, and c) the yellow-red 

areas in the MR elastogram (MRE Lab, Mayo Clinic) 

Figure 1.2: Method for creating 

an elastogram of the brain9 
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MRE were to be used to characterize a person’s brain tissue, the actuator would most 

likely be held between the teeth of the patient, as shown in Figure 1.2(b).  Another 

possible location of an actuator is shown in Figure 1.2(a)  but has been demonstrated to 

be inviable due to disconfort to the patient. 

It was noticed experimentally that most biological tissues have incompressible 

viscoelastic features: they have a certain amount of rigidity that is characteristic of solid 

bodies, but, at the same time, they flow and dissipate energy by frictional losses as 

viscous fluids do.
4, 6

 The incompressibility assumption for soft tissues is based on the fact 

that most tissues are made primarily of water. In addition, since the displacements in 

MRE are very small (on the order of microns), a linear constitutive law is usually 

assumed. However, despite the richness of the data set, the variety of processing 

techniques and the simplifications made in the biomechanical model, it remains a 

challenge to extract accurate results at high resolution in complex, heterogeneous tissues 

from the intrinsically noisy data. Therefore, any improvement in the MRE data 

processing with the help of biomechanics and computational methods will be of 

significant importance to modern medicine.  

The aim of this thesis is to formulate a new mathematical model that will be able 

to differentiate not only between normal and abnormal tissues, but, more importantly, 

between benign (not cancerous) and malignant (cancerous) tumors. As will be discussed 

in Section 2.5, benign tumors are localized, self-contained (encapsulated), with smooth 

boundaries, and tend to be more isotropic. On the other hand, malignant tumors are not 

localized, diffuse, have irregular boundaries, and are anisotropic. In a recent study by 

Drapaca and Palocaren
3
, MRE data demonstrated a difference in stiffness between a 

high-grade and low-grade glioma: the high-grade glioma was characterized by a much 

higher stiffness than the low-grade glioma, which in turn was much stiffer than healthy 

Figure 1.3: MR elastograms comparing a) a high-grade and b) a low-grade glioma. Note that 

the scale in (a) is from 0-40kPa and in (b) from 0-30kPa. The highest stiffness in 

the healthy tissue is approximately 12 kPa.3 
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tissue (Figure 1.3). This supports the possibility of using MRE data for both non-invasive 

detection and characterization of tumors.  

The biomechanical models used so far in MRE are classic macroscopic models 

that do not incorporate any relevant information about the biochemical and mechanical 

processes that take place in tissue’s microstructure and thus fail to properly classify 

tissues according to their pathology. This thesis involved designing a novel multiscale 

model that has the potential to differentiate not only between healthy and diseased tissues 

but also between benign and malignant tumors. The tissue is modeled as a triphasic 

material of porous, viscoelastic solid filled with interstitial fluid and dissolved ions.
7,17

 A 

recently-developed homogenization technique for materials with evolving microstructure 

was used in the model,
13,14,15

 and the model was implemented for a simple case. 

The thesis is structured as follows. In chapter 2 we present a brief review of the 

literature, covering concepts of continuum mechanics, constitutive theory, 

thermodynamics, multiscaling, and biology. In chapter 3 we introduce our model and 

preliminary results are presented in chapter 4. The thesis ends with a chapter of 

conclusions and future work. 



4 
 

Chapter 2. Review of Literature 

2.1 Definitions 

 Before describing the concepts and equations involved in the triphasic model, 

certain terms need to be defined.  Stress (σ) refers to the magnitude of an applied force 

per unit area.  Strain (ε) is the degree of deformation of an object relative to its original 

configuration.  Deformation is the transformation of an object from a reference 

configuration into a new one, whether by a lengthening, a shortening, or a more 

complicated changing of its shape.  A deformation gradient (   
   

   
 , where    and 

   are components of the position vector of a point in the deformed and reference 

configurations, respectively) in an object describes the change in shape throughout the 

body of the object when subject to deformation.  The Jacobian of deformation (  

    
   

    ) refers to the volume change associated with deformation of the object.  If the 

object under consideration is incompressible, no volume change can occur, and the 

Jacobian of deformation equals one.  A continuous medium is a material which can be 

described by continuous functions, because it completely fills the region it occupies 

without gaps.  When solving problems related to continuous media, the mathematical 

framework called continuum mechanics is applied.  In continuum mechanics, from a 

given deformation of an object, equations of kinematics can be applied to find the strain, 

from which the stress can be calculated through constitutive equations, and finally, 

information about the external loading can be obtained from the stress through the 

equations of motion.  This thesis was concerned with defining constitutive relationships 

between the stress and strain for brain tissue.  Because this model incorporates fluid, 

solid, and ion phases, ion transport needed to be studied, in addition to the mechanical 

relationship between the fluid and solid.  One of the key terms associated with ion 

transport is the electrochemical potential (   ), which describes the effects of electric 

fields and ion concentration on the motion of that particular ion species.  

2.2 Kinematics in Continuum Mechanics 

 The first topic that must be discussed to properly explain the model under study is 

kinematics, the study of the motion of objects and systems.  Through kinematics, the 

deformation of a material can be described as strain.  When designing this model for 

biological tissue, it was necessary to understand deformation in order to be able to relate 

deformation at the microscopic level to deformation at the macroscopic level.  The 

relationship between microscopic structures and macroscopic behavior will be discussed 

in more detail in later sections.  The main concepts in kinematics that need to be 

understood are the Axiom of Continuity, Law of Motion, and the Laws of Conservation. 
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2.2.1 Axiom of Continuity 

 The axiom of continuity (also known as the Archimedean axiom) formally defines 

continuity, which is important in considering continuous materials such as biological 

tissue.  The definition is as follows: given two points A and B on a straight line, there 

exists a point A1 between A and B.  On the line AB, there also exist a finite number of 

points A2, A3, … An, where A2 lies between points A1 and A3,  A3 lies between points A2 

and A4, and so on.  The line segments AA1, A1A2, … An-1An are all of equal length.  

Therefore, there must exist a point An in the series of points A1, A2, … An where point B 

lies between point A and point An.
8
  The axiom of continuity gives rise to two important 

concepts: impenetrability and indestructibility of matter.  The theory of the 

impenetrability of matter states that one section of matter can never penetrate into 

another.
2
  Consequently, in relation to deformation, two different points P1 and P2 located 

in a continuous material in its reference configuration cannot occupy the same point P3 in 

a deformed configuration of the material.  According to the theory of the indestructibility 

of matter, a region of finite volume cannot be deformed into a region either without 

volume or of infinite volume.
2
  However, the axiom of continuity is not valid for 

multiphase materials, such as biological tissues.  

2.2.2 Law of Motion 

The second main concept to consider in kinematics is the Law of Motion.  

Consider a continuous medium that undergoes a deformation.  It occupies the open, 

bounded, and connected region Ω in its reference configuration at time t = 0 and a 

different open, bounded, and connected region Ωt in its deformed configuration at some 

time t > 0.  If there is a point P in the continuous medium, then let its position vector in 

the reference configuration be               at t = 0, and let its position vector in the 

deformed configuration be               at t >0.  According to the law of motion, the 

deformed position vector    must be a function of the reference position vector and time, 

i.e.        
          ,   t > 0.

2
  Each component of the deformed position vector is a 

function of time and all components of the reference position vector. 

2.2.3 Laws of Conservation 

 According to the laws of conservation, there are four physical properties that must 

be conserved during the deformation of a continuous material: mass, linear momentum, 

angular momentum, and energy.  The rate of change of one of these physical properties φ 

in a specific volume Ωt over time must equal the internal source of φ plus the flux of φ 

through the boundaries of Ωt.  There are two ways of writing this mathematically.  

Conservation can be considered at a global level, which is the “weak” form of the law of 

conservation, through the equation: 
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 where  Ω  refers to the region’s boundary,     and     are differential elements 

of volume and area in the deformed configuration,    is the flux,     is the unit outer normal 

to the region boundary, and      is the internal source of the physical property  .  This 

form is considered “weak” because it is written in integral form.  At the local level, the 

differentiability of φ can be assumed, and the equation can therefore be written in its 

“strong” form: 

 
  

  
              (2.2.2) 

  where the material is in the Ωt or deformed configuration.  From this 

equation come the local forms of the conservation laws.  Assuming there are no internal 

sources of mass, the law of conservation of mass becomes the equation of continuity in 

global and local forms, 
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           (2.2.4) 

 where   is the density in the deformed configuration.  In the reference 

configuration,      , where   is the Jacobian of deformation. 

 The law of conservation of linear momentum, which is in fact Newton’s second 

law of motion for a continuum, becomes the equation of motion in its global and local 

forms: 
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Ω 
       

 

 Ω 
 (2.2.5) 

 where        
 

Ω 
 accounts for the body forces on the material and    is the stress 

vector resulting from external surface forces, and, respectively: 

 
 

  
              (2.2.6) 

 where   is the Cauchy stress tensor, defined by Cauchy’s Theorem.  Cauchy’s 

Theorem states that the stress vector    acting on one side of a surface element is equal 

and opposite to the stress tensor acting on the other side of that surface element.
2
  The 

Cauchy stress tensor is defined as                        .  Equation (2.2.6) is known as the 

Cauchy equation of motion.
2 
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The law of conservation of energy states that the rate of change of energy over 

time equals the sum of the work done by body forces and surface forces, minus the 

energy lost through heat flux. For example, in global form, the total energy equation is: 

 
 

  
    

 

 
        

 

Ω 
           

 

Ω 
               

 

 Ω 
           

 

Ω 
 (2.2.7) 

 where   is the energy density,     is the differential surface element in the 

deformed configuration, and     is the heat flux vector.  

2.3 Constitutive Theory 

 Standard equations of state have been established for general groups of materials, 

such as Hooke’s Law for linear elastic materials. There are two types of constitutive 

laws: 1) microstructural and 2) phenomenological equations.  Microstructural or 

rheological equations were derived from principles of physics and the individual 

measurements of the material’s microstructural components. The equations were then 

derived based on the theoretical interactions between the microstructural components and 

multi-scaling techniques used to derive a macroscopic model.
2
 One example of this type 

is Fick’s law of diffusion.  Phenomenological equations were derived from fitting stress-

strain curves to experimental data and taking the microstructure of the material into 

account.
2
 An example of this type is Darcy’s law. 

2.3.1 Linear Elastic Materials 

 One of the most basic constitutive models for a material is Hooke’s Law for linear 

elastic materials.  This law relates stress and strain by 

              (2.3.1) 

 where     is the linearized Cauchy stress tensor,     is the infinitesimal strain 

tensor, and       is a tensor of elastic moduli independent of stress and strain.
1,2

  If this 

linear elastic solid is also isotropic and homogeneous, then equation (2.3.1) becomes: 

                   (2.3.2) 

 where λ and μ are the independent Lamé coefficients dependent on the properties 

of the material.
1,2

  They are related to Young’s modulus (E) and Poisson’s ratio (ν) by the 

following equations: 

 
 

      
   (2.3.3) 

 
 

       
       (2.3.4) 
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 Young’s modulus is associated with the stiffness of a material and is the ratio 

between the uniaxial stress on a material and the degree of its axial deformation 

(Greenleaf).
1
  Poisson’s ratio describes the relationship between the lengthening of a 

material and the narrowing of its width under stress.  Mathematically, Poisson’s ratio is 

the ratio between the transverse strain and the axial strain.  The Lamé coefficient μ is also 

called the shear modulus of the material, which is the ratio between transverse strain and 

transverse stress (Greenleaf).
2
  It denotes the material’s resistance to shear stress.

1 

2.3.2 Hyperelastic Solids 

 The second basic constitutive law is the Mooney-Rivlin law for non-linear elastic 

or hyperelastic solids.  It describes the dependence of the stress tensor on the material’s 

deformation gradient   with the equation 

    
     

  
   (2.3.5) 

 where    
   

     is the Jacobian of deformation and   is the internal density 

function defining the material’s internal energy as     
 

  
.
2
     is the domain of the 

deformed configuration of the material. 

2.3.3 Non-Newtonian Fluids 

 The third constitutive equation deals with fluids instead of solids: the Reiner-

Rivlin constitutive equation for an isotropic non-Newtonian fluid.  The general form 

follows the equation 

             (2.3.6) 

 where    
    

    
           

 is the velocity gradient tensor and   is the fluid mass 

density.
2
 Because the stress tensor   is a linear function, it can be written as a polynomial 

using the Taylor series expansion. 

2.3.4 Viscoelastic Materials 

 Viscoelastic materials are those which have characteristics normally associated 

with solids as well as those normally associated with liquids.  Because of their hybrid 

nature, the wide variety of viscoelastic materials fills the spectrum between solids and 

fluids.  They are the class of material most relevant to biological tissues.  Four of the 

most basic models for viscoelastic materials are discussed in this section: (1) the Maxwell 

model, (2) the Kelvin-Voigt model, (3) the standard linear model, and (4) the quasi-

viscoelastic constitutive model. 
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 The first three models mentioned before are microstructural or rheological 

models, based on theoretical arrangements of linear springs and non-linear dashpots.  The 

Maxwell model is based on a perfectly elastic spring and a perfectly viscous dashpot in 

series (Fig. 2.3.1). 

 

 If a sudden force F0 were applied and held, the spring would lengthen instantly 

according to the simplified version of Hooke’s Law in 1D: 

 F0 = kx (2.3.7) 

 where k is the spring constant and x is the change in length of the spring.  The 

dashpot, being a perfectly viscous damping element, would linearly increase its length 

over time, according to the Newtonian case of the Reiner-Rivlin constitutive equation in 

1D: 

 F0 = μ   (2.3.8) 

 where μ is the viscosity and    is the rate of change in length of the dashpot over 

time.
1,2

  A Maxwell material therefore undergoes the process of creep under a constant 

force.  If the force were released, the spring would return to its original length, but the 

dashpot would not.  Therefore, after a force were applied and released, the system’s final 

length would be between its original length and the length reached under the applied 

force.  Continued deformation after an applied stress is released is characteristic of a 

fluid.  Maxwell materials are therefore considered more fluid than solid.  

 If the Maxwell model were exposed to a sudden, constant deformation instead of 

a constant force, the viscous element would slowly relieve the stress on the elastic 

element.  This process is called stress relaxation.
2 

 The Kelvin-Voigt model describes materials who behave similarly to a perfectly 

elastic spring and a perfectly viscous dashpot in series (Fig. 2.3.2). 

 

 

 Because the dashpot and the spring are in series, if a sudden force were applied, 

the spring would not be able to immediately stretch to the full displacement described by 

equation 10.  The displacement of the spring must equal the displacement of the dashpot.  

Figure 2.3.1: Maxwell model of a viscoelastic material 

Figure 2.3.2: Kelvin-Voigt model of a viscoelastic material 
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As the dashpot lengthens, the displacement of the system approaches the spring’s full 

displacement.  After that has been reached, the spring prevents the system from 

lengthening further.
1,2

  When the force is released, the system returns to its original length 

over a period of time dependent on the dashpot’s viscosity.  Returning to the original 

configuration after an applied stress is released is a characteristic of a solid, which means 

that Kelvin-Voigt materials are considered more solid than fluid.
2 

 The standard linear model is a combination of the Maxwell and the Kelvin-Voigt 

models (Fig. 2.3.3).  

 

This type of viscoelastic material acts like a solid at the instant a force is applied, as in 

the Maxwell model, and like a solid, it reaches a maximum displacement, as in the 

Kelvin-Voigt model.  In between those times, it acts more like a liquid due to the viscous 

element’s influence.
1 

 The fourth model for viscoelastic materials is a phenomenological model, 

representing viscoelastic behavior through integral representation.
2
  The quasi-linear 

viscoelastic constitutive model proposed by Fung is based on Hooke’s Law for elastic 

materials, where: 

           . (2.3.9) 

 The elastic stress rate       is therefore related to the elastic strain rate       by: 

             . (2.3.10) 

 For linear viscoelastic materials, the viscoelastic stress is proportional to the 

viscoelastic strain rate, not the strain itself.  According to Fung’s model: 

                 (2.3.11) 

 where   is the convolution operator, such that: 

                   
 

 
        (2.3.12) 

 and          represents the fluid characteristics of the viscoelastic material and 

      represents the solid characteristics.  Because       is not time-dependent, it can be 

approximated as the elastic strain rate: 

Figure 2.3.3: Standard linear model of a viscoelastic material 
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                (2.3.13) 

 which is why this model is called quasi-linear.  Combining equations (2.3.10) and 

(2.3.13), equation (2.3.13) becomes: 

               (2.3.14) 

 so that it is completely dependent on the material’s stress and stress rate.
2
    is the 

result of combining the terms    and   from equations (2.3.10) and (2.3.13), respectively. 

2.3.5 Rules for Constitutive Equations 

From a mathematical point of view, when determining the constitutive equations 

for a material, the following general principles must be adhered to: (1) coordinate 

invariance, (2) the principles of determinism and local action, (3) equipresence, and (4) 

material frame indifference.  If not, the resulting equations would not be dependent on the 

inherent characteristics of the material of interest and could not therefore be termed 

“constitutive.” 

A coordinate system which is used to describe an object does not affect that 

object’s motion or deformation in any way.  Therefore, constitutive equations modeling 

the object’s behavior must also not depend on the coordinate system
19

.  This is the 

principle of coordinate invariance.  Tensors, which are linear functions of vectors, are 

geometrically invariant, which means they are unaffected by changes in coordinate 

systems.
2
 This makes tensor form ideal for constitutive equations 

19
. 

 For a viscoelastic material such as tissue, the principle of determinism states that 

deformation results in energy loss specific to the path taken from the old to the new 

configuration
19

.  This path dependence means that every deformation of a body affects 

the stress state within the body, both during the deformation and after it has occurred.  

This property is known as the “memory” of the material.
2
 However, for a given point    in 

a body, only the deformation history of an arbitrarily small neighborhood of    affects the 

stress at   , according to the principle of local action.  Therefore, the stress present at a 

point    in a body at time t > 0 is dependent not only on the instantaneous deformation 

and temperature, but also on the deformation history of the arbitrarily small 

neighborhood around it 
19

.  This principle takes the form of the equation: 

                     (2.3.15) 

 where   is the stress tensor,   is the constitutive operator,    is the position vector 

in the Eulerian coordinate system,    is the position vector in the Lagrangian coordinate 

system, and     is the material “memory” of deformation.
2 
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 According to the principle of equipresence, for a given material, each independent 

variable which is taken into account must be incorporated into every constitutive equation 

for that material, as long as the other constitutive principles are upheld 
19

. 

 The last principle of material frame indifference states that any motion of an 

observer with respect to a point    in a body does not affect any motion or deformation 

occurring at   .  Therefore, the constitutive equations for a body must be independent of 

the observer’s frame of reference, or “frame-indifferent”
19

.  

Certain assumptions need to be made when considering constitutional models, so 

that the associated equations are more easily solved.  The first is to assume that a given 

material is a simple one.  Within an arbitrarily small neighborhood of a given point    in a 

simple material, only the effects of the independent variables and their first derivatives 

are significant enough to be considered
19.

  This gives a constitutive equation of the form: 

                           (2.3.16) 

where                             is F’s material history until time = t.
2 

A second assumption is that the material under consideration is homogeneous.
2
 

For biological materials, this is rarely true, but with careful application of multiscaling, a 

homogeneous approximation of tissue could be calculated. For a homogeneous material, 

the constitutive equation becomes
2
: 

                    (2.3.17) 

Another common assumption is that a material is non-aging which means that 

changes at microscopic level can be neglected, but for obvious reasons, this assumption 

cannot be applied to biological tissue. Thus a constitutive equation of the form: 

                        (2.3.18) 

 is usually employed for an aging, simple material.
2 

 A third simplifying assumption that cannot be directly applied to a biological 

material is that it is isotropic. The properties of an isotropic material are the same in all 

directions. For example, if there is a sphere of isotropic material, its response to an 

applied normal force would not change because of the direction of the applied force. An 

anisotropic material does not respond equally to applied forces of equal magnitude in any 

direction. One example of this type of material is graphite, which has strong bonds within 

each layer of carbon and much weaker bonds holding the layers together. 

 A last set of assumptions that can be applied are simplifying constraints on the 

internal material properties, such as inextensibility, rigidity, and incompressibility.
2
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Inextensibility and rigidity do not apply to soft biological tissues, which are viscoelastic 

and can therefore be deformed under stress.  The liquid phase of tissue is primarily water, 

however, which can be assumed to be incompressible. 

2.4 Thermodynamics 

 The primary application of thermodynamics to this model relates to equilibrium 

thermodynamics and the transport processes.  The transport of ions across cell 

membranes is very important to cell function and can be affected by pathological 

conditions, such as cancer.  The main driving force behind transport across membranes is 

the electrochemical gradient. 

2.4.1 Chemical and Electrochemical Potentials 

 The electrochemical potential is dependent on the composition of the solution 

under study, the pressure, and the temperature.
5
 The equation for electrochemical 

potential can be defined as: 

                        
  (2.4.1) 

 where     is the electrochemical potential of the ith species of ionic solute.  In the 

first term,     is the partial molar volume of the ith species, and   is the pressure.  In the 

second term,   is the universal gas constant,   is the absolute temperature, and    is the 

concentration of the ith species.  In the third term,    is the valence of the ith species,   is 

the Faraday, and   is the electrostatic potential.  The last term,   
 , is the chemical 

potential at a defined standard concentration, usually 1 mol/L.
5
 A similar equation is 

defined for the chemical potential   : 

                  
  (2.4.2) 

 where the third term of equation (2.4.1) is removed. 

 Because equations (2.4.1) and (2.4.2) are based on dilute solutions, which are 

much lower than concentrations evident in biological fluids, an adjustment to the 

equations must be made.  To be able to accommodate higher concentrations, solute 

concentration    is replaced with the solute activity   , which is usually determined 

experimentally through the relation
5
: 

                  
  (2.4.3) 

In dilute solutions, a solute particle can be assumed to never encounter or interact 

with other solute particles.  Substituting    into equations (2.4.1) and (2.4.2) accounts for 

the effects of solute-solute interactions in concentrations found in physiological 

conditions.  The relationship between the solute activity and concentration is: 
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 (2.4.4) 

 where    is the activity coefficient of the ith species of solute.  Under 

physiological conditions, the interactions of interest between solute particles are 

primarily electrostatic.
5
 Accordingly, only the activity coefficients of charged solute 

particles are considered to be other than unity. 

2.4.2 Electrostatic Interactions 

 There are two main types of electrostatic interaction.  The first kind involves the 

effect of a charged solute particle’s electric field on another solute particle or on the 

localized region of solvent around the particle.  The main theory dealing with this type of 

interaction is the Debye-Hückel theory, which states that the activity coefficient of a 

charged solute particle is dependent on the ionic strength Z of a solution, where: 

   
   

   

 
 (2.4.5) 

 and    is the charge number of the ith species of solute ion.  The interactions 

between ions at biological concentrations cause    to be continually less than one.
5
  

The second type of electrostatic interaction is the binding of a charged solute 

particle to another solute or to an insoluble particle.  If ion-ion interactions are relatively 

insignificant compared to the effects of solute binding, then the activity coefficient can be 

approximated as the fraction of unbound solute. 

Several kinds of biological solutes involve multiple charges distributed along the 

length of their structures, such as proteins and certain polysaccharides.  These involve a 

combination of the two types of electrostatic interaction.  They can interact with small 

ions in a manner similar to that described by the Debye-Hückel theory, but their multiple 

charges can create “cooperative effects” which behave in a manner more closely related 

to ion binding.
5
  Such complex interactions mean that the activity coefficient cannot be 

predicted.  To overcome this difficulty, the concentration can be used in place of the 

solute activity, as long as the activity coefficient is uniform.  This is because in 

characterizing the transport rate, the gradient of the chemical potential is more important 

than the potential itself.
5
 To demonstrate the feasibility of replacing    with   , the 

derivative is taken of the second term of equation (2.4.3): 

             
   

  
    

   

  
 

   

  
  (2.4.5) 

 where if    is uniform, then     = 0, and consequently, it is proved that    can 

successfully replace    in an equation for the chemical potential gradient. 
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2.4.3 Physiological Conditions 

 In this case the only solute particles which will be considered are ions.  Ions 

comprise an overwhelming majority of the solutes dissolved in biological fluids, and 

most of those are monovalent.
5
 Therefore, the molar concentration of ions can be used to 

approximately equal a biological solution’s ionic strength.  Throughout the fluid phases 

in the human body, the ionic strength is nearly the same, despite the differences in ionic 

composition.
5
 Because the activity coefficient is dependent on the ionic strength, bodily 

fluids’ activity coefficients can be approximated to be the uniform among the different 

biological fluids, as well.  As previously stated, if the activity coefficient is uniform, the 

concentration of the ith species can be used instead of solute activity, so in this sense, 

biological properties simplify the equation for chemical potential 

 However, as previously mentioned, there does exist ion binding in biological 

fluids, which lessens the accuracy of the assumption that the activity coefficient is 

uniform in bodily fluids.  Concentration measurements frequently do not distinguish 

between bound and unbound ionic particles, which affect the estimation of the activity 

coefficient.  In order to simplify this problem, the ions can be modeled as two separate 

groups, bound and unbound, where        is assumed to be zero and       is 

approximately one.  This representation enables the replacement of the total solute 

activity by the concentration of the unbound ions. 

2.5 Biology 

 Although our model is only a first step toward characterizing the differences 

between benign and malignant tissues, and most of the complex biology is not 

considered, the aim of this research is to eventually provide a model of brain tissue for 

cancer diagnosis with MRE.  Therefore, an overview of brain tissue physiology and 

malignant and benign tumors will be discussed. 

2.5.1 Brain Tissue 

Brain tissue is composed of two distinct types of tissue: gray matter and white 

matter, as can be seen in Figure 2.5.1.  Gray matter and white matter have very different 

cellular compositions.  White matter is composed primarily of the myelinated axons of 

neurons.  A myelinated axon is one which is covered with a myelin sheath.  These myelin 

sheaths are formed by cells called oligodendrocytes wrapping extensions of their cell  
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membranes around the axon of a neuron, forming several layers of protective membrane 

(Figure 2.5.2).  This increases the velocity of the neuronal signal as it is transmitted along 

the neuron.  There are small exposed spaces between lengths of myelin sheath along the 

axon called the nodes of Ranvier, and the signal must “jump” from one node to the next.  

Gray matter has a much more complicated composition and contains the various 

types of brain cells called neuroglia shown in Figure 2.5.2.  One cell worthy of specific 

mention is the fibrous astrocyte, which is one of the cells forming part of the blood-brain 

barrier.  The blood-brain barrier keeps most substances in the bloodstream from entering 

the cerebrospinal fluid and interacting with the neuronal cells in the brain.  The fibrous 

astrocyte wraps extensions of its cell membrane around blood vessels in the brain, 

forming a protective barrier between it and the surrounding cerebrospinal fluid.
18

  

Because gray matter consists of all of these different types of cells, it is more densely 

packed and therefore stiffer than white matter.  This inherent heterogeneity of brain tissue 

will have to be taken into account in future work on modeling brain tissue. 

2.5.2 Cancer Physiology 

The main thrust of this thesis is that benign and cancerous tumors will be able to 

be detected and differentiated non-invasively through Magnetic Resonance Elastography.  

This approach is based on the distinct physiological differences that exist between 

healthy tissue, benign tumors, and malignant tumors.  In the case of a benign tumor, it is 

formed of cells encapsulated in fibrous tissue, which is stiffer than the healthy cells 

around it.  The capsule is shown in Figure 2.5.3 as the orange band around the benign  

Figure 2.5.1: Oblique section of the human brain; darker areas are gray 

matter and lighter areas are white matter18 
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Figure 2.5.3: A diagram showing organizational differences between (a) benign tumors and 

(b) malignant tumors. Surrounding healthy cells are shown in yellow.3 

Figure 2.5.2: Neuroglia of the central nervous system18 
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tumor cells.  Benign cells are localized to the area of tissue in which the tumor formed 

and do not spread.  When cells turn malignant, they are no longer encapsulated and can 

metastasize and spread throughout the body.  Malignant cells are more diffuse than 

benign cells and are irregularly shaped, as shown in Figure 2.5.3.  It is theorized that the 

changes in the cell which leads to this conformational change cause the higher stiffness in 

malignant then benign tumors, which was demonstrated in gliomas through MRE in the 

study by Drapaca and Palocaren (see Figure 1.3).
3
 When a tumor becomes malignant, it 

also begins angiogenesis, or the formation of blood vessels, to supply it with nutrients.  

This difference between benign and malignant tumors may be taken into account through 

modeling the differences in ion transport between the two types of tumors, as discussed 

later.  These differences in characteristics support the theory that modeling healthy tissue, 

benign tumors, and malignant tumors will enable the use of a non-invasive technique like 

MRE to detect and diagnose cancer. 

2.6 Multiscaling Method 

 In order to connect microstructural properties to macroscopic behavior, a standard 

multiscaling method was used.  Because biological tissue is typically anisotropic and 

always evolving, the problem must be simplified in order to mathematically approximate 

it.  In this method, the evolving microstructure is assumed to have undergone a 

transformation into a periodic microstructure, which is much simpler to model.  A 

periodic macrostructure modeled as an average of repeating microscopic units can then 

be approximated through a homogenization technique.  After this periodic macrostructure 

has been found, the evolving macrostructure can be approximated by performing a back-

transformation.  The back-transformation essentially undoes the original transformation 

which turned the evolving microstructure to periodic.
13

  The specific multiscaling method 

used in this model was outlined by Peter & Böhm
15

 and will be described in greater detail 

in Chapter 3.  They proposed a homogenization technique as part of the multiscaling 

method which deals with domains of evolving microstructure, like biological tissue, 

which is made of microscopic cells and structures that are continuously changing, 

growing, and evolving. 

  



19 
 

Chapter 3. Design of the Tri-Phasic Model 

3.1 Tri-phasic Theory 

In our study the tissue is assumed to be a porous viscoelastic solid filled with fluid 

and ion phases.  Because of the inclusion of all three phases in the model, our model falls 

under tri-phasic theory, which has been studied to some extent already.  There are a set of 

standard constitutive equations for tri-phasic materials, as written by Sun et al.
17

 upon 

which part of the model designed in this thesis is based: 

           σ          λ     μ
 
  (3.1.1) 

 μ  μ
 
                       

  (3.1.2) 

 μ   μ
 
   

  

  
          

   

  
 (3.1.3) 
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 (3.1.4) 

       
  

   
  
  
       

 (3.1.5) 

 where   is the stress of the tri-phasic mixture, μ  is the chemical potential of the 

liquid, μ   and μ   are the electrochemical potentials of the ions, and    is the chemical 

expansion stress.
17

  A complete list of variables can be found on page v, but one variable 

which requires more explanation is   , which is the fixed charge density.  In Sun’s model 

and the model described by this thesis, it is assumed there are charges fixed to the solid 

phase of the material.  In biological tissue, cartilage in the extracellular matrix has ions 

which are so strongly associated with it that their ability to diffuse through the material is 

much less than the free ions in the ion phase.
17

 Therefore, the ions attached to the solid 

phase can be assumed to be fixed, and the density or concentration of fixed charges 

always remains the same. 

Sun et al.
17

 also described an alternative way to describe the tri-phasic model, 

which are in terms of the strain tensor and chemical potentials:
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               (3.1.9) 

 where   ,   , and    are modified chemical potential functions with units of ion 

concentration,    and    are molar concentrations of ions, and    is the volume fraction 

of the liquid (or water) phase.
17

  The total volume of the material is composed of the 

volume fractions of all the components (             ), but the volume of 

the ions are so small compared to the solid and liquid phases’ volumes that they can be 

neglected.  Therefore, it can be assumed that        . 

Assuming that the change in displacement is negative, the reference volume 

fraction of the solid phase can be written as: 

  
       

  

  
  

where   
  refers to the volume fraction in the reference configuration and    in 

the deformed configuration.  The volume fraction of the liquid phase    can then be 

rewritten as: 

      
  

 

  
  

  

      
     

   

  
 (3.1.10) 

because it is assumed the solid displacement 
  

  
  , so 

   

    can be neglected. 

The modified chemical potential functions were defined by Sun et al.
17

 as:
 

    
 

  
     

  

  
  (3.1.11) 

            
   

  
  (3.1.12) 

             
   

  
  (3.1.13) 

 where in equation (3.1.11),   is the hydrostatic pressure,   is the universal gas 

constant,   is absolute temperature,   is the osmotic coefficient,    is the sum of ion 

concentrations (        ),    is a material constant, and   is the dilatation related to 

the infinitesimal strain of the solid matrix   by      .  In equations (3.1.12) and 

(3.1.13),    and    are the activity coefficients of the ions,    is the Faraday constant, and 

  is the electrical potential.  (For reference, the ion activity coefficients were defined and 
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Figure 3.2.1: Diagrams of the 

three domains in the model: 

solid, fluid (CSF), and ionic 

(blood) 

discussed in Section 2.4.)  The next section will describe the ways these equations are 

modified to suit our new model. 

3.2 Design Process 

3.2.1 Assumptions 

 For our model, several simplifying assumptions 

were made as a first approximation, to determine the 

feasibility of future development of more complex 

models.  The focus is on brain tissue, although future 

models will be tailored more closely to the brain’s 

physiology than this preliminary model. 

The model consists of three phases: the solid 

phase, which represents the cell membranes and the 

structural proteins in the extracellular matrix in which cells exist; the liquid or water 

phase, which approximates the aqueous environment of cerebrospinal fluid as pure liquid; 

and the ion phase, which represents blood.  The cerebrospinal fluid and blood are 

assumed to be incompressible fluids, and the solid phase is assumed to be a linear 

viscoelastic solid.  The tissue is assumed to be locally homogeneous, isotropic, and 

electroneutral.  In order to satisfy the electroneutrality condition, the concentration of 

positive and negative ions must be equal.  Assuming the fixed charges on the solid phase 

are negative, this means that         .  Therefore, the fixed charge density is 

defined as the difference between the free cation and anion concentrations: 

          (3.2.1) 

In addition, there is assumed to be no ion exchange between the cerebrospinal 

fluid and the blood phases.  The blood-brain barrier does prevent many substances in the 

circulatory system from entering the cerebrospinal fluid, but in reality, there is still ion 

exchange between the two fluids.  However, as previously mentioned, this is intended as 

a preliminary model, so the ion exchange between the fluids is assumed zero for 

simplification purposes. 

3.2.2 The One-Dimensional Case 

 The first step of simplifying the equations (3.1.6)-(3.1.9) is to transform them 

from three dimensions to one dimension.  First looking at equation (3.1.6): 

                                  (3.1.6) 

the first term is equivalent to the gradient of the stress on the solid phase.  

Changing    from its three-dimensional form: 
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   λ     μ
 
  

 to its one-dimensional form: 

     
  

  
 (3.2.2) 

 results in the one-dimensional form of Hooke’s Law for linear elastic materials.  

In the last term of (3.1.6), the dilatation      , becomes in 1D: 

  
  

  
 

 which is the infinitesimal linear displacement of the solid phase in the x-direction.  

Substituting these into equation (3.1.6) and changing the gradients to partial derivatives 

with respect to the x-direction gives the following equation: 

 

  
  

  

  
  

 

  
              

  

  
    

 which reduces further to:  

    
  

  
 (3.2.3) 

 where we recall that   is the hydrostatic pressure and   is Young’s modulus of 

the solid phase.  This is the first constitutive equation of our tissue model. 

In order to find the second constitutive equation, equation (3.1.7) must be 

transformed to one dimension from its three-dimensional form:  

        
  

 
       

    

      
    

         (3.1.7) 

 where    is the velocity of the solid phase,   is a constant related to the hydraulic 

permeability   by   
  

 
, and    is the volume fraction of the liquid (water) phase in 

the tissue.  In one dimension, the solid velocity becomes    
  

  
. 

With the assumption that the tissue is electrically neutral (   ), the equations 

for    and    are simplified from equations (3.1.12) and (3.1.13): 

            
   

  
  (3.1.12) 

             
   

  
  (3.1.13) 

 to: 
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         (3.2.4) 

         (3.2.5) 

 After these simplifications are substituted into equation (3.1.7), this equation 

becomes in 1D: 

 

  
 
  

  
  

  

 

 

  
   

   

  
 

    

    
  

   

  
 

    

    
  

   

  
    

which reduces to: 

 
  

  
 

    

 
     

    
  

 
       

   

  
 (3.2.6) 

 and this is the second constitutive equation for our model, describing the velocity 

of the solid phase. 

Applying these changes to equation (3.1.8), it becomes in 1D: 

 

  

 
 
 

 
  

  

 
    

   

  
  

      

    
 

  

 

       

    
 

  

 

      

    
   

   

  

  
      

    
 

  

 

       

    
 

  

 

      

    
   

   

   
 
 

 
 

   

or: 

 
  

 
      

   

    
  

 
       

   

  
      

  
      

  
   (3.2.7) 

which is the third constitutive equation for the model, where    and    are the 

diffusivities of the cations and anions, respectively. 

Applying these simplifications to equation (3.1.9), it becomes 

       

  
 

 

  

 
  
 

  
 

  

 
    

 

  
 

 

  
     

  

  

  

  
 

    
    

    
 

  

 

     

    
 

  

 

    

    
   

   

  

    
    

    
 

  

 

     

    
 

  

 

    

    
   

   

   
  
 

  
 

 
 

  
     

  

  
    

which reduces to: 
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  (3.2.8) 

  

Equation (3.2.8) is the fourth constitutive equation of the model. 

Written all together, the four equations of our model in one-dimensional form are: 
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  (3.2.8) 

 

3.2.3 Multiscaling 

 As mentioned in section 2.6, the multiscaling method used in this model follows 

the technique laid out by Peter and Böhm
15

. This method is used to predict macroscopic 

behavior from microscopic structure, linking the two different scales.  In order to 

describe the relationship between the two scales, the characteristic variables associated 

with each scale must be defined.  The characteristic microscopic length is defined as  , 

and the characteristic macroscopic length is defined as L.  They are related by: 

   
 

 
 (3.2.9) 

 which must satisfy    , because the microscopic scale is significantly smaller 

than the macroscopic scale.  There are also lengths associated with the diffusion of the 

cation and anion species, which are denoted as  
 

 and  
 

, respectively.  These are 

defined by the relation: 

  
       (3.2.10) 

 where   is either + or – for cations or anions, respectively.     and    are scales 

that will be defined later. 
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 Not only do the microscopic and macroscopic scales differ with respect to length, 

but they also differ with respect to time.  The characteristic time for the deformation of 

the solid phase is  , and the characteristic diffusion times for cations and anions follow 

the equations 

    
    

 
    

  
    

         

  
 (3.2.11, 3.2.12) 

 where           are scaling parameters, which are defined so that the 

characteristic diffusion times for all ion species are equal to the diffusion time for the 

fastest-diffusing species.    is the characteristic diffusivity for the tissue under 

consideration. 

3.2.4 Accounting for Ion Interactions 

 Unlike the model described in the paper by Sun et al.
17

, this model takes into the 

production and consumption of ions into account.  This method can also account for 

abnormal behavior in the tissue, as well, such as tumors.  Therefore, the following system 

is proposed, modified from the set of constitutive equations (3.2.3), (3.2.6)-(3.2.8): 
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      (3.2.16) 

 where         are associated with the consumption/production rates of ions.  

The consumption reactions are assumed to be of the form: 

            

 and the production reactions of the form: 
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 where          are stoichiometric coefficients associated with the ion species.  These 

coefficients are assumed to be of the form: 

                     (3.2.17) 

 where    and    are functions of the cation concentration and anion concentration, 

respectively, and       are bounded and associated with the ions’ molecular weights and the 

reaction-rate constant.  The quantity   is the concentration-dependent part of the production 

rate, such that: 

                   (3.2.18) 

 where     are real numbers, where either       or      . 

3.2.5 Non-Dimensionalization 

 Because constitutive equations are intended to describe properties inherent to the 

material, the equations for this model have been non-dimensionalized.  The variables in 

the equations have all been related to their reference states in the following manner: 

   
 

 
    

 

  
    

 

 
    

 

 
    

 

  
 

    
  

   

  
       

  
   

  
       

  

  
   

 where L is the characteristic macroscopic length,    is the characteristic ion 

diffusion time,   is the characteristic time of solid deformation,   is the velocity of the 

solid in the x direction,   is the hydrostatic fluid pressure, and    is related to the 

consumption/production rates of ions, as will be discussed later.  The subscript zero 

indicates a reference quantity, such as the reference pressure   .  The tilde above a 

variable indicates that it has been non-dimensionalized.  The superscript   indicates that 

the variables in the equation are either all associated with the cation species (+) or the 

anion species (–). 

3.2.6 Proposed Model 

 The last simplification of our model was linearization of the equations. For 

example, it is assumed that the displacement is infinitesimal (
  

  
  ), therefore the 

higher-order derivatives of   are assumed to be negligibly small.  One result of this is 

that 
  

  
  

   

     , so there is no pressure gradient in the x direction.  For this first 

approximation, diffusion and convection are also assumed to be linear, therefore products 

of the concentrations can be neglected as well.  The material constant    was also 

assumed to be zero for further simplification.  As was discussed in the paper by Peter and 
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Böhm,
15

 it is assumed that the characteristic displacement time of the solid is equal to the 

ion diffusion times (       ) and thus         . 

 The final system of constitutive equations for this tri-phasic tissue model is as 

follows:  
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 where        
    and   

  
   

      

  
 

  
   

      

  
.  Zero Neumann conditions 

are assumed on the solid-liquid phase interfaces and the ionic-liquid phase interface  

(       ).  At    , the tissue is assumed to be periodic with respect to a reference cell 

denoted by         containing the three phases.  The reference or unit cell is scaled by 

  
 

 
  .  The change from a periodic domain to an evolving domain, which is part of 

the multiscaling process as described in Section 2.6, is seen as a union of a finite number 

of    cells.  This is described by orientation-preserving mappings   
             , 

where          , and    denotes the domain of one of the three phases.  This is 

denoted by   
     

    
       

 .  In the next section, these constitutive equations are 

used in a very simple case study to examine the effects of ion diffusion on the solid 

phase. 
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Chapter 4. Implementation 

 After designing the model, two very simple situations were considered as a 

preliminary test: the effects of (1) pure macroscopic ion diffusion and (2) pure 

microscopic ion diffusion on solid displacement. 

4.1 Initial and Boundary Conditions 

 Let the periodic domain be the interval (0,1).  Let the characteristic lengths be the 

following values: macroscopic length L = 1, microscopic length       , and    

       so that  
   

          .  Therefore, the condition that   
 

 
   is 

satisfied.  Let the characteristic time for solid deformation be    .  The effective 

physical parameters in the model are not the focus of this test, therefore they are taken to 

be unity. These include                  and   
 , which listed in order are as follows: 

the Young’s modulus of the solid, the diffusivities of the cations and anions, the universal 

gas constant, the absolute temperature, a constant related to hydraulic permeability, the 

osmotic coefficient, and the initial volume fraction of the solid phase.  Setting these to 

unity means that the non-dimensionalized cation and anion concentrations are equivalent: 

          . 

 The scaling parameters     used in calculating the non-dimensionalized ion 

diffusivities are different for the two cases: 

1. Pure macroscopic diffusion:                  

2. Pure microscopic diffusion:                    

In both cases, the following initial and boundary conditions for non-

dimensionalized displacement and concentration are assumed: 

                              (4.1.1) 

                       
 (4.1.2) 

                         (4.1.3) 

4.2 Results 

 In case 1, the macroscopic diffusion had a noticeable though relatively small 

effect on the solid phase.  Figure 4.1.1 demonstrates the initial concentration field 

considered in this case over the solid length and its change over time.  The concentration 

field is increased as specified in the initial conditions and decreases to equilibrium over 

time.  Figure 4.1.2  shows the effect on the solid phase’s displacement.  As can be seen, 

there is shrinkage of the solid phase in regions corresponding to the initial increases in 
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Figure 4.1.1: Concentration field in case 1 

Figure 4.1.2: Displacement field of the solid phase in case 1 

ion concentration, on the order of 10
-3

 of the macroscopic length.  As the concentration 

returns to equilibrium, the solid phase returns to its original size. 
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 In case 2, no macroscopic diffusion resulted from the initial microscopic diffusion 

condition, because the concentration field depends only on the macroscopic variable    

and not the microscopic variable     .  No displacement of the solid phase resulted from 

only microscopic diffusion.  Because there was neither a macroscopic change in the 

concentration nor a macroscopic change in the solid displacement, figures were not 

included for case 2. 

4.3 Discussion 

 The results from these very basic cases may be able to be used as a simplistic set-

up for tumor modeling and classification.  As discussed in Section 2.5, there are 

significant differences in biology between benign and malignant tumors.  One hypothesis 

is that although benign tumor cells are encapsulated, they are not significantly different in 

ion transport from healthy cells
2
.
 

Malignant tumor cells, however, differ both in 

morphology and ion transport from healthy and benign cells.  One possible theory is that 

benign tumors only undergo microscopic diffusion and therefore do not have 

macroscopic deformation of the solid phase (as in the second case considered in Section 

4.2).  Malignant tumors, on the other hand, undergo macroscopic diffusion and cell 

shrinkage, which possibly would make them stiffer.  This would agree with the results of 

the study by Drapaca and Palocaren,
3
 which indicated that cancerous tumors are stiffer 

than benign tumors.  Assuming that macroscopic diffusion is characteristic of malignant 

and not benign tumors also agrees with the physiological fact that malignant tumors 

initiate angiogenesis and benign tumors do not.  The new blood vessels supply the 

cancerous tumor with a large supply of nutrients and ions.  A more complete analysis of 

the diffusion involved could provide vital information about the transformation of a 

tumor from benign to malignant.  This information could be used in a more complex 

computational model which will be created in future work to enable the non-invasive 

characterization of tumors through Magnetic Resonance Elastography. 
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Chapter 5. Conclusion 

5.1 Summary 

 In this thesis, a novel multiscale triphasic model for biological tissues was 

proposed that is based on the method of homogenization of domains with evolving 

microstructure.  The specific focus for this and future models is on brain tissue.  

Therefore, the three phases correlated to cell membranes and structural proteins for the 

solid phase, cerebrospinal fluid for the liquid phase, and blood for the ion phase.  The 

intent of this research was to create a model which could describe healthy and diseased 

brain tissue, and possibly differentiate between benign and malignant tumors.  The very 

preliminary results from the implementation of two simple diffusion cases show promise 

in obtaining better and more complicated models in order to reliably identify and classify 

tumors using Magnetic Imaging Elastography. 

5.2 Future Work 

 Future work consists of both more accurate model design and applications of the 

models.  Future models will be designed in two and three dimensions, since this model 

was only in one dimension.  As more research is conducted on these models, they will 

also be able to more closely approximate the actual brain tissue.  For example, ion 

transport between the cerebrospinal fluid and the circulatory system could be accounted 

for, instead of assumed to be zero.  In order to test the accuracy of these models, both 

computer simulations and in vitro testing of healthy brain tissue and glioma samples will 

be performed.  Eventually, the model will be able to be translated into code for use with 

Magnetic Resonance Elastography, and clinical testing of the model will then be able to 

be conducted. 
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