

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF ELECTRICAL ENGINEERING

Interference reduction with relay beacon in cognitive radio networks

ARNAB KUMAR BANIK

Fall 2010

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Electrical Engineering

with honors in Electrical Engineering

Reviewed and approved* by the following:

Dr. Sven G. Bilén

Associate Professor of Engineering Design,

Electrical Engineering, and Aerospace Engineering

Thesis Supervisor

Dr. Jeffrey Louis Schiano

Associate Professor of Electrical Engineering

Honors Adviser

* Signatures are on file in the Schreyer Honors College.

ABSTRACT

The existing static frequency allocation policy, controlled by the Federal Communications

Commission (FCC) in the United States, is fast approaching an apparent spectral crisis, owing

to consistent and rapid increase in spectrum demand by wireless users. In such an inevitable

spectrum scarcity scenario, opportunistic use of the idle spectrum bands that are otherwise

licensed to primary users is one key solution approach. Cognitive radio (CR) arises to be a

tempting solution to this spectral congestion. The purpose of a cognitive radio network is to

efficiently detect spectrum holes so that secondary transmissions can optimally use the spectrum

band without interfering with primary users.

Misdetection of spectrum holes, owing to signal fading and path loss, however, will cause in

concurrent transmission with primary users resulting in undesirable interference that violates

the very basic philosophy of cognitive network transmission. Therefore, it is important to study

how this interference level relates to design parameters such as the beacon detection threshold,

and how it affects the primary users’ performance. Also, to improve spectrum sensing and to

reduce interference, it is of key interest to formulate how a cooperative scheme of relay

transmission of beacon signals suitably addresses the effect of signal fading and path loss, which

often results in misdetection of spectrum holes.

This work deals with the effect of interference owing to concurrent transmission by both primary

and secondary user for the case of failed detection of a beacon transmitted by primary user. In

such a scenario, beside theoretical study of the interference phenomena, we experiment with it by

transmitting data from both primary and secondary user at the same frequency to allow channel

interference. To avoid this, we introduce a beacon signal by the primary user to notify the

secondary users to transmit data at a different frequency in the available frequency band.

Further, that signal might still be lost due to fading, so to avoid this case we introduce a relaying

method in which the secondary user retransmits the beacon to the second secondary user, hence

minimizing interference even more. All the results were carried out with software-defined radio

using the Universal Software Radio Peripheral and GNU radio platform in LINUX. It uses a

number of GNU Radio modules along with other Python and C-Shell scripts giving a working

baseline structure for a cognitive radio.

ii

Contents

ABSTRACT ... i

List of Figures .. v

List of Tables ... vii

Acknowledgments .. viii

Chapter 1 ... 1

INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Overview ... 2

1.3 Objective ... 2

1.4 Thesis Organization ... 3

Chapter 2 ... 4

BACKGROUND ... 4

2.1 Software-Defined Radio .. 4

2.1.1 Definition ... 4

2.1.2 General Architecture of SDR .. 5

2.1.3 Open Source SDR Projects ... 7

2.2 Cognitive Networks: Models and Design .. 7

2.2.1 Model Principle .. 7

2.2.2 Model ... 7

2.2.3 An Upper Bound on the Interference .. 12

2.2.4 Mean and Variance of Interference Power (I) ... 12

2.2.5 Upper Bound on the Mean Interference Power .. 13

2.2.6 Upper Bound on the Variance of Interference Power ... 16

2.3 GNU Radio: .. 18

2.3.1 USRP- the Hardware in GNU Radio .. 20

2.3.2 Functionalities of Different USRP Components: .. 21

2.3.3 Software in GNU Radio .. 23

Chapter 3 ... 24

System Development .. 24

iii

3.1 Experiment Strategy ... 24

3.1.1 USRP and Antennas .. 26

3.1.2 The Audio Source: .. 26

3.2 Experimental Setup ... 26

3.3 Work Processes ... 27

3.4 Reception Work-flow .. 28

3.4.1 USRP Front-End .. 28

3.4.2 Signal Detection and PSD ... 28

3.5 Transmission Work-flow ... 29

3.5.1 Data Source .. 30

3.5.2 Modulation Techniques ... 30

3.5.3 Data Sink .. 30

Chapter 4 ... 31

Test Results and Analysis .. 31

4.1 Testing ... 32

4.2 Energy Level Tables from SU Scanning ... 38

Chapter 5 ... 43

Conclusions and Future Work ... 43

5.1 Conclusions ... 43

5.2 Future Work .. 43

BIBLIOGRAPHY .. 44

Appendix-A .. 45

A1: γ vs. Interference, I0 -(Reference Figure 5) ... 45

A2: ε vs. Interference, I0 -(Reference Figure 6) ... 45

A3:R0 vs. Interference, I0 - (Reference Figure 7) .. 46

A4: γ vs. var[I0] (Reference Figure 8) ... 46

A5: R0 vs. var[I0] -(Reference Figure 9) .. 47

A6: ε0 vs. var[I0] -(Reference Figure 10) ... 48

Appendix-B .. 49

B1: fm_rcv.py (receiver file) .. 49

B2: fm_tx.py (transmitter file) .. 55

B3: fhop_trx.py (Spectrum scan for holes by hopping) .. 59

iv

B4: fhop_trx1.py (Spectrum scan for relay beacon) ... 64

B5: timer.py ... 69

VITAE ... 71

v

List of Figures

Figure 1: Spectrum usage showing highly uneven nature [1]... 1

Figure 2: Block diagram of an Ideal SDR ... 5

Figure 3: Block diagram of a real or practical SDR .. 6

Figure 4: Network model [11] ... 7

Figure 5: Beacon detection threshold vs. upper bound of mean interference .. 14

Figure 6: Tx-Rx distance (R0) vs. upper bound of mean interference ... 15

Figure 7: Receiver guard radius (ε) vs. upper bound of mean interference ... 15

Figure 8: Beacon detection threshold (γ) vs. upper bound of variance of interference 17

Figure 9: Primary Tx-Rx distance vs. upper bound of variance of interference ... 17

Figure 10: Receiver guard radius (ε) vs. upper bound of variance in interference 18

Figure 11: Pictures of USRP both externally (left) and internally (right) [12, 13] 20

Figure 12: Block diagram of USRP [12, 13].. 21

Figure 13: FPGA MUX implementation in receive path [3, 6, 15] ... 22

Figure 14 FPGA DEMUX and AD9862 Chip implementation on USRP [3, 6] ... 23

Figure 15: Interference due to simultaneous transmission .. 24

Figure 16: No transmission until PU is active ... 25

Figure 17: Interference due to mis-detection of signal by 2nd secondary user .. 25

Figure 18: Efficient transmission with relay beacon ... 26

Figure 19: Hardware setup in the experiment .. 27

Figure 20: Data transmission pipeline .. 30

Figure 21: Four different scenarios of spectrum scanning and subsequent transmission scenario by

secondary user (SU) .. 31

Figure 22: State diagram of transmission and its reception ... 32

Figure 24: FFT plot of a FM receiver at 88 MHz where the transmission was from the base computer .. 33

Figure 25: FFT plot showing reception with interference... 34

Figure 26: Sate diagram of transmission and reception with signal detection by secondary user 35

Figure 27: FFT plot of reception with interference owing to misdetection of beacon 36

file:///C:/Users/sbilen.PSU_ENGINEERING/Documents/Student%20Mentees/Honors%20Theses/Arnab%20Banik/THESIS_FALL2010_AKBsgb.docx%23_Toc278829545
file:///C:/Users/sbilen.PSU_ENGINEERING/Documents/Student%20Mentees/Honors%20Theses/Arnab%20Banik/THESIS_FALL2010_AKBsgb.docx%23_Toc278829546
file:///C:/Users/sbilen.PSU_ENGINEERING/Documents/Student%20Mentees/Honors%20Theses/Arnab%20Banik/THESIS_FALL2010_AKBsgb.docx%23_Toc278829547
file:///C:/Users/sbilen.PSU_ENGINEERING/Documents/Student%20Mentees/Honors%20Theses/Arnab%20Banik/THESIS_FALL2010_AKBsgb.docx%23_Toc278829548
file:///C:/Users/sbilen.PSU_ENGINEERING/Documents/Student%20Mentees/Honors%20Theses/Arnab%20Banik/THESIS_FALL2010_AKBsgb.docx%23_Toc278829549
file:///C:/Users/sbilen.PSU_ENGINEERING/Documents/Student%20Mentees/Honors%20Theses/Arnab%20Banik/THESIS_FALL2010_AKBsgb.docx%23_Toc278829550
file:///C:/Users/sbilen.PSU_ENGINEERING/Documents/Student%20Mentees/Honors%20Theses/Arnab%20Banik/THESIS_FALL2010_AKBsgb.docx%23_Toc278829551

vi

Figure 28: State diagram of transmission and receiver with signal detection and relaying 37

Figure 29: Efficient detection and transmission of signal with relay beacon ... 38

vii

List of Tables

Table 1: Table of functions .. 28

Table 2: Scanning for detection of spectrum holes, none detected as PU is always active 39

Table 3: Scan and detect spectrum hole and transmit signal when PU becomes idle 40

Table 4: Misdetection of spectrum hole by SU when PU is still active ... 41

Table 5: Relay beacon by first SU when PU is active .. 41

Table 6: Efficient detection by distant SU in presence of relay beacon .. 42

viii

Acknowledgments

This thesis was made possible by the great support from those around me. I would like to thank my thesis

advisor, Dr. Sven G. Bilén, for the inspiration to take on this project and for the continued support to see

it through. Your critical guidance all along the project work and your thorough review of the manuscript

made this work possible to his level. I also thank Dr. Jeffrey Louis Schiano, my honors advisor, who has

been instrumental in my success at Penn State offering guidance at every step during my undergraduate

career. My special thanks to Dr. Gary Weisel, Professor of Physics and Dr. Pinaki Das, Professor of

Mathematics both at Penn State, Altoona for their encouragement, support and guidance throughout my

undergraduate study and particularly during my study at Altoona during the first two years of my

undergraduate study. I owe many thanks to Matt Sunderland, who helped me in defining codes for the

software models of receive and transmission techniques at various points during this project. I could not

have accomplished this without your support.

Most importantly, I would like to thank my parents, whose constant encouragement, support and guidance

helped me achieve my education to this level.

1

Chapter 1

INTRODUCTION

1.1 Motivation

Access to the wireless spectrum in the United States is controlled by the Federal Communications

Commission (FCC) and most of the frequency bands useful to wireless communication (―RF bands‖)

have already been licensed by the FCC. The other few available unlicensed bands, such as ISM

(Industrial, scientific and medical) band, for example, are also fast filling up. But because of the

continuous increase in demand for the radio spectrum, this static allocation policy is fast facing a spectral

crisis.

To address this spectral crisis, the FCC published a report prepared by its Spectrum Policy Task Force

(SPTF) [1]. The report recommends certain rules and regulations for the efficient use of radio spectrum

and methods for improving the usage of existing spectrum. With respect to spectrum utilization, this

report illustrates that there is significantly more inefficient utilization of spectrum rather than actual

spectrum scarcity due to legacy systems and the rules imposed by FCC. Most of the allotted radio

frequency (RF) and are not in use most of the time; some are partially occupied, while others are heavily

used. Recent measurements have shown that for as much as 90% of the time, large portions of the

licensed bands remain idle (Figure 1).

Figure 1: Spectrum usage showing highly uneven nature [1]

2

A new communication philosophy is necessary in order to utilize the existing wireless spectrum optimally

and in an intelligent manner. Newly emerging cognitive radio (CR) technology [2] is envisaged to solve

problems in wireless networks resulting from the limited available spectrum and the inefficiency in the

spectrum usage.

One aspect of CR is for a radio transceiver intelligently detect which communication channels are in use

and which are not, and to instantly move into vacant channels while avoiding occupied ones. This

optimizes the use of available RF spectrum while minimizing interference to the users.

1.2 Overview

In the inevitable scenario of spectrum scarcity, opportunistic use of the idle spectral bands that are

otherwise licensed to primary users is one key solution. Cognitive radio, as introduced by Mitola [2] is a

promising solution to this spectral congestion. A CR system efficiently detects spectrum holes so that

secondary transmissions can optimally use the spectrum band without interfering with primary users.

Thus, a CR can be described as an intelligent radio that is capable of determining its frequencies of action

and adapting to the changing frequency usage within that frequency band. In other words, if a radio is

capable of setting and configuring its own parameters including ―waveform, protocol, transmitting and

receiving carrier frequency and networking‖ autonomously, it can be called a cognitive radio.

The innovation that makes CR possible is the technology of software defined radio (SDR) in which the

―software meets the antenna‖ [3]. In this thesis project, the property of CR in which it is able to sense the

frequencies of transmissions in its surrounding environment, has been implemented using GNU Radio

and he USRP platform. GNU Radio is an open-source SDR programming platform that works closely

with the Universal Software Radio Peripheral (USRP, pronounced ―U-Surp‖), a hardware platform

designed for GNU Radio [4].

1.3 Objective

The purpose of this work is to test the hypothesis given below and to design a system in which secondary

users can detect a beacon signal from primary user and then scan for an alternative frequency (i.e., to

locate spectrum hole) in the given FM band for transmission. In addition, we include signal relaying by

the secondary user (one that is closer to the primary user) to effect retransmission of the beacon signal to

another secondary user.

The hypothesis follows like this. We first transmit an mp3 file from one computer to another acting as

primary user. After that, we introduce two more users as secondary users both transmitting at the same

frequency as that of primary user and, since all the three users will be transmitting at the same time and

frequency, we expect that there will be some interference in the receiving end. To detect the interference

we would encounter some data overlap in the primary receiver from the secondary users.

To resolve this interference issue, we will introduce a beacon transmitted from the primary user to notify

the secondary users. Therefore, when the secondary user detects the beacon signals, they are informed as

to if the primary user is in an active or in an idle state. Once the secondary user detects the beacon, it will

then look for another frequency by scanning in the given band so that it can identify and transmit at

3

another available frequency rather than the specified frequency already in use by primary user. However,

when due to signal loss, the secondary users fail to detect the beacon from primary user; it may assume

the signal to be idle at that time and will transmit the same signal concurrently causing the interference.

Such situation can be verified when one the secondary user, which we expect to be the one closer to

primary user, will detect the beacon and transmit at another frequency, and whereas the other secondary

user, which is further away, will fail to receive the beacon and therefore transmit in the same frequency.

To resolve this issue, we will try to re-transmit the beacon signal from the nearest secondary user to the

other (relay beacon), and if this relay process works out then the second secondary user will be able to

receive the beacon from primary user. This process can be tested and verified in the experiment and we

can test if under this case both the secondary user scans for an alternative frequency to transmit than the

original one used by primary user.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 discusses the principles and architecture of software-

defined radio, the impact and extent of interference from a cognitive user on a primary user, and the

operation of GNU Radio along with its hardware (USRP) and software (Python language) elements that

represent the working blocks of research experiments. In Chapter 3, the experimental setup of the

hardware component explained. In Chapter 4, the results from experimental tests using GNU Radio and

USRP are demonstrated and analyzed. The thesis is then follows with conclusions and future work in

Chapter 5. Appendices A and B provide the MATLAB files and Python scripts used in the work.

4

Chapter 2

BACKGROUND

2.1 Software-Defined Radio

2.1.1 Definition

A software-defined radio (SDR), as the name implies, is a radio system that makes use of software in the

processing of communication signals. The process has the distinct advantage of reducing the number of

hardware components in a radio system. Additionally the SDR is more flexible and changeable in contrast

to a hardware radio which has fixed characteristics. Thus an SDR is a radio system in which some or all

of the physical layer functions are software defined. The software in an SDR determines the specifications

of the radio and what it does. If the software within the radio is changed, its performance and function

may change.

In general, an SDR, therefore, can be implemented on a generic hardware platform consisting of digital

signal processing (DSP) processors as well as general purpose processors and/or field programmable gate

arrays (FPGAs). These processing that occurs in these elements may be modulation and demodulation,

filtering (including bandwidth changes), and other functions such as frequency selection and, if required,

frequency hopping.

Based on the level of radio re-configurability, an SDR is categorized by one of the tiers given below: [5]

 Tier-0: A non-configurable hardware radio, i.e. one that cannot be changed by software.

 Tier-1: An SDR where limited functions are controllable. These may be power levels,

interconnections, etc. but not mode or frequency.

 Tier-2: In this tier, a significant proportion of the radio (frequency, modulation and waveform

generation/ detection, wide/narrow band operation, security, etc.) is software configurable. The

RF front end still remains hardware based and non-reconfigurable.

 Tier-3: The ideal software radio or ISR in which the boundary between configurable and non-

configurable elements exists very close to the antenna and the ―front end‖ is configurable. It can

be said to have full programmability.

 Tier-4: The ultimate software radio or USR is a stage beyond that of an ISR. Not only does this

form of SDR have full programmability, but it is also able to support a broad range of functions

and frequencies at the same time.

5

Software radios have significant utility for the military and cell phone services, both of which must serve

a wide variety of changing radio protocols in real time.

In the long term, SDRs are expected by proponents like the Wireless Innovation Forum (formerly the

SDR Forum) to become the dominant technology in radio communications. SDRs, along with software-

defined antennas are the enablers of the cognitive radio.

2.1.2 General Architecture of SDR

As defined in Tier-3 [5], the idea behind ideal ISR lies in the fact that the boundary between configurable

and non-configurable elements exists very close to the antenna, and the ―front end‖ is configurable

Therefore, the ISR would consist of an antenna with its signal being sampled by an ADC and the rest

done in software (Figure 2). Significant amounts of signal processing are channeled to the general-

purpose processor (GPP), rather than being done in special-purpose hardware. Such a design produces a

radio that can receive and transmit widely different radio protocols (sometimes referred to as waveforms)

based solely on the software used.

Figure 2: Block diagram of an Ideal SDR

In reality, however, there is no hardware currently available that can implement transmission or reception

without some RF front-end hardware. Additionally, a single antenna cannot receive the entire radio

spectrum; therefore, to demodulate signals at higher frequencies we need extra hardware to properly

compute and sample the signal [6]. Based on these constraints, a practical SDR is more like that shown in

the block diagram of Figure 3. This SDR system is divided into four main sections, i.e., RF section, IF

section, baseband section and data section [7]

6

RF Section: This block consists of antenna and RF front-end. The antenna covers the spectrum linked to

entire range of operation for the purpose of both transmission and reception of the signal whereas RF

front-end is responsible for tuning, detection, signal transmission and analog up conversion (for

transmission from IF) or analog down conversion (to IF after reception).

The major challenge to the RF front end comes from the increased bandwidth of new signals. With

increased bandwidth the radio becomes more vulnerable to interference.

IF Section: The section plays most important role in digital radio because it is where analog-to-digital

conversion (ADC) of the down-converted IF signal for reception and digital to analog conversion (DAC)

for transmission takes place. This block also carries out digital up-conversion (DUC) or digital down-

conversion (DDC) to make high frequency data compatible with available computer resources. It also

performs the most important function of modulation and demodulation.

Baseband section: The baseband section deals with operations linked to security protocols, correlation

etc.

Data section: This section provides instructions that the baseband section and DUC/DDC used to carry.

This section acts as an interface (such as to a PC) to program and develop intelligent controls and

different routines for the SDR system.

Figure 3: Block diagram of a real or practical SDR

7

2.1.3 Open Source SDR Projects

GNU Radio is an open source [7] SDR project that was started about ten years ago by Eric Blossom, an

electrical engineer. The main idea behind this project, as its founder says, was to turn all the hardware

problems into software problems, that is to move the complexity of a radio equipment from the hardware

to the software level, and get the software as close to the antenna as possible.

GNU Radio is a free software development toolkit and its complete source code is available online. The

source code allows development of a custom non-commercial radio receiver by combining and

interconnecting appropriate software blocks, as if they were functional blocks. Each module is able to

perform a specific signal processing function to support implementation of oscilloscope, concurrent

multichannel receiver and an ever-growing collection of modulators and demodulators.

Ettus Research, LLC (recently purchased by National Instruments) is the key provider of hardware

components for GNU Radio. The minimal hardware components required to work with GNU Radio is

offered by the USRP platform. This USRP performs almost everything that a GNU Radio is capable of

doing. GNU Radio and its hardware and software functionalities are discussed in greater detail in

Chapter-3.

2.2 Cognitive Networks: Models and Design

Interference analysis in cognitive radio system has been studied by a number of authors [8–10]. Taking

into consideration a simple model of a realistic network, the impact of interference by varying certain key

parameters is worth analyzing in a set up containing cognitive users. In one such cognitive network model

with a single primary user and multiple CR users, as modeled by Vu et al. [11], the impact of interference

and its upper bound are mathematically derived. By way of background, we present study here those

mathematical relationships as analyzed by Vu et al. [11].

2.2.1 Model Principle

In a network with beacon, the primary users transmit

a beacon before each transmission [11]. This beacon

is received by all users in the network. The cognitive

users, upon detecting this beacon, will abstain from

transmitting for some duration. The mechanism is

designed to avoid interference from the cognitive

users to the primary users. In practice, however,

because of channel fading, the cognitive users may

sometimes miss-detect the beacon. They could then

transmit concurrently with the primary users,

creating interference. Therefore, it is of interest to

know how this interference level relates to design

parameters, such as the beacon detection threshold,

and how it affects the primary users‘ performance.

2.2.2 Model

For interference analysis, the model used a constant density of cognitive users. The interference power

can be derived as a function of the beacon detection threshold, the cognitive user density and transmit

Figure 4: Network model [11]

8

power. Subject to random fading and random cognitive user locations, this interference is random. The

mathematical derivation thus provides closed-form upper bounds on the mean and variance of this

interference power.

Network model:

The following planar network is used. (Figure 4)

1. Single primary users (PU) and ‘n’ number of cognitive users (CU)

2. PU (receiver) is at the center and transmitting PU is at distance R0 from the PU (receiver).

3. The following notations are used.

0

xT and
0

xR ≡ distance of PU transmitter and receiver

i

xT and
i

xR ≡ distance of CU transmitter and receiver

 Subscript ‘0’ for primary and ‘i’ for CU where i= 1, 2, 3 … n for n CUs

 0h , ih

 channel received by

0

xR (primary receiver)

 ig

 channel received by CU (i) from

0

xT

(primary transmitter)

4. ‘n’ number of CU have surrounded PU with a uniform density λ.

5. Thus, network area with radius R increases with n, hence
2Rn

6. To limit interference all CT (cognitive transmitters) are ε distance away from primary receivers

Channel Model:

The following are mathematical relations of wireless channel with path loss and fading.

From path loss and fading in wireless channel, the composite channel is given by

,
~

2

h
d

A
h

(1)

where d is the distance between transmitter and receiver;

 is power path loss and h
~

 is the small scale fading factor (it is a complex circular Gaussian (0,1)

RV); and

‗A‘ is a frequency dependent constant which is taken as ‗1‘ here for simplicity.

9

Signal Model:

Based on model philosophy, each cognitive user has an active factor of β, which is the probability that the

user is actively transmitting. To avoid interference to the primary receiver, the cognitive users listen to a

beacon, which the primary transmitter sends before its own transmission. Upon receiving this beacon, the

cognitive users will remain silent for the duration of the primary transmission. The following are the

computations:

Let = active factor of CU = probability of CU actively transmitting = k/n, where k is no of active CU, n

= total CU

If bx is beacon signal and biy , is the beacon received by CU at
i
xR , then

 ibibi zxgy ,
(2)

where iz is white Gaussian noise with power
2 .

So the received power at CU (i) is given by

2

2

,

||

ibi

br

gP
P

(3)

If CU needs to receive a minimum threshold power Pth to detect beacon,

then the Probability that CU(i) will miss a beacon is

b

th
ith

i

bri
P

P
gPPq

2
2

, |Pr[|]Pr[

Now putting,

 b

th

P

P 2
 (4)

The equation becomes

])|Pr[| 2 ii gq

(5)

Here, is dimensionless as noise power is normalized with path loss constant A.

Now if CU(i) misses beacon, it will transmit concurrently with PU

Taking xi as the signal from CU(i) and 0x

from primary transmitter, we have the received signal 0y

at

0Rx

given by

10

0

1

000 zxhFxhy
n

i

iii

(6)

Where Fi is indicator function defined as

qi

qi
iF

1yprobabilit

yprobabilit

with

with

0

1{

(7)

and Fi is independent and),0(~ 2

0 Nz .

Also ix s are independent with mean = 0 and power P as CU do not cooperate.

So, total interference power from CUs is given by

PhFI ii

2

0 ||

(8)

where I0 is also RV and the rate achieved by PU is

2
0

0
2

0
0

||
1log

I

Ph
C (9)

Since the interference power 0I is random, this capacity is also random. So the outage probability for

given rate threshold T can be defined as:

]Pr[0 TCPe (10)

Based on this, the interference power I0 and its effect on the primary outage probability, or in other words,

the mean and variance of interference power I0 as n ∞ can be studied.

Interference from the Cognitive Users:

The step now is to establish the interference to the receiver from a cognitive transmitter at a radius r (ε ≤ r

≤ R) and at an angle θ to the line connecting the primary transmitter and receiver, as in Figure 4.

Now, at a distance r, the density function given by

)(

2
)(

22

R

r
rf r

Rr
R

r
rf

ir

with,

)(

2
)(

22
 (11)

and the distribution of θ is uniform between 0 and 2π.

Assuming the probability that this cognitive user misses the beacon is qi, then from (1), the channel

between the primary transmitter and this cognitive user is

11

2),(

~

rd

g
g i

i

(12)

where

2

1

0

2

0

2)cos2(),(rRRrrd (13)

So the probability of missing the beacon (5) becomes

)],(|~Pr[|]|Pr[| 22 rdggq iii

(14)

With iĝ being zero-mean circularly complex Gaussian,
2|ˆ|2 ig is a chi-square random variable with two

degrees of freedom with the pdf
ze
, hence 0

0
2 1]|~Pr[|

y

i eg

 .

Analogically, the missing beacon probability can be explicitly calculated as

),(
1

 rd
eiq

(15)

When missing the beacon, the cognitive transmitter may transmit with probability β. The channel from

this cognitive transmitter to the primary receiver is

22 |

~
||| ii hrh

(16)

Since the cognitive transmitters are independent, from (8), (15) and (16), the total interference power

from cognitive users can be written as

2

1

0 |
~

| ii

n

i

i hrqPI

(17)

where

)(22 Rn

),(
1

 rd
eiq

2
1

0

2

0
2)cos2(),(iiiii RrRrrd

Rr
R

r
rfr

iri

,
)(

2
)(~

22
 i.i.d.

]2,0[~ Ui
 i.i.d.

)1,0(~ Nhi
 i.i.d.

and R,,, are constants

(i.i.d. independent identically distributed RV)

By putting

12

2|

~
| iiii hrqI

(18)

then iI are i.i.d. and

n

i

iIPI
1

0

(19)

2.2.3 An Upper Bound on the Interference

Now just ignoring subscript ‗i‘ for simplicity and denoting

2
1

0

2

0
2)cos2(iii RrRrd

2|
~

|)1(hreI d

Now an upper bound may correspond to increasing r to 0Rr . With this distance, it is more likely that

CU will be beaconless. This will increase interference with PU.

So

2)

0
(

|
~

|)1(hreI
Rr

(20)

2.2.4 Mean and Variance of Interference Power (I)

With

 iIPI 0

][*][][*][00 InEPIEIEPIE i

][)(][22
0 IERPIE

(21)

Similarly,

][*][][*][2222

0

2222

0 InEPIEIEPIE i

][)(][222222

0 IERPIE

So

]][][)[(][][]var[2222222
0

2

00 IEIERPIEIEI

(22)

Now][IE and][2IE can be computed:

With

13

R

dfdrrfIE

)(.)(|][, 1]
~

[2 hE , 3]
~

[4 hE and

2

0

1)(df

dr
R

r
eIE

Rr
R

22

1
)

0
(

)1(2][

 (23)

dr
R

r
eIE

Rr
R

22

21
)

0
(2)1(6][

 (24)

2.2.5 Upper Bound on the Mean Interference Power

As

 11)
0

(01 Rrr

Hence:

R Rr

dr
R

Rrer
IE

22

1
0

)(1))((2
][

0

The above relation follows from this inequality conditions:

R RrR Rr

RrRr

RrRr

dr
R

Rrer
dr

R

rer
IE

Rrerrer

RrereRrr

Rrr

Rrr
RrrRrr

22

1
0

)(1

22

1)(1

1)
0

(11)
0

((

1)
0

(1)
0

(11

11

11

11

))((2)(2
)(

00

)0(
1

)0()0(

)0(

)0(

11
)0(0

0101

This leads to the equation:

R Rr

dr
R

Rrer
IE

22

1
0

)(1))((2
][

0

This bound can be interpreted as

Interference = when CU always transmits – when CU received beacon

14

The above bound corresponds to slightly reducing the latter portion by increasing the distance to the

primary Tx from the cognitive user when that user receives the beacon. Hence, the interference from this

user when missing the beacon will be slightly increased.

This bound can be evaluated in closed forms using the incomplete Gamma function. Specifically, we have

an explicit upper bound for the average interference power E[I0] in (25). With an infinite number of

cognitive users, R→∞, this bound approaches a limit as in (26).

 2
0

)
0

(2
0

)
0

(

220)()(
11

[
2

2
][RReRe

R

P
IE

RRR

)}])(,

2
())(,

2
({ 00

2

 RRR

 (25)

}])(,

2
({)(

1
[

2

2
][0

2

2
0

)
0

(

20

RRe

P
IE

R

(26)

The graphs of E(I0) are plotted with the following parameters: (Figure 5)

α = 2.1, R0 = 5; ε = 0.2; R = Very Large (~100,000) with all other parameters are normalized to

unity. The plot (Figure 6) below results. The response of the plot is explained below.

If γ increases (more beacon misses)

 Increase in average I

 The finite U. Bound value at γ ∞ reaches early at a finite value of γ

Figure 5: Beacon detection threshold vs. upper bound of mean interference

15

Reference Figure 6 illustrates the following:

• For smaller R0, most CU will receive beacon and interference will be less.

• If R0 increases (more beacon misses)

An increase in average I will result.

• The finite U. Bound value reaches when R0 is large.

This maximum upper bound reaches when CR misses all beacons and with further increase of R0

the upper bound will remain constant as all CR still remains beaconless

Figure 6: Tx-Rx distance (R0) vs. upper bound of mean interference

Figure 7: Receiver guard radius (ε) vs. upper bound of mean interference

16

Reference Figure 7 for ε vs. upper bound of E[I0]

• For smaller ε, more CU will involve and Interference will be more.

• If ε increases (less CU in operation- asymptotically decrease)

Decrease in average I to value zero

2.2.6 Upper Bound on the Variance of Interference Power

As

00)(RrRR

][2IE in previous equation can be further bounded as per equation below

drreeRrer
R

IE rRR
R

))(2(
6

][2120
221

0

)
0

(21

22

2

(27)

)],,2,21,(),,,21,(2
)1(2

[
6

][0
2

00

)1(2)1(2

22

2 RFeRRRF
R

R
IE

R

Where function ‗F‘ is defined as follows:

If ,01 then

)],
1

(),
1

([),,,,(

)1(

 vuvuF

And if ,01 then

),,,,()(
1

1
),,,,(

1

11 vuFuevevuF uv

As 0R ,)var(0I depends only on][2IE and not][IE .

 The upper bound of)var(I is given by:

)],2,(

2

1
),,(

1

)1(2

1
[6)var(0

2

0)1(2

22
0

GeRGPI

R

(28)

where ‗G‘ function is defined as below:

),

2
(

)2)(1()2)(1(1

1
),,(

22

2)1(2

 xxe

a
xexG xx

 (29)

17

Inference variance from reference Figure 8 (above):

Again similar plot for variance are analyzed with the following parameters:

α = 2.1, R0 = 5; ε = 0.2; and other parameters normalized to unity. The plots and their response are

explained below.

If γ increases (more beacon misses)

 Decrease in variance [I] and to a min value [opposite response of average I, Figure 8]

 Higher the sensitive of beacon (smaller γ) smaller will be I and higher the variance of I.

Reference Figure 9 (above):

• If R0 increases more beacon misses

Figure 8: Beacon detection threshold (γ) vs. upper bound of variance of interference

Figure 9: Primary Tx-Rx distance vs. upper bound of variance of interference

18

Results in increase in variance of I to a local max at a critical R0

• After certain threshold R0 Variance of I remains constant.

Reference Figure 10 below:

• For smaller ε, more CU will involve more and variance in interference will be greater.

Increase in receiver guard radius ε

Results in fast decrease in variance of I

 Fast approach to zero

These analyses resulted in formulating the interference power as a function of the beacon threshold, the

number of cognitive users, the primary and cognitive transmit powers, the distance between the primary

transmitter and receiver, and the receiver protected radius. The relation gives closed-form upper bounds

on the mean and the variance of this interference power, both with a finite number of cognitive users and

in the limit as this number goes to infinity. The mathematical derivation of upper bounds as derived in the

original paper [11] offer an analytical understanding of how the interference behaves according to various

network parameters. Interference analysis in such networks will be important in understanding the

interaction among the users and in designing their algorithms.

2.3 GNU Radio:
GNU Radio is an open-source software development toolkit that provides the signal processing runtime

and processing blocks to implement software radios using readily-available, low-cost RF hardware and

processors. It is widely used in hobbyist, academic and commercial environments to support wireless

communications research as well as to implement real-world radio systems.

Figure 10: Receiver guard radius (ε) vs. upper bound of variance in interference

19

Eric Blossom, together with his development colleague Matt Ettus, have realized this project which can

turn an ordinary PC into a good quality radio receiver; the only additional hardware required are a ―low-

cost‖ RF tuner and an analog-to-digital converter to convert the received signal into digital samples.

The open-source software development toolkit in GNU Radio allows us to develop a custom non

commercial radio receiver by combining and interconnecting appropriate software modules, which are

independent functional blocks [12]. The package currently includes about 100 modules, but others can be

added to the initial library. Each module is able to perform a specific signal processing function (for

example mixer, phase locked loop, a filter), with a real-time behavior and with high-throughput. AS most

processing is done on the GPP (General purpose processor), a late model PC with enough processing

capability and memory were used.

With the GNU Radio approach, the designer is a software developer who builds the radio by creating a

graph (in a similar way to what happens in the graph theory) where the vertices are signal processing

blocks and the edges represent the data flow between them. The signal processing blocks are normally

implemented in C++, whereas the graph structure is defined in Python.

GNU Radio applications are primarily written using the Python programming language, while the

supplied, performance-critical signal processing path is implemented in C++ using processor floating

point extensions where available. Thus, the developer is able to implement real-time, high-throughput

radio systems in a simple-to-use, rapid-application-development environment. GNU Radio is used either

to implement real and working radio equipments, or just for research in the area of wireless

communication and transmission. GNU Radio software modules support various modulations (e.g.,

GMSK, PSK, QAM, OFDM), error corrections codes (e.g., Reed–Solomon, Viterbi, Turbo codes), and

signal processing capabilities (e.g., filters, FFTs, equalizers, timing recovery).

GNU Radio applications are mainly written in Python; however, the critical low-level algorithms and

signal processing modules are written using the C/C++ programming language, with wide usage of

floating-point specific instructions for the relevant processor. Python is primarily used to setup the flow

graph, after that most of the work is done in C/C++. GNU Radio is simple to use and a radio receiver can

be created in a quick and straightforward manner; moreover, the development of a signal processing

algorithm can be carried out using a pre-recorded or generated data set, thus allowing development to

occur without the need for a real RF hardware. An example of minimal hardware required to work with

GNU Radio is offered by the USRP, developed by Ettus Research, LLC. [13]

GNU Radio applications: The GNU Radio package is provided with a complete HDTV transmitter and

receiver, a spectrum analyzer, an oscilloscope, a multichannel receiver and a wide collection of

modulators and demodulators. Other advanced projects are still in the feasibility phase or in progress, and

includes:

 A system able to recording multiple stations simultaneously

 Time Division Multiple Access (TDMA) waveforms

 A passive radar system that takes advantage of broadcast TV for its signal source

 Radio astronomy

 Digital Radio Mundial (DRM)

 Software GPS

20

 Amateur radio transceivers

2.3.1 USRP- the Hardware in GNU Radio

USRP, which stands for Universal Software Radio Peripheral,[13,14] is a general purpose motherboard

that can host a wide selection of daughter boards, each of which implements a signal processing block

found in the GNU Radio software package. The USRP platform hosts the following major modules: [14]

 Four 64-MS/s 12-bit, 85-dB SFDR analog-to-digital (ADC) converters (AD9862),

 Four 128-MS/s 14-bit, 83-dB SFDR digital-to-analog (DAC) converters (AD9862),

 An FPGA that can be reprogrammed (Altera Cyclone EP1C12Q240C8 FPGA),

 A high-speed USB 2.0 interface (Cypress EZ-USB FX2) that can send up to 16 MHz of RF

bandwidth in both directions,

 4 extension sockets (2 TX, 2 RX) in order to connect 2–4 daughterboards,

 64 GPIO pins available through 4 BasicTX/BasicRX daughterboards (16 pins each), and

 Some glue logic.

Aliasing is, however, an important issue with the ADCs and DACs usage in USRP. When the sample

rates after the ADC are down-converted to IF, it is important to note that the maximum sampling rate of

ADC is, at most 64 MS/ sec. Therefore, the highest sampling frequency allowable to avoid aliasing is 32

MHz. Similarly the DAC limits the transmitted frequency to a maximum of 64 MHz because of the 128

MS/s sampling rate of DAC.

Figure 11 displays pictures of the USRP both externally and internally. Figure 12 below represents the

block diagram of the USRP.

Figure 11: Pictures of USRP both externally (left) and internally (right) [12, 13]

21

Figure 12: Block diagram of USRP [12, 13]

2.3.2 Functionalities of Different USRP Components:

The USRP provides several functions; digitization of the input signal, digital tuning within the IF band,

and sample rate reduction before sending the digitized baseband data to the computing platform via the

USB interface. It provides the opposite processing functions for the transmit path. Most the processing

performed by the USRP is done in an Altera Cyclone FPGA. An Analog Devices MxFE processor

(AD9862) provides some signal processing in the transmit path, and conversion between analog and

digital signals for both the transmission and receive paths.

2.3.2.1 Daughterboards

As described earlier, the general purpose motherboard hosts a wide selection of daughterboards to

constitute its various signal processing blocks in the USRP (Figures 11 and 12) as the USRP can support

up to four daughterboards based on their requirements, generally two for receive and two for transmit. RF

front ends are implemented on the daughterboards. The USRP family includes the following based on

their varying specifications suited for different jobs such as amplification, filtration, tuning capabilities,

etc., in varying frequency ranges. A few of them are listed below [13,14]:

Receivers only support RX (receiving) and consume only one RX port:

 BasicRX, 1–250 MHz Receiver, for use with external RF hardware.

 TVRX, 50–870 MHz Receiver

Transmitters only support TX and consume one TX port:

 BasicTX, 1–250 MHz Transmitter, for use with external RF hardware.

 LFTX, DC to 30 MHz Transmitter.

Transceivers [15] are both TX and RX and consume 2 ports (all come with 70-dB AGC unless specified

otherwise):

 WBX, 50 MHz to 2.2 GHz Transceiver, 100-mW output.

22

 RFX900, 800–1000 MHz Transceiver, 200+ mW output (can be changed into a RFX1800 with

basic soldering and flash update).

2.3.2.2 FPGA (Field Programmable Gate Array)

The FPGA on the USRP converts the data rate to match the data rates supported by a USB 2.0 high speed

controller. Since the USB bus operates at a maximum rate of 480 million bits per second Mbps, the FPGA

must reduce the sample rate in the receive path and increase the sample rate in the transmit path to match

the sample rates between the high speed data converter and the lower speeds supported by the USB

connection. This entire process is done by several working elements within the FPGA which includes

DDCs with cascade-integrator-comp (CIC) filters and MUX. In addition the USB interface combined

with the FPGA provide digital IO and low speed analog IO signals for use by the daughterboards. The

low speed analog IO points are useful for controlling variable gain amplifiers.

Receive Path: As shown in block diagram (Figure 13), the ADCs are connected to the MUX of FPGA in

the receive path and each IQ of the MUX is connected to a DDC which is connected to a data interleave

that puts the data in the receive path queue.

Figure 13: FPGA MUX implementation in receive path [3, 6, 15]

Transmit Path: The CIS filtered I-Q data is demultiplexed in the FPGA, which contains the DEMUX

before the digital-up-conversion (DUC) and digital-to-analog conversion (DAC) in its transmission path.

Here DUC and DAC are part of Analog Device AD9862 [17] (and not the FPGA) which are connected to

BasicTX (TXA/TXB) as demonstrated in block diagram shown in Figure 14)

23

Figure 14 FPGA DEMUX and AD9862 Chip implementation on USRP [3, 6]

2.3.3 Software in GNU Radio

2.3.3.1 Python Programming Language

Python is a dynamic, object-oriented programming language that can be used for many kinds of software

development. It offers strong support for integration with other languages and tools, comes with extensive

standard libraries, and can be learned in a few days. Python‘s elegant syntax and dynamic typing, together

with its interpreted nature, make it an ideal language for scripting and rapid application development in

many areas on most platforms. [18] Many Python programmers report substantial productivity gains and

feel the language encourages the development of better code. Python scripts can be written in text files

using suffix ‗xxx.py‘ (e.g., python script.py) which will simply execute the script and return to the

terminal afterwards.

The Python interpreter and the extensive standard library are freely available in source or binary form for

all major platforms from the Python Web site, http://www.python.org/, and may be freely distributed. The

same site also contains distributions of and pointers to many free third party Python modules, programs

and tools, and additional documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or

other languages callable from C). Python is also suitable as an extension language for customizable

applications.

GNU Radio software architecture is organized using a two-tier structure of Python and C++ programming

language. Python script is used for high level organizing, connecting and gluing whereas C++ provides

signal processing functionalities. The scheduler in it is using Python‘s built-in module threading, to

control the ‗starting‘, ‗stopping‘ or ‗waiting‘ operations of the signal flow graph.

This thesis is carried out with the GNU Radio software radio and the Universal Software Radio

Peripheral.

24

Chapter 3

System Development
In this chapter we

 Describe the experimental setup of the cognitive radio relay network,

 Describe types of sources used and basic workflow of transmitter and receiver, and

 Introduce mathematical relationships for spectrum detection.

3.1 Experiment Strategy
It was essential to implement the designed (Intelligent Spectrum Sensor Radio) ISSR and therefore a

strategy was outlined in order to test the working of system. The objective on this thesis was to have a

system that first will receive and transmit an FM signal, as the primary user. Then the signal is analyzed

via an FFT plot, and interference with another FM signal is intentionally created at the same frequency,

which acts as the first secondary user (Figure 15). Next, the secondary user scans the FM band and

determines frequencies in use and holes in the band. Once the holes are identified, the system should be

able to transmit a .wav file containing music over the air using an FM modulated signal; else the

secondary user will keep scanning the FM band indefinitely until holes are detected (Figure 16).

Figure 15: Interference due to simultaneous transmission

25

Figure 16: No transmission until PU is active

Once the preceding steps are achieved, a second secondary user will be introduced and intentionally will

be made to interfere with the primary user regardless of spectrum scanning. This interference will happen

as if the second SU cannot detect the signal because of path loss and/or shadowing effect (Figure 17).

This interference can be contained by providing signal-relaying capability of the first secondary user,

which receives the beacon signal. The first secondary user will accordingly retransmit the signal it

receives from the primary user to the second secondary user which will then be able to detect the

spectrum more efficiently. This will allow the second secondary user not to transmit any data until it finds

a spectrum hole in the desired FM band (Figure 18). A more concrete way to prove the signal relaying

functionality will be shown by stopping the beacon relay intermediately when the primary user is

transmitting the data, and the second secondary user continues to scan. By stopping the relaying

intermediately, we would expect the second secondary user to again start mis-detecting the spectrum band

due to loss of the signal beacon, which will cause that user to interfere with the primary user. This .wav

file will be stored in the computer and will be received at the same computer with a different file name for

simplicity of the test. This .wav file should be able to be picked up at that frequency using a FM radio or

another USRP. This chapter talks about the experimental setup that was used to perform the given tasks.

Figure 17: Interference due to mis-detection of signal by 2nd secondary user

26

Figure 18: Efficient transmission with relay beacon

3.1.1 USRP and Antennas

The USRP motherboard and the daughterboards have already been discussed in detail in section 2.3. In

order to fit the needs of this experiment, three USRPs were used in conjunction with six daughterboards;

having two daughterboards for each USRP, which were the BasicRx and the BasicTx. The BasicRx was

the main receiving front-end for the system and the BasicTx was used as the main transmitting end.

Because the band being used was FM the band, the receiver card was chosen to be the BasicRx which

does not include any built-in amplification or filtering and is mainly controlled by the software. This

daughterboard was connected directly to the USRP‘s, on the RX B socket. To receive FM signals a loop

antenna was attached directly to the BasicRx board. The gain for this antenna was unknown and was

entirely controlled using the Python program. The BasicTx was used to transmit the signals over the air in

the FM band. The gain and amplification were controlled entirely via software. The daughterboard was

connected directly to the Tx A socket, the choice of which did not affect the experiment in any way.

3.1.2 The Audio Source:

Three audio sources were tested for the entire experiment in this thesis. First was for basic transceiver,

second for testing signal detection and third for signal relaying. The first was an mp3 music file stored on

the computer. The software tools, discussed in the Section 2.3.3, were capable to transforming the music

file very easily to a sample rate and bit rate compatible with the USRP. In the receiver terminal, the USRP

performs the DSP and uses the sampling of 32 kS/s after decimation from the ADC rate of 64 MS/s and

the same sampling rate was used for the music file. Using the USRP‘s file_source() block, the file was set

to be the data source. In the transmitter terminal, the audio source was a digital audio source converted to

analog signals by DAC. Therefore the USRP interpolation rate was set to 400 and software interpolation

rate was set to 10, setting the sampling rate to 128 MS/s/400/10 = 32 kS/s.

3.2 Experimental Setup
While working with GNU Radio and the USRP, a number of elements were taken into consideration,

including the operating system of the computer, soundcard on the computer, the USB interface version

etc. It is very important that all components selected for the experimental set up are compatible with each

27

other. The ISSR was set up as shown in Figure 19. It can be seen that the setup is fairly simple and easy to

hook up.

Figure 19: Hardware setup in the experiment

Computer:

GNU Radio works best on a Linux machine and a lot of support is available online. It is also established

that the GNU Radio works flawlessly with Fedora as well with Ubuntu 7.04 Feisty Fawn. The

compatibility of GNU Radio and the USRP is now well known. The important step was choosing the

right Linux machine and we have used the Compaq laptop with Linux machine using Ubuntu 7.04. The

detail specifications of the computer used are as follows:

Make and Model: COMPAQ

System OS: Ubuntu 7.04

Processor: Pentium 4 3.0 GHz with HT Technology

System Memory: 1024 MB

Sound Card: Sound Blaster Audigy 2HX

Graphics Card: ATI 9600XT 128-MB DDR SDRAM

USB Interface: USB 2.0

System Storage: 400 GB

3.3 Work Processes
CR networks are designed to facilitate higher bandwidth to mobile users via dynamic spectrum access in a

heterogeneous wireless architecture. This is achieved by tapping the underutilized spectrum of certain

long term licensed spectrum band in different geological areas. The CR network emphasizes sharing of

wireless channels in an opportunistic manner so that it can meet a higher bandwidth without affecting the

priority right of access to the licensed band by primary users.

28

In our work process, the first and immediate task is to continuously monitor and detect those idle portions

of spectrum at a particular instant and geographical position which will also be constantly fluctuating or

changing.

This thesis implements the above aspect of cognitive radio using the GNU Radio and the USRP

combination in the FM band (88 to 108 MHz). The end product is able to sense the entire FM band and

perform analysis and estimation routines to identify the ongoing transmission frequencies and spectrum

holes (i.e., frequencies where no transmission is occurring) for its intended transmission. This promises a

higher spectral efficiency and data rates facilitating an efficient communication protocol. The concepts

and methods used to implement such techniques are discussed next.

3.4 Reception Work-flow

3.4.1 USRP Front-End

For detection, reception and analysis of the signal, the amplitude information of the signal is used. The

USRP provides information about the signal with the help of daughterboards. In this project, the

daughterboard used was BasicRx which has built-in filters and amplifiers and operates within the UHF

band which includes the FM band.

The functioning of USRP front-end hardware is discussed in Chapter 2. Here we discuss in more detail

the receiver‘s data pipeline. On the receiving end, the USRP is used in combination with one or two

daughterboards although we used only one daughterboard (i.e., the BasicRx) was used. In this board, the

system first received and down-converts a real-world analog signal from the FM Band to an IF frequency.

This signal is next converted to a digital signal using a Mixed Signal Front End Chipset AD9862 [17] and

then decimated down to 4MS/s in this particular system, so that it can be transferred through a USB 2.0

port to be processed by the computer. The stream of data is hen converted to vector form which, in this

case, is accompanied using the GNU Radio‘s built-in Stream-to-Vector block. The values in the vector

are complex in I and Q format which are converted to magnitudes before analysis.

The GNU Radio example file usrp_spectrum_sense.py was used as the starting point for code

development [23]. This script uses the following functions to perform decimation, signal detection, FFT

and windowing the details of which are explained in the rest of this chapter:

Table 1: Table of functions

Function Operation

source_c Put incoming data into variable

set_decim_rate Set decimation rate

gr.probe_avg_mag_sqrd_c Spectrum detection

complex_to_mag_squared Convert complex vector into magnitude squared

3.4.2 Signal Detection and PSD

GNU Radio has built-in signal detection and signal source blocks which most of the time can be used

directly to facilitate signal detection. The signal detection block is an energy detector that averages the

signal over time and estimates the power spectral density (PSD) of the received signal [20].

29

The energy spectral density has infinite energy and the Fourier transform for such signal does not exist.

Instead, we use power spectral density which can be brought of as the average power over a time period

of the signal and is given by (for power, 0 < P < ∞):

dttxP

T

T
T

 2|)(|lim

As it can be seen, that the average power is basically a windowed version of the average energy of the

signal and hence a PSD is a normalized limit of ESD. If the ESD of signal xT(t), then the PSD of the

signal is

2|)(|
2

1
lim)(fX

T
fS T

T
x

dffSP x)(

dttx
T

P

T

T
T

 2|)(|
2

1
lim

In our system, the PSD is performed as in the example usrp_spectrum_sense.py and to get the final

estimated PSD the vector coming in from the stream is taken by the computer in sections of fixed lengths,

L. Digital signal processing including FFT and noise minimizing algorithms, are performed on these data

the details for which are explained in subsequent section.

Fourier analysis is performed using the Fourier transform of the signal which is a ―generalization of the

complex Fourier series‖. Since everything is performed in the digital environment, let us look at how the

Discrete Fourier Transform (DFT) is defined. The Fourier transform is defined as,

dttetftfF

2)()]([

To make it discrete, the argument t can be set to nt where n = 0,1,…,N − 1, which means the DFT is given

as,

N
ink

efF
N

n

kn

21

0

A relevant application of Fourier analysis is the frequency spectrum, which plots signal harmonic

magnitudes against frequency.

3.5 Transmission Work-flow
The USRP and GNU Radio provide a powerful digital signal processing platform which makes it possible

to transmit a data in various different formats and air interfaces. Understanding the transmission protocols

used by the USRP and the GNU Radio is very important in order to transmit a signal with the correct

properties. Therefore, we will focus on the transmission flowpath that the data take to get from the source

to the antenna.

30

3.5.1 Data Source

For transmission of data, the initial step is to generate a digital signal from a data source. GNU Radio and

USRP have provisions for various fast programmable and digital techniques for digital signal generation.

Using this digital data, the subsequent radio system processes such as modulation, filtration and other

digital signal processing techniques, are easily achieved by generating ―synthesis waveforms‖ [19].

The data source was chosen mostly to be the computer‘s sound card during the experiment. The generated

digital IQ values coming from the data stream via USB 2.0. This goes through the CIC filters before

getting fed to the multiplexer. An important step is to sample the signal properly and set the DAC rates so

that the data can be transmitted without any over/under run. Before that is performed, the data are up-

converted by passing through the digital up-converters (DUC) and being fed to the DACs and then are

ready to be transmitted using the transmitter daughterboard, in our case, the BasicTx.

3.5.2 Modulation Techniques

The signal has to be modulated using a technique that is known to the receiver and is able to be

demodulated at the receiver side. Since the band being used is the FM Band, the frequency modulation

technique was implemented. Using the BasicTx, an FM signal was intended to be transmitted at a

particular free frequency determined by the system.

FM band:

The Intelligent Spectrum-Sensor designed in this thesis project was designed keeping in mind that the FM

stations are approximately 200 kHz apart (in the U.S.) with up to 15 kHz wide audio bandwidth, with

maximum deviation of ±75 kHz [20] and, therefore, the resolution is set to 100 kHz for receiving and

transmission.

3.5.3 Data Sink

In the process of transmission, the blocks of the GNU Radio need to be able to complete the entire path

from the source to the sink. The data sink usually the USRP unless it is not being used to transmit. In the

transmission line, the following flow graph describes a full working Tx chain (Figure 20):

Figure 20: Data transmission pipeline

The following are the salient features of transmission in GNU Radio and USRP:

 Data type changes during processing,

 Data types must match for each connection, and

 Connecting to more than one block is possible (with some limitations).

Data Source Processing Modulation Data Sink

31

Chapter 4

Test Results and Analysis
In this chapter we

 Investigate the interference pattern caused by secondary user and how it affects the performance

of primary user (Figure 21A);

 Understand how spectrum sensing can reduce the effects of interference to primary user (Figure-

21B);

 Discuss extreme environments, i.e., signal fading and shadowing where spectrum sensing fails to

minimize the effects of interference (Figure 21C); and

 Introduce signal relaying via which a system can efficiently detect the spectrum (Figure 21D).

Figure 21: Four different scenarios of spectrum scanning and subsequent transmission scenario by
secondary user (SU)

32

4.1 Testing
After having all the software tools and the hardware configuration, the experiment was carried out. It is

easier to look at a state diagram, given in Figure 22, to understand how all the codes are being executed

and to see how all the python and C-Shell scripts were called, before looking at the actual screenshots of

the experiment‘s proceedings.

Case I: From the state diagram below, it can be seen that after the execution of C-shell Python script for

files fm_tx.py and fm_rcv.py (Figure 22), which transmit and receive data, respectively. Since there is no

obstacle for data transmission, i.e., spectrum detection for holes, any data can be transmitted at the same

instant of time and frequency, which will lead to channel interference between the primary and secondary

users. FFT plots have been provided below the state diagram, which display the increase in receiver

amplitude due to the inability of secondary users to stop its transmission when the primary user is active.

Figure 22: State diagram of transmission and its reception

To avoid such situations, a new scheme has been added to the secondary user that will be able to detect

when the spectrum is idle or active. The explanation of such development has been described in Cases II

and III.

33

Figure 23 below shows the FFT plot of a FM receiver at 90.7 MHz. As it can be seen, the received signal

is extremely weak due to poor reception

Figure 23: FFT plot of a FM receiver at 90.7 MHz

Figure 24 below displays the FFT plot of a FM receiver at 88 MHz where the transmission was done from

the base computer.

.

Figure 24: FFT plot of a FM receiver at 88 MHz where the transmission was from the base computer

Figure 26 below displays the interference between the primary and secondary user, in which it can be

seen that the amplitude level has also increased due to addition of other signal sources.

34

Figure 25: FFT plot showing reception with interference

To eliminate this interference issue, we introduce the spectrum scanning method for detection of occupied

frequency bands, which is discussed in detail in Case II.

Case II: From the diagram below, it can be seen that when the C-shell script ‗main‘ executes the file

fhop_trx.py (Figure 26) the system scans the environment in a loop continuously until it finds a spectrum

hole where it will lock to that specific frequency (a bandwidth of 30 Hz is given, ranging from 80.000000

MHz to 80.000003 MHz, a small bandwidth range was provided to show the capability of the spectrum

scanning). This will enforce the execution and start transmitting and receiving data at the locked

frequency. Due to misdetection at times, a better way to improve efficiency of the specific scheme was by

allowing the frequency to be locked and re-check for locking at the same frequency. This is done so as to

verify that indeed there is a spectrum hole, and not a misdetection of holes.

35

Figure 26: State diagram of transmission and reception with signal detection by secondary user

Figure 27 gives the interference pattern with primary and second secondary user (far away from the

primary user, and miss-detects the energy (beacon level)). To eliminate such a case, we introduce beacon

signal relaying. The first secondary user (closer to the primary user) retransmits the beacon it receives

from the primary user to the second secondary user so that second secondary user can detect the spectrum

even more efficiently. The procedure has been discussed in more detail in Case III.

36

Figure 27: FFT plot of reception with interference owing to misdetection of beacon

Case III: From the diagram below (Figure 28), it can be seen that when the C-shell script ‗main‘ executes

the file fhop_trx1.py, the system scans the environment in a loop continuously until it finds an active

spectrum (primary user transmitting data), at which point it will lock itself to the specific frequency (a

bandwidth of 30 Hz is given, ranging from 80.000000 MHz to 80.000003 MHz). It will then execute and

start retransmitting the data it is receiving from primary user at the locked frequency. This step allows the

beacon signal transmitted from the primary user to be transmitted such that the second secondary user can

detect the spectrum more efficiently. As a result of added efficiency of detection, the secondary user away

from the primary user will not misdetect the environment and consequently will not transmit any data

when the primary user will be active.

To verify the improvement in the spectrum detection by signal relaying, the relay beacon of the secondary

user (closer to the primary user) was stopped randomly when primary user was active. The results show,

as expected, that the second secondary user started to misdetect the environment due to signal fading and

shadowing and started transmitting the data while primary user was active causing interference.

This proves that the additional feature of relaying the signal indeed improves the detection of signal

(Figure 29) and hence reduces interference.

37

Figure 28: State diagram of transmission and receiver with signal detection and relaying

Figure 29 illustrates the case of transmission after efficient detection of signal with relay beacon by

second SU. In this case it efficiently sensed the signal strength when PU is inactive so that it can then

transmit the signal.

38

Figure 29: Efficient detection and transmission of signal with relay beacon

4.2 Energy Level Tables from SU Scanning
Scanning of spectrum holes are carried out under different scenarios and their responses are discussed in

Section 4.1. The scenarios are as follows (Figure 21):

I. Simple reception of data when secondary user (SU) does not transmit as it senses primary user‘s

(PU‘s) signal to be continuously active;

II. Transmission by 1
st
 SU when PU becomes idle;

III. Transmission by 2
nd

 SU when it misdetects the signal because of path loss and/or shadowing

resulting interference;

IV. Relay beacon: 1
st
 SU retransmits when PU is active to enhance signal strength; and

V. Efficient signal scanning and transmission by 2
nd

 SU in the scenario of relay beacon.

The received signal plots are demonstrated in each case through Figure-23, 24, 25, 27 and 29 with their

respective state diagrams.

We will now display the readings of the observed signal strength during spectrum scanning and illustrate

how they function in each case.

Under the scenarios (I to V mentioned above), observation values are recorded in different tables below

(Tables 2 to 5), which explain the cases where the spectrum has detected the environment and determine

when the PU is active or is in an idle state.

39

An important factor to be noted here is that the value for the threshold value to determine if the spectrum

is idle or active was determined via experimental tests. To determine a threshold value, we first run the

transmission file of the primary user and check the energy level values received by the secondary user.

The next test was done by keeping the primary user in an idle state and checking the energy level values

received by the secondary user. After many tests and trials, it was finally decided that any value above

300 units (arbitrary) would be considered as active spectrum, and anything below that would be

considered as idle. Due to the poor environment conditions, these values did fluctuate a lot at times

(energy levels of 30 units were detected during transmission, but this case showed up in a limited case,

and they were ignored since in practical environment the transmission and reception signals would be

much stronger).

Following are the illustration of different scenarios.

Case-I (Scanning when PU is active): Measures the energy level values (Table 2) detected by first

secondary user when primary user is active. It can be seen that the secondary user is not transmitting any

data unless it detects a spectrum hole.

As explained earlier, in this present case, the secondary user (SU) keeps on scanning for spectrum holes.

However, as the primary user (PU) is always active, the SU always detected an energy level that is well

above 300 units. In fact the values are of the order of 7600 unit or higher (Table 2). This indicated that PU

is active all along and therefore SU did not transmit the signal.

Table 2: Scanning for detection of spectrum holes, none detected as PU is always active

Detecting spectrum by Secondary Users

PU is always active

Frequency Energy Level Frequency Energy Level

88000000 13800.336265 88000016 10968.460823

88000001 14196.665286 88000017 11055.228929

88000002 16848.290363 88000018 9581.914221

88000003 14172.541305 88000019 7599.000400

88000004 13057.257114 88000020 7695.212960

88000005 9498.398895 88000021 11019.321112

88000006 8926.247758 88000022 15481.325741

88000007 10632.361293 88000023 15880.696211

88000008 10612.857870 88000024 15246.456260

88000009 10214.947515 88000025 17051.300013

88000010 9860.719208 88000026 17400.511770

88000011 10457.337862 88000027 16521.902391

88000012 10269.027289 88000028 14728.438908

88000013 9694.426690 88000029 12319.368533

88000014 9864.201638 88000000 11896.376349

88000015 10690.068225 No spectrum hole detected

40

Case-II (Scans and detects spectrum hole): Table 3 displays the energy level values detected by first

secondary user when primary user is active. It can be seen that the secondary user is not transmitting any

data as long as primary user is active, but as soon as the primary user stops transmitting data, the

secondary user detects spectrum holes and starts transmitting its own data (Table 3).

If we look at Table 2, it clearly showed that SU detects higher energy level value on initial scanning. But

with time, the signal strength drastically reduces to the 1.86 level indicating that the PU became idle. On

receiving such scanned information, SU started transmitting on same frequency.

Table 3: Scan and detect spectrum hole and transmit signal when PU becomes idle

Scanning of Spectrum holes by Secondary user

Detection of spectrum hole as and when PU stops transmitting

Frequency Energy Level Frequency Energy Level Actions

88000000 8654.0395099 88000024 5138.7871812

88000001 7713.3916483 88000025 3413.8993824

88000002 6931.7772115 88000026 1583.8941346

88000003 7695.2009969 88000027 1106.5906811

88000004 7940.8171550 88000028 735.4547642

88000005 8485.7233197 88000029 342.2728272

88000006 8759.9304076 88000000 159.8916101

88000007 9288.3902115 88000001 112.1663089

88000008 9279.2929673 88000002 75.0887831

88000009 9673.4181165 88000003 36.0300764

88000010 9136.7634676 88000004 25.8644597

88000011 9251.5280298 88000005 17.8673104

88000012 9415.6512500 88000006 9.2330295

88000013 8615.2803064 88000007 6.7903148

88000014 7101.7685927 88000008 3.5302162

88000015 5771.1826093 88000009 1.5912562 Freq1 Locked

88000016 5969.6126808 88000009 1.7166072 Freq2 Locked

88000017 7390.7181985 88000009 1.6557329 Freq3 Locked

88000018 9710.8073202 88000009 1.8600915 Freq4 Locked

88000019 10840.1677694 88000009

88000020 10723.5158255 tb stopped

88000021 11866.5900093 tb waiting

88000022 12221.1290540 tb new connect

88000023 11079.2710307 tb started again

Case III (Interference owing to miss-detection by second SU): In this case, the Table 4 displays the

energy level values detected by the second secondary user when primary user is active. The first SU being

nearer to can sense high energy level from PU as it is active, but because of poor environment condition,

which causes path loss or shadowing, the second SU received weaker signal and misdetects it even

41

though PU is still active (Table 4). It can be seen that the secondary user is still transmitting its data when

the primary user is active irrespective of spectrum detection by the second secondary user. This, in turn,

again produces signal interference.

Table 4: Misdetection of spectrum hole by SU when PU is still active

Scanning of spectrum holes by Secondary Users in absence of relay
beacon

Misdetect spectrum hole as energy level is very low in absence of beacon
because of path loss and/or shadowing when PU is still active

Frequency Energy Level Actions

88000000 7.309568459 Freq1 Locked

88000000 6.500118012 Freq2 Locked

88000000 6.290790309 Freq3 Locked

88000000 6.967237718 Freq4 Locked

88000000 5.942636258 Freq5 Locked

88000000 5.981474899 Freq6 Locked

88000000

tb stopped

tb waiting

tb new connect

tb started again

Case-IV (Relay Transmission): The SU in this case is meant to relay (retransmit) the signal if it detects

PU to be active. The reading of energy level values as detected by first secondary is displayed in Table 5,

keeping PU always active. It can be seen that the secondary user is now scanning the spectrum to check if

the primary user is active or idle; if active the user then locks itself at the specific frequency and starts re-

transmitting the data it has received from the primary user. This way it relays the beacon so that distant

SU (second SU) can receive enough energy level if PU is active.

Table 5: Relay beacon by first SU when PU is active

Scanning of Spectrum holes by Secondary user

Retransmission of signal by SU when PU is active

Frequency Energy Level Actions

88000000 8654.0395099 Freq1 Locked

88000000 7713.3916483 Freq2 Locked

88000000 6931.7772115 Freq3 Locked

88000000 7695.2009969 Freq4 Locked

tb stopped

tb waiting

tb new connect

42

tb started again

Case-V (Efficient detection by second SU because of relay beacon): Table 6 displays the energy level

reading detected by the second secondary user when the primary user is active. It can be seen that the

secondary user is now detecting the spectrum more efficiently and does not transmit its data until the

primary user stops transmitting its own data. This resulted due to the re-transmission of the beacon signal

by the first secondary user. The signal strength will be stronger now for second SU and it can efficiently

detect whether PU is active or idle. This helps in reducing the interference between interference between

primary and secondary users, and helps communication between users more efficient. The readings in

Table 6 illustrate this phenomenon.

An important point to note here is the energy level detection unit is not around 1000. This is mainly due

to high data loss. The relaying phenomenon can be realized by the fact that the energy level has increased

by 5 times compared to Table 5.

Table 6: Efficient detection by distant SU in presence of relay beacon

Scanning of Spectrum holes by Secondary user

Efficient detection of spectrum because of relay beacon as path
loss and/or shadowing effect is now contained

Frequency Energy Level Frequency Energy Level

88000000 25.9546404 88000016 23.7485572

88000001 26.8311246 88000017 23.5921345

88000002 27.7609016 88000018 22.1043002

88000003 25.5649990 88000019 19.6328150

88000004 25.2899548 88000020 20.5787475

88000005 23.5531533 88000021 20.6564542

88000006 22.4746604 88000022 21.4525738

88000007 22.5357365 88000023 21.2607286

88000008 22.9870761 88000024 23.0835875

88000009 21.4924421 88000025 23.0180919

88000010 23.1547190 88000026 23.4111362

88000011 24.7725450 88000027 23.8778500

88000012 27.0528277 88000028 24.1346016

88000013 29.5229456 88000029 23.0661158

88000014 30.0563431 88000000 23.0252490

88000015 26.2937977 Efficient Detection

43

Chapter 5

Conclusions and Future Work

5.1 Conclusions
The hardware tests shows that the USRP with GNU Radio is capable of spectrum scanning and signal

relaying to support the hypothesis. An experiment with interference phenomenon and spectrum scanning

by CR is effectively carried out with a Software-Defined Radio system. It shows that SDR can be suitably

customized to interface with a hardware transceiver. GNU Radio in conjunction with the USRP is a low

cost platform facilitating adequate implementation flexibility and support for modular development. The

work defines a baseline structure to work on a cognitive radio philosophy. The work studied the impact of

interference in the case of simultaneous transmission and the process to scan and sense spectrum holes to

suitably choose the available frequency band.

The project also helped in understanding the application of GNU Radio for deployment in several such

research-oriented projects.

5.2 Future Work
Cognitive Radio is a near reality and its potential contribution to spectrum usage is immense. Intelligent

spectrum sensing radio using GNU Radio and USRP provided a good basic structure for a cognitive radio

system. With a similar enhanced setup, and by using additional USRPs, the study of spectrum scanning

and sensing the spectrum holes for transmission is a working option. Also, the model of transmitting a

dedicated beacon by primary user for locking of that particular frequency by other cognitive user is also

another case of study. Such model setup with beacon comprising relatively higher number of cognitive

users can be a case for study. Similar models with cooperative relay of beacon can also be analyzed so as

to avoid misdetection of beacon by distant cognitive users.

Implementation of CR-spectrum mobility is also a topmost criterion for system development during our

future work. Our future intention is to implement a system where the secondary user will automatically

stop transmitting its data as soon as the primary user comes online. This phenomenon is called spectrum

mobility, in which the secondary user instantaneously stops transmitting the data and restarts scanning for

the frequency spectrum for a hole to transmit rest of the data.

44

BIBLIOGRAPHY

1] Spectrum Efficiency Working Group. Report of the Spectrum Efficiency Working Group. Technical

report, FCC, November 2002.

2] Mitola, J; Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. PhD

thesis, Royal Institute of Technology (KTH), May 2000.

3] Blossom, Eric. ―Software Radio.‖ Comsec. Blossom Research, LLC. Feb. 2008

http://www.comsec.com/

4] Shen, Dawei. ―Tutorial 4: the USRP Board.‖ Introduction. SDR Documentation. Notre Dame, IN:

University of Notre Dame, 2005. Oct. 2007

 http://www.nd.edu/~jnl/sdr/docs/

5] Classification by tier system in Software-Defined Radio:

 http://www.radio-electronics.com/info/receivers/sdr/software-defined-radios-tutorial.php

6] Patton, Lee K. A GNU Radio Based Software-Defined Radar. Wright State University. 2007.

7] Mian Omer; Intelligent Spectrum Sensor Radio:

 http://rave.ohiolink.edu/etdc/view?acc_num=wright1215360432
8] M. Gastpar, ―On capacity under receive and spatial spectrum-sharing constraints,‖ IEEE Trans.

Inform. Theory, vol. 53, pp. 471–487, Feb. 2007.

9] Y. Xing, C. Marthur, M. Haleem, R. Chandramouli, and K. Subbalakshmi, ―Dynamic spectrum

access with QoS and interference temperature constraints,‖ IEEE Trans. Mobile Comput., vol. 6, no.

4, pp. 423–433, Apr. 2007.

10] W. Weng, T. Peng, and W. Wang, ―Optimal power control under interference temperature constraints

in cognitive radio network,‖ in Proc. IEEE Wireless Communications and Networking Conf., Hong

Kong, China, Mar. 2007, pp. 116–120.

11] Mai Vu, Saeed S. Ghassemzadeh, and Vahid Tarokh, ―Interference in a cognitive network with

beacon‖, WCNC 2008, IEEE, pp. 876–881; April 2008.

12] http://dev.emcelettronica.com/gnu-radio-open-source-software-defined-radio

13] Ettus, Matt. ―USRP Datasheet.‖ Ettus Research LLC. Oct. 2007: http://www.ettus.com

14] USRP Peripherals: http://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral

15] Daughterboards as transceivers:http://www.ettus.com/downloads/ettus_ds_transceiver_dbrds_v6c.pdf

16] Field Programmable Gate Array-FPGA: http://en.wikipedia.org/wiki/Field-programmable_gate_array

17] Analog Devices AD9862—12/14-Bit Mixed Signal Front-End (MxFE®) Processor for Broadband

Communications.

http://www.analog.com/en/prod/0%2C2877%2CAD9862%2C00.html.

18] Python Programming Language—Official Website. Dec. 2007: http://docs.python.org/tutorial/

19] Reed, J H. Software Radio: a Modern Approach to Radio Engineering. Prentice Hall, 2002

20] ―FM Broadcast Band.‖ Wikipedia. Feb. 2008 http://en.wikipedia.org/wiki/FM_broadcast_band

http://www.comsec.com/
http://www.nd.edu/~jnl/sdr/docs/
http://www.radio-electronics.com/info/receivers/sdr/software-defined-radios-tutorial.php
http://rave.ohiolink.edu/etdc/view?acc_num=wright1215360432
http://dev.emcelettronica.com/gnu-radio-open-source-software-defined-radio
http://www.ettus.com/
http://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral
http://www.ettus.com/downloads/ettus_ds_transceiver_dbrds_v6c.pdf
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.analog.com/en/prod/0%2C2877%2CAD9862%2C00.html
http://docs.python.org/tutorial/
http://en.wikipedia.org/wiki/FM_broadcast_band

45

Appendix-A

MATLAB Files:

A1: γ vs. Interference, I0 -(Reference Figure 5)

%h = (A/d^a/2).*hbar;

lambda =.6;

beta = .5; % active factor of cognitive user

alpha = 2.1;

R=100000;

P=2.6;

A = 2*pi*lambda*beta*P/(alpha-2);

g = 0.01:0.01:10;ep = 0.2;Ro = 5;

%g = 0.2;ep = 0.01:0.01:10;Ro = 5;

%g = 0.2;ep = 0.2;Ro = 0.01:0.01:10;

B= 1./(ep.^(alpha-2));

C = exp(-g.*((ep+Ro).^alpha)).*(ep+Ro).^(2-alpha);

D1 = gammainc(2/alpha,g.*((ep+Ro).^alpha));

D2 = gammainc(2/alpha,g.*((R+Ro).^alpha));

D = g.^((alpha-2)/alpha).*(D1-D2);

E = 1./R^(alpha-2);

F = exp(-g.*((R+Ro).^alpha).*(R+Ro).^(2-alpha));

I = A *(B - E - C + F) + D ;

semilogx(g,I);

xlabel('gamma')

ylabel('Interference Io')

gtext({'alpha = 2.1','Ro = 0.5','epsilon = 0.2','R = 100,000'})

A2: ε vs. Interference, I0 -(Reference Figure 6)
%h = (A/d^a/2).*hbar;

lambda =.6;

beta = .5; % active factor of cognitive user

alpha = 2.1;

R=100000;

P=2.6;

A = 2*pi*lambda*beta*P/(alpha-2);

46

%g = 0.01:0.01:10;ep = 0.2;Ro = 5;

g = 0.2;ep = 0.01:0.01:10;Ro = 5;

%g = 0.2;ep = 0.2;Ro = 0.01:0.01:10;

B= 1./(ep.^(alpha-2));

C = exp(-g.*((ep+Ro).^alpha)).*(ep+Ro).^(2-alpha);

D1 = gammainc(2/alpha,g.*((ep+Ro).^alpha));

D2 = gammainc(2/alpha,g.*((R+Ro).^alpha));

D = g.^((alpha-2)/alpha).*(D1-D2);

E = 1./R^(alpha-2);

F = exp(-g.*((R+Ro).^alpha).*(R+Ro).^(2-alpha));

I = A *(B - E - C + F) + D ;

semilogx(ep,I);

xlabel('epsilon')

ylabel('Interference Io')

gtext({'alpha = 2.1','Ro = 0.5','gamma = 0.2','R = 100,000'})

A3:R0 vs. Interference, I0 - (Reference Figure 7)
%h = (A/d^a/2).*hbar;

lambda =.6;

beta = .5; % active factor of cognitive user

alpha = 2.1;

R=100000;

P=2.6;

A = 2*pi*lambda*beta*P/(alpha-2);

%g = 0.01:0.01:10;ep = 0.2;Ro = 5;

%g = 0.2;ep = 0.01:0.01:10;Ro = 5;

g = 0.2;ep = 0.2;Ro = 0.01:0.01:10;

B= 1./(ep.^(alpha-2));

C = exp(-g.*((ep+Ro).^alpha)).*(ep+Ro).^(2-alpha);

D1 = gammainc(2/alpha,g.*((ep+Ro).^alpha));

D2 = gammainc(2/alpha,g.*((R+Ro).^alpha));

D = g.^((alpha-2)/alpha).*(D1-D2);

E = 1./R^(alpha-2);

F = exp(-g.*((R+Ro).^alpha).*(R+Ro).^(2-alpha));

I = A *(B - E - C + F) + D ;

semilogx(Ro,I);

xlabel('Ro')

ylabel('Interference Io')

gtext({'alpha = 2.1','epsilon = 0.2','gamma = 0.2','R = 100,000'})

A4: γ vs. var[I0] (Reference Figure 8)
%h = (A/d^a/2).*hbar;

lambda =.6;

beta = .5; % active factor of cognitive user

47

alpha = 2.1;

R=100000;

P=2.6;

g = 0.01:0.01:10;ep = 0.2;Ro = 5;

%g = 0.2;ep = 0.01:0.01:10;Ro = 5;

%g = 0.2;ep = 0.2;Ro = 0.01:0.01:10;

A = 1/(alpha-1).*exp(-g.*(ep+Ro)^alpha).*(ep+Ro)^(-2.*(alpha-1))

B = ((alpha.*g)./((alpha-1).*(alpha-2))).*exp(-

g.*(ep+Ro)^alpha).*(ep+Ro)^(2-alpha)

C = ((alpha.*g.^(2-2/alpha))./((alpha-1).*(alpha-

2))).*gammainc(2/alpha,g.*((ep+Ro).^alpha))

A1 = 1/(alpha-1).*exp((-2.*g).*(ep)^alpha).*(ep)^(-2.*(alpha-1))

B1 = ((alpha.*(2.*g)./((alpha-1).*(alpha-2))).*exp(-

(2.*g).*(ep)^alpha).*(ep)^(2-alpha))

C1 = ((alpha.*(2.*g).^(2-2/alpha))./((alpha-1).*(alpha-

2))).*gammainc(2/alpha,(2.*g).*((ep).^alpha))

D = 6*(P^2)*(beta^2)*lambda*pi;

E = (1/2*(alpha-1))*1/(ep)^2.*(alpha-1);

F = exp(-2.*g.*Ro^alpha);

var = D.*(E - (A - B + C) + 0.5.*F.*(A1-B1+C1)) ;

semilogx(g,var)

xlabel('gamma')

ylabel('Interference varience Var(Io)')

gtext({'alpha = 2.1','Ro = 0.5','epsilon = 0.2','R = 100,000'})

A5: R0 vs. var[I0] -(Reference Figure 9)
%h = (A/d^a/2).*hbar;

lambda =.6;

beta = .5; % active factor of cognitive user

alpha = 2.1;

R=100000;

P=2.6;

%g = 0.01:0.01:10;ep = 0.2;Ro = 5;

%g = 0.2;ep = 0.01:0.01:10;Ro = 5;

g = 0.2;ep = 0.2;Ro = 0.01:0.01:10;

A = 1/(alpha-1).*exp(-g.*(ep+Ro).^alpha).*(ep+Ro).^(-2.*(alpha-1))

B = ((alpha.*g)./((alpha-1).*(alpha-2))).*exp(-

g.*(ep+Ro).^alpha).*(ep+Ro).^(2-alpha)

C = ((alpha.*g.^(2-2/alpha))./((alpha-1).*(alpha-

2))).*gammainc(2/alpha,g.*((ep+Ro).^alpha))

48

A1 = 1./(alpha-1).*exp((-2.*g).*(ep).^alpha).*(ep).^(-2.*(alpha-1))

B1 = ((alpha.*(2.*g)./((alpha-1).*(alpha-2))).*exp(-

(2.*g).*(ep).^alpha).*(ep).^(2-alpha))

C1 = ((alpha.*(2.*g).^(2-2/alpha))./((alpha-1).*(alpha-

2))).*gammainc(2/alpha,(2.*g).*((ep).^alpha))

D = 6*(P^2)*(beta^2)*lambda*pi;

E = (1./2.*(alpha-1)).*1./(ep).^2.*(alpha-1);

F = exp(-2.*g.*Ro.^alpha);

var = D.*(E - (A - B + C) + 0.5.*F.*(A1-B1+C1)) ;

semilogx(Ro,var)

xlabel('Ro')

ylabel('Interference varience Var(Io)')

gtext({'alpha = 2.1','gamma = 0.2','epsilon = 0.2','R = 100,000'})

A6: ε0 vs. var[I0] -(Reference Figure 10)
%h = (A/d^a/2).*hbar;
lambda =.6;
beta = .5; % active factor of cognitive user
alpha = 2.1;
R=100000;
P=2.6;
%g = 0.01:0.01:10;ep = 0.2;Ro = 5;
g = 0.2;ep = 0.01:0.01:10;Ro = 5;
%g = 0.2;ep = 0.2;Ro = 0.01:0.01:10;
A = 1/(alpha-1).*exp(-g.*(ep+Ro).^alpha).*(ep+Ro).^(-2.*(alpha-1))
B = ((alpha.*g)./((alpha-1).*(alpha-2))).*exp(-

g.*(ep+Ro).^alpha).*(ep+Ro).^(2-alpha)
C = ((alpha.*g.^(2-2/alpha))./((alpha-1).*(alpha-

2))).*gammainc(2/alpha,g.*((ep+Ro).^alpha))

A1 = 1./(alpha-1).*exp((-2.*g).*(ep).^alpha).*(ep).^(-2.*(alpha-1))
B1 = ((alpha.*(2.*g)./((alpha-1).*(alpha-2))).*exp(-

(2.*g).*(ep).^alpha).*(ep).^(2-alpha))
C1 = ((alpha.*(2.*g).^(2-2/alpha))./((alpha-1).*(alpha-

2))).*gammainc(2/alpha,(2.*g).*((ep).^alpha))

D = 6*(P^2)*(beta^2)*lambda*pi;
E = (1./2.*(alpha-1)).*1./(ep).^2.*(alpha-1);
F = exp(-2.*g.*Ro^alpha);
var = D.*(E - (A - B + C) + 0.5.*F.*(A1-B1+C1)) ;
semilogx(ep,var)
xlabel('epsilon')
ylabel('Interference varience Var(Io)')
gtext({'alpha = 2.1','Ro = 5','gamma = 0.2','R = 100,000'})

49

Appendix-B
B1: fm_rcv.py (receiver file)
#!/usr/bin/env python

Copyright 2005,2006,2007,2009 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3, or (at your option)

any later version.

GNU Radio is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with GNU Radio; see the file COPYING. If not, write to

the Free Software Foundation, Inc., 51 Franklin Street,

Boston, MA 02110-1301, USA.

from gnuradio import gr, gru, eng_notation, optfir

from gnuradio import audio

from gnuradio import usrp

from gnuradio import blks2

from gnuradio.eng_option import eng_option

from gnuradio.wxgui import slider, powermate

from gnuradio.wxgui import stdgui2, fftsink2, form

from optparse import OptionParser

from usrpm import usrp_dbid

import sys

import math

import wx

def pick_subdevice(u):

 """

 The user didn't specify a subdevice on the command line.

 Try for one of these, in order: TV_RX, BASIC_RX, whatever is on

side A.

 @return a subdev_spec

 """

 return usrp.pick_subdev(u, (usrp_dbid.TV_RX,

 usrp_dbid.TV_RX_REV_2,

 usrp_dbid.TV_RX_REV_3,

 usrp_dbid.BASIC_RX))

50

class wfm_rx_block (stdgui2.std_top_block):

 def __init__(self,frame,panel,vbox,argv):

 stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv)

 parser=OptionParser(option_class=eng_option)

 parser.add_option("-R", "--rx-subdev-spec", type="subdev",

default="A",

 help="select USRP Rx side A or B

(default=A)")

 parser.add_option("-f", "--freq", type="eng_float",

default=90.7e6,

 help="set frequency to FREQ",

metavar="FREQ")

 parser.add_option("-g", "--gain", type="eng_float",

default=40,

 help="set gain in dB (default is midpoint)")

 parser.add_option("-V", "--volume", type="eng_float",

default=None,

 help="set volume (default is midpoint)")

 parser.add_option("-O", "--audio-output", type="string",

default="",

 help="pcm device name. E.g., hw:0,0 or

surround51 or /dev/dsp")

 (options, args) = parser.parse_args()

 if len(args) != 0:

 parser.print_help()

 sys.exit(1)

 self.frame = frame

 self.panel = panel

 self.vol = 1

 self.state = "FREQ"

 self.freq = 0

 # build graph

 self.u = usrp.source_c() # usrp is data

source

 adc_rate = self.u.adc_rate() # 64 MS/s

 usrp_decim = 200

 self.u.set_decim_rate(usrp_decim)

 usrp_rate = adc_rate / usrp_decim # 320 kS/s

 chanfilt_decim = 1

 demod_rate = usrp_rate / chanfilt_decim

 audio_decimation = 10

 audio_rate = demod_rate / audio_decimation # 32 kHz

51

 if options.rx_subdev_spec is None:

 options.rx_subdev_spec = pick_subdevice(self.u)

 self.u.set_mux(usrp.determine_rx_mux_value(self.u,

options.rx_subdev_spec))

 self.subdev = usrp.selected_subdev(self.u,

options.rx_subdev_spec)

 print "Using RX d'board %s" % (self.subdev.side_and_name(),)

 dbid = self.subdev.dbid()

 if not (dbid == usrp_dbid.BASIC_RX or

 dbid == usrp_dbid.TV_RX or

 dbid == usrp_dbid.TV_RX_REV_2 or

 dbid == usrp_dbid.TV_RX_REV_3):

 print "This daughterboard does not cover the required

frequency range"

 print "for this application. Please use a BasicRX or TVRX

daughterboard."

 raw_input("Press ENTER to continue anyway, or Ctrl-C to

exit.")

 chan_filt_coeffs = optfir.low_pass (1, # gain

 usrp_rate, # sampling

rate

 80e3, # passband

cutoff

 115e3, # stopband

cutoff

 0.1, # passband

ripple

 60) # stopband

attenuation

 #print len(chan_filt_coeffs)

 chan_filt = gr.fir_filter_ccf (chanfilt_decim,

chan_filt_coeffs)

 self.guts = blks2.wfm_rcv (demod_rate, audio_decimation)

 self.volume_control = gr.multiply_const_ff(self.vol)

 # sound card as final sink

 audio_sink = audio.sink (int

(audio_rate),options.audio_output,False) # ok_to_block

 file_sink = gr.wavfile_sink ("chann1.wav", 2, audio_rate, 16) #

ok_to_block

 # now wire it all together

 self.connect (self.u, chan_filt, self.guts,

self.volume_control, audio_sink)

 self.connect (self.volume_control, file_sink)

 self._build_gui(vbox, usrp_rate, demod_rate, audio_rate)

52

 if options.gain is None:

 # if no gain was specified, use the mid-point in dB

 g = self.subdev.gain_range()

 options.gain = float(g[0]+g[1])/2

 if options.volume is None:

 g = self.volume_range()

 options.volume = float(g[0]+g[1])/2

 if abs(options.freq) < 1e6:

 options.freq *= 1e6

 # set initial values

 self.set_gain(options.gain)

 self.set_vol(options.volume)

 if not(self.set_freq(options.freq)):

 self._set_status_msg("Failed to set initial frequency")

 def _set_status_msg(self, msg, which=0):

 self.frame.GetStatusBar().SetStatusText(msg, which)

 def _build_gui(self, vbox, usrp_rate, demod_rate, audio_rate):

 def _form_set_freq(kv):

 return self.set_freq(kv['freq'])

 if 1:

 self.src_fft = fftsink2.fft_sink_c(self.panel, title="Data

from USRP",

 fft_size=512,

sample_rate=usrp_rate,

 ref_scale=32768.0, ref_level=0,

y_divs=12)

 self.connect (self.u, self.src_fft)

 vbox.Add (self.src_fft.win, 4, wx.EXPAND)

 if 1:

 post_filt_fft = fftsink2.fft_sink_f(self.panel,

title="Post Demod",

 fft_size=1024,

sample_rate=usrp_rate,

 y_per_div=10,

ref_level=0)

 self.connect (self.guts.fm_demod, post_filt_fft)

 vbox.Add (post_filt_fft.win, 4, wx.EXPAND)

 if 0:

53

 post_deemph_fft = fftsink2.fft_sink_f(self.panel,

title="Post Deemph",

 fft_size=512,

sample_rate=audio_rate,

 y_per_div=10,

ref_level=-20)

 self.connect (self.guts.deemph, post_deemph_fft)

 vbox.Add (post_deemph_fft.win, 4, wx.EXPAND)

 # control area form at bottom

 self.myform = myform = form.form()

 hbox = wx.BoxSizer(wx.HORIZONTAL)

 hbox.Add((5,0), 0)

 myform['freq'] = form.float_field(

 parent=self.panel, sizer=hbox, label="Freq", weight=1,

 callback=myform.check_input_and_call(_form_set_freq,

self._set_status_msg))

 hbox.Add((5,0), 0)

 myform['freq_slider'] = \

 form.quantized_slider_field(parent=self.panel, sizer=hbox,

weight=3,

 range=(87.9e6, 108.1e6,

0.1e6),

 callback=self.set_freq)

 hbox.Add((5,0), 0)

 vbox.Add(hbox, 0, wx.EXPAND)

 hbox = wx.BoxSizer(wx.HORIZONTAL)

 hbox.Add((5,0), 0)

 myform['volume'] = \

 form.quantized_slider_field(parent=self.panel, sizer=hbox,

label="Volume",

 weight=3,

range=self.volume_range(),

 callback=self.set_vol)

 hbox.Add((5,0), 1)

 myform['gain'] = \

 form.quantized_slider_field(parent=self.panel, sizer=hbox,

label="Gain",

 weight=3,

range=self.subdev.gain_range(),

 callback=self.set_gain)

 hbox.Add((5,0), 0)

 vbox.Add(hbox, 0, wx.EXPAND)

 try:

 self.knob = powermate.powermate(self.frame)

54

 self.rot = 0

 powermate.EVT_POWERMATE_ROTATE (self.frame,

self.on_rotate)

 powermate.EVT_POWERMATE_BUTTON (self.frame,

self.on_button)

 except:

 print "FYI: No Powermate or Contour Knob found"

 def on_rotate (self, event):

 self.rot += event.delta

 if (self.state == "FREQ"):

 if self.rot >= 3:

 self.set_freq(self.freq + .1e6)

 self.rot -= 3

 elif self.rot <=-3:

 self.set_freq(self.freq - .1e6)

 self.rot += 3

 else:

 step = self.volume_range()[2]

 if self.rot >= 3:

 self.set_vol(self.vol + step)

 self.rot -= 3

 elif self.rot <=-3:

 self.set_vol(self.vol - step)

 self.rot += 3

 def on_button (self, event):

 if event.value == 0: # button up

 return

 self.rot = 0

 if self.state == "FREQ":

 self.state = "VOL"

 else:

 self.state = "FREQ"

 self.update_status_bar ()

 def set_vol (self, vol):

 g = self.volume_range()

 self.vol = max(g[0], min(g[1], vol))

 self.volume_control.set_k(10**(self.vol/10))

 self.myform['volume'].set_value(self.vol)

 self.update_status_bar ()

 def set_freq(self, target_freq):

 """

 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz

 @rypte: bool

55

 Tuning is a two step process. First we ask the front-end to

 tune as close to the desired frequency as it can. Then we use

 the result of that operation and our target_frequency to

 determine the value for the digital down converter.

 """

 r = usrp.tune(self.u, 0, self.subdev, target_freq)

 if r:

 self.freq = target_freq

 self.myform['freq'].set_value(target_freq) #

update displayed value

 self.myform['freq_slider'].set_value(target_freq) #

update displayed value

 self.update_status_bar()

 self._set_status_msg("OK", 0)

 return True

 self._set_status_msg("Failed", 0)

 return False

 def set_gain(self, gain):

 self.myform['gain'].set_value(gain) # update displayed

value

 self.subdev.set_gain(gain)

 def update_status_bar (self):

 msg = "Volume:%r Setting:%s" % (self.vol, self.state)

 self._set_status_msg(msg, 1)

 self.src_fft.set_baseband_freq(self.freq)

 def volume_range(self):

 return (-20.0, 0.0, 0.5)

if __name__ == '__main__':

 app = stdgui2.stdapp (wfm_rx_block, "USRP WFM RX")

 app.MainLoop ()

B2: fm_tx.py (transmitter file)

#!/usr/bin/env python

Copyright 2005,2006,2007 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3, or (at your option)

56

any later version.

GNU Radio is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with GNU Radio; see the file COPYING. If not, write to

the Free Software Foundation, Inc., 51 Franklin Street,

Boston, MA 02110-1301, USA.

"""

Transmit N simultaneous narrow band FM signals.

They will be centered at the frequency specified on the command line,

and will spaced at 25kHz steps from there.

The program opens N files with names audio-N.dat where N is in [0,7].

These files should contain floating point audio samples in the range

[-1,1]

sampled at 32kS/sec. You can create files like this using

audio_to_file.py

"""

from gnuradio import gr, eng_notation

from gnuradio import usrp

from gnuradio import audio

from gnuradio import blks2

from gnuradio.eng_option import eng_option

from optparse import OptionParser

from usrpm import usrp_dbid

import math

import sys

from gnuradio.wxgui import stdgui2, fftsink2

#from gnuradio import tx_debug_gui

import wx

instantiate one transmit chain for each call

class pipeline(gr.hier_block2):

 def __init__(self, filename, audio_rate, if_rate):

 gr.hier_block2.__init__(self, "pipeline",

 gr.io_signature(0, 0, 0),

Input signature

 gr.io_signature(1, 1,

gr.sizeof_gr_complex)) # Output signature

57

 #src = gr.sig_source_c(if_rate, gr.GR_SIN_WAVE, 2e3, 1, 0)

 #src = gr.file_source (gr.sizeof_float, filename, True)

 src = gr.wavfile_source (filename, True)

 gain = gr.multiply_const_ff (30)

 fmtx = blks2.wfm_tx (audio_rate, if_rate)#, max_dev=75e3,

tau=75e-6)

 self.connect(src, gain, fmtx, self)

 #self.connect(src, self)

class fm_tx_block(gr.top_block):

 def __init__(self):

 gr.top_block.__init__(self)

 parser = OptionParser (option_class=eng_option)

 parser.add_option("-f", "--freq", type="eng_float",

default=88e6,

 help="set Tx frequency to FREQ [required]",

metavar="FREQ")

 (options, args) = parser.parse_args ()

 if len(args) != 0:

 parser.print_help()

 sys.exit(1)

 if options.freq is None:

 sys.stderr.write("fm_tx4: must specify frequency with -f

FREQ\n")

 parser.print_help()

 sys.exit(1)

 # --

 # Set up constants and parameters

 self.u = usrp.sink_c () # the USRP sink (consumes

samples)

 self.dac_rate = self.u.dac_rate() # 128

MS/s

 self.usrp_interp = 400

 self.u.set_interp_rate(self.usrp_interp)

 self.usrp_rate = self.dac_rate / self.usrp_interp # 320

kS/s

 self.sw_interp = 10

 self.audio_rate = self.usrp_rate / self.sw_interp # 32 kS/s

 # determine the daughterboard subdevice we're using

 tx_subdev_spec = usrp.pick_tx_subdevice(self.u)

 m = usrp.determine_tx_mux_value(self.u, tx_subdev_spec)

 #print "mux = %#04x" % (m,)

 self.u.set_mux(m)

58

 self.subdev = usrp.selected_subdev(self.u, tx_subdev_spec)

 print "Using TX d'board %s" % (self.subdev.side_and_name(),)

 self.subdev.set_gain(self.subdev.gain_range()[1]) # set max

Tx gain

 if not self.set_freq(options.freq):

 freq_range = self.subdev.freq_range()

 print "Failed to set frequency to %s. Daughterboard

supports %s to %s" % (

 eng_notation.num_to_str(options.freq),

 eng_notation.num_to_str(freq_range[0]),

 eng_notation.num_to_str(freq_range[1]))

 raise SystemExit

 self.subdev.set_enable(True) # enable

transmitter

 # Instantiate 1 NBFM channels

 t = pipeline("am_rec_data.wav", self.audio_rate,

self.usrp_rate)

 gain = gr.multiply_const_cc (32e3)

 # connect it all

 self.connect (t, gain, self.u)

 def set_freq(self, target_freq):

 """

 Set the center frequency we're interested in.

 @param target_freq: frequency in Hz

 @rypte: bool

 Tuning is a two step process. First we ask the front-end to

 tune as close to the desired frequency as it can. Then we use

 the result of that operation and our target_frequency to

 determine the value for the digital up converter. Finally, we

feed

 any residual_freq to the s/w freq translater.

 """

 r = self.u.tune(self.subdev.which(), self.subdev, target_freq)

 if r:

 print "r.baseband_freq =",

eng_notation.num_to_str(r.baseband_freq)

 print "r.dxc_freq =",

eng_notation.num_to_str(r.dxc_freq)

 print "r.residual_freq =",

eng_notation.num_to_str(r.residual_freq)

 print "r.inverted =", r.inverted

59

 # Could use residual_freq in s/w freq translator

 return True

 return False

if __name__ == '__main__':

 try:

 fm_tx_block().run()

 except KeyboardInterrupt:

 pass

B3: fhop_trx.py (Spectrum scan for holes by hopping)

#!/usr/bin/env python

Copyright 2010 Arnab Banik

The Pennsylvania State University

fhop_rx.py - Frequency Hopping receiver module

AUTHOR: Arnab Banik

DATE: 18
th
 October, 2010

DESCRIPTION: (import <filename>; help(<filename>)

"""

Demonstration of frequency hopping using the USRP1 hardware. Requires

the RX Basic module in locaiton A.

TODO:: <<< Add how it works later>>>

"""

#--

from gnuradio import gr, gru, audio, optfir, eng_notation

from gnuradio import usrp

from gnuradio import blks2

from optparse import OptionParser

from gnuradio.eng_option import eng_option

import math

import sys

import random

import time

import timer

class pipeline(gr.hier_block2):

 def __init__(self, filename, audio_rate2, if_rate):

 gr.hier_block2.__init__(self, "pipeline",

 gr.io_signature(0,0,0), # Input

signature

 gr.io_signature(1,1,gr.sizeof_gr_complex)) #

Output signature

60

 src = gr.wavfile_source (filename, True)

 gain = gr.multiply_const_ff (30)

 fmtx = blks2.wfm_tx (audio_rate2, if_rate)

 self.connect(src, gain, fmtx, self)

class freq_hop():

 def __init__(self):

 # Parameters

 self.fir_decim = 10 # Decimation rate of the FIR filer

 self.debug_mode = 1 # Enable/Disable timing

 self.lock_state = 1

 self.freq_flag = 0

 self.freq1 = 0

 self.freq2 = 0

 self.spin_period = 20 # Spin period in ms

 self.hop_period = 1000 # Hop period in ms

 self.signal_threshold = 5 # Signal threshold level

 self.channel = 0 # Initial hop channel

 self.hop_set = range(88000000, 88000030, 1)

 self.freq = self.hop_set[self.channel]

 parser = OptionParser(option_class=eng_option)

 parser.add_option("-R", "--rx-subdev-spec", type="subdev",

default="A",

 help="select USRP Rx side A or B

(default=A)")

 parser.add_option("-T", "--tx-subdev-spec", type="subdev",

default="A",

 help="select USRP Tx side A or B

(default=A)")

 (options,args) = parser.parse_args()

 if len(args) != 0:

 parser.print_help()

 sys.exit(1)

 # Setup of USRP RX

 self.rx = usrp.source_c()

 self.u = usrp.sink_c()

 adc_rate = self.rx.adc_rate() # For USRP1, 64 MHz

 self.dac_rate = self.u.dac_rate() # For USRP1, 128 MHz

 usrp_decim = 200

 self.usrp_interp = 400

 self.rx.set_decim_rate(usrp_decim)

 self.u.set_interp_rate(self.usrp_interp)

 usrp_rate1 = adc_rate / usrp_decim # 320 KHz

 self.usrp_rate2 = self.dac_rate/self.usrp_interp

 chanfilt_decim = 1

 demod_rate = usrp_rate1 / chanfilt_decim # 320 kHz

61

 audio_decimation = 10

 self.sw_interp = 10

 audio_rate1 = demod_rate / audio_decimation # 32 kHz

 self.audio_rate2 = self.usrp_rate2/ self.sw_interp # 32 kHz

 rx_subdev = usrp.pick_rx_subdevice(self.rx)

 mux1 = usrp.determine_rx_mux_value(self.rx, rx_subdev)

 self.rx.set_mux(mux1)

 self.subdev1 = usrp.selected_subdev(self.rx, rx_subdev)

 print "Using RX Board: %s" % (self.subdev1.side_and_name(),)

 tx_subdev = usrp.pick_tx_subdevice(self.u)

 mux2 = usrp.determine_tx_mux_value(self.u, tx_subdev)

 self.u.set_mux(mux2)

 self.subdev2 = usrp.selected_subdev(self.u, tx_subdev)

 print "Using TX Board: %s" % (self.subdev2.side_and_name(),)

 # Set initial frequency and gain

 self.subdev1.set_gain(self.subdev1.gain_range()[1]) # Sets

to max gain

 self.subdev2.set_gain(self.subdev2.gain_range()[1]) # Sets

to max gain

 r = self.rx.tune(self.subdev1.which(), self.subdev1,

self.freq)

 y = self.u.tune(self.subdev2.which(), self.subdev2, self.freq)

 if r and y:

 print "Baseband", r.baseband_freq

 print "DXC:", r.dxc_freq

 print "Residual:", r.residual_freq

 print "Inverted:", r.inverted

 else:

 print "Frequency out of range!"

 return

 # Enable transmitter

 self.subdev1.set_enable(True)

 self.subdev2.set_enable(True)

 # Generate Filter

 fir_taps = gr.firdes.low_pass(1.0, usrp_rate1, 15e3, 10e3,

gr.firdes.WIN_HANN)

 self.lpf_fir = gr.fir_filter_ccf(self.fir_decim, fir_taps)

 # Probe block

 self.magnitude = gr.probe_avg_mag_sqrd_c(-60,0.001)

 # Processing Block

 self.tb = gr.top_block()

 self.tb.connect(self.rx, self.lpf_fir)

62

 self.tb.connect(self.lpf_fir, self.magnitude)

 volume = 1

 chan_filt_coeffs = optfir.low_pass (1, # gain

 usrp_rate1, # sampling

rate

 80e3, # passband

cutoff

 115e3, # stopband

cutoff

 1.0, # passband

ripple

 60) # stopband

attenuation

 self.chan_filt = gr.fir_filter_ccf (chanfilt_decim,

chan_filt_coeffs)

 self.guts = blks2.wfm_rcv (demod_rate, audio_decimation)

 #self.am_demod = gr.complex_to_mag()

 self.t = pipeline("am_rec_data.wav",self.audio_rate2,

self.usrp_rate2)

 self.gain = gr.multiply_const_cc (32e3)

 self.volume_control = gr.multiply_const_ff(volume)

 self.audio_sink_FM = audio.sink(audio_rate1,"", False)

 self.file_sink = gr.wavfile_sink ("chann3.wav",2,audio_rate1,16)

 self.tb.start()

 def hop_lock(self, timer):

 if self.debug_mode:

 print self.magnitude.level()

 print self.lock_state

 print self.freq

 # Is this a new freq?

 # Lock State

 # -- 0 - timeout of current hop, need to inc hop_freq

 # -- 1 - Searching for new frequency

 # Determine if signal above threshold

 if self.magnitude.level() < self.signal_threshold and

self.freq_flag == 0:

 if self.debug_mode:

 print "Freq1 Locked"

 timer.Interval(self.hop_period)

 self.freq1=self.channel

 self.freq_flag = 1

 return

 if self.freq_flag == 1 and self.magnitude.level() <

self.signal_threshold:

 self.freq2 = self.channel

 if self.debug_mode:

63

 print "Freq2 Locked"

 self.freq_flag = 2

 return

 if self.freq_flag == 2 and self.magnitude.level() <

self.signal_threshold:

 self.freq2 = self.channel

 if self.debug_mode:

 print "Freq2 Locked"

 self.freq_flag = 3

 return

 if self.freq_flag == 3 and self.magnitude.level() <

self.signal_threshold:

 self.freq2 = self.channel

 if self.debug_mode:

 print "Freq2 Locked"

 self.freq_flag = 4

 return

 if self.freq_flag == 4:

 self.channel = (self.freq1 + self.freq2)/2

 self.freq = self.hop_set[self.channel]

 r = self.rx.tune(self.subdev1.which(), self.subdev1,

self.freq)

 y = self.u.tune(self.subdev2.which(), self.subdev2,

self.freq)

 if r and y: pass

 else: print "Freq Out of Range"

 self.tb.stop()

 print "tb stopped"

 self.tb.wait()

 print "tb waiting"

 self.tb.connect(self.rx, self.chan_filt, self.guts,

self.volume_control, self.audio_sink_FM)

 self.tb.connect(self.volume_control,self.file_sink)

 self.tb.connect (self.t,self.gain,self.u)

 print "tb new connect"

 self.tb.start()

 print "tb started again"

 tmr.Stop()

 return

 if self.lock_state == 1:

 self.hop_inc()

 timer.Interval(self.spin_period)

 return

 def hop_inc(self):

64

 self.channel += 1

 if self.channel >= len(self.hop_set):

 self.channel = 0

 self.freq = self.hop_set[self.channel]

 r = self.rx.tune(self.subdev1.which(), self.subdev1,

self.freq)

 if r: pass

 else: print "Freq Out of Range"

if __name__ == '__main__':

 try:

 prog = freq_hop()

 tmr = timer.EventTimer(500, prog.hop_lock)

 tmr.Start()

 time.sleep(100)

 tmr.Stop()

 except KeyboardInterrupt:

 tmr.Stop()

B4: fhop_trx1.py (Spectrum scan for relay beacon)

#!/usr/bin/env python

Copyright 2010 Arnab Banik

The Pennsylvania State University

fhop_rx.py - Frequency Hopping receiver module

AUTHOR: Arnab Banik

DATE: 18
th
 October, 2010

DESCRIPTION: (import <filename>; help(<filename>)

"""

Demonstration of frequency hopping using the USRP1 hardware. Requires

the RX Basic module in locaiton A.

TODO:: <<< Add how it works later>>>

"""

#--

from gnuradio import gr, gru, audio, optfir, eng_notation

from gnuradio import usrp

from gnuradio import blks2

from optparse import OptionParser

from gnuradio.eng_option import eng_option

import math

import sys

import random

import time

import timer

65

class pipeline(gr.hier_block2):

 def __init__(self, filename, audio_rate2, if_rate):

 gr.hier_block2.__init__(self, "pipeline",

 gr.io_signature(0,0,0), # Input

signature

 gr.io_signature(1,1,gr.sizeof_gr_complex)) #

Output signature

 src = gr.wavfile_source (filename, True)

 gain = gr.multiply_const_ff (30)

 fmtx = blks2.wfm_tx (audio_rate2, if_rate)

 self.connect(src, gain, fmtx, self)

class freq_hop():

 def __init__(self):

 # Parameters

 self.fir_decim = 10 # Decimation rate of the FIR filer

 self.debug_mode = 1 # Enable/Disable timing

 self.lock_state = 1

 self.freq_flag = 0

 self.freq1 = 0

 self.freq2 = 0

 self.spin_period = 20 # Spin period in ms

 self.hop_period = 1000 # Hop period in ms

 self.signal_threshold = 30 # Signal threshold level

 self.channel = 0 # Initial hop channel

 self.hop_set = range(88000000, 88000030, 1)

 self.freq = self.hop_set[self.channel]

 parser = OptionParser(option_class=eng_option)

 parser.add_option("-R", "--rx-subdev-spec", type="subdev",

default="B",

 help="select USRP Rx side A or B

(default=A)")

 parser.add_option("-T", "--tx-subdev-spec", type="subdev",

default="B",

 help="select USRP Tx side A or B

(default=A)")

 (options,args) = parser.parse_args()

 if len(args) != 0:

 parser.print_help()

 sys.exit(1)

 # Setup of USRP RX

 self.rx = usrp.source_c()

 self.u = usrp.sink_c()

 adc_rate = self.rx.adc_rate() # For USRP1, 64 MHz

 self.dac_rate = self.u.dac_rate() # For USRP1, 128 MHz

66

 usrp_decim = 200

 self.usrp_interp = 400

 self.rx.set_decim_rate(usrp_decim)

 self.u.set_interp_rate(self.usrp_interp)

 usrp_rate1 = adc_rate / usrp_decim # 320 KHz

 self.usrp_rate2 = self.dac_rate/self.usrp_interp

 chanfilt_decim = 1

 demod_rate = usrp_rate1 / chanfilt_decim # 320 kHz

 audio_decimation = 10

 self.sw_interp = 10

 audio_rate1 = demod_rate / audio_decimation # 32 kHz

 self.audio_rate2 = self.usrp_rate2/ self.sw_interp # 32 kHz

 rx_subdev = usrp.pick_rx_subdevice(self.rx)

 mux1 = usrp.determine_rx_mux_value(self.rx, rx_subdev)

 self.rx.set_mux(mux1)

 self.subdev1 = usrp.selected_subdev(self.rx, rx_subdev)

 print "Using RX Board: %s" % (self.subdev1.side_and_name(),)

 tx_subdev = usrp.pick_tx_subdevice(self.u)

 mux2 = usrp.determine_tx_mux_value(self.u, tx_subdev)

 self.u.set_mux(mux2)

 self.subdev2 = usrp.selected_subdev(self.u, tx_subdev)

 print "Using TX Board: %s" % (self.subdev2.side_and_name(),)

 # Set initial frequency and gain

 self.subdev1.set_gain(self.subdev1.gain_range()[1]) # Sets

to max gain

 self.subdev2.set_gain(self.subdev2.gain_range()[1]) # Sets

to max gain

 r = self.rx.tune(self.subdev1.which(), self.subdev1,

self.freq)

 y = self.u.tune(self.subdev2.which(), self.subdev2, self.freq)

 if r and y:

 print "Baseband", r.baseband_freq

 print "DXC:", r.dxc_freq

 print "Residual:", r.residual_freq

 print "Inverted:", r.inverted

 else:

 print "Frequency out of range!"

 return

 # Enable transmitter

 self.subdev1.set_enable(True)

 self.subdev2.set_enable(True)

 # Generate Filter

 fir_taps = gr.firdes.low_pass(1.0, usrp_rate1, 15e3, 10e3,

gr.firdes.WIN_HANN)

 self.lpf_fir = gr.fir_filter_ccf(self.fir_decim, fir_taps)

67

 # Probe block

 self.magnitude = gr.probe_avg_mag_sqrd_c(-60,0.01)

 # Processing Block

 self.tb = gr.top_block()

 self.tb.connect(self.rx, self.lpf_fir)

 self.tb.connect(self.lpf_fir, self.magnitude)

 volume = 0

 chan_filt_coeffs = optfir.low_pass (1, # gain

 usrp_rate1, # sampling

rate

 80e3, # passband

cutoff

 115e3, # stopband

cutoff

 1.0, # passband

ripple

 60) # stopband

attenuation

 self.chan_filt = gr.fir_filter_ccf (chanfilt_decim,

chan_filt_coeffs)

 self.guts = blks2.wfm_rcv (demod_rate, audio_decimation)

 #self.am_demod = gr.complex_to_mag()

 self.t = pipeline("am_rec_data.wav",self.audio_rate2,

self.usrp_rate2)

 self.gain = gr.multiply_const_cc (2e3)

 self.volume_control = gr.multiply_const_ff(volume)

 self.audio_sink_FM = audio.sink(audio_rate1,"", False)

 #self.file_sink = gr.wavfile_sink ("chann3.wav",2,audio_rate1,16)

 self.tb.start()

 def hop_lock(self, timer):

 if self.debug_mode:

 print self.magnitude.level()

 print self.lock_state

 print self.freq

 # Is this a new freq?

 # Lock State

 # -- 0 - timeout of current hop, need to inc hop_freq

 # -- 1 - Searching for new frequency

 # Determine if signal above threshold

 if self.magnitude.level() > self.signal_threshold and

self.freq_flag == 0:

 if self.debug_mode:

 print "Freq1 Locked"

 timer.Interval(self.hop_period)

68

 self.freq1=self.channel

 self.freq_flag = 1

 return

 if self.freq_flag == 1 and self.magnitude.level() >

self.signal_threshold:

 self.freq2 = self.channel

 if self.debug_mode:

 print "Freq2 Locked"

 self.freq_flag = 2

 return

 if self.freq_flag == 2:

 self.channel = (self.freq1 + self.freq2)/2

 self.freq = self.hop_set[self.channel]

 r = self.rx.tune(self.subdev1.which(), self.subdev1,

self.freq)

 y = self.u.tune(self.subdev2.which(), self.subdev2,

self.freq)

 if r and y: pass

 else: print "Freq Out of Range"

 self.tb.stop()

 print "tb stopped"

 self.tb.wait()

 print "tb waiting"

 self.tb.connect(self.rx, self.chan_filt, self.guts,

self.volume_control, self.audio_sink_FM)

 #self.tb.connect(self.volume_control,self.file_sink)

 self.tb.connect (self.t,self.gain,self.u)

 print "tb new connect"

 self.tb.start()

 print "tb started again"

 tmr.Stop()

 return

 if self.lock_state == 1:

 self.hop_inc()

 timer.Interval(self.spin_period)

 return

 def hop_inc(self):

 self.channel += 1

 if self.channel >= len(self.hop_set):

 self.channel = 0

 self.freq = self.hop_set[self.channel]

 r = self.rx.tune(self.subdev1.which(), self.subdev1,

self.freq)

 if r: pass

 else: print "Freq Out of Range"

69

if __name__ == '__main__':

 try:

 prog = freq_hop()

 tmr = timer.EventTimer(500, prog.hop_lock)

 tmr.Start()

 time.sleep(100)

 tmr.Stop()

 except KeyboardInterrupt:

 tmr.Stop()

B5: timer.py

#!/usr/bin/env python

Copyright 2010 Arnab Banik

The Pennsylvania State University

timer.py - Implementation of a continuous event timer

AUTHOR: Arnab Banik

DATE: 10
th
 October, 2010

DESCRIPTION: (use: import <file>; help(file))

"""

Uses the threading module to implement a continuous timer which

calls a function after its timout, repeatedly until stopped by Stop().

USAGE:

-- Import Module

 import timer

-- Create TimerClass

 timer = EventTimer(interval_in_ms, function_to_call)

 interval is milliseconds between function calls

 function to call must be in the current scope of the class

-- Start the timer

 timer.Start()

-- Stop the timer

 timer.Stop()

-- NOTES:

 the main thread of execution (the one which instanciates the

 EventTimer class) must not exit. Call time.sleep(xx) to keep it

 alive if neccesary.

"""

#--

import threading

70

import time

class EventTimer():

 def __init__(self, interval, fcn_call):

 self.event = threading.Event()

 self.thread = threading.Thread(target=self._fcn)

 # I subtract 4ms from the interval to account for the time it

 #takes to run self._fcn -- it should be pretty accurate +/-

1ms

 self.interval = interval/1000.0 - 0.004

 self.function = fcn_call

 self.old_time = time.time()

 def Start(self, interval=-1):

 if interval >= 0:

 self.interval = interval

 self.thread.start()

 def Stop(self):

 self.event.set()

 def Interval(self, period):

 self.interval = period/1000.0 - 0.004

 def _fcn(self):

 while True:

 self.event.wait(self.interval)

 if self.event.isSet():

 break

 self.old_time = self.function(self)

def _foo(t):

 now = time.time()

 global dif;

 dif.append(now - t.oldtime)

 print "Exe: %f -- Avg: %f" % ((now - t.oldtime),

sum(dif)/len(dif))

 return now

if __name__ == '__main__':

 dif = []

 t = EventTimer(100, _foo)

 t.Start()

 time.sleep(100)

 t.Stop()

71

VITAE
ARNAB KUMAR BANIK

EDUCATION Bachelor of Science in Electrical Engineering (with Honors) Expected Graduation: December, 2010

Minor in Nanotechnology

Schreyer Honors College

The Pennsylvania State University, University Park, PA

Dean’s List: Six out of eight semesters

Advanced Engineering courses:

Communication systems I, II Nems/Mems Microwave Engineering

Computer networking Nanophotonics Engineering Senior Design

Software defined radio Wireless Communication Semiconductor IC Fabrication

THESIS: Interference reduction with relay beacon in cognitive radio networks

 (Using a practical software-defined radio environment)

Thesis Supervisor: Dr. Sven G. Bilén

Honors Advisor: Dr. Jeffrey Louis Schiano

EXPERIENCE: Arris Inc., State College, PA (2
nd

 August,10 – till end of Fall,2010)

 Characterizing the linear performance of devices (Javelin in present context) in the prescribed

bandwidth and also to analyze their gain, flatness, surge resistance and return loss stability particularly

at those higher frequencies.

Schlumberger, Kuwait (summer, 2007)

 Completed 4-week internship with primary focus on troubleshooting and diagnosis

 Worked on quality check of Gamma ray detector device, Neutron detector device, MDT tools etc in the

lab. Assembled WAFE (Wireline Acquisition Front End) machine from begin to end.

CLASS PROJECTS

 Routing Protocol with prediction based mobility model in Vehicular Ad Hoc Network (VANET) – using

VanetMobiSim and NS-2 software.

 Completed independent studies in radio challenge group where I worked to minimize the signal loss due

to harsh environment by combining relayed and direct link signals for improvement in Bit Error Rate

(using MATLAB).

 Designed balanced microwave amplifier operating at 2.4 GHz using ADS.

 Currently working on two projects: one on designing an autonomous robot capable of collecting debris

such as bolts, metal from aero plane and runway, tracking GPS locations; and the other is to fabricate an

N-MOS IC chip from a wafer.

 Build a digital wireless communication network to transfer data from one computer to another with a

full duplex scheme.

 ACTIVITIES

 & HONORS

Etta Kappa Nu (HKN) Association

Tau Beta Pi Engineering Honor Society

National Society of Collegiate Scholars (NSCS), Washington

Alpha Lambda Delta National academic Honors Society(2005-08)

Honors leadership team (HLT) member (2007-08)

Treasurer, International Student‘s Association (2007-08)

TECHNICAL C++ MATLAB CCS C PicBasic Pro VanetMobisim GNU Radio

SKILLS Multisim AutoCAD Python ADS NS-2 LINUX

