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ABSTRACT 

 

Ice accretion on aircraft has been, and remains, a long-standing problem in the safe 

operation of flight vehicles. Ice can cause structural damage when ingested in engines and ruins 

the aerodynamic properties of lifting surfaces when it attaches to them. Ice accretion is typically 

simulated using a large scale model of an aircraft, or wing, with droplets treated as a dispersed 

phase. The dynamics of water droplets in the atmosphere are, thus, approximated with models. 

These models are tuned to match experimental data from in-flight and wind tunnel tests. 

Historically, icing from water droplets up to 50 micrometers in Mean Volumetric Diameter 

(MVD) has been considered. However, safety concerns have risen over the presence of droplets 

exceeding this size. Supercooled Large Droplets (SLD) are a class of droplets exceeding the 50-

micrometer MVD limit. Increased droplet diameter complicates the physics of droplet deposition 

and breaks some of the assumptions enforced in models. This work attempts to provide a means 

of investigating the physics of an individual droplet, belonging to SLD regime, as it approaches a 

body in the most computationally efficient manner possible. A Galilean transformation is 

employed to isolate an individual droplet from a full model. Streamline data for this droplet is 

collected and then used as an input for an isolated droplet in a compact fluid domain. The droplet 

inside this domain is captured using a Volume of Fluid formulation of the Navier-Stokes 

equations. Early results suggest that assumptions of the stability of large droplets is not as certain 

as previous literature has suggested. This process can be used in any scenario where it is possible 

to capture a droplet streamline from an averaged data set. 
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Chapter 1  
 

 Introduction and Background 

Section 1.1: Icing History and Supercooled Large Droplets 

Catastrophic aircraft icing is a serious risk in flight vehicle operation. Icing on aircraft can reduce 

efficiency of flight, damage onboard turbomachinery, reduce lifting capacity of wings, and consequently, 

raise the stall speed of the aircraft. These risk factors have spurred decades of research and innovation in 

the field of icing. To pass federal safety requirements, modern transport aircraft must meet the Federal 

Aviation Regulations (FAR). Part 25 Appendix C of this document details a band of common icing 

conditions and mandates that aircraft retain certain aerodynamic properties when operating in those 

conditions. General aviation aircraft may not have to meet this criterion, but all aircraft manufacturers that 

wish to have their aircraft certified for flight in icing conditions must meet these standards. Within the 

description of icing conditions, a specific range of droplet size and temperature is detailed. 

The most extreme droplet described in the FAR–that is to say, the droplet most capable of 

producing icing–is often described as the “Appendix C droplet”. Appendix C droplets are of a maximum 

50 microns in diameter, and at the freezing point of water at 1 atmosphere of pressure. Droplets are 

primarily characterized by these two numbers, Mean Volumetric Diameter (MVD) and internal 

temperature (and occasionally freezing fraction if they are subcooled). However, Appendix C droplets 

have been shown to not represent the totality of icing conditions aircraft may face. A new, more 

hazardous set of droplets has been measured in flight. This new class, known as Supercooled Large 

Droplets (SLD), is a potent combination of large MVD and subcooled internal temperature. These 

droplets approach raindrops in terms of diameter, and like raindrops they are completely in a liquid state. 

Despite their liquid state, experimentally measured droplets in the atmosphere have had internal 
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temperatures ranging down to -37.5℃ 1–3. The combined size and temperature of these droplets poses a 

serious icing risk to aircraft operating in a weather system with SLD. 

In 1994, a twin-engine turboprop commuter aircraft (ATR 72) crashed in Roselawn, Indiana 

while traveling a route between Chicago and Indianapolis. The National Transportation Safety Board 

issued a statement of “probable cause” naming ice accretion aft of the wing de-icing system as the 

primary factor in the acciden4t. While the aircraft did have a pneumatic de-icing system that was certified 

under FAR Article 25 Appendix C, the system failed to protect the wing from catastrophic ice accretion. 

In fact, as the NTSB commented in their “probable cause” 1 statement, the ice accretion occurred behind 

the de-icing system, outside the protected area. The region of protection for an aircraft wing is set to 

provide protection against icing from water droplets defined by the FAR 25 Appendix C definition. It was 

theorized then that droplets outside of this definition must have caused the incident. These larger droplets 

have the potential to impinge either directly or indirectly beyond the protected area. This accident, and the 

potential for future accidents of this nature has motivated the study of the atmospheric conditions capable 

of capable of sustaining large, cold droplets. The European Aviation Safety Administration (EASA) 

outlined Certification Standard (CS) 25, an Acceptable means of Compliance (AMC), which covers larger 

cloud-borne water droplets. The standard outlines two categories of large droplets: freezing drizzle (MVD 

less than 500 microns, greater than 50 microns) and freezing rain (MVD greater than 500 microns)3. 

Moving from the atmospheric sciences to icing literature, when droplets are cooled below the freezing 

point (but remain liquid due to the lack of a nucleation site) they are referred to as super-cooled. If they 

are of sufficient MVD, then they belong to the aforementioned class of Supercooled Large Droplets.  

Icing on aircraft has been a long-standing problem. The first real mention of icing as a problem 

for flight vehicles (at least to this author’s knowledge) was in reference to early airmail flights between 

New York and Chicago. On the subject of the hazards of in flight ice accretion, the then superintendent of 

                                                      
1 “Probable Cause” used in a technical/legal sense here 
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National Air Transport Inc.–the airline that would eventually become United Airlines–Wesley L. Smith 

writes in his 1929 article to the Monthly Weather Review, “By coating our planes with ice… the plane 

will actually fall out of the air if the pilot has not been wise enough to land before this moment arrives.” 5 

Smith was an airmail pilot in the early days of the profession. The icing conditions he and other airmail 

pilots experienced crossing the Kittatinny Mountains were the original motivation behind icing research. 

Smith himself crashed into a mountain in 1920. Surviving this, he continued on as an airmail pilot before 

transitioning to industry where he would write the aforementioned article.   

Airmail routes between New York and Chicago are now far less hazardous, but the perils of icing 

remain. The National Advisory Committee for Aeronautics (NACA) led some of the original scientific 

testing in ice accretion6. The NACA’s construction of a refrigerated wind tunnel in 1929 was the first of 

its kind and paved the way for future research efforts in ice accretion experimentation. Despite all of the 

research in the field, the central question implicitly asked by Smith in his article remains: How can 

engineers prevent crashes caused by a buildup of ice on aircraft?  

Some of the world’s best engineers have tackled this question and produced many partial 

solutions. Most modern commercial and military aircraft have deicing systems capable of protecting the 

aircraft from all but the most severe icing conditions. Additionally, meteorologists can now predict which 

weather systems pose a risk to aircraft operating in the area.1–3 Aerodynamicists also understand how ice 

accretion affects aircraft performance, and can estimate the size an ice growth can reach before it poses a 

serious risk to the operation of the vehicle. Beyond the expansion of laboratory knowledge of the subject, 

hours of inflight experience has accumulated and tactics for avoiding or handling ice accretion are now 

known. There is however a gap in all of this knowledge. This gap is the ability to predict what the actual 

icing limits of an aircraft are. Alternatively, stated as a question: Can an engineer know the precise set of 

droplet conditions that will down an aircraft, where less severe droplets outside of this set of conditions 

will only deteriorate the aircraft’s performance? This gap is the continuing question in the field. The 

present work seeks to help advance an answer to this question by providing a tool to answer the 
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necessary, but not sufficient2 question: What happens to a water droplet when it impacts a body? A key 

argument in the present work is that this question is too complex in the SLD regime to be precisely 

addressed with current experimental methods and their resulting non-dimensional relationships and 

concepts such as Critical Weber Number. SLD behave notably different than Appendix C droplets as they 

impinge on a body. 

 Section 1.2: Current Tools for Understanding and Predicting Ice Accretion 

  Advanced computational tools have been developed to answer the question posed above. One of 

the first and perhaps most notable computational tools is the LEWis ICE accretion program (LEWICE).7 

LEWICE is a computational tool used to couple fluid dynamics and freezing computational models 

together. This program simulates flow around a body in icing conditions, and then attempts to predict the 

ice shape produced as a result of these icing conditions. This process has four key stages: 1) Flow field 

calculation 2) Particle trajectory and impingement computation 3) Thermodynamic and ice growth 

calculations 4) Modification of body geometry to account for ice growth. A fifth stage is the incorporation 

of de-icing system effects, although not all icing solvers have this functionality. LEWICE has been 

extensively validated for the most prevalent icing conditions (Appendix C droplets). This methodology is 

highly efficient, and highly accurate.  

In addition to LEWICE, several different simulation software developers have produced tools for 

predicting ice shapes. They each have their own slight variations on this method, but for the most part 

produce similar results. Several popular tools are: FENSAP-ICE produced by Ansys, the Eulerian-

Eulerian Icing model used in CFD++ produced by Metacomp Technologies8, and the Dispersed 

Multiphase model coupled with the Freezing-Boiling model in STAR-CCM+ produced by CD-adapco. 

                                                      
2 Not sufficient by a large margin it should be noted. 
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All of these models construct some form of multiphase interaction between the primary and secondary 

phases in the system. Primary and secondary here refer to the surrounding fluid, and the material 

suspended in that medium. In the context of icing, the primary phase is air, and the secondary phase is 

water/ice crystals. These two phases are captured by one of two common frameworks: Eulerian-

Lagrangian or Eulerian-Eulerian. These names refer to the numerical reference frame placed on the 

primary and secondary phases respectively. These models will be explained in further detail in the 

“Methods” section of this document. 

Section 1.3: Current Methodology for Researching Droplet Impingement 

 Subsection 1.3.1: Experimental Techniques and Results 

The large size of SLD makes it difficult to produce stable droplets in laboratory environments. 

Traditional high-speed horizontal icing wind tunnels must be tuned to slowly accelerate entrained droplets 

up to the freestream velocity of the flow. If large droplets are inserted into a sharp crossflow, they will 

prematurely breakup. If they survive the shock of the initial crossflow, then they are accelerated up to the 

freestream velocity of the tunnel. This acceleration inevitably deforms the droplets and consequently 

distorts the physics of the resulting deposition. Vertical wind tunnels (relying on gravity as opposed to a 

compressor) do not artificially distort the droplets as they approach the test section, but cannot simulate 

representative flight conditions in the way that horizontal wind tunnels can. Namely, they can only model 

an uncurved droplet streamline. Most early droplet breakup experiments were created to understand 

combustion, and thus employed a nozzle to produce droplets injected into a quiescent fluid9. Pilch and 

Erdman were primarily interested in liquid-metal cooled fast breeder reactors10. As such, they evaluated 

experiments wherein droplets of liquid metal were observed breaking up in water and alcohol. They claim 
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that for equivalent Weber number, liquid-liquid and liquid-gas interactions are the same, but also go on to 

qualify this claim as holding for a limited range of other non-dimensional numbers10.  

A key advantage of horizontal wind tunnels is their ability to directly enforce dynamic similitude 

with flight conditions. Vertical wind tunnels make a similar assumption to the one made by Pilch and 

Erdman to achieve dynamic similitude. Gravity is the only driving force on droplets in the tunnel, so the 

droplets are often far larger in MVD than the droplets atmospheric studies have been able to actually 

locate and measure. The size disparity is then used to produce critical breakup Weber Numbers on par 

with the smaller droplets used in horizontal tunnels11.  

When considering the flow of a droplet, the balance of surface tension and inertia is a key 

physical parameter. This balance can be measured using the Weber Number, which is defined as: 

𝑊𝑒 =
𝜌𝑣2𝑙

𝜎
 

We represents the ratio of the inertial forces tearing the droplet, to the surface tension that attempts to 

maintain droplet cohesion. Critical Weber Number is a means of describing a flow condition before 

which a droplet is stable, and after which the droplet begins to decompose into two or more smaller 

droplets. 

Early testing from Pilch and Erdman outlined six different mechanisms for droplet breakup, 

segregating them based on their Weber Number10. Figure 1 below is copied directly from their work. 
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Figure 1: Droplet Breakup Regimes 

 These six mechanisms are defined by a range of We. The six regimes are vibrational, bag, bag-

and-stamen, sheet stripping, wave crest stripping and catastrophic breakup. These breakup mechanisms 

describe how a droplet will breakup for a give flow condition. Higher We indicate more violent flow 

conditions. While a droplet falling slowly may eventually vibrate apart, a droplet hit by a shockwave will 

experience catastrophic breakup. Subsonic flight vehicles are most likely to experience the first three 

breakup regimes. Critical Weber Number is the number separating vibrational breakup from bag breakup. 
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It is commonly considered the point after which the inertial forces tearing at the droplet are stronger than 

the surface tension forces holding the droplet together. Thus when a droplet’s We exceeds the critical We, 

breakup is imminent. This is somewhat of a misnomer however, droplets can experience vibrational 

breakup at any We. 

Further testing has not observed any other distinct breakup mechanisms, but has segregated 

droplets using different criteria including the Ohnesorge and Bond numbers. A fundamental problem with 

this approach of classification is that every experiment is still prone to the same methodology errors 

mentioned earlier. Pilch and Erdman even cite disagreement between researchers before them, 

emphasizing inconsistent methods of quantifying breakup time. One strong conclusion made by many 

previous researcher that the present author is less convinced of is that a critical Weber Number (or Bond, 

or Ohnesorge, what have you) even exists. All of these numbers fail to encapsulate all of the complicated 

physical mechanisms at work. This critical number is thought to demark the boundary between stable and 

unstable droplets. Some authors say it is equal to 12, whereas others say it equal to 13. A seemingly 

trivial difference, but that is still a variation of 8%. This author believes at best, a roughly defined range 

of stability is the most accurate result available. 

Experimentalists12 have long struggled with imaging droplets during experiment. Often, 

horizontal wind tunnels seed droplets into the flow in the converging section of the tunnel to aid in their 

acceleration, while their imaging systems are focused on the leading edge of the test body. This restriction 

in field of view means that droplets that have broken up prior to entering the recording area with the test 

body must be thrown out of the experimental data as outliers13. In the view of this author, that selection 

has a strong possibility of introducing artificial breakup properties into droplet dynamics. It seems 

reasonable to think that the droplets that are discarded from the experiment were those whose initial 

geometry deformations were most unstable. Thus droplets included in experimental results are those most 

stable, thereby moving critical breakup Weber Number beyond what is physically realizable during 

inflight conditions. A numerical approach may provide a solution to this problem of implementation. 
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Subsection 1.3.2: Numerical Techniques for Researching Droplet Dynamics and Results  

An early example of numerical modeling of droplets is the work of J.K. Dukowicz (1980)9 . In his 

paper he created a numerical model for droplet-entrained flows. His early work in multiphase flow theory 

produced many meaningful results, but full realization of his model was limited at the time due to a lack 

of computational resources. The model simulates two-way interaction, or coupling, between the primary 

phase: air, and the secondary droplet phase dispersed in the medium. This coupling takes the form as an 

interaction model between the dispersed and continuous phases. The goal of the coupling is to capture the 

physical effects of the interface (also known as a free surface) on the flow. This interface transfers 

momentum between the two phases. In Dukowicz’s model, the coupling is referred to as a two way 

couple because the equations defining momentum transfer across the free surface effects the flow of both 

phases of matter in the domain. The model quantifies the effects of displaced air due to the presence of 

the droplet, and the momentum interchange from the particles back to the surrounding fluid. An important 

computational engineering note is that this coupling is computed within the time step, thus the 

computational cost of the model is highly sensitive to the temporal discretization required to resolve the 

inter-phasic equations. An alternative to a two way couple, is a one way couple wherein momentum is 

only transferred down length scales to the entrained droplets, and not up from the droplet phase to the 

surrounding phase. While this is a simplification of the real physics, it can cut computational costs while 

introducing a minimal level of error for specific classes of flows. Dukowicz’s model would later be 

categorized into a series of multiphase modeling approaches designated Eulerian-Lagrangian models. 

This name refers to the modeling approach applied to each of the two phases. The air flow around a body 

is computed using a fixed Eulerian mesh, whereas the droplets entrained in the flow are modeled using 

Lagrangian equations for the dynamics.  

While each Lagrangian droplet can have any value set as its MVD, a key and strong assumption 

made in the model is that this diameter is invariant. The droplets are incapable of experiencing breakup or 

coalescence. This assumption comes from the idea that droplet entrained flows are ‘sparse’. Droplets are 



10 

viewed as discrete entities, effectively alone in their environment. Their inter-particle interactions are, 

quite literally, nonexistent. The entire model restricts physical interaction entirely to the liquid-gas 

interactions; no liquid-liquid collisions are allowed. Furthermore, the assumption that droplets don’t 

breakdown was invoked at the time because researchers didn’t have a good model for computing breakup. 

This would change however.   

Reitz14 (in 1987)  would advance the model of Dukowicz by successfully implementing a scheme 

for modeling the stochastic nature of droplet breakup and coalescence. His work was used for a different 

class of simulation however. Instead of solving for flow over a generic body, Reitz was interested in jet 

flows injected into a quiescent medium3, a flow in which he could apply inviscid flow theory. O’Rourke 

and Amsden15 created the Taylor Analogy Breakup Model (TAB) in 1987, a model more applicable to the 

Eulerian-Lagrangian framework pioneered by Dukowicz. This model took the stochastic model created 

by O’Rourke in a previous publication, and used it to create a Lagrangian breakup model capable of 

predicting secondary breakup of droplets injected and diffusing in a quiescent fluid. Similar to Reitz, the 

model was originally created to simulate diesel injection into engine cylinders. The work was strongly 

motivated by findings that suggested secondary breakup of droplets in the combustion chamber 

dominated the energy of combustion, and the resulting power output of an engine. Spray equations had 

already been derived to predict the resulting droplet diameter produced in a spray, but this new TAB 

model was capable of tracking those droplets once they had’d been sprayed, and then predicting their 

secondary decay.  

The addition of the Reitz and TAB models to the Eulerian-Lagrangian framework created by 

Dukowicz was an incredible step forward, but still, multiphase modeling was constrained to cases where 

the model was applicable. Ultimately, the Eulerian-Lagrangian formulation is limited by its mathematical 

construction. Every new computational particle injected and tracked in the simulation directly increases 

                                                      
3 Specifically, Reitz was interested in diesel injectors in engines. 
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the computational cost. Simulating atmospheric flows, particularly those relating to icing conditions, is 

effectively impossible. It would take an immense amount of computational power to faithfully simulate 

full, multiphase icing conditions around a wing, let alone an entire aircraft. A second key limitation 

relating to the underlying mathematics of Eulerian-Lagrangian models is the inherent separation they 

impose on the two phases. Dukowicz’s model does couple both phases of flow together. This is 

accomplished with an equation, which captures buoyancy and drag on the fluid continuum, but this 

coupling is incomplete. The fine details of the free surface are not modeled. Furthermore, the governing 

equations for the two phases of flow are solved separately from each other. The bulk airflow around the 

body is solved on an Eulerian mesh that is invisible to the dispersed droplet phase. The two phases are 

only interacting with each other through a numerical interface, as opposed to being directly computed, 

together, on the same domain. 

These limitations of the Eulerian-Lagrangian framework led to work in a new framework for 

multiphase flow simulation, Eulerian-Eulerian models. Models of this type capture the dispersed droplet 

phase in the mesh, and compute the effects of the multi-phasic interactions everywhere in the domain. At 

the inception of droplet modeling, both Eulerian-Lagrangian and Eulerian-Eulerian frameworks were 

developed, but early success in modeling diesel injectors favored Eulerian-Lagrangian frameworks. This 

was because of the early droplet breakup models like the TAB and Reitz models were developed in 

Eulerian-Lagrangian frameworks. Eulerian-Eulerian frameworks are preferable to larger domains as they 

can scale to a large number of disperse droplets more easily, whereas Eulerian-Lagrangian frameworks 

increase in cost for every new fluid particle. This increase in scalability doesn’tdoes not come without 

cost. Until recently8, it was difficult to model breakup in an Eulerian-Eulerian framework, and transport 

equations for the dispersed phase required a singular, fixed droplet diameter. If an engineer wished to 

allow for the breakup of droplets, each new droplet size behaved as if there were an entire other phase of 

matter in the fluid domain. Likewise, the droplets have to obey the previously stated assumption of 

‘disperse-ness’; interactions between droplets are not directly simulated. Kim, Bachchan and Peroomian8 
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(2016) have detailed one of the most up to date methods for simulating droplet flows in an Eulerian-

Eulerian framework. Their tool is capable of computing an evolving value for the number density of 

water droplets per grid cell. Using some initial experimental work from authors like Pilch and Erdman10, 

Kim, Bachchan and Peroomian have tuned their tool to agree with existing theory and empirical evidence. 

Namely, as the computational cost of additional droplet sizes is great, Kim, Bachchan and Peroomian 

employ the idea of a Critical Weber Number to determine the stability condition as their number density 

equation evolves throughout the flow field. 

Reitz14, in his droplet breakup modeling paper cites the aforementioned vertical wind tunnel tests 

(in section 1.3.1) as confirmation of the Weber Number regimes first outlined by Pilch and Erdman10, 

despite what appears to this author to be a statistically significant variation in measured critical Weber 

Number. The variation in the data seems to promote the idea that while the ranges originally put forward 

by Pilch and Erdman, are more guidelines than strict physical laws. Pilch and Erdman10 actually discuss 

an experimental method dependency on the precise value for Critical Weber Number, specifically stating 

that gradually accelerated droplets do not experience breakup in the same fashion as those directly 

impacted in a jet crossflow4. The Critical Weber Number for these droplets weasre observed as higher 

than those measured for droplets struck by a jet crossflow. For a long time this problem in droplet 

modeling has gone ignored as the variation in critical Weber Number has far less significance for more 

conventional small droplets (such as those defined under FAR 25 Appendix C). Small droplets have a 

higher surface energy to volume ratio (a ratio inversely proportional to Weber number) which 

anesthetizes them to the higher frequency instabilities that promote breakup in larger droplets (such as 

SLD). This assumption could mask some of the early breakup processes present in SLD. 

In summary, numericists numerical modelers have created empirical and semi-empirical models 

for simplified droplet geometry mechanisms tuned to match the observed physics. These models either 

                                                      
4 An environment akin to the atomization nozzles used in diesel injectors. 
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take a data set and attempt to reproduce the outcome using a small number of independent factors in a 

purely empirical fashion, or they postulate a first order droplet breakup mechanism and prescribe a tuned 

formula that produces output which correlates well with a set of experimental data. These models are then 

solved alongside equations for the surrounding airflow. Some researchers claim to have better models that 

utilize a different perspective when solving for the motion of the droplet flow, but even this description of 

the droplet only models the interphasic forces between the dispersed and continuous phases instead of 

trying to simulate them. At the core, all of the numerics and applied physics applied to droplet breakup 

has been forced to match experiments. This is all, in essence, fruit of the poisonous tree; all of this work is 

subject to the same critic leveled against the experimentalist; strong assumptions have been made that are 

not present in real flows, and the resulting categorizations stand on uncertain footing. Current research (as 

an example, the work of Jain, Prakash, Tomar and Ravikrishna) is focusing on the high fidelity resolution 

of an individual droplet. The hope behind this work is that further examination of the breakup process at 

the sub-micron level can elucidate knowledge about stability and breakup of droplets that can inform 

models at the macroscale. 

Section 1.4: The Role of Present Work 

The purpose of this work is to provide a new means of understanding and observing these 

droplets in a way that experiments cannot reproduce fully. The methods described in this paper are not 

perfect as they make certain assumptions of the geometry of the droplet, and the scale separation between 

droplet breakup and droplet motion. The latter assumption even utilizes one of the droplet motion models 

just criticized as fruit of the poisonous tree. There is however one key distinguishing factor of the present 

work: while the environment around the droplet inherits the artificiality of laboratory experiments, the 

droplet itself behaves as a “real” droplet. This droplet is not constrained in the way droplets are in a 

laboratory experiment (except for the symmetry assumption that will be discussed and reviewed later), 
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and the surface of the droplet is free to deform (as opposed to modeled approaches). The goal of this 

document is to shed insight onto the validity of the assumptions made in past work, and outline an 

efficient method of exploring this question further.  

It should be stated that this document does not seek to impeach the sizeable amount of 

experimental data in large droplet dynamics. Instead, a method is proposed for investigating droplets 

difficult to produce and record experimentally. This in turn is a means of verifying droplet characteristics 

that have already been measured. The present work is therefore an attempt to provide a means for 

observing and understanding the fundamental physical behavior of Supercooled Large Droplets, 

specifically their behavior in the moments prior to impingement.  

 

Chapter 2  
 

Methodology 

The key mission of this work is to describe a novel process in modeling the dynamics of large 

droplets as they approach a wing in such a way that minimizes computational cost, without sacrificing the 

fidelity in resolution of the complicated physical mechanisms at play in the droplet breakup process. This 

new model is then used to reproduce experiments from prior authors, as well as project results to tests that 

have not yet been conducted. These modeled results are then compared against existing theory to qualify 

their validity and applicability to flight vehicles, and interesting or otherwise peculiar phenomenon are 

discussed. Recommendations for future work will be included later in this document. 
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Section 2.1: Process Overview 

The proposed simulation procedure consists of two simulation phases. First, a simulation of the 

flow field seeded with droplets around an airfoil is computed using a relatively straight forward Eulerian 

Multiphase simulation. This allows for a relatively cheap computation, and geometric changes resulting 

from ice accretion are ignored. The precise parameters of this simulation are discussed later. The primary 

mission of this stage is to compute the properties of the flow field a droplet would experience as it 

approaches a body. These properties are captured at scales similar to that used to simulate flow around the 

airfoil. For this reason, this portion of the process will be referred to as the “macroscale simulation”.  

 After the macroscale simulation has been conducted, velocity data from the streamline is 

extracted from the simulation and tabulated. Depending on the tool used to compute the streamlines (and 

specifically its allocation of memory when running on multiple threads), the data may need to be sorted. 

Additionally, streamwise values for Weber, Robin, Bond and other important dimensionless parameters 

are computed. Finally, the time in a Lagrangian reference frame is computed for each discrete position 

point of the streamline, and the time/slip velocity/droplet velocity data is exported for use in the next 

phase of simulation. This is discussed in more detail in Section 3. 

 With the data all collected and sorted, a new simulation can be run on a local region of 

fluid around a single droplet of interest. This simulation is the most computationally expensive part of the 

entire simulation, and the fidelity of the mesh here sets the precision of the results. To merely demonstrate 

the capability of this method, only a simplified axisymmetric simulation was run. The key objective of 

this phase of the process is to attempt to fully resolve what effect the chosen droplet streamline has on the 

geometry and breakup characteristics of the droplet. A value for Critical Weber Number and a 

determination of the breakup mode could be made at this step. This phase will be referred to as the 

“microscale simulation” in reference to the size of the fluid domain and the length scales on which the 

surface tension forces act. 
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 The key strength of this method is that it attempts to use the best possible frame of 

reference at every layer. In a world with infinite computational power, one would simulate a full model of 

an aircraft in an infinitely fine mesh with remeshing to capture a moving body. This is effectively 

impossible with current high performance computers. So first a more narrownarrower field of view, and 

an accompanying reference frame shift is made. Instead of a full aircraft, only the wing is investigated; 

and instead of moving the wing, a Galilean transformation is made by fixing the wing in space (akin to 

changing the point of observation) and imposing a free stream velocity at the inlet of the domain. 

Completely resolving individual droplets is still effectively impossible at this level of detail. The desire is 

to capture as small a domain as possible, just around the droplet and a small volume of air. To get to this, 

another simplification and change in reference frames is made. A Galilean transformation is made, 

moving the point of observation from the wing to an individual droplet following a streamline. Here we 

can narrow the field of view from a length scale roughly equal to the wing chord, to a length scale on par 

with the droplet diameter. This is a massive reduction in domain scale, and dramatically reduces cell 

count. Critically though, the boundary conditions on this reduced fluid domain have to match those values 

from the streamline. The macroscale simulation provides time averaged values for these boundary 

conditions at discrete points in space. The Galilean transformation from the wing to the droplet requires 

that the boundary conditions also be converted from discrete data points into a discrete set of inlet 

conditions at a fixed physical time. The end goal is to represent a fluid element of differential volume 

traveling along a streamline to a rigid body. The information from the macroscale simulation is fed into 

the differential volume so that the differential volume (or microscale simulation) only sees a single 

droplet, a small pocket of surrounding air, and the effects of the multiphase flow comparatively far away 

from it. As there is no general solution to the Navier-Stokes equations, it is impossible to solve for an 

infinitely small fluid volume in a flow problem such as this. So mesh fidelity then affects the quality of 

the streamline data, and the computed physics for a single droplet. 
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Section 2.2: Droplet Streamline Simulation - Macroscale Simulation 

The flow field around the wing is solved over a single cell thick C-Mesh around an airfoil. The 

STAR-CCM+ Eulerian Multiphase model was solved using the Dispersed Multiphase submodel. This 

model solves for flow of the primary phase (air) around the airfoil, in conjunction with a model for the 

flow of dispersed droplets of a fixed diameter. These droplets are treated as hard spherical particles, and 

their drag physics is approximated using a drag coefficient model. 

An important characteristic of this model is that information is transferred only from the primary 

phase to the secondary phase, and not in the reverse direction. This makes the computation cheaper, but 

does introduce error, particularly for larger droplets. A more thorough analysis may see benefits from a 

two-way coupled model. Also, to account for the effects of turbulence the Spalart-Allmaras Turbulence 

Model16 was used. This model is particularly well suited for wing flows, and as a one equation model, it 

remains comparatively cheap. 

Convergence is measured using lift coefficient on the airfoil. Both airfoils used in the present 

analysis are symmetric, so an asymptotic convergence criterion can be created to halt the solution after 

the simulation has settled on a lift coefficient of zero. From here, any streamline in the flow field can be 

extracted. To ensure that the droplet impacts a rigid wall, the stagnation streamline is computed by 

looking for a cell on the wing leading edge with a pressure coefficient of 1, and then integrating 

backwards to the inlet. The droplet velocity, position in space and relative velocity between the droplet 

and the surrounding air is then extracted into a table and exported for the next phase in the process. 

Section 2.3: Streamline Data Analysis 

The droplet velocity, position data and relative velocity data is sorted based on position. This 

sorts the data into what the droplet experiences as it travels along the streamline. When running the 
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macroscale simulation on a single core, normally this step is unnecessary, but occasionally when running 

on multiple threads, the simulation data is not saved sequentially, so sorting becomes necessary.  

After sorting the data is then used to compute time along the streamline. The macroscale 

simulation computes time averaged velocity data at fixed positions, so this has to be converted into time 

varying velocity data. To accomplish this a simple first order forward finite differencing scheme was 

employed. Higher order schemes could be used, but the velocity data is all contained at fixed points in 

space. These points are defined by the mesh cells. A higher order scheme could help when resolving a 

sharper velocity gradient, but the mesh already accounts for this. As the velocity gradient sharpens near 

the boundary layer of the wing, the grid resolution also increases. This helps to relax the requirements for 

interpolation of velocity data from position to position. 

An ancillary feature of separating the streamline data from the macroscale simulation is that it 

allows for the computation of the relevant dimensionless parameters prior to simulating the actual droplet. 

The macroscale simulation does not account for breakup, instead enforcing a fixed diameter for all of the 

droplets in the flow. This allows for Weber number to be directly computed from the velocity data. It 

follows then that the time when the droplet reaches the Critical Weber Number can be computed in 

advance. A snapshot at this time in the simulation could shed insight into droplet stability, and which 

vibrational mode is responsible for droplet breakup. Furthermore, physical time values can be associated 

with each droplet breakup regime. These time values can then be used as a basis of comparison against 

the actual results from the microscale simulation 

Section 2.4: Droplet Simulation - Microscale Simulation 

With the time varying inlet condition isolated and organized from the previous phase, a new CFD 

domain can be constructed using that data. In the hopes of demonstrating this method for the lowest 

possible computational cost, a 2D axisymmetric domain was constructed. This domain forces radial 
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symmetry along the central axis of the droplet. The top of the domain is set to be a symmetry plane. A 

pressure outlet may also be a suitable condition; however, early runs had issues with reversed flow at the 

boundary when the inlet velocity was nearly zero. On the right hand side of the domain is the flow inlet 

boundary. This boundary is set to provide a time varying inlet velocity equal to the relative velocity 

between the droplet and the local air velocity. When the stimulation begins, this velocity is zero, and it is 

not till the droplet enters the local flow field around the wing that this quantity begins to change rapidly. 

Smaller droplets follow the airflow more closely, but the larger droplets have more inertia, and thus 

experience a higher relative velocity prior to impingement. As the initial fractions of a second have little 

in the way of flow, it is sensible to take the inlet and shift it forward in time such that the relative velocity 

is no longer minutely small. Not only will this reduce overall simulation time without reducing accuracy, 

it also helps ensure stability in the simulation. The final boundary condition on the left hand side is a 

pressure outlet.  

In constructing the grid, it is important to maintain cell isotropy and a low level of skewness 

overall. The droplets can decompose in a number of different modes, and each mode is strongly affected 

by the local geometry of the free surface. Therefore, the mesh shape can strongly affect breakup patterns. 

Additionally, the macroscale simulation is not a perfect representation of what happens at the microscale 

level. In the microscale simulation, droplets are allowed to deform and thus become more ballistic. This 

tends to mean that they travel laterally throughout the small fluid domain. If the macroscale simulation 

had a perfect model, the droplet would simply deform in place. To allow for freedom of movement, a 

region of grid refinement is created at the base of the domain extending forwards and backwards from the 

center of the droplets initial location. 

To model the free surface interface between the droplet and the surrounding air, the Volume of 

Fluid (VOF) method is used. This method tracks the volume fraction of each phase of matter present in 

the simulation. In this instance, there are again only two: air and water. The free surface is captured along 

the grid where volume fraction is between one and zero. One representing that the cell volume contains 



20 

entirely air and zero representing that the cell volume contains only water. Cells marking the boundary 

between the phases have some fractional amount of each phase. Thus their volume fraction lies between 

zero and one. Properties like density of this two phase material are computed using a volume average. 

The method is most accurate when this two-phase material is entirely one cell thick along the interface. 

Additionally, the volume of cells at this interface determines the length scale of resolution the simulation 

can muster for the free surface. As breakup is strongly dependent on resolving this free surface to the 

highest possible fidelity, the bulk of mesh resolution is spent on ensuring a high quality mesh around this 

free surface. A more efficient adaptive meshing approach, like the one employed by Jain, Prakash, Tomar 

and Ravikrishna17, can supplement an already highly resolved mesh to either improve resolution further, 

or reduce cost when fidelity is less important. 

The reference frame switch is again the most important feature in this phase of the process, and 

the entire method. The streamline data has already been processed and converted into a time varying 

velocity inlet condition from the previous phase. In this phase, that data is used as the boundary 

conditions for the simulation. Additionally, the governing equations used in the simulation have to be 

shifted with another time varying condition. This condition corrects the velocity field for the motion of 

the domain itself. Obviously, directly applying a velocity inlet condition to a droplet will blow the droplet 

out of the fluid domain, given enough simulation time. To counteract this, the entire domain is 

constructed in a translating reference frame that has the droplet initially traveling forward with the free 

stream velocity of the flow field, and decelerating to keep pace with the particle streamline extracted from 

the microscale simulation earlier. Combined, the relative slip velocity and reference frame velocity 

applied to the compact microscale fluid domain can determine the system.  

As a final note on the number and type of experiment performed, below is a table detailing the 

exact parameters and outcomes of the experiments. 
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Table 1: Matrix of Experimentation 

Freestream 

Velocity (m/s) 

Droplet Size 

(microns) 

Airfoil 

100 50 NACA 0012 

100 100 NACA 0012 

100 200 NACA 0012 

80 473 DBKUP 02 

120 2000 DBKUP 02 

 

Section 2.5: Criticism of the Proposed Method 

The proposed method yields a relatively high fidelity solution at a fast rate, at least for the size of 

the computation. Rapid changes in the accelerating flow field are matched by the increasingly refined grid 

in the macroscale simulation. The method is best suited for scenarios with rapidly increasing Weber 

Number. A rapidly increasing Weber Number means that the droplets are less prone to vibrational 

breakup, and bag breakup becomes more likely. The axisymmetric boundary condition imposed in the 

simulation favors droplet breakup mechanisms that maintain axisymmetry themselves. This is a critical 

failing. The first breakup mode is heavily suppressed by virtue of the construction of the domain. Only an 

axially symmetric vibrational breakup is possible. This is not typical for vibrational breakups. As 

documented by Pilch and Erdman10, vibrational breakup typically occurs transverse to the flow. At best 

this is an unfinished and unproven method. A truly three-dimensional case would demonstrate the 

strengths and weakness of this method more fully. 
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Chapter 3  
 

Results & Discussion 

Section 3.1: Macroscale Simulation 

This step in the simulation procedure is the most conventional, and thus there is not much 

information to glean from this stage. As outlined in the methods section, an NACA 0012 or DBKUP 02 

airfoil is placed inside of a domain. A droplet flow is then solved around the wing section. Figure 1 shows 

the droplet stagnation streamline extracted from the simulation over a section plane displaying the air 

velocity field around the wing section. This figure serves as an overview of the macroscale simulation 

process. From the slip velocity streamline, it is clear that the closer a cell is to the body, the higher the slip 

velocity. This trend is expected as droplets have a higher density than the surrounding air, and thus have 

more inertia. A similar trend is reversed when the droplets pass through the accelerating regions of flow 

outside of the stagnation region of the airfoil. There, the droplet velocity is less than the local air flow 

speed, This trend is expected as droplets have a higher density than the surrounding air, and thus have 

more inertia. A similar trend is reversed when the droplets pass through the accelerating regions of flow 

outside of the stagnation region of the airfoil. There, the droplet velocity is less than the local air flow 

speed.  

Figures 2 and 3 display the same slip velocity streamlines over a Weber Number field. This 

Weber Number field is computed using the initial diameter of provided in the simulation. Recall that for 

Eulerian-Eulerian simulations without droplet breakup models, the size of the droplet can not evolve over 

time. So this Weber Number field should not be thought of as a direct computation of Weber Number, but 

instead the value Weber Number would take on if the droplet decomposed precisely at a given point in 

the field. The Weber Number field for the DBKUP 02 section is far more jagged than the one around the 
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NACA 0012 section due to the geometry of the DBKUP 02 airfoil. The DBKUP airfoil was designed to 

represent the leading edge of a high thickness ratio blade used on either transport airplanes or helicopters. 

As a result, its stagnation region is much more abrupt than its more streamlined counterpart, the NACA 

0012 airfoil. With the streamlines extracted from all of the cases, the data is ready for analysis. 

 

 

Figure 2: 473 µm MVD Droplet Streamline Over Velocity Field Around DBKUP 02 Section 
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Figure 3: 200 µm MVD Droplet Streamline Over Weber Number Field Around NACA 0012 Section 

 

 

 

Figure 4: 2000 µm MVD Droplet Streamline Over Weber Number Field Around DBKUP 02 Section 
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Section 3.2: Streamline Data Analysis 

 Figures 4-10 highlight various aspects of the streamline data extracted from the macroscale 

simulation. Figures 4 and 5 display slip velocity along the streamline. This velocity value serves as the 

basis for several future calculations. We also see in Figure 4 odd rising and falling slip velocity of the 

2000 µm droplet. This is actually a result of the initially negative values for slip velocity on the larger 

droplet. The droplet enters the domain at the same velocity as the rest of the airflow, but maintains this 

velocity longer than the airflow, and thus has a negative slip velocity that eventually crosses back to 

positive as the velocity field switches from decelerating to accelerating relative to the droplet. The 

presence of behavior like this is a problem for the method. Velocity inlet boundary conditions are only 

suited for specifying flow into the domain at a fixed velocity, not out.  To circumvent this issue, an 

assumption is made that such far field deformations were minimal in scale and would thus not strongly 

impact the final stability of the droplet. This is a strong assumption that may not hold.  

Figures 6 and 7 display how Weber Number evolves over position. This plot is relatively simple 

and all of its data comes directly from the extracted streamline. Position is measured in distance from the 

leading edge of the airfoil. Furthermore, the abscissa is given in a log scale. The log scaling is good way 

for capturing the phenomenon as the extreme slip velocities are only reached just before the leading edge. 

Also, note the change in the limits on the ordinate axis. The droplets simulated in the NACA 0012 

simulation barely reach a Weber Number of 25 at the most extreme. The massive 2000 µm droplet in the 

strong flow field is capable of reaching an extremely high Weber Number. This is a strong indicator that 

the droplet will experience a more powerful breakup mechanism.  

Prior work has used Bond Number instead of Weber Number to determine criticality. Figures 8 

and 9 were included for the sake of completeness and to provide a basis of comparison. 
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Figure 5: Slip Velocity vs. Distance from Leading Edge of DBKUP 02 Section 

 

 

Figure 6: Slip Velocity vs. Distance from Leading Edge of NACA 0012 Section 
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Figure 7: Weber Number for Fixed Diameter Droplet vs. Distance from Leading Edge of DBKUP 02 Section 

  

 

 

Figure 8: Weber Number for Fixed Diameter Droplet vs. Distance from Leading Edge of NACA 0012 Section 
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Figure 9: Weber Number vs. Time Along Streamline for DBKUP 02 Section 

 

 

Figure 10: Bond Number vs. Time Along Streamline for DBKUP 02 Section 
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Figure 11: Bond Number vs. Time Along Streamline for NACA 0012 Section  

Section 3.3: Microscale Simulation Results 

The droplet presented in Figures 12-18 is the same 473 µm droplet in every frame. The figures 

display the evolution of this droplet over its entire journey till impingement. To improve stability of the 

simulation, an offset time value of 0.02 seconds was used to increase the slip velocity to roughly 1 cm/s. 

This value is large enough to ensure stability, but small enough to maintain the assumption that the far 

field behavior of the droplet is less significant. The droplet can be seen as the colored ball in the center of 

the domain. A cross section of its shape is shown over the surrounding velocity field. The red through 

blue colors denote volume fraction of the cells, while the greyscale background shows the velocity field. 

For volume fraction, red indicates a volume fraction of 1 while dark blue indicates a volume fraction of 

0.4. The inner core of the droplets is thus purely water, with an outer layer representing the free surface. 
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The thickness of this blue layer relative to the red core is a good measure of fidelity. If the blue layer is 

thin relative to the red core, than the VOF simulation is well within acceptable parameters. In this 

particular simulation, the droplet resolution starts out fine, but later stages in the simulation leave 

something to be desired. 

Figure 12 shows the droplet early on its path to impingement. The droplet appears to be 

completely stable. Figure 13 shows some early evidence of vibrational breakup. This may be a misnomer 

however. Note that the separate lobe is entirely of a low volume fraction. True vibrational breakup would 

have lobes split off at roughly equal size. The following figures all have the overview of the fluid domain 

with physical time displayed; a zoomed in view of the droplet itself; and an image taken from Pilch and 

Erdman10 depicting the breakup mechanism the droplet is currently experiencing.  

 

 

Figure 12: View of 473 µm Droplet Near the Start of Simulation Approaching DBKUP 02 Section  

  

 

DBKUP 02

V8= 80 m/s
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Figure 13: Onset of Vibrational Breakup (473 µm Droplet, DBKUP 02 Section) – Breakup Mechanism Image 

Taken from Pilch and Erdman10 

 

 Figure 14 shows more advanced breakup. In this figure, it is clear that mass has been torn away 

from the droplet without actually breaking up the core of the droplet. This is unexpected behavior. The 

relatively small size of droplets makes it difficult to pull mist off the surface of the droplet. The simulated 

behavior here is likely a result of a deficiency in the method. Namely, grid resolution may not be high 

enough, or with transverse deformation constrained, water that would have flowed into two separate lobes 

is instead peeled away into the airflow. 

 

DBKUP 02

V8= 80 m/s
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Figure 14: Vibrational Breakup Escalates (473 µm Droplet, DBKUP 02 Section) – Breakup Mechanism Image 

Taken from Pilch and Erdman10 

 

Moments later a different behavior emerges. In Figure 15, the droplet flattens into a 

pancake shape signaling the onset of bag breakup. This is the first approximately axially 

symmetric breakup mode. Again, keep in mind that the figures only show a cross section of the 

droplet. To imagine the three-dimensional shape of the droplet, apply axisymmetry and revolve 

the droplet around its central axis. 

 

DBKUP 02

V8= 80 m/s
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Figure 15: Onset of Bag Breakup(473 µm Droplet, DBKUP 02 Section) – Breakup Mechanism Image Taken 

from Pilch and Erdman10 

 

Figure 16 depicts a fully formed bag. Here the droplet is significantly deformed into a 

sort of jellyfish shape. This shape is inherently unstable, and moments later as the top of the bag 

begins to pinch around the corners, the bag tears. This can be observed in Figure 17. Note in the 

close up view how the surface is no longer continuous. The tearing continuous down to the 

toroidal rim of the droplet. In previous experiments10,17 analysis of bag breakup has shown that 

the majority of the fluid in the droplet is contained within the toroidal rim, and its decomposition 

is the most critical element in determining the resulting size of the water droplets. The toroid 

does not appear to have the same amount of fluid as what would be expected, but in its curled 

edge, there remains a significant amount of water. Note that while the tear in the droplet 

originates in the bag, but travels through the legs of the bag into the toroidal rim before the entire 

droplet breaks apart. Now with higher surface energy, the resulting droplet fragments will reform 

into smaller, rounder droplets. 

DBKUP 02

V8= 80 m/s
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Figure 16: Full Bag Formation (473 µm Droplet, DBKUP 02 Section) – Breakup Mechanism Image Taken from 

Pilch and Erdman10 

 

 

Figure 17: Initiation of Bag Breakup(473 µm Droplet, DBKUP 02 Section) – Breakup Mechanism Image Taken 

from Pilch and Erdman10 

 

DBKUP 02

V8= 80 m/s

DBKUP 02

V8= 80 m/s
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Figure 18: Collapse of Toroidal Rim (473 µm Droplet, DBKUP 02 Section) – Breakup Mechanism Image Taken 

from Pilch and Erdman10 

The times from each of these captures was used to locate the value of We from the 

streamline data. Figure 19 shows where the last four scenes occurred and their corresponding 

Weber Numbers. This demonstrates that changing Weber Number Regime impacts the breakup 

mechanism of the droplet. The author cautions the reader that these values are slightly 

misleading. Mass has been extracted from the droplet over the path of travel, and thus the 

effective diameter of the droplet has been changing, thereby effecting the value for Weber 

Number, but insofar as Weber Number regimes exist for gradually accelerated droplets, Figure 

19 demarks when along the droplets path does it reach critical points of stability. Note that the 

offset time has been subtracted away from the total time of the simulation to agree with the 

timestamps from the previous figures. 

 

DBKUP 02

V8= 80 m/s
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Figure 19: Weber Number of Previous Figures vs. Time Along Streamline 

3.4: Results in Full 

The remaining results of the numerical experiment are cataloged below. Each droplet that 

experienced breakup did so by following one of the mechanisms discussed in prior droplet breakup 

literature. The test conditions and results are arranged horizontally for each test. Breakup Time was read 

off of the simulations physical time, and then whatever offset time was used to ensure stability at the start 

of the test was added to it. The breakup mode was recorded as well. 
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Freestream 

Velocity (m/s) 

Droplet Size 

(microns) 

Airfoil Breakup Time 

(s) 

Critical Weber 

Number 

Breakup Mode 

100 50 NACA 0012 N/A N/A Did Not 

Breakup 

100 100 NACA 0012 N/A N/A Did Not 

Breakup 

100 200 NACA 0012 N/A N/A Did Not 

Breakup 

80 473 DBKUP 02 0.040243 ~9 Vibrational & 

Bag  

120 2000 DBKUP 02 0.00297784 ~12 Bag & Bag  

Table 2: Table of Results 
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Chapter 4  
 

Conclusion 

Previous research has made massive strides in simulation capability. Different methodologies 

have been used with great success in predicting ice accretion. Supercooled Large Droplets pose a different 

kind of problem. Their large diameters complicate the physics of multiphase flow, and put old 

assumptions into question. Current tools for modeling these droplets still rely on experimental data that is, 

perhaps, less definitive than researchers consider it to be. This work outlines a strategy for investigating 

droplet dynamics at the individual droplet level. Reference frame shifts are applied to sequentially narrow 

the frame of view (and computational cost) down to a level that makes observations of small-scale 

behavior possible. Five proof of concept simulations were executed using this methodology. There results 

agree fairly well with existing theory (thus negating their need); however, variation remains large. Further 

study may be able to isolate droplets further and better represent the complex nature of droplet-entrained 

flows. Specifically, a model capable of resolving the small scales of the multi-phase interface could shed 

light on what causes the variation in Critical Weber Number. In addition, a high fidelity simulation could 

locate sub-breakup mechanisms that feed into the existing breakup mechanism but affect important output 

quantities such as resulting droplet diameter. Ice accretion is an incredibly complicated process and 

Supercooled Large Droplets complicate the process further by introducing a new world of physics to 

model. This work attempts to provide a means for investigating the complicated physics of droplet 

dynamics at the single droplet level. 
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Research Honors Thesis, Applied Research Laboratory-Penn State, Fall 2016 to 2017 
Experience “AN EVALUATION OF COMPUTATIONAL METHODS TO  

MODEL LARGE DROPLET BREAKUP” 
 

Modeling Large Droplet Dynamics using Computational Fluid Dynamics (CFD) 
 Examination on the effect of Weber number on breakup mechanism 

 Simulation retrieves variable boundary conditions from steady Dispersed Multiphase 
RANS solution around airfoil and feeds into highly refined VOF droplet region. 

 
Idaho National Laboratory,  Summer 2015 
Conducted Multi-Physics Modeling for Nuclear Waste Treatment Processes 

 Model built with STAR-CCM+ and features Multi-Phase Flow, Ohmic Heating, and Heat Transfer 
models. Model informed waste treatment process decisions at The Hanford Nuclear Waste 
Treatment Plant.  

 Constructed an artistic representation of my model that won 2nd place of 300 interns in the Sci-Art 
contest at the lab. 

 Presented research at Schreyer Honors College “Scones and Scholars”  student lecture series 

 

 

 



 
Sailplane Laboratory, Fall 2013 to present 

 Designing and Constructing Human Powered Aircraft for Kremer Prize. 
 Eight semester course sequence focusing on developing advanced understanding of aircraft 

design, stability and control, structures, and composite manufacturing techniques with both hands 
on lab work, and conceptual lectures 

 Requires 2-3 comprehensive technical reports per semester. 

  
Penn State Design Build Fly (DBF), Fall 2016 to Present 

 Designing Competition sponsored by AIAA 
 Designing, building and flying small fixed wing electric model aircraft capable of fitting within a 

watertight, drop resistant tube and then deploying into a flight configuration.  

 As a member my task is to assist with the mission analysis, specifically examining how different 
aircraft configurations would perform relative to others.  

 I have also lead the design including: control surface sizing, structural configuration and systems 
integration. 

 As the team leader I create group member schedules; I draft weekly agendas detailing current 
project status, upcoming deadlines and lessons learned; I manage the ordering of materials and 
group assignments; I coordinate with other sailplane class members and advisors helping us 
complete aircraft construction 

____________________________________________________________________________________ 
 
Leadership  Eagle Scout   Boy Scouts of America 
Experience  Academic Tutor and Mentor  Millennium Scholars Program 
   Group Leader   Penn State DBF 
   Millennium Scholars Program Program Advisor 
 


