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ABSTRACT 
 

Monoclonal antibodies (mAbs) have become one of the most promising classes of 

therapeutics. Currently, dozens of mAbs are FDA-approved for autoimmune disorders, cancers, 

and infectious diseases. While there exist robust laboratory methods for designing mAbs for new 

antigens, these expensive and time-consuming (i.e. 3 – 6 months) methods are incapable of 

developing therapeutic antibodies rapidly during an epidemic. Potentially, computational methods 

of engineering mAbs could expedite this process. The first software capable of designing antibody 

variable domains de novo—OptMAVEn—was published in 2014. Despite designing three mAbs 

that bound a dodecapeptide antigen, OptMAVEn proved too time- and storage-intensive to design 

mAbs for Zika during the 2015 – 2016 epidemic. 

Here, we present Quick OptMAVEn, a new implementation of OptMAVEn. We show that 

Quick OptMAVEn can design variable domains of equivalent quality in 74% less time using 84% 

less disk storage, relative to OptMAVEn. Furthermore, we have used Quick OptMAVEn to design 

50 antibodies for Zika, 9 of which are predicted to bind the antigen with greater affinity than an 

antibody isolated from a human patient. Quick OptMAVEn achieves better performance by using 

more efficient algorithms, more compact representations of antigen structures, and a novel k-

means clustering step. We plan to create a web server to share Quick OptMAVEn with other labs. 
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Chapter 1  
 

Antibodies as therapeutics 

Background on therapeutic monoclonal antibodies 

Antibodies are important components of the adaptive immune system. Monoclonal 

antibodies (mAbs, distinguished from polyclonal antibodies) are the active ingredients in an 

increasing number of therapeutics. Currently, an average of four mAbs are approved by the FDA 

each year, with over 300 in development, and it is expected that approximately 70 will be on the 

market by 2020 [1]. Such medicines have been approved to treat infectious diseases, autoimmune 

disorders, metabolic disorders, and various types of cancers [2]. 

Drugs based on mAbs and other proteins (collectively termed “biologics”) are particularly 

attractive for multiple reasons. They are capable of binding their intended targets with high 

selectivity, minimizing off-target binding and hence side-effects [3]. There exist robust platforms 

for producing mAbs on industrial scales, most commonly in mammalian cells and occasionally in 

E. coli [1]. New mAbs can be designed using multiple well-established technologies, including 

hybridomas, mice with humanized immune systems, and phage display [3]. However, designing a 

mAb typically takes three to six months [4], a significant amount of time in the case of an epidemic. 

Thus, rapid methods for designing mAbs (such as Quick OptMAVEn, described in Chapter 3) 

could lead to significant improvements in the attenuation of epidemics or other time-critical 

situations. 



2 
Antibody structure and function 

Before describing the Quick OptMAVEn framework for rapid design of mAbs, it is 

necessary to understand the structure of antibodies and how they are generated naturally and 

artificially. Antibodies are proteins. Like all proteins, they consist of peptide chains, which are 

polymers of amino acids. Antibodies have four peptide chains: two identical “heavy” chains and 

two identical “light” chains. In natural antibodies, the heavy chains are identical, as are the light 

chains. Each heavy chain has four domains—collections of amino acids that perform a common 

function—arranged in tandem. Three of the domains (CH1, CH2, and CH3) are termed “constant” 

domains because they are identical across all antibodies within a given individual. The fourth 

domain (VH) lies on one end of the heavy chain and is termed the “variable” domain because it 

varies among antibodies within one individual; its shape and amino acid sequence determine 

whether it will bind to a given molecule. Each light chain has two domains: one constant (CL) and 

one variable (VL) [3]. 

The overall shape of an antibody resembles the letter Y. Each arm of the Y comprises one 

light chain (CL and VL) and two of the domains of a heavy chain (CH1 and VH) arranged as a two-

by-two array, with the heavy domains on the inside of the Y and both variable domains at the tip. 

The stem of the Y comprises the two remaining constant domains of each heavy chain (CH2 and 

CH3), also arranged as a two-by-two array. The four chains are connected by disulfide bonds that 

form between residues of the amino acid cysteine located on separate chains [3]. 

 Antibodies function by physically binding to target molecules, known as antigens [5]. An 

antibody that neutralizes (abrogates the infectivity of) a virus, for example, binds to the virus 

particles (the antigens), which physically blocks the virus from binding to and thereby infecting 

host cells. The region of the antigen to which the antibody binds is known as the epitope, and the 



3 
region of the antibody that binds to the epitope is known as the paratope. The ability of an antibody 

to bind a given antigen is determined by the shape of the paratope, which is located at the tip of 

variable domains [5] and composed of six co-called complementarity-determining regions 

(CDRs): three from the VH domain (CDR-H1, CDR-H2, and CDR-H3) and three from the VL 

domain (CDR-L1, CDR-L2, and CDR-L3) [6]. The remaining non-CDR portions of the variable 

domains are known as the framework regions, which maintain the structure of the CDRs but are 

not directly involved in binding the antigen [6]. Although the CDRs are the most variable portions 

of antibodies, the framework regions may also vary among different antibodies in the same 

individual [7]. 

Generation of antibodies by the immune system 

V-(D)-J recombination 

For decades, the mechanism by which antibodies are generated presented a paradox: 

generating enormous variability in the variable domains (~3 ∙ 108 potential germline sequences 

[8]) while using a finite genome. Clearly, there could not exist one gene for each of the sundry 

possible antibodies. Instead, germline genomes contain a relatively small library of genes encoding 

separate parts of antibodies, which are selected at random and fused into a complete antibody [9]. 

In mice [9] and humans [7], there are three families of genes encoding the variable domains: heavy-

chain genes (for segments of VH), 𝜅𝜅 genes (for segments of VL), and 𝜆𝜆 genes (also for segments of 

VL). The light chains of a natural antibody are encoded either by 𝜅𝜅 or 𝜆𝜆 genes, but never by both; 

hence, VL domains assembled from 𝜅𝜅 or 𝜆𝜆 genes are known, respectively, as VL-𝜅𝜅 and VL-𝜆𝜆 



4 
domains [7]. Heavy, 𝜅𝜅, and 𝜆𝜆 gene families differ in their composition and in how they are arranged 

and assembled into complete V domains: a process known as V-(D)-J recombination [9]. V-(D)-J 

recombination occurs in B cells—white blood cells that manufacture antibodies [10]. New B cells 

bear all heavy, 𝜅𝜅, and 𝜆𝜆 genes; during a process called maturation, which entails V-(D)-J 

recombination, they assemble a subset of these genes into a gene for a complete antibody [11]. 

The 𝜆𝜆 gene family includes 86 so-called variable 𝜆𝜆 (𝑉𝑉𝜆𝜆) genes and 10 so-called joining 𝜆𝜆 

(𝐽𝐽𝜆𝜆) genes [8]. In the germline genome, the 𝑉𝑉𝜆𝜆 genes are clustered together, as are the 𝐽𝐽𝜆𝜆 genes, and 

the clusters are separated by a DNA spacer. During V-(D)-J recombination, one 𝑉𝑉𝜆𝜆 gene and one 

𝐽𝐽𝜆𝜆 gene are selected and the intervening DNA spacer is removed, such that the selected 𝑉𝑉𝜆𝜆 and 𝐽𝐽𝜆𝜆 

genes are fused tail-to-head, and the other 𝑉𝑉𝜆𝜆 and 𝐽𝐽𝜆𝜆 genes are excised from the genome [9]. This 

step alone would be capable of generating up to 86 × 10 = 860 unique VL-𝜆𝜆 domains [8] (though 

this is an over-estimate: not all combinations are observed [9]). However, several nucleotides may 

be added and deleted randomly at the junction of the two genes; the resulting amino acid insertions 

and deletions and frameshift mutations increase the number of VL domains that can be produced 

from the 𝜆𝜆 gene family [9]. 

The 𝜅𝜅 gene family includes 97 𝑉𝑉𝜅𝜅 genes and 9 𝐽𝐽𝜅𝜅 genes [8], which undergo V-(D)-J 

recombination in a manner similar to that of the 𝜆𝜆 gene family. However, there is a substantial 

difference, albeit one that does not affect the VL domain. In the 𝜆𝜆 gene family, a gene 𝐶𝐶𝜆𝜆 encoding 

the constant 𝜆𝜆 domain (CL-𝜆𝜆) is located after each 𝐽𝐽𝜆𝜆 gene, and the pair of 𝐽𝐽𝜆𝜆 and 𝐶𝐶𝜆𝜆 genes are 

chosen together. Thus, CL-𝜆𝜆 does vary among antibodies that use 𝜆𝜆 genes (but it is not subject to 

nucleotide insertions and deletions), and the choice of CL-𝜆𝜆 depends on which 𝐽𝐽𝜆𝜆 gene was selected. 

However, for antibodies that use 𝜅𝜅 genes, there is only one gene 𝐶𝐶𝜅𝜅 encoding the constant 𝜅𝜅 domain 

(CL-𝜅𝜅), so all 𝜅𝜅 antibodies have the same CL-𝜅𝜅 domain [9]. 
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The heavy-chain gene family includes 324 𝑉𝑉𝐻𝐻 genes, 13 𝐽𝐽𝐻𝐻 genes, and 44 so-called 

diversity (𝐷𝐷) genes [8], which lie between the 𝑉𝑉𝐻𝐻 and 𝐽𝐽𝐻𝐻 genes and have no counterparts in the 𝜆𝜆 

or 𝜅𝜅 gene families. V-(D)-J recombination joins one 𝑉𝑉𝐻𝐻, one 𝐷𝐷, and one 𝐽𝐽𝐻𝐻 gene tail-to-head-to-

tail-to-head into a complete gene encoding one VH domain; the remaining 𝑉𝑉𝐻𝐻, 𝐷𝐷, and 𝐽𝐽𝐻𝐻 genes are 

excised from the genome. Similar to the formation of the VL domain, nucleotides are inserted and 

deleted at the junctions of the 𝑉𝑉𝐻𝐻, 𝐷𝐷, and 𝐽𝐽𝐻𝐻 genes. However, because there are a larger number of 

genes in the heavy-chain family, each is the product of three (not two) genes, and there are two 

junctions, the potential diversity among VH domains is much greater than that among VL domains 

[9]. In particular, the CDR-H3 loop is extremely variable [8], as it is encoded by the 𝐷𝐷 gene and 

often by the end of the 𝑉𝑉𝐻𝐻 gene, the beginning of the 𝐽𝐽𝐻𝐻 gene, and the junctions between these 

genes [9]. 

The genes encoding antibodies vary in length, and nucleotides are added and subtracted 

randomly at their junctions; hence, the resulting V domains may contain different numbers of 

amino acids. Variation in length is problematic when determining which amino acids from 

different antibodies correspond to each other. Thus, the international ImMunoGeneTics 

information system (IMGT) has developed a standard numbering system for the amino acids in V 

domains (Figure 1) [12]. In this system, the amino acids in CDR-H3, for example, are always 

numbered from 105 to 117, regardless of the actual number of amino acids. If there are fewer than 

13 amino acids in CDR-H3, then gaps are left in the numbers: if there were 5 amino acids, they 

would be numbered 105, 106, 107, 116, 117. In the case that a CDR or framework region is longer 

than the allotted number of residues, letters are appended to the numbers, e.g. 

… , 110, 111, 111𝐻𝐻, 111𝐵𝐵, 111𝐶𝐶, 112𝐵𝐵, 112𝐻𝐻, 112, 113, … [12].
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Figure 1: The ImMunoGeneTics (IMGT) numbering system for the heavy (left) and light (right) chains. All lengths are 
to scale. A) The IMGT numbers are given for the start and end of each framework region (FR) and complementarity-determining 
region (CDR). The number at the top left corner of each region labels its first residue. The number in its lower right corner (if 
present) labels its last residue. B) Correspondence of V, (D), and J germline genes to the FRs and CDRs. Because indels occur 
during V(D)J-recombination, the ranges of residues encoded by the genes vary among antibodies (indicated by the color gradients). 
C) Correspondence of the V*, CDR3, and J* regions of the MAPs database to the FRs, CDRs, and germline genes. 

Affinity maturation 

The process of V(D)J-recombination in vivo yields B cells that produce so-called 

“germline” antibodies with modest antigen affinities, e.g. 105 − 106 M−1 [13]. During the 

following several months, these B cells develop antibodies with higher affinities (e.g. 107 −

108 M−1) through a phenomenon known as affinity maturation. Affinity maturation entails two 

steps: 1) B cells deliberately make mutations to the genes encoding their antibodies—a process 

known as somatic hypermutation—and 2) B cells whose mutated antibodies have higher affinities 

proliferate, while those with lower affinities undergo apoptosis [14]. Iterating these two steps 

eventually yields B cells that produce high-affinity antibodies. Subsequent exposure to the antigen 

elicits the production of these affinity-matured antibodies, rather than the germline antibodies [13]. 

Somatic hypermutation preferentially targets amino acids closer to the antibody gene promoter, 

which lies just before the V gene [15]; and mutations also occur more frequently in the CDRs than 

in the framework regions [7]. 
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Engineering therapeutic antibodies 

Laboratory-based methods of engineering mAbs 

Since the production of the first mAbs in 1984 [3], there have been extensive efforts to 

engineer therapeutic mAbs [3] [4] [6] [7]. Today, hybridoma technology is the most common 

method of developing a new mAb for a given antigen [10]. This process begins by immunizing a 

test animal by injecting the antigen of interest [10] [4]. The first mAb was generated using mice, 

which remain the most common test animals today [3], though rats, rabbits, hamsters, guinea pigs, 

goats, sheep, and chickens have also been used [4]. Additionally, in the case of an epidemic of a 

human disease, infected humans can be sources of antibodies, as happened during the recent 

epidemics of Zika [16] [17] and Ebola [18]. Immunizing the chosen animal elicits an immune 

response [10]. Prior to immunization, the animal harbors a large number of mature B cells. 

Through the randomized process of V-(D)-J recombination, a small number of them will have 

assembled antibodies capable of binding the antigen [11]. When these B cells—each with a unique 

antibody—recognize the antigen, they proliferate and begin to secrete antibodies. The resulting 

ensembles of multiple types of antibodies from multiple B cells are known as polyclonal antibodies 

(pAbs). The individual antibodies in a collection of pAbs recognize the same antigen but differ in 

terms of the epitopes that they bind and the affinities with which they bind the epitopes [10]. Recall 

that the initial pAbs (available in 1 – 2 weeks) are relatively low-affinity; creating high-affinity 

antibodies through natural affinity maturation requires over one month [13]. 

Relative to mAbs, pAbs are inexpensive to produce, demand less skill, and require less 

time (4 – 8 weeks versus 3 – 6 months for mAbs) [4]. However, mAbs are more consistent in terms 

of their antigen-binding properties, which is desirable for pharmaceuticals. To produce a mAb, the 



8 
spleen is removed from the immunized animal; the B cells within the spleen are fused with 

myeloma cells, yielding a chimeric type of cell known as a hybridoma. The hybridoma cells are 

cultured, and the antibodies they produce are screened using an enzyme-linked immunosorbent 

assay (ELISA), indicating which hybridomas produce antibodies capable of binding the antigen of 

interest [10]. Each such hybridoma cell, which produces a single type of mAb, serves as a stable 

and consistent source of the antibody [11]. 

A major challenge in antibody development is that the human body can mount an immune 

response against the mAbs themselves; mAbs that elicit this response are said to be immunogenic 

[3] [7]. Immunogenicity arises because the mAbs are developed in non-human animals, causing 

the human immune system to treat the mAbs as foreign pathogens [3] and produce so-called anti-

drug antibodies (ADAs) [19]. ADAs have the potential to not only reduce the efficacy of 

therapeutic mAbs but also to cross-react with a patient’s endogenous proteins, which can have 

severe consequences [19]. One approach to reduce immunogenicity is to create a chimeric 

antibody by fusing the VH, VL, CH1, and CL domains of a murine mAb to the CH2 and CH3 domains 

of a human mAb [3]. The risk for immunogenicity is lowered further through the process of 

humanizing the VH, VL, CH1, and CL domains—that is, making mutations that increase their 

similarities to human antibody sequences [3]. Recently, humanization has been taken a step further 

through genetically engineering mice with fully human immune systems, e.g. VelocImmune [20]. 

An alternative to hybridoma technology exists: phage display technology [10]. Phage 

display is a method of engineering mAbs in vitro, without the need to immunize mice or generate 

hybridomas. First, a library of 1012 Inovirus phage bearing 106 − 1011 unique antibodies (or other 

binder proteins) is created. The phage are incubated with the antigen, which is immobilized to a 

surface; a subsequent wash step removes unbound phage, leaving only those that bound with 
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sufficient affinity to the antigen. The phage that bound are then amplified in bacterial hosts; during 

replication, they undergo extensive genetic recombination, which generates further diversity in the 

antibodies or proteins they display. The amplified phage are again incubated with the antigen to 

identify the highest-affinity binders, and this process is repeated up to five times [10]. Note how 

this in vitro process recapitulates in vivo affinity maturation, in which B cells with high-affinity 

antibodies proliferate, while those with low-affinity antibodies die out [14]. Following the final 

round of phage display, the genomes of the surviving phage are sequenced to determine the 

sequences of the highest-affinity antibodies or proteins. Phage display is not yet as well-established 

as hybridoma technologies, is more difficult and expensive to perform, and yields a smaller 

number of unique mAbs. However, it offers the potential to generate antibodies free of 

immunogenic murine sequences in a relatively short amount of time. Furthermore, phage display 

can be extended from antibodies to proteins in general, while hybridoma technologies cannot [10]. 

Computational methods of engineering mAbs 

Despite the large number of mAb-based pharmaceuticals currently on the market or in 

development [1], there exist many shortcomings of laboratory-based methods for engineering 

mAbs. A typical mAb requires 3 – 6 months to produce [4]. Furthermore, hybridoma and phage 

display technologies cannot deliberately target a particular epitope, ensure stability, or minimize 

immunogenicity [7]. Stability of mAbs is essential because unstable mAbs are prone to degrade in 

multiple ways. They may degrade chemically via deamidation of asparagine or glutamine residues, 

oxidation, hydrolysis of peptide bonds, or fragmentation of the chains [19]. Like many proteins, 

mAbs are also prone to aggregation. Degradation not only reduces the ability of mAbs to bind their 
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target antigens but may also create novel epitopes on the mAbs that can elicit an immune response 

[19] [21]. Even fully human mAbs may become immunogenic upon degradation [19]. Thus, 

methods of engineering antibodies should account for stability in addition to immunogenicity and 

affinity for the antigen. 

There exist multiple computational methods for engineering mAbs with high antigen 

affinities (e.g. OptCDR [6], OptMAVEn [7], AbDesign [22], and Rosetta Antibody Design [23]), 

improving stability (e.g. Spatial Aggregation Propensity [21] and Rosetta Supercharge [24] [25]), 

and decreasing immunogenicity (e.g. molecular modeling [26] and human string content [27] [7]). 

Although computational methods are used widely to design small molecule drugs, virtually all 

therapeutic antibodies are still developed primarily via laboratory-based methods; there currently 

exists no widely adopted software for antibody design [28]. 

No existing software seems capable of performing de novo design and optimizing affinity, 

stability, and immunogenicity simultaneously; OptMAVEn, AbDesign, and Rosetta Antibody 

Design come closest. OptMAVEn [7] designs entire VH and VL domains de novo, i.e. without a 

starting structure of the antigen in complex with an antibody. OptMAVEn (discussed in detail in 

Chapter 2) first optimizes affinity using a fully deterministic algorithm, then iteratively optimizes 

affinity and immunogenicity but does not optimize stability of the mAbs. Poosarla et al. [29] used 

OptMAVEn to design five mAbs for a dodecapeptide, three of which were high affinity (though 

not as high as a natural antibody). Arginine hydrochloride prevented aggregation of the mAbs 

(which were produced in E. coli), and the mAbs refolded after exposure to urea; however, neither 

long-term stability nor immunogenicity was assessed. 

In contrast to OptMAVEn, which designs mAbs de novo using a fully deterministic 

optimization procedure, Rosetta Antibody Design (RAbD) [23] requires the structure of an existing 
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antigen-antibody complex and uses an iterative Monte-Carlo-based method to optimize the 

antibody. In each iteration, RAbD randomly chooses a CDR and replaces it with a random CDR 

from a database of structures; the backbone, amino acid identities, and side chains of the new CDR 

are iteratively optimized using the Rosetta force field; and the new design is accepted or rejected 

based on a Metropolis criterion. Unlike in OptMAVEn, there is no humanization protocol to 

decrease immunogenicity. RAbD was verified experimentally for the design of mAbs targeting 

hyaluronidase. The 30 top-scoring designs were tested; none seemed to aggregate, and three bound 

with greater affinity than did the initial (wild-type) mAb. These three designs also had similar 

thermostabilities relative to the wild-type mAb. These data suggest that RAbD can improve the 

affinity of an existing antibody while maintaining similar stability, but there is no data on 

immunogenicity. However, OptMAVEn [7] is also capable of performing computational affinity 

maturation on its de novo designs while ensuring that their immunogenicities do not increase. 

Thus, OptMAVEn is capable of de novo design and humanization (while RAbD is not), and there 

seem to be no substantial capabilities of RAbD that are not implemented in OptMAVEn. 

In addition to OptMAVEn and RAbD, AbDesign [22] aims to design high-affinity mAbs 

for a given antigen. Like RAbD, AbDesign requires an initial structure of the antigen in complex 

with an antibody. Like OptMAVEn, it assembles variable domains from a library of backbone 

canonical structures of the CDRs and framework regions. However, it uses two structures to 

assemble both the VH domain (the structures are named VH and H3) and the VL domain (VL and 

L3), while OptMAVEn uses three structures for each domain. The strategy behind AbDesign uses 

statistics of backbone conformations, rotamer conformations, and amino acid preferences at each 

sequence position in natural antibodies. From these statistics, it calculates a knowledge-based 

score indicating the similarity between the designed antibody and natural antibodies (assuming 
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that designs most similar to natural antibodies are most likely to be stable and have high affinities). 

The initial phase of AbDesign aligns a representative set of backbone canonical structures to the 

wild-type antibody (in essence, this step docks the antigen into the nascent antibody). This set 

comprises 5 VL, 2 L3, 9 VH, and 50 H3 structures, for a total of 5 × 2 × 9 × 50 = 4500 unique 

initial designs. Each design is mutated using natural amino acid preferences and then optimized 

with respect to backbone conformation. Subsequently, the affinity and stability are simultaneously 

optimized using a fuzzy logic energy function in which only the designs that are both stable and 

high-affinity score highly. The designs are finally filtered based on predicted binding energy, 

buried surface area, packing quality, and shape complementarity, yielding a set of designs for 

experimental validation. To date, there is no experimental data on the performance of AbDesign. 

There are key similarities and differences among OptMAVEn [7], RAbD [23], and 

AbDesign [22]. All three methods rely on databases of canonical structures for regions of antibody 

variable domains. To the best of my knowledge and according to many sources [7] [6] [22] [23] 

[30], OptCDR and OptMAVEn are currently distinguished as the only computational methods 

capable of designing mAbs de novo. OptMAVEn explicitly optimizes affinity while preventing 

designs from becoming increasingly immunogenic, while RAbD and AbDesign explicitly optimize 

affinity and stability (and do not consider immunogenicity). Both RAbD and AbDesign use 

knowledge-based energy functions (i.e. structures are scored based on similarity to previously 

observed structures); OptMAVEn uses physics-based energy functions instead. Experimental 

evidence shows that both OptMAVEn and RAbD are capable of designing stable, high-affinity 

mAbs; there is yet no such evidence for AbDesign. OptMAVEn seems particularly well suited to 

design antibodies when the antigen structure is known but there is little to no structural information 

about how antibodies bind to the antigen. This was the case for over six months during the recent 



13 
Zika epidemic: the first structure of Zika envelope (E) protein was published on 31 March 2016 

[31], while the first Zika-specific human antibodies were reported on 7 November 2016 [17]. Thus, 

OptMAVEn or similar software for de novo mAb design could potentially outpace other methods 

of developing therapeutic antibodies during epidemics. 

It must be emphasized that computational methods are meant to suggest a small number of 

highly promising designs for experimental validation and/or refinement. They may expedite 

experimental testing but cannot fully replace it [28]. Many challenges in computational mAb 

design remain, such as simultaneously optimizing affinity, stability, and immunogenicity and 

predicting the structures of the highly variable CDR-H3 region [23] [22]. These challenges must 

be overcome before antibodies can be designed routinely via computational methods. However, 

given the extensive volume of research on computational mAb design and four significant software 

developments within the past five years [6] [7] [22] [23], the future of computational mAb design 

seems promising. 

Thesis objectives 

In this thesis, we introduce Quick OptMAVEn, software for de novo mAb design that 

improves upon shortcomings of OptMAVEn and includes novel features. First, we discuss how 

OptMAVEn works and identify six areas for improvement. Then, we describe how Quick 

OptMAVEn 1) features an intuitive and robust user interface, 2) positions the antigen with greater 

accuracy and speed, 3) eliminates sub-optimal designs earlier, 4) represents antigen positions using 

less disk storage, 5) reduces the expense of the design step without compromising quality, and 6) 

implements a novel clustering algorithm to retain promising designs that would otherwise be 
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discarded. We show that, on a set of ten antigens, Quick OptMAVEn uses 74% less CPU time and 

84% less disk storage while designing antibodies of equivalent affinities. Finally, we use Quick 

OptMAVEn to design 77 de novo antibodies targeting Zika and identify 9 designs predicted to 

bind with greater affinity than a natural human antibody.
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Chapter 2  
 

OptMAVEn 

Background of OptMAVEn 

The need for a computational method to design fully human antibodies de novo motivated 

the development of OptMAVEn [7]. OptMAVEn is able to sample efficiently from a very diverse 

set of antibody structures by using a library of CDR structures. The structures of all CDRs except 

for CDR-H3 are usually limited to a set of so-called canonical structures [28]. The MAPs database 

[8] comprises 929 canonical structures and was developed to alleviate a major challenge in the 

computational design of antibodies and, more generally, of proteins: the enormous number of 

potential designs, which is illustrated as follows. 

In the IMGT numbering system, CDRs 1, 2, and 3, respectively, comprise residues 27 – 

38, 56 – 66, and 105 – 118 of the heavy and light chains [12]. Although the lengths of the CDRs 

vary among natural antibodies, such variation may be ignored for the purpose of this illustration: 

the six CDRs of an antibody comprise up to a total of 2 × [(38 + 1 − 27) + (66 + 1 − 56) +

(118 + 1 − 105)] = 74 residues. Each residue can be one of twenty amino acids. If the amino 

acid identity of each residue is independent, then there are a total of 2074 ≈ 2 × 1096 possible 

antibodies with 74 CDR residues. A computer capable of predicting the binding affinities of one 

billion (109) antibodies per second would take approximately 2 × 1096 ÷ 109 = 2 × 1087 

seconds (6 × 1079 years) to identify the antibody with the greatest binding affinity. This time is 

orders of magnitude longer than the lifetime of the universe. 
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To expedite computational antibody design, OptMAVEn mimics the natural process of 

V(D)J-recombination using the MAPs database. Rather than selecting amino acids individually, 

OptMAVEn selects one MAPs part for each CDR. OptMAVEn uses exclusively 𝜅𝜅 or 𝜆𝜆 domains 

when designing the light chain. Thus, the MAPs database can generate [141 × 428 × 5] ×

[(67 × 199 × 5) + (38 × 39 × 7)] ≈ 2.3 × 1010 antibodies (Table 1), a number more reasonable 

than 2 × 1096. Moreover, some pairs of MAPs parts clash sterically, that is, at least one atom in 

one part is within 1 Å of at least one atom in the other part. Because these clashes lead to unstable 

structures, OptMAVEn does not consider any designs that contain clashes, further reducing the 

total number of potential antibodies. Among these potential designs, OptMAVEn identifies the 

optimal design efficiently using a mixed-integer linear program (MILP), which is discussed in 

more detail below. 

Table 1: The number of parts in the MAPs database for each of the categories of parts. The number of parts in the original 
MAPs database is given in the OptMAVEn column. During the development of Quick OptMAVEn, five redundant parts were 
identified and removed from the MAPs database: the numbers in the Quick OptMAVEn column reflect these edits, and the 
categories in which edits occurred are indicated in the Edited column. 

CDR OptMAVEn Quick OptMAVEn Edited 
HV 141 140 Yes 
HCDR3 428 428 No 
HJ 5 5 No 
KV 67 64 Yes 
KCDR3 199 199 No 
KJ 5 5 No 
LV 38 37 Yes 
LCDR3 39 39 No 
LJ 7 7 No 
Total 929 924  
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Workflow of OptMAVEn 

OptMAVEn designs antibodies in three steps: preparation of input files, initial antigen 

positioning, grid search, energy calculations, germline design, and computational affinity 

maturation. These steps are detailed below. OptMAVEn is a command-line-based tool; commands 

must be entered on a Bash shell (e.g. Terminal on Linux or MacOS X) or an equivalent. 

Preparation of input files 

The user must first create a new directory (using mkdir), which will contain all files 

associated with the experiment; let this directory be called exp. The user must obtain a file of the 

antigen structure in Protein Data Bank (PDB) format. In many cases, this file can be downloaded 

from the PDB [32]. The user must then remove all atoms that are not part of the antigen, as well 

as all residues that are not supported by the input topology and parameter files (e.g. water, ions, 

modified amino acids, and small molecules). If such residues are essential for the design, the user 

must provide topology and parameter files that define these residues. Let the file of the antigen 

after removing these atoms be called ag.pdb, which must be located in exp. The user must specify 

the epitope of the antigen by listing the residue numbers of the epitope residues in a text file named 

Epitopes.txt, which is also located in exp. Each line of Epitopes.txt must begin with the 

name of the epitope, followed by a colon, followed by a space-separated list of the residues in the 

epitope. For example: 

foo: 3 4 5 6 78 79 80 103 104 105 106 
bar: 54 55 56 57 58 211 212 213 214 215 
 

Figure 2: An example of the contents of an Epitopes.txt file. This file defines two epitopes named “foo” and “bar.” 
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The epitope may be identified using the structure of an existing antigen-antibody complex 

(see “Design of 77 antibodies for Zika E protein, including 9 predicted to be superior to native”). 

However, if such a structure is unavailable, there exist many tools for predicting epitopes [33], 

including Bcepred, Bepipred, ABCPred, and BEST. 

Initial antigen positioning 

OptMAVEn adds any atoms that may be missing from the antigen structure (e.g. hydrogen 

atoms) and then relaxes the structure to alleviate any steric clashes that may be present in the 

original PDB file or due to poorly guessed coordinates for atoms added in the previous step. The 

user must edit the script called minimizer.py and type the name of the file as an argument to 

the function MoleculeFile on line 19. Then, the user must run minimizer.py using the 

following command: 

python 
/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/scripts/minimize
r.py 
 

This script performs an energy minimization routine implemented in the CHARMM 

molecular dynamics program [34]. After the antigen structure has been relaxed, it must be rotated 

such that its epitope points towards the MAPs parts. This rotation ensures that the antibodies, once 

assembled from the MAPs parts, will contact the antigen at the intended epitope, rather than at an 

unspecified location on the surface of the antigen (Figure 3). 
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Figure 3: Illustration of the rotation of an antigen. The antigen (blue) is rotated around its geometric center (yellow) from 
its arbitrary initial position (A) to its final position (B) so as to minimize the sum of the 𝑧𝑧 coordinates of its epitope (red); the 𝑧𝑧 axis 
points upward, as shown. This rotation ensures that the epitope points towards the MAPs parts. One MAPs part for each CDR, 
forming a complete antibody variable domain, is shown; the heavy chain is brown and the light chain is tan. All other MAPs parts 
occupy similar positions, so the epitope in panel B will point toward an antibody assembled from any set of MAPs parts. The 
antigen shown is human interleukin 1-beta (PDB ID 46GM) [35]. Images were generated with PyMOL [36]. 

Mathematically, this rotation is achieved by minimizing the mean of the 𝑧𝑧 coordinates of 

the atoms of the epitope while keeping the geometric center of the antigen fixed: 

1) 

minimize 𝑧𝑧 = � 𝑧𝑧𝑖𝑖
𝑖𝑖∈𝐼𝐼epitope

 

subject to  

2) 

𝐻𝐻𝑐𝑐0 = 𝑐𝑐 

where 𝐼𝐼 is the set of all atoms in the antigen, 𝐼𝐼epitope ⊂ 𝐼𝐼 is the subset of antigen atoms that 

are within the epitope, 𝑛𝑛 = card(𝐼𝐼) is the cardinality of (number of elements in) 𝐼𝐼, 𝑧𝑧𝑖𝑖 is the 𝑧𝑧 

coordinate of atom 𝑖𝑖, 𝑐𝑐 = �
𝑥𝑥1
𝑦𝑦1
𝑧𝑧1

 … 
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛
𝑧𝑧𝑛𝑛
� is the set of final (post-rotation) 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 coordinates of 

all atoms, 𝑐𝑐0 is the set of initial (pre-rotation) coordinates of all atoms, and 𝐻𝐻 ∈ 𝑅𝑅3,3{ℝ} is a three-
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dimensional rotation matrix. This minimization is implemented as an exhaustive search 

represented by the following pseudocode: 

c_0 = get_coordinates(initial_antigen_structure)  # initial coordinates 
z_min = 1000000  # a large number 
for x_rotation in {0, 3, 6, ..., 357}:  # 3-degree x increments 
    for y_rotation in {0, 3, 6, ..., 357}:  # 3-degree y increments 
        A = make_rotation_matrix(x_rotation, y_rotation) 
        c = A * c0  # matrix multiplication rotates coordinates 
        c_epi = get_epitope_coordinates(c)  # extract the rotated epitope coordinates 
        z_epi = get_z_coordinates(c_epi)  # extract the rotated epitope z coordinates 
        if sum(z_epi) < z_min:  # if the z coordinate sum is less than the smallest  
                # sum so far 
            c_best = c  # save the structure with the smallest epitope z coordinates 
            z_min = sum(z_epi)  # update the smallest sum so far 
return c_best  # output the coordinates of the best structure 
 

Figure 4: Pseudocode for the epitope rotation algorithm in OptMAVEn. 

The user implements this step, along with the next (grid search), by typing 

python 
/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/scripts/grid_sea
rch.py 

Before running this script, the user must edit it as follows: 

In line 43, replace the key to the dictionary inputFile with the one-letter name of the 

chain of the antigen (for example, P): 

G = inputFile["P"] 

In line 45, replace the second argument of the function parameter_output_antigen 

with the name of a new text file in which to store the antigen (for example, 5gzn.txt): 

parameter_output_antigen(G, "5gzn.txt") 

In line 60, replace the second string following cmd with the name of the aforementioned 

file: 

cmd = 
"/gpfs/home/tul12/work/soft/IPRO_Suite/modules/CPP/initialization/initialantigen_clas
h.out " + "5gzn.txt " + "epitope.txt " + "MoleculeH.txt " + "MoleculeK.txt " + 
str(angle) 
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 In line 61, replace the name of the first string after runScriptFile with the name of the 

file (minus the extension): 

runScriptFile = "5gzn_" + str(angle) 

In line 74, replace the text chmod +x with qsub: 

Before: 

cmd = "chmod +x " + runScriptFile 

After: 

cmd = "qsub " + runScriptFile 

Grid search 

The purposes of the grid search step are to 1) generate a set of antigen positions on which 

the subsequent steps rely and 2) quickly filter out positions that will inevitably cause steric clashes 

between the antibody and antigen. The developers of OptMAVEn defined a set of grid points to 

support the grid search. By examining the structures of 750 antibody-bound antigens, they found 

that the center of geometry of the epitope, (𝑥𝑥,𝑦𝑦, 𝑧𝑧), was always located within a parallelepiped 

defined by −10 ≤ 𝑥𝑥 ≤ 5, −5 ≤ 𝑦𝑦 ≤ 10, 3.75 ≤ 𝑧𝑧 ≤ 16.25, where all dimensions are in Å. The 

𝑥𝑥 , 𝑦𝑦, and 𝑧𝑧 dimensions are partitioned into increments of 2.5 Å, 2.5 Å, and 1.25 Å, respectively. 

To increase the diversity of antigen conformations, the antigen is additionally rotated around the 

𝑧𝑧 axis in increments of 60°. Thus, OptMAVEn samples a total of �5−(−10)
2.5

+ 1� × �10−(−5)
2.5

+ 1� ×

�16.25−3.75
1.25

+ 1� × �360−0
60

� = 7 × 7 × 11 × 6 = 3234 antigen positions. Each position can thus 

be defined by a point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and a 𝑧𝑧 rotation angle 𝜃𝜃𝑧𝑧. 

For each antigen position (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝜃𝜃𝑧𝑧), the antigen is translated such that the center of 

geometry of its epitope lies at the (𝑥𝑥,𝑦𝑦, 𝑧𝑧) point of the position; and the antigen is rotated around 
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the 𝑧𝑧 axis such that it faces in the direction given by 𝜃𝜃𝑧𝑧, where 𝜃𝜃𝑧𝑧 ≡ 0° for the structure produced 

by minimizing the epitope 𝑧𝑧 coordinates. At each position, OptMAVEn counts the number of steric 

clashes between the antigen and a framework antibody. The framework antibody is an antibody 

for which all six CDRs are composed entirely of glycine, the smallest amino acid, whose side chain 

is a hydrogen atom. Thus, if the antigen in the given position clashes with the framework antibody, 

it will clash with any other antibody. OptMAVEn saves a PDB file of the antigen in each position 

for which there are two or fewer steric clashes; positions with more than two clashes are discarded. 

Energy calculations 

For each antigen position, OptMAVEn calculates the interaction energy between the 

antigen and every part in the MAPs database. The energy calculations are performed using a C++ 

program written and compiled in-house. This program produces the same results as an equivalent 

energy calculation implemented in CHARMM but is hard-coded to calculate interaction energies 

with every part in the MAPs database. Prior to running the program, the structure of the antigen 

must be converted from PDB format to an alternate format that specifies parameters for the energy 

calculation in addition to atom types and coordinates. This file is generated by running 

/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/s

cripts/grid_search.py, as described in Initial antigen positioning. The MAPs database files 

are already provided in this format and need no pre-processing. The files may include parameters 

for electrostatic, van der Waals, and Lazaridus-Karplus solvation energies. Care must be taken to 

ensure that all files contain all desired parameters; OptMAVEn will, without informing the user, 
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disregard energy terms whose parameters are missing from any file. The user performs the energy 

calculations by typing 

python 
/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/scripts/calculat
e_energy.py 

Before running this script, the user must edit line 5 to replace the arguments to the range 

function so as to generate the correct range of angles (e.g. range(0, 360, 60) to generate 

angles from 0 to 300 in increments of 60).  

Germline design 

OptMAVEn generates antibody designs using a mixed-integer linear program (MILP) that 

selects, for each antigen position, six MAPs parts—one for each CDR—such that the sum of the 

interaction energies between the MAPs parts and the antigen is minimized. The MILP is 

formulated as follows: 

3) 

minimize 𝑅𝑅 = �� � 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘𝑒𝑒𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑖𝑖,𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼

 

subject to 

4) 

𝑑𝑑𝐻𝐻 = 1 

5) 

𝑑𝑑𝐾𝐾 + 𝑑𝑑𝐿𝐿 = 1 

6) 

� 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑖𝑖,𝑗𝑗

= 𝑑𝑑𝑖𝑖  ∀ (𝑖𝑖, 𝑖𝑖) ∈ 𝐼𝐼 × 𝐽𝐽 
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7) 

𝑦𝑦𝑖𝑖1,𝑗𝑗1,𝑘𝑘1 + 𝑦𝑦𝑖𝑖2,𝑗𝑗2,𝑘𝑘2 ≤ 1 ∀ [(𝑖𝑖1, 𝑖𝑖1,𝑘𝑘1), (𝑖𝑖2, 𝑖𝑖2,𝑘𝑘2)] ∈ 𝑃𝑃clash 

where 𝐼𝐼 = {𝐻𝐻,𝐾𝐾, 𝐿𝐿} is the set of antibody chain loci, 𝐽𝐽 = {𝑉𝑉,𝐶𝐶𝐷𝐷𝑅𝑅3, 𝐽𝐽} is the set of gene 

segment types, 𝐾𝐾𝑖𝑖,𝑗𝑗 = �1, 2, … ,𝑛𝑛𝑖𝑖,𝑗𝑗� is the set of MAPs parts of chain 𝑖𝑖 and segment type 𝑖𝑖 (where 

𝑛𝑛𝑖𝑖,𝑗𝑗 is the number of such parts), 𝑃𝑃clash is the set of all pairs of MAPs parts between which steric 

clashes exist, 𝑒𝑒𝑖𝑖,𝑗𝑗,𝑘𝑘 is the interaction energy between the antigen and part (𝑖𝑖, 𝑖𝑖,𝑘𝑘) computed in the 

Energy Calculation step, 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘 = 1 if part (𝑖𝑖, 𝑖𝑖,𝑘𝑘) is incorporated in the design and 0 otherwise, 

𝑑𝑑𝑖𝑖 = 1 if a part is to be selected for chain 𝑖𝑖 and 0 otherwise, and × denotes the Cartesian product. 

Equation 3, the objective function, causes the interaction energy 𝑅𝑅 to be minimized (thus 

maximizing the affinity). Equation 4 tells OptMAVEn to use the heavy locus to design the heavy 

chain. Equation 5 tells OptMAVEn to use either (but not both) the 𝜅𝜅 or 𝜆𝜆 locus to design the light 

chain. Equation 6 ensures that for each locus 𝑖𝑖 to be used, exactly one part is selected for each gene 

segment type; and for each locus to be avoided, no parts are selected. Equation 7 prevents steric 

clashes between MAPs parts. 

For each antigen position, this MILP is solved five times in order to generate an ensemble 

of designs. The rationale is that there is a greater likelihood of obtaining a least one high-affinity 

antibody from a set of five designs than from a set of just one design. Each time the MILP is 

solved, an integer cut is added to the MILP formulation to prevent the same six parts from being 

chosen again. This process ensures that the first design has the most negative interaction energy, 

the second the second-most negative, and so on. 

The user performs this step by typing 

python 
/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/scripts/select_p
arts300.py 
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Computational affinity maturation 

The germline designs with the most negative interaction energy are improved using a 

computational process that mimics in vivo affinity maturation. A modified version of the IPRO 

protocol [37] makes mutations to the germline antibodies so as to further decrease their interaction 

energies. This modified protocol is a cycle of five steps: selection of residues to mutate, backbone 

perturbation, humanized rotamer selection, antigen redocking, and energy calculation. 

Selection of residues to mutate 

One of the residues in either the light or heavy chain is selected for mutation. The 

probability of selecting a particular residue in a CDR is set to be 3 times the probability of selecting 

a particular residue in an FR. However, since the residues within the CDRs are at most 74
128+127

=

0.29 of the variable domains, the probability of selecting a residue within a CDR is at most 

3×0.29
3×0.29+(1−0.29)

= 0.55. After selecting this residue, both, either, or neither of the 2 residues 

adjacent to the selected residue are also selected for mutation. 

Backbone perturbation 

OptMAVEn perturbs the 𝜙𝜙 and 𝜓𝜓 dihedral angles of all residues within a 4.5 Å radius or a 

5-residue window of the 1 – 3 residues selected for mutation. The perturbation 𝜃𝜃 for each angle is 

randomly selected from a Gaussian distribution of 𝜇𝜇 = 0° and 𝜎𝜎 = 1.5° that is truncated to the 

domain of −5° ≤ 𝜃𝜃 ≤ +5°. Subsequently, the perturbed structure is relaxed with CHARMM using 

strong restraints to enforce the values of the newly perturbed dihedral angles. The 5 residues on 
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either side of the perturbed region are temporarily mutated to glycine for the duration of the 

relaxation and are the only residues allowed to move. 

Humanized rotamer selection 

The user may specify a limited set of amino acids to which each site can be mutated. The 

perturbed residues, those mutated to glycine, and those in the vicinity are mutated to new amino 

acids using the IPRO rotamer library and MILP formulation [37]. Following these mutation, a 

humanization score is calculated for the new antibody sequence to prevent the human body from 

mounting an immune response against the antibody. To develop the humanization calculation, 

69,032 human antibody sequences were analyzed to identify the set 𝑅𝑅9 of all unique 9-mer 

sequences of amino acids, of which there were 1,309,657. For a query 9-mer sequence 𝑞𝑞, let 𝑚𝑚𝑞𝑞
min 

denote the minimum number of mutations that must be made to 𝑞𝑞 to produce a mutated sequence 

𝑞𝑞′ ∈ 𝑅𝑅9. Then, the humanness score ℎ of a query sequence 𝑄𝑄 comprising 𝑛𝑛 ≥ 9 amino acids is 

given by 

8) 

ℎ(𝑄𝑄) = �𝑚𝑚𝑄𝑄𝑖𝑖,𝑖𝑖+8
min

𝑛𝑛−8

𝑖𝑖=1

 

where 𝑄𝑄𝑖𝑖,𝑖𝑖+8 denotes the 9-mer sequence of positions {𝑖𝑖, 𝑖𝑖 + 1, … , 𝑖𝑖 + 8} of 𝑄𝑄. If ℎ of the 

newly mutated antibody is less than ℎ of the previous design, then the mutations are discarded. 
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Antigen redocking 

Because redocking is time-intensive, it is performed once every third iteration of the cycle. 

Redocking is performed for 500 iterations. In each iteration, the antigen is translated along the 𝑥𝑥, 

𝑦𝑦, and 𝑧𝑧 axes by randomly selecting the translation along each axis from a Gaussian distribution 

with 𝜇𝜇 = 0 Å and 𝜎𝜎 = 0.2 Å; and rotating the antigen around the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes by randomly 

selecting the rotation around each axis from a Gaussian distribution with 𝜇𝜇 = 0° and 𝜎𝜎 = 2°. The 

interaction energy between the antibody and the perturbed antigen is calculated; based on this 

energy and the pre-perturbation energy, the perturbation is accepted or rejected based on the 

Metropolis criterion [38]. 

Energy calculation 

The antigen-antibody complex is relaxed using CHARMM with a full-atom energy 

function that incorporates electrostatic, Van der Waals, bond length, angle, dihedral, and 

Generalized Born solvation energy terms. The interaction energy between the antigen and antibody 

is calculated. A Metropolis criterion [38] based on the interaction energies before and after the 

mutations is used to determine whether or not to accept the mutations made to the antibody. 

Output and validation of OptMAVEn 

The output of OptMAVEn is a small number of antibody structures in PDB format. At the 

time of this writing, one study has experimentally validated antibodies generated using 

OptMAVEn [29]. The antigen was a dodecapeptide with the sequence DVFYPYPYASGS; a 
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crystal structure of this antigen bound to the scFv-2D10 was obtained from the PDB (ID 4H0H) 

[39]. OptMAVEn generated five antibodies, three of which bound the antigen with high affinities 

(𝐾𝐾𝐷𝐷 = 8.9, 14.4, and 23.8 nm). While the scFv-2D10 bound with greater affinity (𝐾𝐾𝐷𝐷 = 3.8 nm), 

these results demonstrated that OptMAVEn was capable of designing high-affinity antibodies 

without a need for an initial antibody structure.
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Chapter 3  
 

Quick OptMAVEn 

Motivation for Quick OptMAVEn 

Despite the success of OptMAVEn in one study [29], OptMAVEn provides several areas 

for changes that could potentially improve the performance of the software. These are: 

Use of separate tools increases risk of user error 

OptMAVEn integrates tools that must be run separately, often with manual manipulations 

(e.g. moving and editing files) between each step. The risk of the user making an error could be 

reduced via an integrated workflow that requires no manual intervention between the step in which 

the antigen and epitope are defined and the step in which the final antibody structures are 

generated. 

Minimization of epitope 𝒛𝒛 coordinates is inefficient and imprecise 

The step in which the antigen is rotated so as to minimize the 𝑧𝑧 coordinates of the epitope 

uses an inefficient exhaustive search that samples rotations along the 𝑥𝑥 and 𝑦𝑦 axes, each in 

increments of 3°. Because this search uses discrete steps, the optimal conformation sampled may 

be up to �3√2
2
� ° off relative to the global optimum. This result is analogous to that of approximating 
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a point 𝑝𝑝 ∈ ℝ2 using the nearest point 𝑝𝑝′ whose coordinates 𝑝𝑝′𝑥𝑥 and 𝑝𝑝′𝑦𝑦 are both divisible by 3. 

The maximum distance between 𝑝𝑝 and 𝑝𝑝′ is ‖𝑝𝑝′ − 𝑝𝑝‖ = 3√2
2

, as in the case of 𝑝𝑝 = �1.5
1.5�. 

A clash-permissive grid search increases cost of subsequent steps 

The grid search permits up to two clashes between the antigen and the framework antibody. 

Thus, clashing antigen positions may be retained and passed to the energy calculation step. 

Because clashes lead to high energy penalties, clashing structures will ultimately fail to rank 

among the best (lowest-energy) designs. Thus, computing the energies and optimal sets of MAPs 

parts for clashing antigen positions yields no useful antibody designs and demands additional 

computational resources. Discarding antigen positions that clash would likely reduce 

computational demand without sacrificing results. 

Representation of antigen positions as PDB files increases disk storage requirement 

The grid search outputs a set of antigen positions, each represented as a separate PDB file. 

A PDB file can be large: for example, the first published Zika virus structure (ID 5IRE) [31] is 

approximately 1 MB. Thus, the total size of the files representing all antigen positions (of which 

there are potentially 3234) could be up to 3234 × 1 MB ≈ 3 GB. While modern disk and solid-

state drives are considerably larger, this storage requirement poses several problems: 1) writing, 

parsing, reformatting, copying, and deleting these files may take considerable time; 2) transferring 

these files between filesystems (e.g. over a wireless connection) may be excessively slow; and 3) 

there may be insufficient free storage space on the machine used to run OptMAVEn (e.g. a shared 
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supercomputing cluster). We encountered all of these problems when designing an antibody for 

Zika virus. However, because all antigen structures are identical up to a translation and rotation, it 

should be possible to represent them in a more compact format: namely, to store one reference 

antigen structure and a file listing the translations and rotations needed to generate the other 

structures from the reference. 

Design of multiple antibodies for each antigen position does not increase design quality 

During the MILP step, five designs are created for each antigen position. However, the 

MILP is formulated such that the estimated interaction energy of the designs becomes less negative 

with increasing design number. Thus, designs two through five are sub-optimal relative to design 

one and will thus be discarded during the subsequent ranking of designs. 

Absence of a method to ensure diversity among designs 

OptMAVEn seeks to maximize the diversity of the antibodies it designs for a given epitope, 

under the assumption that the likelihood of finding at least one high-affinity design is greater if the 

designs are diverse than if they are highly similar. However, the designs whose MILP interaction 

energies are most negative are not necessarily structurally diverse. 

Development of Quick OptMAVEn 

Several of the key steps in OptMAVEn were updated to improve their performance in 

accordance with the topics discussed in “Motivation for Quick OptMAVEn.” 
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New coherent directory structure 

Quick OptMAVEn features a new organizational structure for its directories. All files are 

located within a main directory, Optmaven-2, which can be ported to and run in a different 

location without the need to modify any files or formally install the program (assuming all 

dependencies on third-party software are met). Optmaven-2 contains subdirectories src, data, 

and experiments (experiments may be missing, in which case it is created upon running a 

new experiment). src contains all source code (Python and TCL modules); data contains all 

reference data files (antigen structures, the MAPs database, framework antibodies, and topology 

and parameter files); and experiments contains a subdirectory for each OptMAVEn experiment. 

Optmaven-2 also contains five executable scripts: optmaven starts a new OptMAVEn 

experiment, interaction_energy calculates the interaction energy between a given antigen 

and antibody, find_contacts identifies the residues in the interface between an antigen and 

antibody (for example, to determine an epitope), check_status reports on the status of all 

experiments in the experiments directory, and remove_experiment permanently removes an 

experiment’s directory and files. This structure organizes all necessary files in one directory tree, 

making it easier to locate files than it was in the original OptMAVEn, which did not feature a 

centralized location for all files. 

Robust input-output methods 

Quick OptMAVEn further reduces the risk of error by reading and writing structural files 

using software that is more robust than that of OptMAVEn. Quick OptMAVEn writes and parses 

PDB files using Biopython [40]: a robust, widely-used, and well-maintained set of modules for 
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processing biological data. OptMAVEn relies on in-house writers and parsers, which have not 

been validated as extensively as Biopython and are not safeguarded against future changes to the 

PDB format. Moreover, Quick OptMAVEn is capable of reading alternate structure formats (e.g. 

MMCIF) that are supported in Biopython. 

Improved user interface 

Original procedure: Preparation of input files 

Problem: Use of separate tools increases risk of user error 

While OptMAVEn required the user to create a directory for the experiment, edit the files 

of the antigen to remove all atoms not part of the antigen, and create a file specifying the epitope, 

Quick OptMAVEn automatically performs these steps, reducing the effort required of the user and 

the risk of error. Upon typing ./optmaven at the command line, the user is first asked to name 

the experiment. After ensuring that no identically-named experiment already exists, Quick 

OptMAVEn creates a directory for that experiment. The user then types the name of the antigen 

file. Quick OptMAVEn identifies any heteroatoms and allows the user to choose which to exclude 

using an intuitive selection syntax new to Quick OptMAVEn: hyphens indicate ranges of residues 

to exclude, and commas separate residue numbers or ranges. For example, 212-214, 216 

excludes residues 212, 213, 214, and 216 from the structure. To improve usability, all and none 

are also valid responses. Quick OptMAVEn ensures that all selected residues actually exist 

(OptMAVEn did not check to make sure the residues in Epitopes.txt actually existed) and that 

an appropriate number have been selected. After excluding heteroatoms, the user specifies the 

chain(s) that are part of the antigen and the epitope residues for each chain. Quick OptMAVEn 
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then automatically starts the experiment, needing no further action from the user to complete the 

designs. 

Initial antigen positioning 

Original procedure: Initial antigen positioning 

Problem: Minimization of epitope z coordinates is inefficient and imprecise 

Quick OptMAVEn uses an exact, robust, and efficient method to minimize the 𝑧𝑧 

coordinates of the epitope. The objective is to minimize the sum 𝑧𝑧 of the epitope 𝑧𝑧 coordinates 

(Equation 1) while holding fixed the center of geometry (defined in Equation 9) of the antigen (i.e. 

performing only rotations). For a set of atoms 𝐼𝐼, each with a coordinate 𝑐𝑐𝑖𝑖 = �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖
�  ∀ 𝑖𝑖 ∈ 𝐼𝐼, where 

𝑛𝑛 = card(𝐼𝐼), the center of geometry 𝑐𝑐𝐼𝐼 is defined herein as 

9) 

𝑐𝑐𝐼𝐼 =
1
𝑛𝑛
�𝑐𝑐𝑖𝑖
𝑖𝑖∈𝐼𝐼

 

Without loss of generality, we can assume that, for the antigen 𝐻𝐻, 𝑐𝑐𝐴𝐴 = 𝟎𝟎; if this is not the 

case, then we can first translate the antigen by −𝑐𝑐𝐴𝐴, which will ensure that 𝑐𝑐𝐴𝐴 = 𝟎𝟎. Equation 1 is 

equivalent to minimizing the mean 𝑧𝑧 of the 𝑧𝑧 coordinates: 

10) 

minimize 𝑧𝑧 =
1

𝑛𝑛epitope
� 𝑧𝑧𝑖𝑖

𝑖𝑖∈𝐼𝐼epitope
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because 𝑛𝑛epitope, the number of residues in the epitope, is a fixed positive integer. From 

the definition of center of geometry (Equation 9), it can be shown that 𝑧𝑧 is the 𝑧𝑧 coordinate of the 

geometric center of the epitope: 

11) 

𝑐𝑐𝐼𝐼epitope =
1

𝑛𝑛epitope
� �

𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖
�

𝑖𝑖∈𝐼𝐼epitope
=

⎝

⎜
⎜
⎜
⎜
⎛

1
𝑛𝑛epitope

� 𝑥𝑥𝑖𝑖
𝑖𝑖∈𝐼𝐼epitope

1
𝑛𝑛epitope

� 𝑦𝑦𝑖𝑖
𝑖𝑖∈𝐼𝐼epitope

1
𝑛𝑛epitope

� 𝑧𝑧𝑖𝑖
𝑖𝑖∈𝐼𝐼epitope ⎠

⎟
⎟
⎟
⎟
⎞

= �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� 

where 𝑥𝑥 and 𝑦𝑦 are defined similarly to 𝑧𝑧 in Equation 10. Because the structure of the antigen 

is held constant up to a rotation during the minimization of 𝑧𝑧, all distances between coordinates 

within the antigen remain constant. The distance 𝑑𝑑 between 𝑐𝑐𝐼𝐼epitope  and 𝑐𝑐𝐴𝐴 is 

12) 

𝑑𝑑 = ‖𝑐𝑐𝐼𝐼epitope − 𝑐𝑐𝐴𝐴‖ = ‖𝑐𝑐𝐼𝐼epitope − 𝟎𝟎‖ = ‖𝑐𝑐𝐼𝐼epitope‖ = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 

Thus, the minimization problem becomes 

13) 

minimize 𝑧𝑧 

subject to 

14) 

�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑑𝑑 = �𝑥𝑥0
2 + 𝑦𝑦0

2 + 𝑧𝑧0
2 

where 𝑥𝑥0, 𝑦𝑦0, and 𝑧𝑧0 denote, respectively, the initial (pre-rotation) values for 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧. 

By rearranging Equation 14 to 𝑧𝑧 = ±�𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2), differentiating, and equating to zero: 
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15) 

0 =
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

=
∓𝑥𝑥

�𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2)
 

16) 

0 =
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

=
∓𝑦𝑦

�𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2)
 

Assuming that �𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2) = ±𝑧𝑧 ≠ 0, the problem is solved when 𝑥𝑥 = 𝑦𝑦 = 0: 

17) 

𝑧𝑧 = ±�𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2) = ±�𝑑𝑑2 = ±𝑑𝑑 

Because the objective is to minimize 𝑧𝑧, and because 𝑑𝑑 ≥ 0, 

18) 

𝑧𝑧 = −𝑑𝑑 = −�𝑥𝑥0
2 + 𝑦𝑦0

2 + 𝑧𝑧0
2 

19) 

𝑐𝑐𝐼𝐼epitope = �
0
0
−𝑑𝑑

� = �

0
0

−�𝑥𝑥0
2 + 𝑦𝑦0

2 + 𝑧𝑧0
2
� 

It is possible to construct a 3D rotation matrix 𝐻𝐻 that rotates the initial epitope center of 

geometry 𝑐𝑐𝐼𝐼epitope0 = �
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� to the desired coordinate 𝑐𝑐𝐼𝐼epitope . While several formulations exist 

for 𝐻𝐻, the most convenient rotates by angle 𝜅𝜅 around a unit vector 𝑢𝑢 = �
𝑢𝑢𝑥𝑥
𝑢𝑢𝑦𝑦
𝑢𝑢𝑧𝑧
� (Figure 5) [41]. Note 

that because 𝑢𝑢 is the axis of rotation, 𝑐𝑐𝐼𝐼epitope ⊥ 𝑢𝑢 ⊥ 𝑐𝑐𝐼𝐼epitope0. Thus, 𝑢𝑢 can be calculated as 𝑢𝑢 =
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(𝑐𝑐𝐼𝐼epitope0 × 𝑐𝑐𝐼𝐼epitope) ÷ �𝑐𝑐𝐼𝐼epitope0 × 𝑐𝑐𝐼𝐼epitope�, because the cross product yields a vector 

perpendicular to the two given vectors; the division is necessary to normalize 𝑢𝑢. We obtain 

𝑐𝑐𝐼𝐼epitope0 × 𝑐𝑐𝐼𝐼epitope = �
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� × �

0
0
−𝑑𝑑

� = �
−𝑦𝑦0𝑑𝑑 − 𝑧𝑧0 ∙ 0
𝑧𝑧0 ∙ 0 + 𝑥𝑥0𝑑𝑑
𝑥𝑥0 ∙ 0 − 𝑦𝑦0 ∙ 0

� = �
−𝑑𝑑𝑦𝑦0
𝑑𝑑𝑥𝑥0

0
� 

20) 

𝑢𝑢 = �
𝑢𝑢𝑥𝑥
𝑢𝑢𝑦𝑦
𝑢𝑢𝑧𝑧
� = �

−𝑑𝑑𝑦𝑦0
𝑑𝑑𝑥𝑥0

0
� ÷ ��

−𝑑𝑑𝑦𝑦0
𝑑𝑑𝑥𝑥0

0
�� =

⎝

⎜
⎛
−𝑦𝑦0 ÷ �𝑥𝑥0

2 + 𝑦𝑦0
2

𝑥𝑥0 ÷ �𝑥𝑥0
2 + 𝑦𝑦0

2

0 ⎠

⎟
⎞

 

Furthermore, cos 𝜅𝜅 and sin𝜅𝜅 can be obtained using the standard relations: 

21) 

cos 𝜅𝜅 = �𝑐𝑐𝐼𝐼epitope0 ∙ 𝑐𝑐𝐼𝐼epitope� ÷ ��𝑐𝑐𝐼𝐼epitope0�‖𝑐𝑐𝐼𝐼epitope‖� = ��
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� ∙ �

0
0
−𝑑𝑑

�� ÷ (𝑑𝑑 ∙ 𝑑𝑑) =
−𝑧𝑧0
𝑑𝑑

 

22) 

sin𝜅𝜅 = �𝑐𝑐𝐼𝐼epitope0 × 𝑐𝑐𝐼𝐼epitope� ÷ ��𝑐𝑐𝐼𝐼epitope0�‖𝑐𝑐𝐼𝐼epitope‖� = ��
−𝑑𝑑𝑦𝑦0
𝑑𝑑𝑥𝑥0

0
�� ÷ (𝑑𝑑 ∙ 𝑑𝑑)

=
�𝑥𝑥0

2 + 𝑦𝑦0
2

𝑑𝑑
 

Finally, 𝐻𝐻 can be found using this standard formula [41]: 
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23) 

𝐻𝐻 = �
𝑢𝑢𝑥𝑥2 + (𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2) cos 𝜅𝜅 𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦(1 − cos 𝜅𝜅) − 𝑢𝑢𝑧𝑧sin𝜅𝜅 𝑢𝑢𝑧𝑧𝑢𝑢𝑥𝑥(1 − cos 𝜅𝜅) + 𝑢𝑢𝑦𝑦sin 𝜅𝜅
𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦(1 − cos 𝜅𝜅) + 𝑢𝑢𝑧𝑧sin𝜅𝜅 𝑢𝑢𝑦𝑦2 + (𝑢𝑢𝑧𝑧2 + 𝑢𝑢𝑥𝑥2) cos 𝜅𝜅 𝑢𝑢𝑦𝑦𝑢𝑢𝑧𝑧(1 − cos 𝜅𝜅) − 𝑢𝑢𝑥𝑥sin 𝜅𝜅
𝑢𝑢𝑧𝑧𝑢𝑢𝑥𝑥(1 − cos𝜅𝜅) − 𝑢𝑢𝑦𝑦sin𝜅𝜅 𝑢𝑢𝑦𝑦𝑢𝑢𝑧𝑧(1 − cos𝜅𝜅) + 𝑢𝑢𝑥𝑥sin𝜅𝜅 𝑢𝑢𝑧𝑧2 + (𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2) cos 𝜅𝜅

�
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⎝

⎜
⎜
⎜
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⎜
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⎜
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2�
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𝑑𝑑
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𝑥𝑥0
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2 �1 +
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𝑑𝑑
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2
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This rotation matrix 𝐻𝐻 can be used in Equation 2 to minimize the sum of the epitope 𝑧𝑧 

coordinates. This rotation is performed with the robust molecular simulation program VMD [42] 

and implemented in the TCL script vmd_functions.tcl (in src). VMD performs this rotation 

in less than one second, while the original version of OptMAVEn required several minutes 

(depending on the antigen size) for the exhaustive search. 
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Figure 5: Schematic of the rotation of an antigen so as to minimize the 𝑧𝑧 coordinates of the epitope. The rotation moves 
the initial geometric center of the epitope (an arbitrary point given by 𝑐𝑐0) to a point 𝑐𝑐 located along the negative 𝑧𝑧 axis by rotating 
the antigen around a unit axis 𝑢𝑢 (𝑐𝑐0 ⊥ 𝑢𝑢 ⊥ 𝑐𝑐, ‖𝑢𝑢‖ = 1) by an angle 𝜅𝜅. The geometric center of the antigen (𝑐𝑐A) can be set, without 
loss of generality, to the origin. The 𝑥𝑥,  𝑦𝑦, and 𝑧𝑧 unit axes are labeled as such. 

Definition of antigen 𝒛𝒛 angle 

Original procedure: none 

Problem: The 𝑧𝑧 angle is not well defined and depends on the initial antigen structure. 

After minimizing the epitope 𝑧𝑧 coordinates, OptMAVEn generates an ensemble of antigen 

positions using translations on all axes and rotations around the 𝑧𝑧 axis. However, the 𝑧𝑧 angle 𝜃𝜃𝑧𝑧 is 

defined arbitrarily such that 𝜃𝜃𝑧𝑧 = 0° for the antigen position created by the minimization of the 

epitope 𝑧𝑧 coordinates. This leads to three main problems: 1) two experiments that use different 

initial positions for the same antigen may have different antigen positions for the same 𝜃𝜃𝑧𝑧; 2) it is 

impossible to determine 𝜃𝜃𝑧𝑧 given only the coordinates of an antigen position; 3) it is impossible to 
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generate the coordinates of an antigen position with a given 𝜃𝜃𝑧𝑧 from the coordinates of another 

position whose 𝜃𝜃𝑧𝑧 is unknown. Thus, Quick OptMAVEn defines 𝜃𝜃𝑧𝑧 as follows: 

24) 

𝜃𝜃𝑧𝑧 = cos−1 �
proj𝑥𝑥,𝑦𝑦 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶 ∙𝚤𝚤

�proj𝑥𝑥,𝑦𝑦 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶�‖𝚤𝚤‖
� ∙ sign((proj𝑥𝑥,𝑦𝑦 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑦𝑦)

= cos−1

⎝

⎛ (𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑥𝑥

�(𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑥𝑥
2 + (𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑦𝑦

2
⎠

⎞ ∙ sign((𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑦𝑦) 

where 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶 is the C-alpha atom of the first residue of the antigen; proj𝑥𝑥,𝑦𝑦 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶 is the 

projection of the coordinates of that atom onto the 𝑥𝑥,𝑦𝑦 plane; 𝚤𝚤 is the unit vector in the positive 𝑥𝑥 

direction; and 𝑢𝑢𝑥𝑥 and 𝑢𝑢𝑦𝑦 denote, respectively, the 𝑥𝑥 and 𝑦𝑦 coordinates of a point 𝑢𝑢. Verbally, 𝜃𝜃𝑧𝑧 is 

the angle between the positive 𝑥𝑥 axis and the C-alpha atom of the first residue of the antigen, when 

looking down on the 𝑥𝑥,𝑦𝑦 plane from the perspective of the positive 𝑧𝑧 axis (Figure 6). 

 

Figure 6: An illustration of 𝜃𝜃𝑧𝑧. When the 𝑧𝑧 coordinates of the epitope (grey spheres) are minimized, 𝜃𝜃𝑧𝑧 ∈ (−180°, 180°] 
is the angle between the positive 𝑥𝑥 axis (rightward arrow) and the vector that leads from the antigen center of geometry (yellow 
circle) to the C-alpha atom of the first residue of the antigen (brown), when the 𝑥𝑥,𝑦𝑦 plane is in the plane of the page and the positive 
𝑧𝑧 axis extends toward the viewer. Here, 𝜃𝜃𝑧𝑧 = −39°. The antigen shown in human interleukin 1-beta (PDB ID 46GM) [35]. The 
image was generated with PyMOL [36]. 
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Grid search 

Original procedure: Grid Search 

Problem: A clash-permissive grid search increases cost of subsequent steps 

The original version of OptMAVEn permitted up to two clashes between the framework 

antibody and the antigen before rejecting an antigen position. This criterion caused OptMAVEn 

to test an overly large number of positions using computationally expensive energy calculations in 

the next step. Quick OptMAVEn reduces the number of positions that must be tested by an average 

factor of 1 − 10−0.494 = 68% (Table 9). While OptMAVEn implemented the grid search in a 

house-written script, Quick OptMAVEn uses the open-source software VMD [42] to reposition 

the antigen. VMD positions the antigen and checks for clashes more quickly, reducing the amount 

of time needed for the grid search. All performance comparisons are discussed thoroughly in 

“Direct comparison of OptMAVEn and Quick OptMAVEn on ten antigens.” 

Energy calculations 

Original procedure: Energy calculations 

Problem: Representation of antigen positions as PDB files increases disk storage 

requirement 

OptMAVEn implements the energy calculations using a house-written script that requires 

a separate PDB file for each antigen position. As explained above, this requirement can impose a 

large burden on disk storage, particularly for large antigens such as Zika virus. To alleviate this 

burden, Quick OptMAVEn calculates energies with the NAMDEnergy plugin [43] from within 

VMD [42]. VMD is advantageous because, unlike the house-written script, it can rotate and 



42 
translate the antigen in memory without needing a PDB file of the pre-positioned antigen. Thus, 

only one reference antigen PDB file is needed, which can reduce the disk storage requirement by 

up to several gigabytes. 

This new implementation causes a fundamental difference in the organization of energy 

calculations. OptMAVEn cannot reposition the antigen during the energy calculation step but can 

load all of the MAPs parts simultaneously: thus, it creates a directory for each antigen position, 

and the script within a given directory calculates the interaction energy between every MAPs part 

and the antigen at that position. Quick OptMAVEn can efficiently reposition the antigen during 

the energy calculation step but can load only one MAPs part at a time; thus, it creates a directory 

for each MAPs part, and the script within a given directory calculates the interaction energy 

between that MAPs part and the antigen in every position. Quick OptMAVEn can load only one 

MAPs part at a time because NAMDEnergy requires a protein structure file (PSF) specifying all 

atoms in the system. For each MAPs part, Quick OptMAVEn creates a PSF containing the atoms 

in the MAPs part and the antigen. To prevent these PSFs from occupying excessive disk storage, 

Quick OptMAVEn writes the PSF immediately before starting the energy calculations on a MAPs 

part and deletes the PSF immediately upon finishing the calculations. Because Quick OptMAVEn 

simultaneously calculates the energies of a limited number of MAPs parts (up to ~100, rather than 

924), the PSF files do not occupy excessive disk storage. 
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Germline design 

Original procedure: Germline design 

Problem: Design of multiple antibodies for each antigen position does not increase design 

quality 

OptMAVEn designs five antibodies for each antigen position, while Quick OptMAVEn 

designs only one. As described in “Germline design,” OptMAVEn creates a series of five designs 

in order of decreasing predicted affinity. Because the first design has the greatest predicted affinity 

in each case, Quick OptMAVEn stops after creating this first design, which reduces the time 

needed to create the designs without sacrificing the affinity of the best design for each position. 

Clustering of designs 

Original procedure: none 

Problem: Absence of a method to ensure diversity among designs 

Quick OptMAVEn introduces a clustering procedure to maximize the diversity of the 

designs it selects for subsequent steps. The selected designs are subject to relaxation: relative to 

unrelaxed interaction energies, interaction energies of relaxed structures correlate more closely 

with and have been used as approximations of experimental binding affinities [44]. However, 

relaxing all of the designs generated during the MILP step (typically hundreds or thousands: see 

Table 10) is very computationally intensive. Thus, the goal is to predict which designs will have 

the most negative post-relaxation interaction energies before relaxing them. 

OptMAVEn predicted post-relaxation energy solely on the basis of MILP (unrelaxed) 

energy. However, we have often observed designs whose MILP energies incorrectly predict their 
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post-relaxation energies. Furthermore, we assumed that the greater the diversity among designs 

that are predicted to have high affinities, the greater the likelihood that at least one of these designs 

will actually bind the antigen with high affinity. For example, suppose that the ten designs with 

the highest predicted affinities all have HV part 100 and HCDR3 part 300. If, in reality, these two 

parts interact unfavorably with the antigen in a way that Quick OptMAVEn cannot predict, then 

all of the top ten designs would have low affinities. 

Quick OptMAVEn selects a feasibly small number of designs to relax, limits reliance on 

MILP energies, and prevents itself from selecting highly similar designs as follows. Each design 

is converted into a 23-dimensional vector that concatenates the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 coordinates of the 

antigen, cos 𝜃𝜃𝑧𝑧 and sin𝜃𝜃𝑧𝑧 of the antigen, and a three-dimensional coordinate for each of the six 

MAPs parts. Subsequently, the designs are clustered using a k-means algorithm. Similar designs 

cluster together, and then the design with the lowest MILP energy is selected from each cluster. If 

more designs are needed, then the design with the second-lowest MILP energy is selected from 

each cluster, and so on. Thus, Quick OptMAVEn uses MILP energy to guide selection (within 

each cluster, designs are selected in order of ascending MILP energy), and it ensures diversity 

among designs (𝑛𝑛 designs must be selected from every cluster before 𝑛𝑛 + 1 designs are selected 

from any cluster). 

Creating coordinate vectors for the MAPs parts 

The major challenge with this approach is simultaneously clustering the designs based on 

their antigen coordinates, which are numerical vectors, and their sets of six MAPs parts, which are 

not. We solved this challenge by converting each MAPs part into a three-dimensional coordinate 



45 
vector using a pre-processing step. We tried a number of approaches to convert the amino acid 

sequence of each MAPs part. For each approach, our strategy was to compute “distances” between 

each pair of MAPs parts within the same category and then embed these distances in Euclidean 

space by solving the distance geometry problem (DGP) [45]. In order for the distances to be 

embeddable in Euclidean space, which is a metric space, they must satisfy the following definition 

of a metric space 𝑅𝑅 with an associated distance metric function 𝑑𝑑 [45]: 

25) 

𝑑𝑑(𝑥𝑥,𝑦𝑦) ≥ 0 ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅 

26) 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = 0 ⇔ 𝑥𝑥 = 𝑦𝑦 ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅 

27) 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑥𝑥) ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅 

28) 

𝑑𝑑(𝑥𝑥,𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧) ≥ 𝑑𝑑(𝑥𝑥, 𝑧𝑧) ∀ 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅 

In this case, 𝑅𝑅 is one category of MAPs parts (e.g. HV) and 𝑑𝑑 is distance metric: a function 

that assigns a distance to each pair of parts in that category. We tested multiple distance metrics 

based on the normalized information distance proposed by Li et al. [46]. This distance is defined 

as follows: 

29) 

𝑑𝑑(𝑥𝑥,𝑦𝑦) =
max {𝐾𝐾(𝑥𝑥|𝑦𝑦∗),𝐾𝐾(𝑦𝑦|𝑥𝑥∗)}

max {𝐾𝐾(𝑥𝑥),𝐾𝐾(𝑦𝑦)}  

where 𝑥𝑥 and 𝑦𝑦 are the two objects to compare (e.g. MAPs part sequences); 𝑥𝑥∗ and 𝑦𝑦∗ are 

the shortest programs capable of computing 𝑥𝑥 and 𝑦𝑦, respectively, on a universal computer (e.g. a 

universal Turing machine); 𝐾𝐾 is the Kolmogorov complexity function such that 𝐾𝐾(𝑥𝑥) equals the 

length of 𝑥𝑥∗, and 𝐾𝐾(𝑥𝑥|𝑦𝑦) is the length of the shortest program capable of computing 𝑥𝑥 given an 
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auxiliary input 𝑦𝑦 [46]. Importantly, 𝐾𝐾 is a metric, and so the distances between MAPs parts 

computed using Equation 29 are embeddable in Euclidean space (i.e. a Euclidean coordinate can 

be generated for each part such that the distances are satisfied). 

However, 𝐾𝐾 is not computable, which means that the exact Kolmogorov complexity 𝐾𝐾(𝑥𝑥) 

cannot be computed in finite time [46]. Nevertheless, 𝐾𝐾(𝑥𝑥) is upper semi-computable and can be 

approximated using a standard file compression program, such as gzip, under the assumption that 

the size of the compressed file 𝑥𝑥∗ accurately estimates 𝐾𝐾(𝑥𝑥). Li et al. [46] note that this assumption 

is not necessarily valid and present an example of compressing a binary file 𝑥𝑥 of the first 1023 bits 

of 𝜋𝜋. While 𝑥𝑥 could be computed by a program 𝑥𝑥∗ of a relatively small size (e.g 104 bits), most—

if not all—file compressors would be unable to recognize the particular structure of 𝜋𝜋 and would 

thus fail to produce an 𝑥𝑥∗ significantly smaller than 𝑥𝑥. Neglecting such cases, Li et al. proposed 

the following equation to approximate the normalized information distance 𝑁𝑁𝐶𝐶𝐷𝐷(𝑥𝑥,𝑦𝑦) in practice: 

30) 

𝑁𝑁𝐶𝐶𝐷𝐷(𝑥𝑥,𝑦𝑦) =
𝐶𝐶(𝑥𝑥𝑦𝑦) − min{𝐶𝐶(𝑥𝑥),𝐶𝐶(𝑦𝑦)}

max{𝐶𝐶(𝑥𝑥),𝐶𝐶(𝑦𝑦)}  

where 𝑥𝑥 and 𝑦𝑦 are files that contain a representation of the objects whose distance is to be 

calculated (e.g. text files of the sequences of the MAPs parts), 𝑥𝑥𝑦𝑦 is the file produced by 

concatenating 𝑥𝑥 and 𝑦𝑦, and 𝐶𝐶(𝑥𝑥) signifies the size of the compressed file 𝑥𝑥∗ produced by using a 

compression program 𝐶𝐶 to compress the file 𝑥𝑥. 

We tested multiple variations of this procedure to calculate distances between MAPs parts. 

First, we created plain text files of the coordinates of the MAPs parts (one file per part, one space-

delimited atomic coordinate per line) and computed the distances between the parts using Equation 

30 with the compressor gzip. However, gzip appeared to perform poorly at compressing 
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redundant information in files in this format. In particular, the distances 𝑁𝑁𝐶𝐶𝐷𝐷(𝑥𝑥, 𝑥𝑥) (i.e. from each 

part 𝑥𝑥 to itself) were significantly greater than their theoretical values of 0. Thus, we tested two 

alternate formats for representing the MAPs part coordinates: concatenating the coordinates for 

each part on one line and converting the coordinates to binary data. Both representations yielded 

distances similar to those of the first representation. Additionally, we tried explicitly writing the 

shortest program in Python capable of generating the coordinate files used in our first attempt to 

compare distances, but we were unable to prove that such programs were of minimal length. 

Therefore, we abandoned the structure-based normalized information distance in determining the 

distances between MAPs parts. 

Instead, we adopted a sequence-based distance measure based on the BLOSUM62 matrix 

[47], which is commonly used to quantify the similarity between two protein sequences [48]. In 

order to quantify distances, not similarities, between sequences, we computed distance matrices 

using the following method adapted from Stojmirović [49]. 

First, let there be two amino acid sequences 𝑋𝑋 and 𝑌𝑌. Label each amino acid in 𝑋𝑋 and 𝑌𝑌 

with an integer such that these numbers increase monotonically but may have gaps and need not 

start at 1. Let 𝐻𝐻 and 𝐵𝐵 be, respectively, the sequences of amino acid numbers for 𝑋𝑋 and 𝑌𝑌. Let 𝑥𝑥𝑖𝑖 

be the amino acid numbered 𝑖𝑖 in sequence 𝑋𝑋 if 𝑖𝑖 ∈ 𝐻𝐻 (i.e. if 𝑋𝑋 has an amino acid numbered 𝑖𝑖); if 

not, then let 𝑥𝑥𝑖𝑖 be a gap. Define 𝑦𝑦𝑖𝑖 analogously. Then, the similarity score 𝑅𝑅(𝑋𝑋,𝑌𝑌) between two 

sequences 𝑋𝑋 and 𝑌𝑌 was defined as follows: 

31) 

𝑅𝑅(𝑋𝑋,𝑌𝑌) = � 𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑖𝑖∈𝐴𝐴∪𝐵𝐵
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where 𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) is the BLOSUM62 similarity score between amino acids 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 if neither 

𝑥𝑥𝑖𝑖 nor 𝑦𝑦𝑖𝑖 is a gap; and 𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) is a gap penalty −𝑔𝑔 if either 𝑥𝑥𝑖𝑖 or 𝑦𝑦𝑖𝑖 is a gap. Note that we did not 

know the optimal 𝑔𝑔 a priori; we discuss later our method for finding the optimal 𝑔𝑔. It is never the 

case that both 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are gaps, which would imply that 𝑖𝑖 ∉ 𝐻𝐻 ∪ 𝐵𝐵. The motivation for letting 𝑥𝑥𝑖𝑖 

denote the amino acid numbered 𝑖𝑖 instead of the 𝑖𝑖th amino acid in 𝑋𝑋 is that MAPs part sequences, 

by following the IMGT numbering system [12], may contain gaps and start at a number other than 

1. For example, the alignment between 𝑋𝑋 = HCDR3-1 and 𝑌𝑌 = HCDR3-400 is as follows: 

𝐻𝐻 = {105,106,107,116,117} 

𝐵𝐵 = {105,106,107,108,109,114,115,116,117} 

𝒊𝒊 105 106 107 108 109 114 115 116 117 
𝒙𝒙𝒊𝒊 Ala Asn Phe (gap) (gap) (gap) (gap) Asp Tyr 
𝒚𝒚𝒊𝒊 Ala Arg Leu Thr Gly Asn Phe Asp Tyr 
𝒔𝒔(𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊) 4 0 0 −g −g −g −g 6 7 

𝑅𝑅(𝑋𝑋,𝑌𝑌) = 17 − 4𝑔𝑔. 

It is possible to convert such similarity scores into quasi-metric distances if the following 

conditions hold [49] for every category 𝑅𝑅𝑖𝑖𝑗𝑗| 𝑖𝑖 ∈ {𝐻𝐻,𝐾𝐾, 𝐿𝐿}, 𝑖𝑖 ∈ {𝑉𝑉,𝐶𝐶𝐷𝐷𝑅𝑅3, 𝐽𝐽} of MAPs parts: 

32) 

𝑅𝑅(𝑋𝑋,𝑋𝑋) ≥ 𝑅𝑅(𝑋𝑋,𝑌𝑌) ∀ 𝑋𝑋,𝑌𝑌 ∈ 𝑅𝑅𝑖𝑖𝑗𝑗 

33) 

𝑅𝑅(𝑋𝑋,𝑋𝑋) = 𝑅𝑅(𝑋𝑋,𝑌𝑌) ∧ 𝑅𝑅(𝑌𝑌,𝑋𝑋) = 𝑅𝑅(𝑌𝑌,𝑌𝑌) ⇒ 𝑋𝑋 = 𝑌𝑌 ∀ 𝑋𝑋,𝑌𝑌 ∈ 𝑅𝑅𝑖𝑖𝑗𝑗 

34) 

𝑅𝑅(𝑋𝑋,𝑌𝑌) + 𝑅𝑅(𝑌𝑌,𝑍𝑍) ≤ 𝑅𝑅(𝑋𝑋,𝑍𝑍) + 𝑅𝑅(𝑌𝑌,𝑌𝑌) ∀ 𝑋𝑋,𝑌𝑌,𝑍𝑍 ∈ 𝑅𝑅𝑖𝑖𝑗𝑗 

We verified these three conditions for all categories of MAPs parts. Five violations of 

condition 33 led us to discover five redundant MAPs parts: HV-135 = HV-136, KV-2 = KV-3, 

KV-25 = KV-26, KV-41 = KV-42, and LV-6 = LV-5. Thus, we removed from each redundant pair 
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the part with the larger number, reducing the total number of MAPs parts from 929 to 924. 

Thereafter, conditions 32, 33, and 34 held for all categories of MAPs parts. The similarity scores 

were converted into quasi-metric distances 𝑄𝑄 using the following [49]: 

35) 

𝑄𝑄(𝑋𝑋,𝑌𝑌) = 𝑅𝑅(𝑋𝑋,𝑋𝑋) − 𝑅𝑅(𝑋𝑋,𝑌𝑌) 

Note that 𝑄𝑄(𝑋𝑋,𝑋𝑋) = 𝑅𝑅(𝑋𝑋,𝑋𝑋) − 𝑅𝑅(𝑋𝑋,𝑋𝑋) = 0. This quasi-metric distance was then 

converted into its associated metric 𝐷𝐷align [49]: 

36) 

𝐷𝐷align(𝑋𝑋,𝑌𝑌) = max{𝑄𝑄(𝑋𝑋,𝑌𝑌),𝑄𝑄(𝑌𝑌,𝑋𝑋)} 

We verified that 𝐷𝐷align satisfied the definition of a metric (Equations 25, 26, 27, and 28) 

for all categories of MAPs parts. However, we failed to embed any 𝐷𝐷align matrix in Euclidean 

space using the analytical solution to the distance geometry problem [45] because every 𝐷𝐷align 

matrix had at least one negative eigenvalue: thus, it is impossible to find Euclidean coordinates 

that satisfy exactly the distances specified in 𝐷𝐷align. 

There exist multiple software packages to solve distance geometry problems, e.g. MD-jeep 

[50], Xplor-NIH [51], TINKER [52], and DGSOL [53]. All of the aforementioned software was 

designed specifically to infer molecular coordinates from sparse and potentially erroneous nuclear 

magnetic resonance (NMR) data. Thus, they all embed into three-dimensional Euclidean space. In 

the general distance geometry problem, pairwise distances between 𝑁𝑁 entities can be embedded in 

a space of dimensionality up to 𝑁𝑁 − 1, assuming that the 𝑁𝑁 × 𝑁𝑁 distance matrix is positive 

semidefinite [45]. Thus, for MAPs categories with many members (e.g. HCDR3, 𝑁𝑁 = 428), a 

three-dimensional embedding crushes 𝑁𝑁 − 1 − 3 dimensions (424 for HCDR3). While reducing 

the dimensionality is likely to bring many distant parts closer than they should be, such 
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dimensionality reduction is routinely applied to high-dimensional data (e.g. via principal 

component analysis [54] and t-distributed stochastic neighbor embedding [55]) and could actually 

help mitigate the so-called “curse of dimensionality” that occurs when clustering sparse, high-

dimensional data [56]. 

Among the aforementioned distance geometry solvers, DGSOL proved the most 

straightforward for us to install and was able to successfully embed the distances in three-

dimensional space. DGSOL finds coordinates so as to minimize penalty function 𝑝𝑝(𝐷𝐷embed). 

DGSOL accepts a lower (𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗) and upper (𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗) bound on each pairwise distance 𝐷𝐷embed𝑖𝑖𝑗𝑗 

produced by the embedding. If 𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 ≤ 𝐷𝐷embed𝑖𝑖𝑗𝑗 ≤ 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗, then 𝐷𝐷embed𝑖𝑖𝑗𝑗 does not contribute to the 

penalty function (i.e. 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑝𝑝 �𝐷𝐷embed𝑖𝑖𝑗𝑗� = 0). If 𝐷𝐷embed𝑖𝑖𝑗𝑗 < 𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗, then 𝑝𝑝𝑖𝑖𝑗𝑗 = �
𝐷𝐷embed𝑖𝑖𝑗𝑗

2−𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗2

𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗2
�
2

; 

if 𝐷𝐷embed𝑖𝑖𝑗𝑗 > 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗, then 𝑝𝑝𝑖𝑖𝑗𝑗 = �
𝐷𝐷embed𝑖𝑖𝑗𝑗

2−𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗2

𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗2
�
2

. The overall penalty is: 

37) 

𝑝𝑝(𝐷𝐷embed) = � 𝑝𝑝𝑖𝑖𝑗𝑗
𝑖𝑖,𝑗𝑗∈𝑀𝑀𝑘𝑘

 

where 𝑅𝑅𝑘𝑘 is a category of MAPs parts. 

We generated values for 𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 and 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗 using the alignment distances 𝐷𝐷align. We did not 

know a priori the optimal width of the bounds, i.e. whether to let 𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 = 𝐷𝐷align𝑖𝑖𝑗𝑗 = 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗 or to use 

wider bounds (𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 < 𝐷𝐷embed𝑖𝑖𝑗𝑗 < 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗). Thus, we tested multiple bounds given by the following 

equations: 

38) 

𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 = (1 − 𝜌𝜌)𝐷𝐷align𝑖𝑖𝑗𝑗 
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39) 

𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗 = (1 + 𝜌𝜌)𝐷𝐷align𝑖𝑖𝑗𝑗 

where 𝜌𝜌 is a width parameter. For each category 𝑅𝑅𝑘𝑘 of MAPs parts, we varied 𝜌𝜌 from 0 

(𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 = 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗) to 0.5 in increments of 0.05. Note that 𝜌𝜌 = 0 imposes the greatest penalty and 𝜌𝜌 =

0.5 the least. At each level of 𝜌𝜌, we computed the Spearman rank correlation 𝜌𝜌𝑤𝑤 between the 

flattened upper triangles of 𝐷𝐷align and 𝐷𝐷embed, as well as the root mean squared error 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤 =

�∑ ∑ �𝐷𝐷embed𝑖𝑖𝑗𝑗−𝐷𝐷align𝑖𝑖𝑗𝑗�
2

𝑁𝑁
𝑗𝑗=𝑖𝑖+1

𝑁𝑁−1
𝑖𝑖=1

1
2(𝑁𝑁2−𝑁𝑁)

. For the purposes of clustering, it is more important to perturb the 

ranks minimally (i.e. 𝜌𝜌𝑤𝑤 is close to unity) during the embedding rather than to keep the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤 

small. Thus, we let the optimal 𝜌𝜌opt = argmax
𝑤𝑤

(𝜌𝜌𝑤𝑤). Ties were broken using 𝜌𝜌opt =

argmin
𝑤𝑤

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤). We used the coordinates generated at 𝜌𝜌 = 𝜌𝜌opt as the definitive coordinates 

for each MAPs category. Recall that the above calculations require the gap penalty parameter 𝑔𝑔, 

which was unknown a priori. Thus, to find the optimal 𝑔𝑔, we performed all of the above steps 

(from computing 𝐷𝐷align to finding 𝜌𝜌opt) for 𝑔𝑔 = 4, 6, 8, 10, and 12. Images of the coordinates 

generated for each MAPs category at each 𝑔𝑔 are given in Figure 10. We computed 𝜌𝜌𝑤𝑤opt  (Table 2) 

and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  (Table 3). Note that these values are independent of 𝑔𝑔 for parts in the HJ, KJ, and 

LJ categories because the J parts do not contain any gaps. 

Table 2: The values of 𝜌𝜌𝑤𝑤opt for each gap penalty and each MAPs category. 

𝒈𝒈 HV HCDR3 HJ LV LCDR3 LJ KV KCDR3 KJ 

4 0.932 0.804 0.982 0.987 0.818 1.000 0.934 0.910 0.996 
6 0.935 0.831 0.982 0.988 0.838 1.000 0.935 0.922 0.996 
8 0.939 0.855 0.982 0.987 0.852 1.000 0.939 0.931 0.996 

10 0.935 0.774 0.982 0.986 0.839 1.000 0.921 0.894 0.996 
12 0.948 0.891 0.982 0.987 0.875 1.000 0.941 0.946 0.996 
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Table 3: The values of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt for each gap penalty and each MAPs category. 

𝒈𝒈 HV HCDR3 HJ LV LCDR3 LJ KV KCDR3 KJ 

4 26.313 15.441 0.593 13.005 9.833 0.321 21.669 8.484 1.124 
6 26.793 15.133 0.593 13.146 9.585 0.321 21.983 8.508 1.124 
8 27.179 15.306 0.593 13.244 9.585 0.321 21.906 8.574 1.124 

10 27.360 15.902 0.593 13.513 10.096 0.321 22.877 9.551 1.124 
12 27.404 15.439 0.593 13.620 9.674 0.321 22.468 8.699 1.124 

 

To determine the optimal 𝑔𝑔, for each part category (except the J parts), we ranked the levels 

of 𝑔𝑔 from most to least optimal on the basis of 𝜌𝜌𝑤𝑤opt  (higher is more optimal) and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  

(lower is more optimal) (Table 4). We then computed the average rank of each 𝑔𝑔 across both 𝜌𝜌𝑤𝑤opt  

and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  (Table 5). This analysis revealed that 𝑔𝑔 = 8, with an average rank of 2.1, yielded 

the most optimal embeddings according to our criteria. Thus, we let 𝑔𝑔 = 8 in our benchmarking 

tests for Quick OptMAVEn. However, the user has the option of selecting a different 𝑔𝑔 from 

among the levels tested herein. 

Table 4: The rank of each 𝑔𝑔 level in terms of each criterion and each part. Rank 1 corresponds to the 𝑔𝑔 level that optimized 
the criterion (i.e. maximized 𝜌𝜌𝑤𝑤opt or minimized 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt); rank 5 corresponds to the 𝑔𝑔 level that yielded the least optimal value 
of the criterion. 

Category Criterion Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 
HV 𝜌𝜌𝑤𝑤opt  12 8 6 10 4 
HCDR3 𝜌𝜌𝑤𝑤opt   12 8 6 4 10 
KV 𝜌𝜌𝑤𝑤opt   12 8 6 4 10 
KCDR3 𝜌𝜌𝑤𝑤opt   12 8 10 6 4 
LV 𝜌𝜌𝑤𝑤opt   12 8 6 4 10 
LCDR3 𝜌𝜌𝑤𝑤opt   12 8 6 4 10 
HV 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  4 6 8 10 12 
HCDR3 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  6 8 12 4 10 
KV 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  4 8 6 12 10 
KCDR3 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  8 6 12 4 10 
LV 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  4 8 6 12 10 
LCDR3 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt  4 6 8 12 10 
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Table 5: The average rank assigned to each 𝑔𝑔 level according to the rankings in Table 4. 

𝒈𝒈 Average rank 
4 3.2 
6 2.7 
8 2.1 

10 4.7 
12 2.4 

k-means clustering 

k-means clustering groups similar antibody designs on the basis of the antigen position (𝑥𝑥, 

𝑦𝑦, 𝑧𝑧, and 𝜃𝜃𝑧𝑧) and the identities of the six MAPs parts in the antibody. As stated at the beginning of 

the section “Clustering of designs,” this step enables Quick OptMAVEn to avoid selecting designs 

that are highly similar. Prior to clustering, for each design, a 23-dimensional vector concatenating 

the antigen’s 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 coordinates; cos (𝜃𝜃𝑧𝑧) and sin (𝜃𝜃𝑧𝑧); and the 3D coordinates representing 

the six MAPs parts. The designs are then clustered by clustering their corresponding vectors. 

The k-means clustering algorithm was written in-house and implemented in the module 

kmeans.py. The following pseudocode describes how the algorithm functions: 
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k  # the number of clusters 
vectors  # a list of vectors, each representing one design 
max_iter  # the maximum number of iterations 
centroids = random_choice(vectors, k)  # randomly choose k vectors without 
replacement to be the initial cluster centroids 
iter = 1  # number of iterations 
converged = False  # Have the centroids converged (stopped moving)? 
convergence_limit  # maximum mean square movement to be considered not moving 
while not converged and iter <= max_iter: 
    clusters = empty_list(length=k, data_type=set)  # a list of clusters; each  
            # cluster is a set of vectors in the cluster 
    # Assign each vector to the cluster with the closest centroid. 
    for vector in vectors:    
        index = argmin(distance(vector, centroids)) 
        clusters[index].add(vector) 
    # If there are any empty clusters, move a random vector from another cluster  
            # into each empty cluster. 
    for cluster in clusters: 
        if cluster.is_empty(): 
            other_cluster = random_choice(clusters, 1)  # choose one cluster 
            # Ensure the other cluster can relinquish a vector without becoming  
                    # empty  
            while other_cluster.size() > 1 
                other_cluster = random_choice(clusters, 1) 
            # Transfer one random vector from the other cluster. 
            vector = random_choice(other_cluster, 1) 
            other_cluster.remove(vector) 
            cluster.add(vector) 
    # Move each cluster’s centroid to the mean coordinate of the cluster’s  
            # vectors. 
    movement_distances = empty_list(length=k, data_type=numeric) 
    for index in {1, 2, ..., k}: 
        mean_coordinate = mean(clusters[index]) 
        movement_distances[index] = distance(mean_coordinate, centroids[index]) 
        centroids[index] = mean_coordinate 
    if square_root(sum(movement_distances^2)) <= convergence_limit: 
        converged = True 
    iter += 1 
return clusters 
 

Figure 7: Pseudo-code for implementing the k-means clustering step. The full implementation is located in the module 
kmeans.py. 

 Note that in the above implementation, the value of 𝑘𝑘 is fixed. The optimal value of 𝑘𝑘 is 

unknown a priori. In order to find the optimal value of 𝑘𝑘, the algorithm calculates the maximum 

variance 𝜎𝜎2𝑘𝑘 of the data in each cluster using the following equation: 
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40) 

𝜎𝜎2𝑘𝑘 = max�
∑ ��𝑣𝑣𝑖𝑖𝑗𝑗 − 𝑐𝑐𝚤𝚤���

2𝑛𝑛𝑖𝑖
𝑗𝑗=1

𝑛𝑛𝑖𝑖
|𝑖𝑖 ∈ 𝐶𝐶𝑘𝑘� 

where 𝐶𝐶𝑘𝑘 is the set of clusters for a given value of 𝑘𝑘, 𝑛𝑛𝑖𝑖 is the number of vectors in cluster 

𝑖𝑖, 𝑐𝑐𝚤𝚤�  is the centroid of cluster 𝑖𝑖, and 𝑣𝑣𝑖𝑖𝑗𝑗 denotes vector 𝑖𝑖 of cluster 𝑖𝑖. The 𝜎𝜎2𝑘𝑘 value measures the 

efficacy of the clustering—specifically the maximum intra-cluster variance: superior clustering 

will yield a lower 𝜎𝜎2𝑘𝑘. For each 𝑘𝑘 > 1, the ratio 𝜎𝜎
2
𝑘𝑘

𝜎𝜎21
 was calculated; the optimal 𝑘𝑘 was chosen to 

be the minimum 𝑘𝑘 for which 𝜎𝜎
2
𝑘𝑘

𝜎𝜎21
≤ 𝑡𝑡, where 0 < 𝑡𝑡 < 1 is a pre-defined threshold. We used 𝑡𝑡 =

0.2. The maximum possible value for 𝑘𝑘 is 𝑛𝑛𝑣𝑣 (where 𝑛𝑛𝑣𝑣 is the total number of vectors being 

clustered) because when 𝑘𝑘 = 𝑛𝑛𝑣𝑣, there is exactly one vector in each cluster, so each centroid must 

equal its corresponding vector (𝑣𝑣𝑖𝑖1 = 𝑐𝑐𝚤𝚤�  ∀ 𝑖𝑖), thus 𝜎𝜎2𝑛𝑛𝑣𝑣 = 0 < 𝑡𝑡. 

Selection of clustered designs 

Quick OptMAVEn select a diverse set of antibodies with high predicted affinities in the 

following manner. Let 𝑅𝑅𝑖𝑖𝑗𝑗 be the interaction energy (see Equation 3) of antibody 𝑖𝑖 in cluster 𝑖𝑖 

(denoted 𝐶𝐶𝑖𝑖). Let 𝑅𝑅𝑖𝑖,min = min�𝑅𝑅𝑖𝑖𝑗𝑗|𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖�, i.e. the interaction energy of the antibody in cluster 𝑖𝑖 

with the most negative interaction energy (greatest predicted affinity). Quick OptMAVEn ranks 

the 𝐶𝐶𝑖𝑖s from most to least negative 𝑅𝑅𝑖𝑖,min. Indexing along 𝑖𝑖, in order of increasing 𝑅𝑅𝑖𝑖,min, it selects 

from each 𝐶𝐶𝑖𝑖 the antibody 𝑖𝑖 for which 𝑖𝑖 = argmin�𝑅𝑅𝑖𝑖𝑗𝑗|𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖�, i.e. the antibody with the most 

negative interaction energy from cluster 𝑖𝑖. Quick OptMAVEn stops when the number of selected 

antibodies 𝑛𝑛selected reaches a user-specified goal 𝑛𝑛Abs. By default, 𝑛𝑛Abs = 30. If 𝑛𝑛selected = 𝑛𝑛Abs 
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before an antibody has been selected from each of the 𝑘𝑘 clusters (i.e. 𝑘𝑘 > 𝑛𝑛Abs), then no antibody 

is selected from any of the remaining 𝑛𝑛Abs − 𝑘𝑘 clusters. 

If, after selecting one antibody from each cluster, an insufficient number of antibodies have 

been selected (i.e. 𝑛𝑛selected = 𝑘𝑘 < 𝑛𝑛Abs), then Quick OptMAVEn repeats the above steps, starting 

by re-ranking the 𝐶𝐶𝑖𝑖s from most to least negative 𝑅𝑅𝑖𝑖,min, but ignoring any antibodies that have 

already been selected. This procedure is repeated either until 𝑛𝑛selected = 𝑛𝑛Abs or, if the total 

number of antibodies designed is less than 𝑛𝑛Abs, until all antibodies have been selected. 

After selecting these antibodies, Quick OptMAVEn performs a structural relaxation on 

every antigen-antibody complex using CHARMM. The relaxed structures are saved in both PDB 

and FASTA format in the Results directory within the experiment’s directory. 

Benchmarking of Quick OptMAVEn 

To compare the performances of OptMAVEn and Quick OptMAVEn, we used both 

programs to design antibodies for 10 antigens and used Quick OptMAVEn to design antibodies 

for an additional 54 antigens that had been tested previously with OptMAVEn [7]. During the 

benchmarking we used the default parameters of Quick OptMAVEn (Table 6). The antigen chains 

and epitopes are given in Table 12. The computations were performed on the (now 

decommissioned) Lion-XF cluster at the Pennsylvania State University. 
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Table 6: The setup and parameters used for the benchmarking of Quick OptMAVEn. 

Software Version CHARMM 
settings 

Value k-means 
settings 

Value Grid search 
settings 

Value 

Python 2.7.13 CHARMM 
energy 
terms 

angl, bond, 
dihe, elec, 

impr, urey, 
vdw, gbener 

Gap 
penalty 

8 MAPs clash 
cutoff 

1.25 Å 

CHARMM 34b1 CHARMM 
iterations 

5000 k-means 
max 
iterations 

1000 𝑥𝑥min, 𝑥𝑥max, 
𝑥𝑥step 

-10.0, 
5.0, 

2.5 Å  
VMD 1.9.3   k-means 

tolerance 
0.01 𝑦𝑦min, 𝑦𝑦max, 

𝑦𝑦step 
-5.0, 
10.0, 
2.5 Å  

NAMD 2.12   k-means 
threshold 

0.20 𝑧𝑧min, 𝑧𝑧max, 
𝑧𝑧step 

3.75, 
16.25, 
2.25 Å  

      𝜃𝜃𝑧𝑧min, 
𝜃𝜃𝑧𝑧max, 𝜃𝜃𝑧𝑧step 

0, 
300, 
60° 

Direct comparison of OptMAVEn and Quick OptMAVEn on ten antigens 

We had the computational resources to directly compare the performance of OptMAVEn 

and Quick OptMAVEn on ten antigens. We randomly selected ten of the antigens against which 

OptMAVEn had previously designed antibodies [7]: 1NSN, 2IGF, 2R0W, 2VXQ, 2ZUQ, 3BKY, 

3FFD, 3G5V, 3L5W, and 3MLS. Performance was assessed on the basis of the times taken for the 

Initial antigen positioning plus the Grid search (𝑇𝑇pos; we were able to measure only the sum of 

these times), the Energy calculations (𝑇𝑇ener), the Germline design (𝑇𝑇MILP), and the total CPU time 

(𝑇𝑇CPU = 𝑇𝑇pos + 𝑇𝑇ener + 𝑇𝑇MILP); the maximum amount of disk storage used at any point (𝐷𝐷max); 

and the interaction energy between the antigen and the antibody with the most negative predicted 

interaction energy (𝑅𝑅min). Additionally, we recorded the number of positions sampled (𝑁𝑁pos) and 

energy obtained from the MILP (𝑅𝑅MILP; i.e. the value of Equation 3). 
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The results are given in Table 7, Table 8, and Table 9. Quick OptMAVEn performed 

significantly better (𝑃𝑃 < 0.05) in every performance measure except for 𝑅𝑅min and 𝑅𝑅MILP. For 𝑅𝑅min, 

the programs yielded equivalent results (𝑃𝑃 = 0.79). Note that 𝑅𝑅MILP is a temporary energy used to 

select designs for which to calculate the more computationally intensive quantity 𝑅𝑅min. Thus, the 

significantly worse performance of Quick OptMAVEn in terms of 𝑅𝑅MILP does not suggest that the 

final, relaxed designs are worse. Thus, these results indicate that, relative to OptMAVEn, Quick 

OptMAVEn designs antibodies of equivalent affinities using approximately 10−0.591 = 26% of 

the CPU time and 10−0.788 = 16% of the disk storage on average. 

 

Figure 8: Quick OptMAVEn performs significantly better than OptMAVEn in terms of 𝐷𝐷max, 𝑇𝑇pos, 𝑇𝑇ener, 𝑇𝑇MILP, and 
𝑇𝑇CPU. Values are base-10 logarithms of the ratio of the Quick OptMAVEn and OptMAVEn performance measures. Box plots report 
the minimum, Q1, median (orange lines), Q3, and maximum values. 
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Table 7: The performance of OptMAVEn. Times are in hours, sizes in megabytes, and energies in kcal/mol. 

Antigen 𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩 𝑻𝑻𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑻𝑻𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑻𝑻𝐂𝐂𝐌𝐌𝐂𝐂 𝑫𝑫𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 𝑬𝑬𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑵𝑵𝐩𝐩𝐩𝐩𝐩𝐩 
1NSN 32.7 214.2 26.8 273.7 1004 -658.7 -850.1 2428 
2IGF 2.1 20.0 26.4 48.4 820 -76.4 -383.9 3023 
2R0W 2.0 17.8 20.2 40.0 779 -277.0 -480.5 2955 
2VXQ 26.1 174.4 19.6 220.1 970 -174.5 -576.4 2711 
2ZUQ 41.6 290.9 18.8 351.4 1094 -346.0 -363.6 2645 
3BKY 5.0 54.8 33.7 93.5 824 -216.1 -356.4 3035 
3FFD 5.3 35.0 19.5 59.8 657 +576.6 -397.4 2347 
3G5V 22.0 33.1 20.8 75.9 808 -309.9 -413.0 2976 
3L5W 29.6 173.9 24.4 227.9 1008 -281.4 -698.2 2798 
3MLS 5.8 53.0 21.9 80.7 809 -249.6 -395.1 2903 

 

Table 8: The performance of Quick OptMAVEn. Times are in hours, sizes in megabytes, and energies in kcal/mol. 

Antigen 𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩 𝑻𝑻𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑻𝑻𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑻𝑻𝐂𝐂𝐌𝐌𝐂𝐂 𝑫𝑫𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 𝑬𝑬𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑵𝑵𝐩𝐩𝐩𝐩𝐩𝐩 
1NSN 0.036 22.3 1.8 24.2 142.4 -438.1 -255.6 442 
2IGF 0.009 26.1 5.6 31.7 169.7 -118.5 -106.6 1374 

2R0W 0.010 22.4 4.9 27.4 152.9 -127.9 -186.0 1204 
2VXQ 0.033 33.7 3.6 37.4 135.4 -235.3 -185.0 893 
2ZUQ 0.046 40.4 3.2 43.6 167.3 -131.3 -99.4 774 
3BKY 0.011 33.9 6.7 40.6 197.4 -208.4 -77.7 1647 
3FFD 0.014 10.9 2.0 13.0 83.8 +92.6 -153.9 492 
3G5V 0.012 21.0 4.2 25.2 137.6 -458.5 -185.0 1035 

3L5W 0.033 36.4 3.8 40.2 144.7 -394.0 -169.7 910 
3MLS 0.009 18.0 3.3 21.3 114.7 -171.2 -229.4 807 
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Table 9: Comparison of the performance of OptMAVEn and Quick OptMAVEn. For 𝑅𝑅min and 𝑅𝑅MILP, entry 𝑖𝑖𝑖𝑖 is 

(Table 8𝑖𝑖𝑗𝑗 − Table 7𝑖𝑖𝑗𝑗) because the interest is the difference in energy. For all other measures, entry 𝑖𝑖𝑖𝑖 is log10 �
Table 8𝑖𝑖𝑗𝑗
Table 7𝑖𝑖𝑗𝑗

� because 

the interest is the ratio of the values. For all measures, negative values show better performance for Quick OptMAVEn. Statistics 
are as follows: Shapiro, P-value of Shapiro-Wilk test for normality of the measure: because all 𝑃𝑃 > 0.05, the assumption that all 
differences are normally distributed is supported; mean, mean difference between Quick OptMAVEn and OptMAVEn; s. d., 
standard deviation of measurements; P-value, two-tailed t-test of 𝐻𝐻0: 𝜇𝜇 = 0, 𝐻𝐻𝐴𝐴: 𝜇𝜇 ≠ 0, 𝑃𝑃 < 0.05 in bold. 

Antigen 𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩 𝑻𝑻𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑻𝑻𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑻𝑻𝐂𝐂𝐌𝐌𝐂𝐂 𝑫𝑫𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 𝑬𝑬𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑵𝑵𝐩𝐩𝐩𝐩𝐩𝐩 
1NSN -2.96 -0.982 -1.162 -1.053 -0.848 +220.6 +594.5 -0.740 
2IGF -2.35 +0.116 -0.674 -0.184 -0.684 -42.1 +277.2 -0.342 
2R0W -2.29 +0.102 -0.613 -0.165 -0.707 +149.1 +294.5 -0.390 
2VXQ -2.90 -0.714 -0.732 -0.770 -0.855 -60.8 +391.4 -0.482 
2ZUQ -2.95 -0.857 -0.774 -0.906 -0.815 +214.6 +264.3 -0.534 
3BKY -2.65 -0.208 -0.700 -0.362 -0.620 +7.7 +278.7 -0.265 
3FFD -2.58 -0.505 -0.984 -0.663 -0.895 -484.0 +243.5 -0.679 
3G5V -3.27 -0.198 -0.698 -0.479 -0.769 -148.6 +228.1 -0.459 
3L5W -2.95 -0.680 -0.806 -0.753 -0.843 -112.6 +528.6 -0.488 
3MLS -2.80 -0.469 -0.823 -0.578 -0.848 +78.4 +165.7 -0.556 
Shapiro 6.0E-01 5.8E-01 1.0E-01 8.2E-01 1.8E-01 2.8E-01 6.9E-02 9.4E-01 
mean -2.77 -0.440 -0.797 -0.591 -0.788 -17.8 +326.7 -0.494 
s. d. 0.303 0.383 0.164 0.296 0.090 209.4 137.0 0.145 
P-value 3.5E-10 5.5E-03 9.2E-08 1.4E-04 5.0E-10 7.9E-01 3.5E-05 1.9E-06 

Test of Quick OptMAVEn on 54 additional antigens 

We used Quick OptMAVEn to design antibodies against 54 additional antigens for which 

OptMAVEn had previously been used to design antibodies (Table 10). In addition to the 

performance measures for the Direct comparison of OptMAVEn and Quick OptMAVEn on ten 

antigens, we report here the numbers of residues and atoms in each antigen. 

Table 10: The performance of Quick OptMAVEn on 54 additional antigens, as well as those from the Direct comparison 
of OptMAVEn and Quick OptMAVEn on ten antigens (the first ten entries) and the Zika virus E protein (from 5GZN). Every 
antigen comprised one chain. 𝑁𝑁res: number of residues in the antigen; 𝑁𝑁res: number of atoms in the antigen; 𝑁𝑁pos, 𝑇𝑇CPU, 𝐷𝐷max, and 
𝑅𝑅min are defined above in the Direct comparison of OptMAVEn and Quick OptMAVEn on ten antigens. 

Antigen 𝑵𝑵𝐞𝐞𝐞𝐞𝐩𝐩 𝑵𝑵𝐦𝐦𝐭𝐭𝐩𝐩𝐦𝐦 𝑵𝑵𝐩𝐩𝐩𝐩𝐩𝐩 𝑻𝑻𝐂𝐂𝐌𝐌𝐂𝐂 𝑫𝑫𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 
1NSN 138 2262 442 28.1 142.4 -1045.4 
2IGF 7 125 1374 33.7 169.7 -376.3 
2R0W 7 112 1204 29.3 152.9 -634.7 
2VXQ 92 1430 893 40.3 135.4 -674.8 
2ZUQ 148 2390 774 47.2 167.3 -404.8 
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3BKY 17 242 1647 42.8 197.4 -228.1 
3FFD 18 328 492 15.2 83.8 -730.2 
3G5V 16 229 1035 27.1 137.6 -447.6 
3L5W 101 1577 910 43.5 144.7 -566.1 
3MLS 20 288 807 23.3 114.7 -509.8 
1ACY 10 156 1558 40.9 188.3 -370.6 
1CE1 8 93 1694 44.3 200.9 -513.3 
1CFT 5 84 1554 38.9 187.9 -253.5 
1DZB 129 1958 749 42.2 136.3 -775.8 
1EGJ 101 1643 650 34.1 106.9 -618.6 
1F90 9 156 1328 35.0 165.8 -377.5 
1FPT 11 162 1478 38.4 180.0 -455.6 
1HH6 11 159 718 20.8 104.6 -385.5 
1I8I 9 142 1480 38.4 179.7 -350.8 
1JHL 129 1962 985 53.7 132.3 -766.6 
1JRH 95 1491 397 21.9 99.6 -541.4 
1KC5 8 119 1299 36.8 162.1 -376.1 
1KIQ 129 1968 730 41.4 119.1 -750.1 
1MLC 129 1968 618 35.9 111.2 -752.0 
1N64 16 241 990 28.1 132.9 -386.6 
1NAK 10 166 1192 41.5 154.1 -393.3 
1OBE 13 195 417 13.5 77.9 -397.0 
1ORS 132 2146 1001 55.7 162.4 -625.5 
1PZ5 8 124 1348 34.1 167.4 -419.5 
1QNZ 18 301 575 18.5 91.4 -367.3 
1SM3 9 126 1354 34.8 167.9 -454.2 
1TQB 102 1659 489 26.8 104.1 -534.6 
1V7M 145 2258 588 37.5 115.4 -561.0 
1XGY 6 85 1811 45.4 212.8 -293.1 
1ZA3 91 1346 71 7.5 91.8 -758.7 
2A6I 9 136 1093 29.1 141.8 -365.2 
2BDN 68 1106 810 35.2 115.1 -740.6 
2DQJ 129 1968 590 34.0 111.6 -852.4 
2FJH 98 1565 312 18.4 99.7 -528.8 
2H1P 11 182 561 17.0 90.4 -355.0 
2HH0 9 151 1062 28.6 140.0 -282.7 
2HRP 10 177 1013 27.9 135.4 -366.5 
2IFF 129 1966 595 33.9 126.7 -594.4 
2JEL 85 1293 596 28.1 101.9 -539.5 
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2OR9 11 181 734 21.1 106.7 -387.8 
2QHR 11 185 761 20.3 111.3 -340.2 
2R29 97 1553 641 33.2 105.3 -698.4 
3AB0 136 1955 380 23.9 107.8 -765.0 
3BDY 95 1521 779 36.3 133.9 -439.7 
3CVH 8 142 1168 30.7 149.6 -333.7 
3D85 133 2074 441 27.9 109.8 -717.0 
3E8U 11 136 1481 38.1 180.8 -431.4 
3ETB 144 2332 296 21.8 111.3 -898.6 
3F58 11 136 1317 34.6 168.5 -322.6 
3G6D 106 1667 418 24.2 103.2 -876.8 
3GHB 10 146 1341 33.5 166.7 -383.4 
3GHE 15 255 773 26.9 112.2 -430.1 
3HR5 9 142 1340 38.4 166.5 -478.7 
3KS0 92 1443 1148 54.3 148.0 -578.5 
3MLX 14 235 621 20.5 94.7 -367.7 
3NFP 124 1909 292 19.7 104.5 -771.6 
3P30 84 1437 32 4.7 65.2 -714.9 
3QG6 6 105 1425 36.1 175.2 -362.4 
3RKD 146 2185 776 46.1 124.5 -793.7 
5GZN 402 6081 77 18.9 176.7 -1244.8 

 

To understand the factors affecting 𝑇𝑇CPU and 𝐷𝐷max, we investigated correlations between 

these performance measures and the inputs. We excluded 5GZN from the analysis because its 

𝑁𝑁res = 402 and 𝑁𝑁atom = 6081 were outliers. Among the other antigens, the Pearson correlation 

𝑟𝑟 between 𝑇𝑇CPU and both 𝑁𝑁res (𝑟𝑟 = 0.144) and 𝑁𝑁atom (𝑟𝑟 = 0.136) was small, indicating that the 

size of the antigen did not affect 𝑇𝑇CPU. Correlations between 𝐷𝐷max and 𝑁𝑁res (𝑟𝑟 = −0.391) and 

𝑁𝑁atom (𝑟𝑟 = −0.396) were also modest. However, there were stronger correlation between 𝑁𝑁pos 

and both 𝐷𝐷max (𝑟𝑟 = 0.928) and 𝑇𝑇CPU (𝑟𝑟 = 0.634), suggesting that one of the most important 

factors in the performance is the number of positions sampled. Of note, there appeared to be two 

clusters in each plot: these clusters separated perfectly by partitioning the antigens into those small 

(𝑁𝑁res ≤ 50) and large (𝑁𝑁res > 50). There were no substantial differences in correlations after 
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partitioning. Thus, it seems that the most significant predictor of 𝑇𝑇CPU and 𝐷𝐷max is 𝑁𝑁pos, which is 

determined by the antigen shape as well as the size and grid search settings. 

Design of 77 antibodies for Zika E protein, including 9 predicted to be superior to native 

We used Quick OptMAVEn to design 77 antibodies that targeted the Zika envelope (E) 

protein. We tested two Zika epitopes that we identified in PDBs 5GZN and 5GZO [16]. Both PDBs 

comprise several complexes of Zika E protein bound to neutralizing antibodies that were isolated 

from an infected patient. We used chain A as the antigen for both 5GZN and 5GZO. We defined 

the epitope as the set of all residues of chain A for which at least one atom lay within 4.0 Å of any 

atom in the antibody complexed with chain A. The epitope residues were as follows. 5GZN: 46, 

47, 52, 136, 138, 140, 156, 158, 159, 166, 168, 276, 277, 278, 279, 280, 281, 283. 5GZO: 64, 65, 

66, 67, 68, 69, 84, 87, 89, 90, 118, 119, 120, 233, 252. Note that if no structures of Zika in complex 

with an antibody had been available, we could have predicted these epitopes using existing 

software [33]. We used the default settings for Quick OptMAVEn (Table 6). 

Quick OptMAVEn successfully designed 77 antibodies against the 5GZN epitope but 

failed to find any non-clashing positions for the epitope of 5GZO. However, using a different grid 

could enable Quick OptMAVEn to find non-clashing positions for this epitope as well. By default, 

Quick OptMAVEn clusters the designs and then relaxes and calculates 𝑅𝑅min for the top 30 designs. 

In order to evaluate the clustering algorithm, we computed the relaxed interaction energies of all 

77 designs. We compared retaining the top 30 identified by the Quick OptMAVEn clustering 

algorithm to retaining the top 30 on the sole basis of MILP energy (the OptMAVEn procedure). 

We defined a true positive (TP) as a retained design with a relaxed energy in the top 30 and a false 
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positive (FP) as a retained design whose relaxed energy was not in the top 30. Likewise, a true 

negative (TN) was a discarded design whose relaxed energy was not in the top 30, and a false 

negative (FN) was a discarded design whose relaxed energy was in the top 30. We found that 

Quick OptMAVEn yielded more TPs (15 vs 8) and TNs (32 vs 25) than did the OptMAVEn 

procedure, as well as a higher Matthews Correlation Coefficient (MCC) [57] of 0.18 vs −0.20. 

These results indicate that the clustering algorithm is superior to the method of OptMAVEn. 

 

Figure 9: The confusion matrices for the OptMAVEn and Quick OptMAVEn procedures of selecting designs. Designs 
among the top 30 in terms of relaxed energy fall into Post-Relaxation True: otherwise, False. Designs retained by OptMAVEn and 
Quick OptMAVEn fall into OptMAVEn and Quick-OptMAVEn True, respectively: otherwise, False. 

For the 5GZN epitope, 9 of the 77 antibodies (12%) had a value for 𝑅𝑅min more negative 

than the interaction energy of the native 5GZN antibody, meaning that their affinities for Zika E 

protein were predicted to be greater than that of an antibody isolated from a human patient (Table 

13). Furthermore, the sum of the humanization scores [7] (a measure of immunogenicity) of the 

light and heavy chains for four of these antibodies (11, 19, 39, and 1) were less than that of the 

native human antibody in 5GZN, suggesting that these antibodies are unlikely to elicit an immune 

response. However, these promising results await experimental validation.
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Chapter 4  
 

Future directions and conclusion  

This thesis describes the development of Quick OptMAVEn, a new version of the 

OptMAVEn [7] framework for de novo mAb design. During benchmarking, Quick OptMAVEn 

took an average of 74% less time and used 84% less storage on disk than its predecessor. To the 

best of my knowledge, OptMAVEn is the only published software capable of designing entire 

variable domains (VH and VL) of mAbs de novo, i.e. without requiring a structure of an antigen-

antibody complex. The ability to design antibodies de novo could offer an enormous advantage in 

time-critical scenarios, such as an outbreak of a disease. For example, during the recent Zika 

epidemic, the structure of the Zika E protein [31] was published over six months before the 

identification of the first human antibodies capable of neutralizing Zika [17]. 

OptMAVEn failed to design mAbs for Zika during this time interval due to excessive CPU 

time and disk storage requirements. However, Quick OptMAVEn successfully designed 50 mAbs 

for Zika E protein within 24 hours of real time (albeit not CPU time) on the ACI-b supercomputing 

cluster at Pennsylvania State University. Nine designs are predicted to bind with greater affinity 

than the natural antibody (PDB ID: 5GZN [16]) isolated from an infected human. Our collaborator, 

Klaus Schulten (whose lab developed VMD [42] and NAMD [43]), had planned to validate our 

designs experimentally but tragically passed away in 2016. Thus, an important future step is to 

measure the affinities of our designs for Zika E protein. If our designs do bind Zika, comparing 

predicted and experimentally-determined structures of their antigen-antibody complexes would 



66 
reveal if Quick OptMAVEn can not only design high-affinity antibodies but also predict atomistic 

interactions between the antigen and antibodies. 

Despite the significant improvements of Quick OptMAVEn over OptMAVEn, several 

challenges remain for the future development of software based on OptMAVEn. Quick 

OptMAVEn currently does not explicitly account for stability when designing mAbs, which is 

considered or even optimized by other software (e.g. AbDesign [22] and Rosetta Antibody Design 

[23]). Quick OptMAVEn does prevent clashes between the six MAPs parts (which would 

destabilize the antibodies) by incorporating a pre-computed set of clashing parts into the MILP. 

However, there is no means to predict—much less optimize—thermostability, propensity to 

aggregate, or shelf life of the mAbs, which are all clinically relevant indicators of stability [19]. 

Potentially, the MILP could be modified to incorporate the interaction energies among the MAPs 

parts—not just their interaction energies with the antigen—which could simultaneously optimize 

stability and affinity. Alternatively, the MILP could remain unchanged, but designs below a certain 

stability threshold would be filtered out after the MILP step. 

Another limitation of Quick OptMAVEn is that it uses a substantially simplified energy 

function to improve speed and throughput. During the MILP step, Quick OptMAVEn assumes that 

the sum of the interaction energies of the MAPs parts with the antigen will accurately predict 

experimental affinity. As Li et al. [7] state about OptMAVEn, this simplification ignores entropy, 

which may be significant for antigens that are especially flexible. Moreover, it ignores the potential 

to alleviate steric clashes during the structural relaxation following the assembly of the variable 

domains. Because NAMDEnergy [43] does not support solvation, the interaction energies are 

calculated using only electrostatic and van der Waals energy terms, which could overestimate the 

interaction energies between charged residues and underestimate interactions between 
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hydrophobic residues. Generalized Born solvation energies are incorporated into the energy 

calculations (using CHARMM [34]) on the assembled variable domains. We can see no 

straightforward solutions to these limitations in the energy function without abandoning 

NAMDEnergy, which is a primary contributor to the performance of Quick OptMAVEn. A 

potential solution is to remove these limitations by re-implementing them in customized C++ code, 

as was done in OptMAVEn. However, a major disadvantage to this approach is that it would 

increase the difficulty of keeping Quick OptMAVEn up to date with changes in file formats or 

energy functions. 

Currently, Quick OptMAVEn is configured to run on only the ACI-b supercomputing 

cluster at Pennsylvania State University. We could take two approaches to enable other labs to use 

Quick OptMAVEn. One approach would be to share the source code on the website of the Maranas 

lab (http://www.maranasgroup.com/) or on GitHub. However, Quick OptMAVEn depends on 

CHARMM [34], which is available only through a commercial license, and so we cannot assume 

that any lab would be able to run Quick OptMAVEn on its own computers. Thus, we plan to 

establish a web server with which anyone may submit jobs to Quick OptMAVEn. These jobs will 

be executed on the ACI-b cluster or another machine in our lab that is equipped with the necessary 

software. It is our hope that Quick OptMAVEn, as well as any future versions of OptMAVEn, will 

facilitate the computational design of therapeutic mAbs, which hold promise to treat a wide variety 

of diseases that have so far remained intractable.

http://www.maranasgroup.com/
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Chapter 5 Appendix A 
 

Clustering procedure supplementary information 

Table 11: The BLOSUM62 similarity matrix for amino acids. Amino acids are shown using standard one-letter 
abbreviations. 

 
A R N D C Q E G H I L K M F P S T W Y V 

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 
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Figure 10: The embedded coordinates for each category of MAPs parts at each gap penalty 𝑔𝑔. Colors represent the number 
of amino acids in each MAPs part. Coordinates for the J parts are independent of 𝑔𝑔 because the J parts do not have gaps.
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Chapter 6 Appendix B 
 

Inputs and outputs of Quick OptMAVEn 

Table 12: The chains and epitopes of the 64 antigens used in benchmarking Quick OptMAVEn. 

PDB Antigen 
Chain 

Heavy 
Chain 

Light 
Chain 

Epitope 

1NSN S H L 57, 60, 61, 64, 68, 70, 93, 95, 96, 97, 98, 105, 
106, 120, 121, 123, 124, 127 

2IGF P H L 70, 71, 72, 73, 74, 75 
2R0W Q H L 3, 4, 5, 6, 7, 8 
2VXQ A H L 32, 34, 39, 40, 41, 43, 67, 68, 69, 74, 75, 76, 77, 

78, 79, 80 
2ZUQ A C B 95, 96, 97, 98, 99, 100, 101, 132, 133, 134, 141 
3BKY P H L 169, 170, 171, 172, 173, 174, 175 
3FFD P A B 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31 
3G5V C B A 288, 289, 293, 296, 297, 298, 299, 300, 301, 302 
3L5W I H L 14, 15, 101, 104, 105, 107, 108, 109 
3MLS P H L 3, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18 
1ACY P H L 316, 319, 320, 321, 322, 323, 324 
1CE1 P H L 0, 1, 2, 3, 4, 5, 6, 7 
1CFT C B A 1, 2, 3, 4, 5 
1DZB X A A 20, 21, 23, 62, 63, 73, 75, 96, 97, 98, 100, 101, 

102, 103, 104, 106, 112, 116 
1EGJ A H L 362, 363, 364, 365, 366, 367, 395, 416, 417, 

418, 419, 421 
1F90 E H L 1, 2, 3, 4, 5, 6, 7, 8 
1FPT P H L 96, 97, 98, 99, 100, 101, 102, 103 
1HH6 C B A 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 
1I8I C B A 502, 503, 505, 506, 507, 508, 509 
1JHL A H L 21, 22, 23, 102, 103, 104, 106, 111, 112, 113, 

116, 117, 118, 119, 121 
1JRH I H L 47, 49, 50, 51, 52, 53, 54, 55, 56, 76, 78, 79, 80, 

82, 84, 98, 99 
1KC5 P H L 1, 2, 3, 4, 5, 6, 7 
1KIQ C B A 18, 19, 22, 23, 24, 25, 27, 102, 103, 116, 117, 

118, 119, 120, 121, 124, 125 
1MLC E B A 41, 43, 45, 46, 47, 48, 49, 50, 51, 53, 66, 67, 68, 

70, 79, 81, 84 
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1N64 P H L 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 
1NAK P H L 313, 314, 315, 316, 319, 320, 321, 322 
1OBE P H L 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 
1ORS C B A 111, 112, 113, 114, 115, 116, 117, 119, 120, 123 
1PZ5 C B A 1, 2, 3, 4, 5, 6, 7, 8 
1QNZ P H L 233, 234, 235, 236, 237, 238, 239, 240, 241, 

242, 243, 244, 245, 248 
1SM3 P H L 2, 3, 4, 5, 6, 7, 8, 9, 10 
1TQB A B C 127, 128, 158, 159, 185, 188, 189, 190, 191, 

192, 193, 194, 195, 196, 197, 198, 199 
1V7M V H L 57, 58, 61, 68, 71, 75, 98, 101, 102, 105, 106, 

109, 110, 111, 112, 113, 114 
1XGY P H L 1, 2, 3, 4, 5, 6 
1ZA3 R H L 25, 26, 27, 34, 36, 37, 38, 53, 54, 56, 57, 58, 59, 

61, 62 
2A6I P B A 3, 4, 5, 6, 7, 8, 9, 10 
2BDN A H L 28, 30, 31, 32, 34, 37, 38, 39, 40, 41, 55, 56, 61, 

64, 65, 68, 69 
2DQJ Y H L 14, 15, 16, 19, 20, 21, 62, 63, 73, 74, 75, 77, 93, 

96, 97, 98, 100, 101, 102, 103 
2FJH V H L 16, 17, 18, 19, 21, 22, 23, 25, 61, 66, 101, 104 
2H1P P H L 602, 603, 604, 605, 606, 608, 609, 610, 611, 612 
2HH0 P H L 2, 3, 4, 5, 6, 7, 8, 9, 10 
2HRP P H L 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 
2IFF Y H L 41, 43, 45, 46, 47, 48, 49, 51, 53, 67, 68, 69, 70, 

81, 84 
2JEL P H L 1, 2, 3, 4, 34, 36, 41, 64, 66, 67, 68, 70, 71, 72, 

75, 76 
2OR9 P H L 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
2QHR P H L 405, 406, 407, 408, 409, 410, 411, 412, 413, 414 
2R29 A H L 306, 307, 308, 309, 310, 311, 312, 325, 362, 

363, 364, 387, 388, 389, 390, 391 
3AB0 A B C 102, 104, 113, 119, 120, 121, 122, 123, 125, 

154, 156, 157, 158, 186, 188, 190, 192 
3BDY V H L 48, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93 
3CVH C H L 4, 5, 6, 7, 8 
3D85 C B A 82, 86, 87, 88, 91, 92, 93, 94, 95, 106, 110, 133, 

134, 135, 136, 137, 139, 140 
3E8U P H L 4, 5, 6, 7, 8, 9, 10, 11, 13 
3ETB J H L 649, 651, 652, 653, 654, 655, 657, 680, 681, 

682, 683, 684, 685, 686, 687, 716, 718 
3F58 P H L 315, 316, 319, 320, 321, 322, 323, 324, 10, 11 
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3G6D A H L 5, 6, 14, 18, 19, 21, 22, 23, 24, 97, 100, 101, 104, 

105, 107, 108, 109 
3GHB P H L 306, 307, 308, 309, 312, 313, 314, 315 
3GHE P H L 304, 305, 306, 307, 308, 309, 312, 313, 314, 

315, 316 
3HR5 R H L 7, 8, 9, 10, 11, 12, 13, 14, 15 
3KS0 B H L 30, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74 
3MLX P H L 305, 306, 307, 308, 309, 312, 313, 314, 315, 

316, 317, 318, 319 
3NFP I H L 1, 2, 3, 4, 5, 6, 25, 27, 43, 45, 116, 118, 120, 149, 

152, 153, 154, 155 
3P30 A H L 640, 643, 647, 650, 651, 653, 654, 657, 658, 661 
3QG6 C H L 3, 4, 5, 6, 7, 8 
3RKD A H L 476, 477, 479, 484, 485, 496, 497, 498, 499, 

508, 510, 512, 513, 514, 515, 534, 572, 573, 
574, 575, 576, 577, 578, 592 

 

Table 13: The nine designs whose values of 𝑅𝑅min (in kcal/mol) were more negative than that of the native 5GZN antibody 
(shown below). Design gives the number Quick OptMAVEn assigned to each design; HS gives the humanization score [7] of each 
sequence. 

Design 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 Chain Sequence HS 
31 -1244.8 H QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGK

GLEWIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAA
DTAVYYCTWFAYWGRGTLVTVSS 

19 

L QAGLTQPPSVSKGLRQTATLTCTGNSNNVGNQGAAWPEQQGP
PKLLSYRNNNRPSGISERLSASRSGNTASLTITGLQPEDEADYYC
QSYDSSLSAVFGGGTQLTVL 

38 

28 -1031.5 H EVQLVESGGGLVQPGGSLRLSCSASGFTFSSYAMWVRQAPGKGL
EYVSAISSNGGSTYYADSVKGRFTISRDNSKNTLYVQMSSLRAE
DTAVYYCVSYGYGGDRFSYWGQGTLVTVSS 

46 

L DIQMTQSPSSLSASVGDRVTITCRASQGISNSLAWYQQKPGKAP
KLLLYAASRLESGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQS
RELPPWTFGQGTKLEIK 

29 

11 -1017.2 H EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGK
GLEWMGIIYPGDSDTRYSPSFQGQVTISADKPISTAYLQWSSLK
ASDTAMYYCARGVDYYAMDYWGKGTTVTVSS 

17 

L EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAP
RLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCFQ
GSVPTFGPGTKVDIK 

25 

19 -991.5 H QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGK
GLEWIGEIISGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAAD
TAVYYCARDRSYYFDYWGKGTTVTVSS 

24 

L EIVLTQSPATLSLSPGERATLSCGASQSVSSSYLAWYQQKPGLAP
RLLIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQN
DSYPLTFGQGTRLEIK 

16 
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39 -973.6 H QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMWVRQAPGKG

LEWMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSL
RSEDTAVYYCARYFDYWGKGTTVTVSS 

25 

L DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAP
KRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQN
DSYPLTFGPGTKVDIK 

16 

0 -963.3 H EVQLVESGGGVVRPGGSLRLSCAASGFTFDDYGMSWVRQAPGK
GLEWVSGINWNGGSTGYADSVKGRFTISRDNAKNSLYLQMNSL
RAEDTALYCTRSDGRNDMDSWGQGTTVTVSS 

39 

L EIVLTQSPATLSLSPGERATLSCRASQGVSSYLAWYQQKPGQAP
RLLIYDASNRATGIPARFSGSGPGTDFTLTISSLEPEDFAVYYCQ
QSKEVPLTFGPGTKVDIK 

23 

1 -941.6 H EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMWVRQAPGKG
LEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRA
EDTALYYCARDRSYYFDYWGQGTLVTVSS 

18 

L EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP
RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQ
NEYPWTFGPGTKVDIK 

21 

2 -898.2 H QVQLQESGPGLVKPSDTLSLTCAVSGYSISRSSNWWGWIRQPPG
KGLEWIGYIYYSGSTYYNPSLKSRVTMSVDTSKNQFSLKLSSVTA
VDTGVYYCAKVKFYDPAPNDYWGKGTTVTVSS 

67 

L EIVMMQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQA
PRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQ
QYWSTWTFGPGTKVDIK 

13 

16 -873.9 H EVQLVESRGVLVQPGGSLRLSCAASGFTVSSNEMSWVRQAPGK
GLEWVSSISGSGGSTYYADSRKGRFTISRDNSKNTLLQMNSLRA
EDTAVYYCARGDYYAMDYWGQGTLVTVSS 

51 

L DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAP
KLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQ
GQSYPFTFGPGTKVDIK 

15 

Native -856.4 H EVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGK
GLEWVAVISYDGSNKYYADSVKGRFTISRDNSKSTLYLQMNNL
RAEDTAVYYCARDHLGWSSIWSAPESFLDYWGQGTLVTVSS 

52 

L QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTA
PKLLIYDSNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYC
GTWDSSLSVWVFGGGTKLTVL 

4 
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