
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF CHEMICAL ENGINEERING

QUICK OPTMAVEN: AN EFFICIENT COMPUTATIONAL FRAMEWORK FOR THE DE
NOVO DESIGN OF FULLY HUMAN MONOCLONAL ANTIBODIES

MATTHEW FREDERICK ALLAN
SPRING 2018

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree

in Biochemistry and Molecular Biology
with honors in Chemical Engineering

Reviewed and approved* by the following:

Costas D. Maranas
Donald B. Broughton Professor of Chemical Engineering

Thesis Supervisor

Andrew Zydney
Distinguished Professor of Chemical Engineering

Honors Adviser

* Signatures are on file in the Schreyer Honors College.

i

ABSTRACT

Monoclonal antibodies (mAbs) have become one of the most promising classes of

therapeutics. Currently, dozens of mAbs are FDA-approved for autoimmune disorders, cancers,

and infectious diseases. While there exist robust laboratory methods for designing mAbs for new

antigens, these expensive and time-consuming (i.e. 3 – 6 months) methods are incapable of

developing therapeutic antibodies rapidly during an epidemic. Potentially, computational methods

of engineering mAbs could expedite this process. The first software capable of designing antibody

variable domains de novo—OptMAVEn—was published in 2014. Despite designing three mAbs

that bound a dodecapeptide antigen, OptMAVEn proved too time- and storage-intensive to design

mAbs for Zika during the 2015 – 2016 epidemic.

Here, we present Quick OptMAVEn, a new implementation of OptMAVEn. We show that

Quick OptMAVEn can design variable domains of equivalent quality in 74% less time using 84%

less disk storage, relative to OptMAVEn. Furthermore, we have used Quick OptMAVEn to design

50 antibodies for Zika, 9 of which are predicted to bind the antigen with greater affinity than an

antibody isolated from a human patient. Quick OptMAVEn achieves better performance by using

more efficient algorithms, more compact representations of antigen structures, and a novel k-

means clustering step. We plan to create a web server to share Quick OptMAVEn with other labs.

ii

TABLE OF CONTENTS

ABSTRACT ... i

TABLE OF CONTENTS ... ii

LIST OF FIGURES ... iv

LIST OF TABLES ... vi

ACKNOWLEDGEMENTS ... viii

Chapter 1 Antibodies as therapeutics ... 1

Background on therapeutic monoclonal antibodies .. 1
Antibody structure and function ... 2
Generation of antibodies by the immune system .. 3

V-(D)-J recombination .. 3
Affinity maturation .. 6

Engineering therapeutic antibodies ... 7
Laboratory-based methods of engineering mAbs .. 7
Computational methods of engineering mAbs .. 9

Thesis objectives ... 13

Chapter 2 OptMAVEn ... 15

Background of OptMAVEn .. 15
Workflow of OptMAVEn ... 17

Preparation of input files ... 17
Initial antigen positioning .. 18
Grid search ... 21
Energy calculations ... 22
Germline design ... 23
Computational affinity maturation .. 25

Output and validation of OptMAVEn .. 27

Chapter 3 Quick OptMAVEn .. 29

Motivation for Quick OptMAVEn ... 29
Use of separate tools increases risk of user error .. 29
Minimization of epitope 𝒛𝒛 coordinates is inefficient and imprecise 29
A clash-permissive grid search increases cost of subsequent steps 30
Representation of antigen positions as PDB files increases disk storage

requirement ... 30
Design of multiple antibodies for each antigen position does not increase design

quality ... 31

iii

Absence of a method to ensure diversity among designs 31
Development of Quick OptMAVEn ... 31

New coherent directory structure .. 32
Robust input-output methods .. 32
Improved user interface ... 33
Initial antigen positioning .. 34
Definition of antigen 𝒛𝒛 angle ... 39
Grid search ... 41
Energy calculations ... 41
Germline design ... 43
Clustering of designs ... 43

Benchmarking of Quick OptMAVEn ... 56
Direct comparison of OptMAVEn and Quick OptMAVEn on ten antigens . 57
Test of Quick OptMAVEn on 54 additional antigens 60

Design of 77 antibodies for Zika E protein, including 9 predicted to be superior to
native ... 63

Chapter 4 Future directions and conclusion... 65

Chapter 5 Appendix A Clustering procedure supplementary information 68

Chapter 6 Appendix B Inputs and outputs of Quick OptMAVEn 70

Chapter 7 Bibliography .. 74

iv

LIST OF FIGURES

Figure 1: The ImMunoGeneTics (IMGT) numbering system for the heavy (left) and light
(right) chains. All lengths are to scale. A) The IMGT numbers are given for the start
and end of each framework region (FR) and complementarity-determining region
(CDR). The number at the top left corner of each region labels its first residue. The
number in its lower right corner (if present) labels its last residue. B) Correspondence
of V, (D), and J germline genes to the FRs and CDRs. Because indels occur during
V(D)J-recombination, the ranges of residues encoded by the genes vary among
antibodies (indicated by the color gradients). C) Correspondence of the V*, CDR3,
and J* regions of the MAPs database to the FRs, CDRs, and germline genes. 6

Figure 2: An example of the contents of an Epitopes.txt file. This file defines two
epitopes named “foo” and “bar.” .. 17

Figure 3: Illustration of the rotation of an antigen. The antigen (blue) is rotated around its
geometric center (yellow) from its arbitrary initial position (A) to its final position (B)
so as to minimize the sum of the 𝑧𝑧 coordinates of its epitope (red); the 𝑧𝑧 axis points
upward, as shown. This rotation ensures that the epitope points towards the MAPs
parts. One MAPs part for each CDR, forming a complete antibody variable domain, is
shown; the heavy chain is brown and the light chain is tan. All other MAPs parts
occupy similar positions, so the epitope in panel B will point toward an antibody
assembled from any set of MAPs parts. The antigen shown is human interleukin 1-
beta (PDB ID 46GM) [35]. Images were generated with PyMOL [36]. 19

Figure 4: Pseudocode for the epitope rotation algorithm in OptMAVEn. 20

Figure 5: Schematic of the rotation of an antigen so as to minimize the 𝑧𝑧 coordinates of the
epitope. The rotation moves the initial geometric center of the epitope (an arbitrary
point given by 𝑐𝑐0) to a point 𝑐𝑐 located along the negative 𝑧𝑧 axis by rotating the antigen
around a unit axis 𝑢𝑢 (𝑐𝑐0 ⊥ 𝑢𝑢 ⊥ 𝑐𝑐, 𝑢𝑢 = 1) by an angle 𝜅𝜅. The geometric center of the
antigen (𝑐𝑐A) can be set, without loss of generality, to the origin. The 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 unit
axes are labeled as such. ... 39

Figure 6: An illustration of 𝜃𝜃𝑧𝑧. When the 𝑧𝑧 coordinates of the epitope (grey spheres) are
minimized, 𝜃𝜃𝑧𝑧 ∈ (−180°, 180°] is the angle between the positive 𝑥𝑥 axis (rightward
arrow) and the vector that leads from the antigen center of geometry (yellow circle) to
the C-alpha atom of the first residue of the antigen (brown), when the 𝑥𝑥,𝑦𝑦 plane is in
the plane of the page and the positive 𝑧𝑧 axis extends toward the viewer. Here, 𝜃𝜃𝑧𝑧 =
−39°. The antigen shown in human interleukin 1-beta (PDB ID 46GM) [35]. The
image was generated with PyMOL [36]. .. 40

Figure 7: Pseudo-code for implementing the k-means clustering step. The full
implementation is located in the module kmeans.py. .. 54

v

Figure 8: Quick OptMAVEn performs significantly better than OptMAVEn in terms of

𝐷𝐷max, 𝑇𝑇pos, 𝑇𝑇ener, 𝑇𝑇MILP, and 𝑇𝑇CPU. Values are base-10 logarithms of the ratio of
the Quick OptMAVEn and OptMAVEn performance measures. Box plots report the
minimum, Q1, median (orange lines), Q3, and maximum values. 58

Figure 9: The confusion matrices for the OptMAVEn and Quick OptMAVEn procedures
of selecting designs. Designs among the top 30 in terms of relaxed energy fall into
Post-Relaxation True: otherwise, False. Designs retained by OptMAVEn and Quick
OptMAVEn fall into OptMAVEn and Quick-OptMAVEn True, respectively:
otherwise, False. ... 64

Figure 10: The embedded coordinates for each category of MAPs parts at each gap penalty
𝑔𝑔. Colors represent the number of amino acids in each MAPs part. Coordinates for the
J parts are independent of 𝑔𝑔 because the J parts do not have gaps. 69

vi

LIST OF TABLES

Table 1: The number of parts in the MAPs database for each of the categories of parts. The
number of parts in the original MAPs database is given in the OptMAVEn column.
During the development of Quick OptMAVEn, five redundant parts were identified
and removed from the MAPs database: the numbers in the Quick OptMAVEn column
reflect these edits, and the categories in which edits occurred are indicated in the Edited
column. ... 16

Table 2: The values of 𝜌𝜌𝜌𝜌opt for each gap penalty and each MAPs category. 51

Table 3: The values of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜌𝜌opt for each gap penalty and each MAPs category. .. 52

Table 4: The rank of each 𝑔𝑔 level in terms of each criterion and each part. Rank 1
corresponds to the 𝑔𝑔 level that optimized the criterion (i.e. maximized 𝜌𝜌𝜌𝜌opt or
minimized 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜌𝜌opt); rank 5 corresponds to the 𝑔𝑔 level that yielded the least
optimal value of the criterion. ... 52

Table 5: The average rank assigned to each 𝑔𝑔 level according to the rankings in Table 4.53

Table 6: The setup and parameters used for the benchmarking of Quick OptMAVEn. 57

Table 7: The performance of OptMAVEn. Times are in hours, sizes in megabytes, and
energies in kcal/mol. ... 59

Table 8: The performance of Quick OptMAVEn. Times are in hours, sizes in megabytes,
and energies in kcal/mol. .. 59

Table 9: Comparison of the performance of OptMAVEn and Quick OptMAVEn. For 𝑅𝑅min
and 𝑅𝑅MILP, entry 𝑖𝑖𝑖𝑖 is (Table 8𝑖𝑖𝑖𝑖 − Table 7𝑖𝑖𝑖𝑖) because the interest is the difference
in energy. For all other measures, entry 𝑖𝑖𝑖𝑖 is log10Table 8𝑖𝑖𝑖𝑖Table 7𝑖𝑖𝑖𝑖 because the
interest is the ratio of the values. For all measures, negative values show better
performance for Quick OptMAVEn. Statistics are as follows: Shapiro, P-value of
Shapiro-Wilk test for normality of the measure: because all 𝑃𝑃 > 0.05, the assumption
that all differences are normally distributed is supported; mean, mean difference
between Quick OptMAVEn and OptMAVEn; s. d., standard deviation of
measurements; P-value, two-tailed t-test of 𝐻𝐻0: 𝜇𝜇 = 0, 𝐻𝐻𝐻𝐻: 𝜇𝜇 ≠ 0, 𝑃𝑃 < 0.05 in bold.
 .. 60

Table 10: The performance of Quick OptMAVEn on 54 additional antigens, as well as
those from the Direct comparison of OptMAVEn and Quick OptMAVEn on ten
antigens (the first ten entries) and the Zika virus E protein (from 5GZN). Every antigen
comprised one chain. 𝑁𝑁res: number of residues in the antigen; 𝑁𝑁res: number of atoms
in the antigen; 𝑁𝑁pos, 𝑇𝑇CPU, 𝐷𝐷max, and 𝑅𝑅min are defined above in the Direct
comparison of OptMAVEn and Quick OptMAVEn on ten antigens. 60

vii

Table 11: The BLOSUM62 similarity matrix for amino acids. Amino acids are shown using

standard one-letter abbreviations. ... 68

Table 12: The chains and epitopes of the 64 antigens used in benchmarking Quick
OptMAVEn. .. 70

Table 13: The nine designs whose values of 𝑅𝑅min (in kcal/mol) were more negative than
that of the native 5GZN antibody (shown below). Design gives the number Quick
OptMAVEn assigned to each design; HS gives the humanization score [7] of each
sequence. ... 72

viii

ACKNOWLEDGEMENTS

I would like to acknowledge Ratul Chowdhury for working closely with me throughout the

entire development of Quick OptMAVEn. Ratul helped me address questions large (e.g. How

should we benchmark Quick OptMAVEn?) and small (e.g. What color should the antibody be in

this figure?). I do not expect that I would have been able to complete this project without Ratul.

I would like to thank Jordan Paulus, a fellow undergraduate who collaborated with me on

Quick OptMAVEn. Among other things, Jordan contributed ten gigabytes of antigen PDB files—

which enabled me to run them through OptMAVEn—and helped me to understand the MILP at

the core of OptMAVEn.

I would also like to acknowledge Drs. Tong Li and Robert Pantazes, both former members

of the Maranas lab who contributed extensively to the development of OptMAVEn.

I would like to thank my principal investigator, Dr. Costas Maranas, very much for

supporting my research since the summer after my first year of college. It was in the Maranas lab

that I first united my interests in biochemistry and computer science. This experience changed my

research and academic trajectories; motivated me to enroll in more courses on mathematics,

statistics, computer science, and bioinformatics; and convinced me to pursue a research career in

computational biology.

Finally, I would like to dedicate this thesis to the memory of our friend and collaborator,

Klaus Schulten. Dr. Schulten was a professor at the University of Illinois at Urbana-Champaign

until he sadly passed away in 2016. He contributed extensively to the field of structural

biochemistry, most notably through the development of VMD and NAMD software, without

which Quick OptMAVEn would not exist.

1

Chapter 1

Antibodies as therapeutics

Background on therapeutic monoclonal antibodies

Antibodies are important components of the adaptive immune system. Monoclonal

antibodies (mAbs, distinguished from polyclonal antibodies) are the active ingredients in an

increasing number of therapeutics. Currently, an average of four mAbs are approved by the FDA

each year, with over 300 in development, and it is expected that approximately 70 will be on the

market by 2020 [1]. Such medicines have been approved to treat infectious diseases, autoimmune

disorders, metabolic disorders, and various types of cancers [2].

Drugs based on mAbs and other proteins (collectively termed “biologics”) are particularly

attractive for multiple reasons. They are capable of binding their intended targets with high

selectivity, minimizing off-target binding and hence side-effects [3]. There exist robust platforms

for producing mAbs on industrial scales, most commonly in mammalian cells and occasionally in

E. coli [1]. New mAbs can be designed using multiple well-established technologies, including

hybridomas, mice with humanized immune systems, and phage display [3]. However, designing a

mAb typically takes three to six months [4], a significant amount of time in the case of an epidemic.

Thus, rapid methods for designing mAbs (such as Quick OptMAVEn, described in Chapter 3)

could lead to significant improvements in the attenuation of epidemics or other time-critical

situations.

2
Antibody structure and function

Before describing the Quick OptMAVEn framework for rapid design of mAbs, it is

necessary to understand the structure of antibodies and how they are generated naturally and

artificially. Antibodies are proteins. Like all proteins, they consist of peptide chains, which are

polymers of amino acids. Antibodies have four peptide chains: two identical “heavy” chains and

two identical “light” chains. In natural antibodies, the heavy chains are identical, as are the light

chains. Each heavy chain has four domains—collections of amino acids that perform a common

function—arranged in tandem. Three of the domains (CH1, CH2, and CH3) are termed “constant”

domains because they are identical across all antibodies within a given individual. The fourth

domain (VH) lies on one end of the heavy chain and is termed the “variable” domain because it

varies among antibodies within one individual; its shape and amino acid sequence determine

whether it will bind to a given molecule. Each light chain has two domains: one constant (CL) and

one variable (VL) [3].

The overall shape of an antibody resembles the letter Y. Each arm of the Y comprises one

light chain (CL and VL) and two of the domains of a heavy chain (CH1 and VH) arranged as a two-

by-two array, with the heavy domains on the inside of the Y and both variable domains at the tip.

The stem of the Y comprises the two remaining constant domains of each heavy chain (CH2 and

CH3), also arranged as a two-by-two array. The four chains are connected by disulfide bonds that

form between residues of the amino acid cysteine located on separate chains [3].

 Antibodies function by physically binding to target molecules, known as antigens [5]. An

antibody that neutralizes (abrogates the infectivity of) a virus, for example, binds to the virus

particles (the antigens), which physically blocks the virus from binding to and thereby infecting

host cells. The region of the antigen to which the antibody binds is known as the epitope, and the

3
region of the antibody that binds to the epitope is known as the paratope. The ability of an antibody

to bind a given antigen is determined by the shape of the paratope, which is located at the tip of

variable domains [5] and composed of six co-called complementarity-determining regions

(CDRs): three from the VH domain (CDR-H1, CDR-H2, and CDR-H3) and three from the VL

domain (CDR-L1, CDR-L2, and CDR-L3) [6]. The remaining non-CDR portions of the variable

domains are known as the framework regions, which maintain the structure of the CDRs but are

not directly involved in binding the antigen [6]. Although the CDRs are the most variable portions

of antibodies, the framework regions may also vary among different antibodies in the same

individual [7].

Generation of antibodies by the immune system

V-(D)-J recombination

For decades, the mechanism by which antibodies are generated presented a paradox:

generating enormous variability in the variable domains (~3 ∙ 108 potential germline sequences

[8]) while using a finite genome. Clearly, there could not exist one gene for each of the sundry

possible antibodies. Instead, germline genomes contain a relatively small library of genes encoding

separate parts of antibodies, which are selected at random and fused into a complete antibody [9].

In mice [9] and humans [7], there are three families of genes encoding the variable domains: heavy-

chain genes (for segments of VH), 𝜅𝜅 genes (for segments of VL), and 𝜆𝜆 genes (also for segments of

VL). The light chains of a natural antibody are encoded either by 𝜅𝜅 or 𝜆𝜆 genes, but never by both;

hence, VL domains assembled from 𝜅𝜅 or 𝜆𝜆 genes are known, respectively, as VL-𝜅𝜅 and VL-𝜆𝜆

4
domains [7]. Heavy, 𝜅𝜅, and 𝜆𝜆 gene families differ in their composition and in how they are arranged

and assembled into complete V domains: a process known as V-(D)-J recombination [9]. V-(D)-J

recombination occurs in B cells—white blood cells that manufacture antibodies [10]. New B cells

bear all heavy, 𝜅𝜅, and 𝜆𝜆 genes; during a process called maturation, which entails V-(D)-J

recombination, they assemble a subset of these genes into a gene for a complete antibody [11].

The 𝜆𝜆 gene family includes 86 so-called variable 𝜆𝜆 (𝑉𝑉𝜆𝜆) genes and 10 so-called joining 𝜆𝜆

(𝐽𝐽𝜆𝜆) genes [8]. In the germline genome, the 𝑉𝑉𝜆𝜆 genes are clustered together, as are the 𝐽𝐽𝜆𝜆 genes, and

the clusters are separated by a DNA spacer. During V-(D)-J recombination, one 𝑉𝑉𝜆𝜆 gene and one

𝐽𝐽𝜆𝜆 gene are selected and the intervening DNA spacer is removed, such that the selected 𝑉𝑉𝜆𝜆 and 𝐽𝐽𝜆𝜆

genes are fused tail-to-head, and the other 𝑉𝑉𝜆𝜆 and 𝐽𝐽𝜆𝜆 genes are excised from the genome [9]. This

step alone would be capable of generating up to 86 × 10 = 860 unique VL-𝜆𝜆 domains [8] (though

this is an over-estimate: not all combinations are observed [9]). However, several nucleotides may

be added and deleted randomly at the junction of the two genes; the resulting amino acid insertions

and deletions and frameshift mutations increase the number of VL domains that can be produced

from the 𝜆𝜆 gene family [9].

The 𝜅𝜅 gene family includes 97 𝑉𝑉𝜅𝜅 genes and 9 𝐽𝐽𝜅𝜅 genes [8], which undergo V-(D)-J

recombination in a manner similar to that of the 𝜆𝜆 gene family. However, there is a substantial

difference, albeit one that does not affect the VL domain. In the 𝜆𝜆 gene family, a gene 𝐶𝐶𝜆𝜆 encoding

the constant 𝜆𝜆 domain (CL-𝜆𝜆) is located after each 𝐽𝐽𝜆𝜆 gene, and the pair of 𝐽𝐽𝜆𝜆 and 𝐶𝐶𝜆𝜆 genes are

chosen together. Thus, CL-𝜆𝜆 does vary among antibodies that use 𝜆𝜆 genes (but it is not subject to

nucleotide insertions and deletions), and the choice of CL-𝜆𝜆 depends on which 𝐽𝐽𝜆𝜆 gene was selected.

However, for antibodies that use 𝜅𝜅 genes, there is only one gene 𝐶𝐶𝜅𝜅 encoding the constant 𝜅𝜅 domain

(CL-𝜅𝜅), so all 𝜅𝜅 antibodies have the same CL-𝜅𝜅 domain [9].

5
The heavy-chain gene family includes 324 𝑉𝑉𝐻𝐻 genes, 13 𝐽𝐽𝐻𝐻 genes, and 44 so-called

diversity (𝐷𝐷) genes [8], which lie between the 𝑉𝑉𝐻𝐻 and 𝐽𝐽𝐻𝐻 genes and have no counterparts in the 𝜆𝜆

or 𝜅𝜅 gene families. V-(D)-J recombination joins one 𝑉𝑉𝐻𝐻, one 𝐷𝐷, and one 𝐽𝐽𝐻𝐻 gene tail-to-head-to-

tail-to-head into a complete gene encoding one VH domain; the remaining 𝑉𝑉𝐻𝐻, 𝐷𝐷, and 𝐽𝐽𝐻𝐻 genes are

excised from the genome. Similar to the formation of the VL domain, nucleotides are inserted and

deleted at the junctions of the 𝑉𝑉𝐻𝐻, 𝐷𝐷, and 𝐽𝐽𝐻𝐻 genes. However, because there are a larger number of

genes in the heavy-chain family, each is the product of three (not two) genes, and there are two

junctions, the potential diversity among VH domains is much greater than that among VL domains

[9]. In particular, the CDR-H3 loop is extremely variable [8], as it is encoded by the 𝐷𝐷 gene and

often by the end of the 𝑉𝑉𝐻𝐻 gene, the beginning of the 𝐽𝐽𝐻𝐻 gene, and the junctions between these

genes [9].

The genes encoding antibodies vary in length, and nucleotides are added and subtracted

randomly at their junctions; hence, the resulting V domains may contain different numbers of

amino acids. Variation in length is problematic when determining which amino acids from

different antibodies correspond to each other. Thus, the international ImMunoGeneTics

information system (IMGT) has developed a standard numbering system for the amino acids in V

domains (Figure 1) [12]. In this system, the amino acids in CDR-H3, for example, are always

numbered from 105 to 117, regardless of the actual number of amino acids. If there are fewer than

13 amino acids in CDR-H3, then gaps are left in the numbers: if there were 5 amino acids, they

would be numbered 105, 106, 107, 116, 117. In the case that a CDR or framework region is longer

than the allotted number of residues, letters are appended to the numbers, e.g.

… , 110, 111, 111𝐻𝐻, 111𝐵𝐵, 111𝐶𝐶, 112𝐵𝐵, 112𝐻𝐻, 112, 113, … [12].

6

Figure 1: The ImMunoGeneTics (IMGT) numbering system for the heavy (left) and light (right) chains. All lengths are
to scale. A) The IMGT numbers are given for the start and end of each framework region (FR) and complementarity-determining
region (CDR). The number at the top left corner of each region labels its first residue. The number in its lower right corner (if
present) labels its last residue. B) Correspondence of V, (D), and J germline genes to the FRs and CDRs. Because indels occur
during V(D)J-recombination, the ranges of residues encoded by the genes vary among antibodies (indicated by the color gradients).
C) Correspondence of the V*, CDR3, and J* regions of the MAPs database to the FRs, CDRs, and germline genes.

Affinity maturation

The process of V(D)J-recombination in vivo yields B cells that produce so-called

“germline” antibodies with modest antigen affinities, e.g. 105 − 106 M−1 [13]. During the

following several months, these B cells develop antibodies with higher affinities (e.g. 107 −

108 M−1) through a phenomenon known as affinity maturation. Affinity maturation entails two

steps: 1) B cells deliberately make mutations to the genes encoding their antibodies—a process

known as somatic hypermutation—and 2) B cells whose mutated antibodies have higher affinities

proliferate, while those with lower affinities undergo apoptosis [14]. Iterating these two steps

eventually yields B cells that produce high-affinity antibodies. Subsequent exposure to the antigen

elicits the production of these affinity-matured antibodies, rather than the germline antibodies [13].

Somatic hypermutation preferentially targets amino acids closer to the antibody gene promoter,

which lies just before the V gene [15]; and mutations also occur more frequently in the CDRs than

in the framework regions [7].

7
Engineering therapeutic antibodies

Laboratory-based methods of engineering mAbs

Since the production of the first mAbs in 1984 [3], there have been extensive efforts to

engineer therapeutic mAbs [3] [4] [6] [7]. Today, hybridoma technology is the most common

method of developing a new mAb for a given antigen [10]. This process begins by immunizing a

test animal by injecting the antigen of interest [10] [4]. The first mAb was generated using mice,

which remain the most common test animals today [3], though rats, rabbits, hamsters, guinea pigs,

goats, sheep, and chickens have also been used [4]. Additionally, in the case of an epidemic of a

human disease, infected humans can be sources of antibodies, as happened during the recent

epidemics of Zika [16] [17] and Ebola [18]. Immunizing the chosen animal elicits an immune

response [10]. Prior to immunization, the animal harbors a large number of mature B cells.

Through the randomized process of V-(D)-J recombination, a small number of them will have

assembled antibodies capable of binding the antigen [11]. When these B cells—each with a unique

antibody—recognize the antigen, they proliferate and begin to secrete antibodies. The resulting

ensembles of multiple types of antibodies from multiple B cells are known as polyclonal antibodies

(pAbs). The individual antibodies in a collection of pAbs recognize the same antigen but differ in

terms of the epitopes that they bind and the affinities with which they bind the epitopes [10]. Recall

that the initial pAbs (available in 1 – 2 weeks) are relatively low-affinity; creating high-affinity

antibodies through natural affinity maturation requires over one month [13].

Relative to mAbs, pAbs are inexpensive to produce, demand less skill, and require less

time (4 – 8 weeks versus 3 – 6 months for mAbs) [4]. However, mAbs are more consistent in terms

of their antigen-binding properties, which is desirable for pharmaceuticals. To produce a mAb, the

8
spleen is removed from the immunized animal; the B cells within the spleen are fused with

myeloma cells, yielding a chimeric type of cell known as a hybridoma. The hybridoma cells are

cultured, and the antibodies they produce are screened using an enzyme-linked immunosorbent

assay (ELISA), indicating which hybridomas produce antibodies capable of binding the antigen of

interest [10]. Each such hybridoma cell, which produces a single type of mAb, serves as a stable

and consistent source of the antibody [11].

A major challenge in antibody development is that the human body can mount an immune

response against the mAbs themselves; mAbs that elicit this response are said to be immunogenic

[3] [7]. Immunogenicity arises because the mAbs are developed in non-human animals, causing

the human immune system to treat the mAbs as foreign pathogens [3] and produce so-called anti-

drug antibodies (ADAs) [19]. ADAs have the potential to not only reduce the efficacy of

therapeutic mAbs but also to cross-react with a patient’s endogenous proteins, which can have

severe consequences [19]. One approach to reduce immunogenicity is to create a chimeric

antibody by fusing the VH, VL, CH1, and CL domains of a murine mAb to the CH2 and CH3 domains

of a human mAb [3]. The risk for immunogenicity is lowered further through the process of

humanizing the VH, VL, CH1, and CL domains—that is, making mutations that increase their

similarities to human antibody sequences [3]. Recently, humanization has been taken a step further

through genetically engineering mice with fully human immune systems, e.g. VelocImmune [20].

An alternative to hybridoma technology exists: phage display technology [10]. Phage

display is a method of engineering mAbs in vitro, without the need to immunize mice or generate

hybridomas. First, a library of 1012 Inovirus phage bearing 106 − 1011 unique antibodies (or other

binder proteins) is created. The phage are incubated with the antigen, which is immobilized to a

surface; a subsequent wash step removes unbound phage, leaving only those that bound with

9
sufficient affinity to the antigen. The phage that bound are then amplified in bacterial hosts; during

replication, they undergo extensive genetic recombination, which generates further diversity in the

antibodies or proteins they display. The amplified phage are again incubated with the antigen to

identify the highest-affinity binders, and this process is repeated up to five times [10]. Note how

this in vitro process recapitulates in vivo affinity maturation, in which B cells with high-affinity

antibodies proliferate, while those with low-affinity antibodies die out [14]. Following the final

round of phage display, the genomes of the surviving phage are sequenced to determine the

sequences of the highest-affinity antibodies or proteins. Phage display is not yet as well-established

as hybridoma technologies, is more difficult and expensive to perform, and yields a smaller

number of unique mAbs. However, it offers the potential to generate antibodies free of

immunogenic murine sequences in a relatively short amount of time. Furthermore, phage display

can be extended from antibodies to proteins in general, while hybridoma technologies cannot [10].

Computational methods of engineering mAbs

Despite the large number of mAb-based pharmaceuticals currently on the market or in

development [1], there exist many shortcomings of laboratory-based methods for engineering

mAbs. A typical mAb requires 3 – 6 months to produce [4]. Furthermore, hybridoma and phage

display technologies cannot deliberately target a particular epitope, ensure stability, or minimize

immunogenicity [7]. Stability of mAbs is essential because unstable mAbs are prone to degrade in

multiple ways. They may degrade chemically via deamidation of asparagine or glutamine residues,

oxidation, hydrolysis of peptide bonds, or fragmentation of the chains [19]. Like many proteins,

mAbs are also prone to aggregation. Degradation not only reduces the ability of mAbs to bind their

10
target antigens but may also create novel epitopes on the mAbs that can elicit an immune response

[19] [21]. Even fully human mAbs may become immunogenic upon degradation [19]. Thus,

methods of engineering antibodies should account for stability in addition to immunogenicity and

affinity for the antigen.

There exist multiple computational methods for engineering mAbs with high antigen

affinities (e.g. OptCDR [6], OptMAVEn [7], AbDesign [22], and Rosetta Antibody Design [23]),

improving stability (e.g. Spatial Aggregation Propensity [21] and Rosetta Supercharge [24] [25]),

and decreasing immunogenicity (e.g. molecular modeling [26] and human string content [27] [7]).

Although computational methods are used widely to design small molecule drugs, virtually all

therapeutic antibodies are still developed primarily via laboratory-based methods; there currently

exists no widely adopted software for antibody design [28].

No existing software seems capable of performing de novo design and optimizing affinity,

stability, and immunogenicity simultaneously; OptMAVEn, AbDesign, and Rosetta Antibody

Design come closest. OptMAVEn [7] designs entire VH and VL domains de novo, i.e. without a

starting structure of the antigen in complex with an antibody. OptMAVEn (discussed in detail in

Chapter 2) first optimizes affinity using a fully deterministic algorithm, then iteratively optimizes

affinity and immunogenicity but does not optimize stability of the mAbs. Poosarla et al. [29] used

OptMAVEn to design five mAbs for a dodecapeptide, three of which were high affinity (though

not as high as a natural antibody). Arginine hydrochloride prevented aggregation of the mAbs

(which were produced in E. coli), and the mAbs refolded after exposure to urea; however, neither

long-term stability nor immunogenicity was assessed.

In contrast to OptMAVEn, which designs mAbs de novo using a fully deterministic

optimization procedure, Rosetta Antibody Design (RAbD) [23] requires the structure of an existing

11
antigen-antibody complex and uses an iterative Monte-Carlo-based method to optimize the

antibody. In each iteration, RAbD randomly chooses a CDR and replaces it with a random CDR

from a database of structures; the backbone, amino acid identities, and side chains of the new CDR

are iteratively optimized using the Rosetta force field; and the new design is accepted or rejected

based on a Metropolis criterion. Unlike in OptMAVEn, there is no humanization protocol to

decrease immunogenicity. RAbD was verified experimentally for the design of mAbs targeting

hyaluronidase. The 30 top-scoring designs were tested; none seemed to aggregate, and three bound

with greater affinity than did the initial (wild-type) mAb. These three designs also had similar

thermostabilities relative to the wild-type mAb. These data suggest that RAbD can improve the

affinity of an existing antibody while maintaining similar stability, but there is no data on

immunogenicity. However, OptMAVEn [7] is also capable of performing computational affinity

maturation on its de novo designs while ensuring that their immunogenicities do not increase.

Thus, OptMAVEn is capable of de novo design and humanization (while RAbD is not), and there

seem to be no substantial capabilities of RAbD that are not implemented in OptMAVEn.

In addition to OptMAVEn and RAbD, AbDesign [22] aims to design high-affinity mAbs

for a given antigen. Like RAbD, AbDesign requires an initial structure of the antigen in complex

with an antibody. Like OptMAVEn, it assembles variable domains from a library of backbone

canonical structures of the CDRs and framework regions. However, it uses two structures to

assemble both the VH domain (the structures are named VH and H3) and the VL domain (VL and

L3), while OptMAVEn uses three structures for each domain. The strategy behind AbDesign uses

statistics of backbone conformations, rotamer conformations, and amino acid preferences at each

sequence position in natural antibodies. From these statistics, it calculates a knowledge-based

score indicating the similarity between the designed antibody and natural antibodies (assuming

12
that designs most similar to natural antibodies are most likely to be stable and have high affinities).

The initial phase of AbDesign aligns a representative set of backbone canonical structures to the

wild-type antibody (in essence, this step docks the antigen into the nascent antibody). This set

comprises 5 VL, 2 L3, 9 VH, and 50 H3 structures, for a total of 5 × 2 × 9 × 50 = 4500 unique

initial designs. Each design is mutated using natural amino acid preferences and then optimized

with respect to backbone conformation. Subsequently, the affinity and stability are simultaneously

optimized using a fuzzy logic energy function in which only the designs that are both stable and

high-affinity score highly. The designs are finally filtered based on predicted binding energy,

buried surface area, packing quality, and shape complementarity, yielding a set of designs for

experimental validation. To date, there is no experimental data on the performance of AbDesign.

There are key similarities and differences among OptMAVEn [7], RAbD [23], and

AbDesign [22]. All three methods rely on databases of canonical structures for regions of antibody

variable domains. To the best of my knowledge and according to many sources [7] [6] [22] [23]

[30], OptCDR and OptMAVEn are currently distinguished as the only computational methods

capable of designing mAbs de novo. OptMAVEn explicitly optimizes affinity while preventing

designs from becoming increasingly immunogenic, while RAbD and AbDesign explicitly optimize

affinity and stability (and do not consider immunogenicity). Both RAbD and AbDesign use

knowledge-based energy functions (i.e. structures are scored based on similarity to previously

observed structures); OptMAVEn uses physics-based energy functions instead. Experimental

evidence shows that both OptMAVEn and RAbD are capable of designing stable, high-affinity

mAbs; there is yet no such evidence for AbDesign. OptMAVEn seems particularly well suited to

design antibodies when the antigen structure is known but there is little to no structural information

about how antibodies bind to the antigen. This was the case for over six months during the recent

13
Zika epidemic: the first structure of Zika envelope (E) protein was published on 31 March 2016

[31], while the first Zika-specific human antibodies were reported on 7 November 2016 [17]. Thus,

OptMAVEn or similar software for de novo mAb design could potentially outpace other methods

of developing therapeutic antibodies during epidemics.

It must be emphasized that computational methods are meant to suggest a small number of

highly promising designs for experimental validation and/or refinement. They may expedite

experimental testing but cannot fully replace it [28]. Many challenges in computational mAb

design remain, such as simultaneously optimizing affinity, stability, and immunogenicity and

predicting the structures of the highly variable CDR-H3 region [23] [22]. These challenges must

be overcome before antibodies can be designed routinely via computational methods. However,

given the extensive volume of research on computational mAb design and four significant software

developments within the past five years [6] [7] [22] [23], the future of computational mAb design

seems promising.

Thesis objectives

In this thesis, we introduce Quick OptMAVEn, software for de novo mAb design that

improves upon shortcomings of OptMAVEn and includes novel features. First, we discuss how

OptMAVEn works and identify six areas for improvement. Then, we describe how Quick

OptMAVEn 1) features an intuitive and robust user interface, 2) positions the antigen with greater

accuracy and speed, 3) eliminates sub-optimal designs earlier, 4) represents antigen positions using

less disk storage, 5) reduces the expense of the design step without compromising quality, and 6)

implements a novel clustering algorithm to retain promising designs that would otherwise be

14
discarded. We show that, on a set of ten antigens, Quick OptMAVEn uses 74% less CPU time and

84% less disk storage while designing antibodies of equivalent affinities. Finally, we use Quick

OptMAVEn to design 77 de novo antibodies targeting Zika and identify 9 designs predicted to

bind with greater affinity than a natural human antibody.

15

Chapter 2

OptMAVEn

Background of OptMAVEn

The need for a computational method to design fully human antibodies de novo motivated

the development of OptMAVEn [7]. OptMAVEn is able to sample efficiently from a very diverse

set of antibody structures by using a library of CDR structures. The structures of all CDRs except

for CDR-H3 are usually limited to a set of so-called canonical structures [28]. The MAPs database

[8] comprises 929 canonical structures and was developed to alleviate a major challenge in the

computational design of antibodies and, more generally, of proteins: the enormous number of

potential designs, which is illustrated as follows.

In the IMGT numbering system, CDRs 1, 2, and 3, respectively, comprise residues 27 –

38, 56 – 66, and 105 – 118 of the heavy and light chains [12]. Although the lengths of the CDRs

vary among natural antibodies, such variation may be ignored for the purpose of this illustration:

the six CDRs of an antibody comprise up to a total of 2 × [(38 + 1 − 27) + (66 + 1 − 56) +

(118 + 1 − 105)] = 74 residues. Each residue can be one of twenty amino acids. If the amino

acid identity of each residue is independent, then there are a total of 2074 ≈ 2 × 1096 possible

antibodies with 74 CDR residues. A computer capable of predicting the binding affinities of one

billion (109) antibodies per second would take approximately 2 × 1096 ÷ 109 = 2 × 1087

seconds (6 × 1079 years) to identify the antibody with the greatest binding affinity. This time is

orders of magnitude longer than the lifetime of the universe.

16
To expedite computational antibody design, OptMAVEn mimics the natural process of

V(D)J-recombination using the MAPs database. Rather than selecting amino acids individually,

OptMAVEn selects one MAPs part for each CDR. OptMAVEn uses exclusively 𝜅𝜅 or 𝜆𝜆 domains

when designing the light chain. Thus, the MAPs database can generate [141 × 428 × 5] ×

[(67 × 199 × 5) + (38 × 39 × 7)] ≈ 2.3 × 1010 antibodies (Table 1), a number more reasonable

than 2 × 1096. Moreover, some pairs of MAPs parts clash sterically, that is, at least one atom in

one part is within 1 Å of at least one atom in the other part. Because these clashes lead to unstable

structures, OptMAVEn does not consider any designs that contain clashes, further reducing the

total number of potential antibodies. Among these potential designs, OptMAVEn identifies the

optimal design efficiently using a mixed-integer linear program (MILP), which is discussed in

more detail below.

Table 1: The number of parts in the MAPs database for each of the categories of parts. The number of parts in the original
MAPs database is given in the OptMAVEn column. During the development of Quick OptMAVEn, five redundant parts were
identified and removed from the MAPs database: the numbers in the Quick OptMAVEn column reflect these edits, and the
categories in which edits occurred are indicated in the Edited column.

CDR OptMAVEn Quick OptMAVEn Edited
HV 141 140 Yes
HCDR3 428 428 No
HJ 5 5 No
KV 67 64 Yes
KCDR3 199 199 No
KJ 5 5 No
LV 38 37 Yes
LCDR3 39 39 No
LJ 7 7 No
Total 929 924

17
Workflow of OptMAVEn

OptMAVEn designs antibodies in three steps: preparation of input files, initial antigen

positioning, grid search, energy calculations, germline design, and computational affinity

maturation. These steps are detailed below. OptMAVEn is a command-line-based tool; commands

must be entered on a Bash shell (e.g. Terminal on Linux or MacOS X) or an equivalent.

Preparation of input files

The user must first create a new directory (using mkdir), which will contain all files

associated with the experiment; let this directory be called exp. The user must obtain a file of the

antigen structure in Protein Data Bank (PDB) format. In many cases, this file can be downloaded

from the PDB [32]. The user must then remove all atoms that are not part of the antigen, as well

as all residues that are not supported by the input topology and parameter files (e.g. water, ions,

modified amino acids, and small molecules). If such residues are essential for the design, the user

must provide topology and parameter files that define these residues. Let the file of the antigen

after removing these atoms be called ag.pdb, which must be located in exp. The user must specify

the epitope of the antigen by listing the residue numbers of the epitope residues in a text file named

Epitopes.txt, which is also located in exp. Each line of Epitopes.txt must begin with the

name of the epitope, followed by a colon, followed by a space-separated list of the residues in the

epitope. For example:

foo: 3 4 5 6 78 79 80 103 104 105 106
bar: 54 55 56 57 58 211 212 213 214 215

Figure 2: An example of the contents of an Epitopes.txt file. This file defines two epitopes named “foo” and “bar.”

18
The epitope may be identified using the structure of an existing antigen-antibody complex

(see “Design of 77 antibodies for Zika E protein, including 9 predicted to be superior to native”).

However, if such a structure is unavailable, there exist many tools for predicting epitopes [33],

including Bcepred, Bepipred, ABCPred, and BEST.

Initial antigen positioning

OptMAVEn adds any atoms that may be missing from the antigen structure (e.g. hydrogen

atoms) and then relaxes the structure to alleviate any steric clashes that may be present in the

original PDB file or due to poorly guessed coordinates for atoms added in the previous step. The

user must edit the script called minimizer.py and type the name of the file as an argument to

the function MoleculeFile on line 19. Then, the user must run minimizer.py using the

following command:

python
/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/scripts/minimize
r.py

This script performs an energy minimization routine implemented in the CHARMM

molecular dynamics program [34]. After the antigen structure has been relaxed, it must be rotated

such that its epitope points towards the MAPs parts. This rotation ensures that the antibodies, once

assembled from the MAPs parts, will contact the antigen at the intended epitope, rather than at an

unspecified location on the surface of the antigen (Figure 3).

19

Figure 3: Illustration of the rotation of an antigen. The antigen (blue) is rotated around its geometric center (yellow) from
its arbitrary initial position (A) to its final position (B) so as to minimize the sum of the 𝑧𝑧 coordinates of its epitope (red); the 𝑧𝑧 axis
points upward, as shown. This rotation ensures that the epitope points towards the MAPs parts. One MAPs part for each CDR,
forming a complete antibody variable domain, is shown; the heavy chain is brown and the light chain is tan. All other MAPs parts
occupy similar positions, so the epitope in panel B will point toward an antibody assembled from any set of MAPs parts. The
antigen shown is human interleukin 1-beta (PDB ID 46GM) [35]. Images were generated with PyMOL [36].

Mathematically, this rotation is achieved by minimizing the mean of the 𝑧𝑧 coordinates of

the atoms of the epitope while keeping the geometric center of the antigen fixed:

1)

minimize 𝑧𝑧 = � 𝑧𝑧𝑖𝑖
𝑖𝑖∈𝐼𝐼epitope

subject to

2)

𝐻𝐻𝑐𝑐0 = 𝑐𝑐

where 𝐼𝐼 is the set of all atoms in the antigen, 𝐼𝐼epitope ⊂ 𝐼𝐼 is the subset of antigen atoms that

are within the epitope, 𝑛𝑛 = card(𝐼𝐼) is the cardinality of (number of elements in) 𝐼𝐼, 𝑧𝑧𝑖𝑖 is the 𝑧𝑧

coordinate of atom 𝑖𝑖, 𝑐𝑐 = �
𝑥𝑥1
𝑦𝑦1
𝑧𝑧1

 …
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛
𝑧𝑧𝑛𝑛
� is the set of final (post-rotation) 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 coordinates of

all atoms, 𝑐𝑐0 is the set of initial (pre-rotation) coordinates of all atoms, and 𝐻𝐻 ∈ 𝑅𝑅3,3{ℝ} is a three-

20
dimensional rotation matrix. This minimization is implemented as an exhaustive search

represented by the following pseudocode:

c_0 = get_coordinates(initial_antigen_structure) # initial coordinates
z_min = 1000000 # a large number
for x_rotation in {0, 3, 6, ..., 357}: # 3-degree x increments
 for y_rotation in {0, 3, 6, ..., 357}: # 3-degree y increments
 A = make_rotation_matrix(x_rotation, y_rotation)
 c = A * c0 # matrix multiplication rotates coordinates
 c_epi = get_epitope_coordinates(c) # extract the rotated epitope coordinates
 z_epi = get_z_coordinates(c_epi) # extract the rotated epitope z coordinates
 if sum(z_epi) < z_min: # if the z coordinate sum is less than the smallest
 # sum so far
 c_best = c # save the structure with the smallest epitope z coordinates
 z_min = sum(z_epi) # update the smallest sum so far
return c_best # output the coordinates of the best structure

Figure 4: Pseudocode for the epitope rotation algorithm in OptMAVEn.

The user implements this step, along with the next (grid search), by typing

python
/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/scripts/grid_sea
rch.py

Before running this script, the user must edit it as follows:

In line 43, replace the key to the dictionary inputFile with the one-letter name of the

chain of the antigen (for example, P):

G = inputFile["P"]

In line 45, replace the second argument of the function parameter_output_antigen

with the name of a new text file in which to store the antigen (for example, 5gzn.txt):

parameter_output_antigen(G, "5gzn.txt")

In line 60, replace the second string following cmd with the name of the aforementioned

file:

cmd =
"/gpfs/home/tul12/work/soft/IPRO_Suite/modules/CPP/initialization/initialantigen_clas
h.out " + "5gzn.txt " + "epitope.txt " + "MoleculeH.txt " + "MoleculeK.txt " +
str(angle)

21
 In line 61, replace the name of the first string after runScriptFile with the name of the

file (minus the extension):

runScriptFile = "5gzn_" + str(angle)

In line 74, replace the text chmod +x with qsub:

Before:

cmd = "chmod +x " + runScriptFile

After:

cmd = "qsub " + runScriptFile

Grid search

The purposes of the grid search step are to 1) generate a set of antigen positions on which

the subsequent steps rely and 2) quickly filter out positions that will inevitably cause steric clashes

between the antibody and antigen. The developers of OptMAVEn defined a set of grid points to

support the grid search. By examining the structures of 750 antibody-bound antigens, they found

that the center of geometry of the epitope, (𝑥𝑥,𝑦𝑦, 𝑧𝑧), was always located within a parallelepiped

defined by −10 ≤ 𝑥𝑥 ≤ 5, −5 ≤ 𝑦𝑦 ≤ 10, 3.75 ≤ 𝑧𝑧 ≤ 16.25, where all dimensions are in Å. The

𝑥𝑥 , 𝑦𝑦, and 𝑧𝑧 dimensions are partitioned into increments of 2.5 Å, 2.5 Å, and 1.25 Å, respectively.

To increase the diversity of antigen conformations, the antigen is additionally rotated around the

𝑧𝑧 axis in increments of 60°. Thus, OptMAVEn samples a total of �5−(−10)
2.5

+ 1� × �10−(−5)
2.5

+ 1� ×

�16.25−3.75
1.25

+ 1� × �360−0
60

� = 7 × 7 × 11 × 6 = 3234 antigen positions. Each position can thus

be defined by a point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and a 𝑧𝑧 rotation angle 𝜃𝜃𝑧𝑧.

For each antigen position (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝜃𝜃𝑧𝑧), the antigen is translated such that the center of

geometry of its epitope lies at the (𝑥𝑥,𝑦𝑦, 𝑧𝑧) point of the position; and the antigen is rotated around

22
the 𝑧𝑧 axis such that it faces in the direction given by 𝜃𝜃𝑧𝑧, where 𝜃𝜃𝑧𝑧 ≡ 0° for the structure produced

by minimizing the epitope 𝑧𝑧 coordinates. At each position, OptMAVEn counts the number of steric

clashes between the antigen and a framework antibody. The framework antibody is an antibody

for which all six CDRs are composed entirely of glycine, the smallest amino acid, whose side chain

is a hydrogen atom. Thus, if the antigen in the given position clashes with the framework antibody,

it will clash with any other antibody. OptMAVEn saves a PDB file of the antigen in each position

for which there are two or fewer steric clashes; positions with more than two clashes are discarded.

Energy calculations

For each antigen position, OptMAVEn calculates the interaction energy between the

antigen and every part in the MAPs database. The energy calculations are performed using a C++

program written and compiled in-house. This program produces the same results as an equivalent

energy calculation implemented in CHARMM but is hard-coded to calculate interaction energies

with every part in the MAPs database. Prior to running the program, the structure of the antigen

must be converted from PDB format to an alternate format that specifies parameters for the energy

calculation in addition to atom types and coordinates. This file is generated by running

/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/s

cripts/grid_search.py, as described in Initial antigen positioning. The MAPs database files

are already provided in this format and need no pre-processing. The files may include parameters

for electrostatic, van der Waals, and Lazaridus-Karplus solvation energies. Care must be taken to

ensure that all files contain all desired parameters; OptMAVEn will, without informing the user,

23
disregard energy terms whose parameters are missing from any file. The user performs the energy

calculations by typing

python
/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/scripts/calculat
e_energy.py

Before running this script, the user must edit line 5 to replace the arguments to the range

function so as to generate the correct range of angles (e.g. range(0, 360, 60) to generate

angles from 0 to 300 in increments of 60).

Germline design

OptMAVEn generates antibody designs using a mixed-integer linear program (MILP) that

selects, for each antigen position, six MAPs parts—one for each CDR—such that the sum of the

interaction energies between the MAPs parts and the antigen is minimized. The MILP is

formulated as follows:

3)

minimize 𝑅𝑅 = �� � 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘𝑒𝑒𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑖𝑖,𝑗𝑗𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼

subject to

4)

𝑑𝑑𝐻𝐻 = 1

5)

𝑑𝑑𝐾𝐾 + 𝑑𝑑𝐿𝐿 = 1

6)

� 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑖𝑖,𝑗𝑗

= 𝑑𝑑𝑖𝑖 ∀ (𝑖𝑖, 𝑖𝑖) ∈ 𝐼𝐼 × 𝐽𝐽

24
7)

𝑦𝑦𝑖𝑖1,𝑗𝑗1,𝑘𝑘1 + 𝑦𝑦𝑖𝑖2,𝑗𝑗2,𝑘𝑘2 ≤ 1 ∀ [(𝑖𝑖1, 𝑖𝑖1,𝑘𝑘1), (𝑖𝑖2, 𝑖𝑖2,𝑘𝑘2)] ∈ 𝑃𝑃clash

where 𝐼𝐼 = {𝐻𝐻,𝐾𝐾, 𝐿𝐿} is the set of antibody chain loci, 𝐽𝐽 = {𝑉𝑉,𝐶𝐶𝐷𝐷𝑅𝑅3, 𝐽𝐽} is the set of gene

segment types, 𝐾𝐾𝑖𝑖,𝑗𝑗 = �1, 2, … ,𝑛𝑛𝑖𝑖,𝑗𝑗� is the set of MAPs parts of chain 𝑖𝑖 and segment type 𝑖𝑖 (where

𝑛𝑛𝑖𝑖,𝑗𝑗 is the number of such parts), 𝑃𝑃clash is the set of all pairs of MAPs parts between which steric

clashes exist, 𝑒𝑒𝑖𝑖,𝑗𝑗,𝑘𝑘 is the interaction energy between the antigen and part (𝑖𝑖, 𝑖𝑖,𝑘𝑘) computed in the

Energy Calculation step, 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑘𝑘 = 1 if part (𝑖𝑖, 𝑖𝑖,𝑘𝑘) is incorporated in the design and 0 otherwise,

𝑑𝑑𝑖𝑖 = 1 if a part is to be selected for chain 𝑖𝑖 and 0 otherwise, and × denotes the Cartesian product.

Equation 3, the objective function, causes the interaction energy 𝑅𝑅 to be minimized (thus

maximizing the affinity). Equation 4 tells OptMAVEn to use the heavy locus to design the heavy

chain. Equation 5 tells OptMAVEn to use either (but not both) the 𝜅𝜅 or 𝜆𝜆 locus to design the light

chain. Equation 6 ensures that for each locus 𝑖𝑖 to be used, exactly one part is selected for each gene

segment type; and for each locus to be avoided, no parts are selected. Equation 7 prevents steric

clashes between MAPs parts.

For each antigen position, this MILP is solved five times in order to generate an ensemble

of designs. The rationale is that there is a greater likelihood of obtaining a least one high-affinity

antibody from a set of five designs than from a set of just one design. Each time the MILP is

solved, an integer cut is added to the MILP formulation to prevent the same six parts from being

chosen again. This process ensures that the first design has the most negative interaction energy,

the second the second-most negative, and so on.

The user performs this step by typing

python
/gpfs/group/cdm8/legacy/group/tong/jordan/IPRO_Suite_all_probability/scripts/select_p
arts300.py

25
Computational affinity maturation

The germline designs with the most negative interaction energy are improved using a

computational process that mimics in vivo affinity maturation. A modified version of the IPRO

protocol [37] makes mutations to the germline antibodies so as to further decrease their interaction

energies. This modified protocol is a cycle of five steps: selection of residues to mutate, backbone

perturbation, humanized rotamer selection, antigen redocking, and energy calculation.

Selection of residues to mutate

One of the residues in either the light or heavy chain is selected for mutation. The

probability of selecting a particular residue in a CDR is set to be 3 times the probability of selecting

a particular residue in an FR. However, since the residues within the CDRs are at most 74
128+127

=

0.29 of the variable domains, the probability of selecting a residue within a CDR is at most

3×0.29
3×0.29+(1−0.29)

= 0.55. After selecting this residue, both, either, or neither of the 2 residues

adjacent to the selected residue are also selected for mutation.

Backbone perturbation

OptMAVEn perturbs the 𝜙𝜙 and 𝜓𝜓 dihedral angles of all residues within a 4.5 Å radius or a

5-residue window of the 1 – 3 residues selected for mutation. The perturbation 𝜃𝜃 for each angle is

randomly selected from a Gaussian distribution of 𝜇𝜇 = 0° and 𝜎𝜎 = 1.5° that is truncated to the

domain of −5° ≤ 𝜃𝜃 ≤ +5°. Subsequently, the perturbed structure is relaxed with CHARMM using

strong restraints to enforce the values of the newly perturbed dihedral angles. The 5 residues on

26
either side of the perturbed region are temporarily mutated to glycine for the duration of the

relaxation and are the only residues allowed to move.

Humanized rotamer selection

The user may specify a limited set of amino acids to which each site can be mutated. The

perturbed residues, those mutated to glycine, and those in the vicinity are mutated to new amino

acids using the IPRO rotamer library and MILP formulation [37]. Following these mutation, a

humanization score is calculated for the new antibody sequence to prevent the human body from

mounting an immune response against the antibody. To develop the humanization calculation,

69,032 human antibody sequences were analyzed to identify the set 𝑅𝑅9 of all unique 9-mer

sequences of amino acids, of which there were 1,309,657. For a query 9-mer sequence 𝑞𝑞, let 𝑚𝑚𝑞𝑞
min

denote the minimum number of mutations that must be made to 𝑞𝑞 to produce a mutated sequence

𝑞𝑞′ ∈ 𝑅𝑅9. Then, the humanness score ℎ of a query sequence 𝑄𝑄 comprising 𝑛𝑛 ≥ 9 amino acids is

given by

8)

ℎ(𝑄𝑄) = �𝑚𝑚𝑄𝑄𝑖𝑖,𝑖𝑖+8
min

𝑛𝑛−8

𝑖𝑖=1

where 𝑄𝑄𝑖𝑖,𝑖𝑖+8 denotes the 9-mer sequence of positions {𝑖𝑖, 𝑖𝑖 + 1, … , 𝑖𝑖 + 8} of 𝑄𝑄. If ℎ of the

newly mutated antibody is less than ℎ of the previous design, then the mutations are discarded.

27
Antigen redocking

Because redocking is time-intensive, it is performed once every third iteration of the cycle.

Redocking is performed for 500 iterations. In each iteration, the antigen is translated along the 𝑥𝑥,

𝑦𝑦, and 𝑧𝑧 axes by randomly selecting the translation along each axis from a Gaussian distribution

with 𝜇𝜇 = 0 Å and 𝜎𝜎 = 0.2 Å; and rotating the antigen around the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes by randomly

selecting the rotation around each axis from a Gaussian distribution with 𝜇𝜇 = 0° and 𝜎𝜎 = 2°. The

interaction energy between the antibody and the perturbed antigen is calculated; based on this

energy and the pre-perturbation energy, the perturbation is accepted or rejected based on the

Metropolis criterion [38].

Energy calculation

The antigen-antibody complex is relaxed using CHARMM with a full-atom energy

function that incorporates electrostatic, Van der Waals, bond length, angle, dihedral, and

Generalized Born solvation energy terms. The interaction energy between the antigen and antibody

is calculated. A Metropolis criterion [38] based on the interaction energies before and after the

mutations is used to determine whether or not to accept the mutations made to the antibody.

Output and validation of OptMAVEn

The output of OptMAVEn is a small number of antibody structures in PDB format. At the

time of this writing, one study has experimentally validated antibodies generated using

OptMAVEn [29]. The antigen was a dodecapeptide with the sequence DVFYPYPYASGS; a

28
crystal structure of this antigen bound to the scFv-2D10 was obtained from the PDB (ID 4H0H)

[39]. OptMAVEn generated five antibodies, three of which bound the antigen with high affinities

(𝐾𝐾𝐷𝐷 = 8.9, 14.4, and 23.8 nm). While the scFv-2D10 bound with greater affinity (𝐾𝐾𝐷𝐷 = 3.8 nm),

these results demonstrated that OptMAVEn was capable of designing high-affinity antibodies

without a need for an initial antibody structure.

29

Chapter 3

Quick OptMAVEn

Motivation for Quick OptMAVEn

Despite the success of OptMAVEn in one study [29], OptMAVEn provides several areas

for changes that could potentially improve the performance of the software. These are:

Use of separate tools increases risk of user error

OptMAVEn integrates tools that must be run separately, often with manual manipulations

(e.g. moving and editing files) between each step. The risk of the user making an error could be

reduced via an integrated workflow that requires no manual intervention between the step in which

the antigen and epitope are defined and the step in which the final antibody structures are

generated.

Minimization of epitope 𝒛𝒛 coordinates is inefficient and imprecise

The step in which the antigen is rotated so as to minimize the 𝑧𝑧 coordinates of the epitope

uses an inefficient exhaustive search that samples rotations along the 𝑥𝑥 and 𝑦𝑦 axes, each in

increments of 3°. Because this search uses discrete steps, the optimal conformation sampled may

be up to �3√2
2
� ° off relative to the global optimum. This result is analogous to that of approximating

30
a point 𝑝𝑝 ∈ ℝ2 using the nearest point 𝑝𝑝′ whose coordinates 𝑝𝑝′𝑥𝑥 and 𝑝𝑝′𝑦𝑦 are both divisible by 3.

The maximum distance between 𝑝𝑝 and 𝑝𝑝′ is ‖𝑝𝑝′ − 𝑝𝑝‖ = 3√2
2

, as in the case of 𝑝𝑝 = �1.5
1.5�.

A clash-permissive grid search increases cost of subsequent steps

The grid search permits up to two clashes between the antigen and the framework antibody.

Thus, clashing antigen positions may be retained and passed to the energy calculation step.

Because clashes lead to high energy penalties, clashing structures will ultimately fail to rank

among the best (lowest-energy) designs. Thus, computing the energies and optimal sets of MAPs

parts for clashing antigen positions yields no useful antibody designs and demands additional

computational resources. Discarding antigen positions that clash would likely reduce

computational demand without sacrificing results.

Representation of antigen positions as PDB files increases disk storage requirement

The grid search outputs a set of antigen positions, each represented as a separate PDB file.

A PDB file can be large: for example, the first published Zika virus structure (ID 5IRE) [31] is

approximately 1 MB. Thus, the total size of the files representing all antigen positions (of which

there are potentially 3234) could be up to 3234 × 1 MB ≈ 3 GB. While modern disk and solid-

state drives are considerably larger, this storage requirement poses several problems: 1) writing,

parsing, reformatting, copying, and deleting these files may take considerable time; 2) transferring

these files between filesystems (e.g. over a wireless connection) may be excessively slow; and 3)

there may be insufficient free storage space on the machine used to run OptMAVEn (e.g. a shared

31
supercomputing cluster). We encountered all of these problems when designing an antibody for

Zika virus. However, because all antigen structures are identical up to a translation and rotation, it

should be possible to represent them in a more compact format: namely, to store one reference

antigen structure and a file listing the translations and rotations needed to generate the other

structures from the reference.

Design of multiple antibodies for each antigen position does not increase design quality

During the MILP step, five designs are created for each antigen position. However, the

MILP is formulated such that the estimated interaction energy of the designs becomes less negative

with increasing design number. Thus, designs two through five are sub-optimal relative to design

one and will thus be discarded during the subsequent ranking of designs.

Absence of a method to ensure diversity among designs

OptMAVEn seeks to maximize the diversity of the antibodies it designs for a given epitope,

under the assumption that the likelihood of finding at least one high-affinity design is greater if the

designs are diverse than if they are highly similar. However, the designs whose MILP interaction

energies are most negative are not necessarily structurally diverse.

Development of Quick OptMAVEn

Several of the key steps in OptMAVEn were updated to improve their performance in

accordance with the topics discussed in “Motivation for Quick OptMAVEn.”

32
New coherent directory structure

Quick OptMAVEn features a new organizational structure for its directories. All files are

located within a main directory, Optmaven-2, which can be ported to and run in a different

location without the need to modify any files or formally install the program (assuming all

dependencies on third-party software are met). Optmaven-2 contains subdirectories src, data,

and experiments (experiments may be missing, in which case it is created upon running a

new experiment). src contains all source code (Python and TCL modules); data contains all

reference data files (antigen structures, the MAPs database, framework antibodies, and topology

and parameter files); and experiments contains a subdirectory for each OptMAVEn experiment.

Optmaven-2 also contains five executable scripts: optmaven starts a new OptMAVEn

experiment, interaction_energy calculates the interaction energy between a given antigen

and antibody, find_contacts identifies the residues in the interface between an antigen and

antibody (for example, to determine an epitope), check_status reports on the status of all

experiments in the experiments directory, and remove_experiment permanently removes an

experiment’s directory and files. This structure organizes all necessary files in one directory tree,

making it easier to locate files than it was in the original OptMAVEn, which did not feature a

centralized location for all files.

Robust input-output methods

Quick OptMAVEn further reduces the risk of error by reading and writing structural files

using software that is more robust than that of OptMAVEn. Quick OptMAVEn writes and parses

PDB files using Biopython [40]: a robust, widely-used, and well-maintained set of modules for

33
processing biological data. OptMAVEn relies on in-house writers and parsers, which have not

been validated as extensively as Biopython and are not safeguarded against future changes to the

PDB format. Moreover, Quick OptMAVEn is capable of reading alternate structure formats (e.g.

MMCIF) that are supported in Biopython.

Improved user interface

Original procedure: Preparation of input files

Problem: Use of separate tools increases risk of user error

While OptMAVEn required the user to create a directory for the experiment, edit the files

of the antigen to remove all atoms not part of the antigen, and create a file specifying the epitope,

Quick OptMAVEn automatically performs these steps, reducing the effort required of the user and

the risk of error. Upon typing ./optmaven at the command line, the user is first asked to name

the experiment. After ensuring that no identically-named experiment already exists, Quick

OptMAVEn creates a directory for that experiment. The user then types the name of the antigen

file. Quick OptMAVEn identifies any heteroatoms and allows the user to choose which to exclude

using an intuitive selection syntax new to Quick OptMAVEn: hyphens indicate ranges of residues

to exclude, and commas separate residue numbers or ranges. For example, 212-214, 216

excludes residues 212, 213, 214, and 216 from the structure. To improve usability, all and none

are also valid responses. Quick OptMAVEn ensures that all selected residues actually exist

(OptMAVEn did not check to make sure the residues in Epitopes.txt actually existed) and that

an appropriate number have been selected. After excluding heteroatoms, the user specifies the

chain(s) that are part of the antigen and the epitope residues for each chain. Quick OptMAVEn

34
then automatically starts the experiment, needing no further action from the user to complete the

designs.

Initial antigen positioning

Original procedure: Initial antigen positioning

Problem: Minimization of epitope z coordinates is inefficient and imprecise

Quick OptMAVEn uses an exact, robust, and efficient method to minimize the 𝑧𝑧

coordinates of the epitope. The objective is to minimize the sum 𝑧𝑧 of the epitope 𝑧𝑧 coordinates

(Equation 1) while holding fixed the center of geometry (defined in Equation 9) of the antigen (i.e.

performing only rotations). For a set of atoms 𝐼𝐼, each with a coordinate 𝑐𝑐𝑖𝑖 = �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖
� ∀ 𝑖𝑖 ∈ 𝐼𝐼, where

𝑛𝑛 = card(𝐼𝐼), the center of geometry 𝑐𝑐𝐼𝐼 is defined herein as

9)

𝑐𝑐𝐼𝐼 =
1
𝑛𝑛
�𝑐𝑐𝑖𝑖
𝑖𝑖∈𝐼𝐼

Without loss of generality, we can assume that, for the antigen 𝐻𝐻, 𝑐𝑐𝐴𝐴 = 𝟎𝟎; if this is not the

case, then we can first translate the antigen by −𝑐𝑐𝐴𝐴, which will ensure that 𝑐𝑐𝐴𝐴 = 𝟎𝟎. Equation 1 is

equivalent to minimizing the mean 𝑧𝑧 of the 𝑧𝑧 coordinates:

10)

minimize 𝑧𝑧 =
1

𝑛𝑛epitope
� 𝑧𝑧𝑖𝑖

𝑖𝑖∈𝐼𝐼epitope

35
because 𝑛𝑛epitope, the number of residues in the epitope, is a fixed positive integer. From

the definition of center of geometry (Equation 9), it can be shown that 𝑧𝑧 is the 𝑧𝑧 coordinate of the

geometric center of the epitope:

11)

𝑐𝑐𝐼𝐼epitope =
1

𝑛𝑛epitope
� �

𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖
�

𝑖𝑖∈𝐼𝐼epitope
=

⎝

⎜
⎜
⎜
⎜
⎛

1
𝑛𝑛epitope

� 𝑥𝑥𝑖𝑖
𝑖𝑖∈𝐼𝐼epitope

1
𝑛𝑛epitope

� 𝑦𝑦𝑖𝑖
𝑖𝑖∈𝐼𝐼epitope

1
𝑛𝑛epitope

� 𝑧𝑧𝑖𝑖
𝑖𝑖∈𝐼𝐼epitope ⎠

⎟
⎟
⎟
⎟
⎞

= �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�

where 𝑥𝑥 and 𝑦𝑦 are defined similarly to 𝑧𝑧 in Equation 10. Because the structure of the antigen

is held constant up to a rotation during the minimization of 𝑧𝑧, all distances between coordinates

within the antigen remain constant. The distance 𝑑𝑑 between 𝑐𝑐𝐼𝐼epitope and 𝑐𝑐𝐴𝐴 is

12)

𝑑𝑑 = ‖𝑐𝑐𝐼𝐼epitope − 𝑐𝑐𝐴𝐴‖ = ‖𝑐𝑐𝐼𝐼epitope − 𝟎𝟎‖ = ‖𝑐𝑐𝐼𝐼epitope‖ = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2

Thus, the minimization problem becomes

13)

minimize 𝑧𝑧

subject to

14)

�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑑𝑑 = �𝑥𝑥0
2 + 𝑦𝑦0

2 + 𝑧𝑧0
2

where 𝑥𝑥0, 𝑦𝑦0, and 𝑧𝑧0 denote, respectively, the initial (pre-rotation) values for 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧.

By rearranging Equation 14 to 𝑧𝑧 = ±�𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2), differentiating, and equating to zero:

36
15)

0 =
𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

=
∓𝑥𝑥

�𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2)

16)

0 =
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

=
∓𝑦𝑦

�𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2)

Assuming that �𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2) = ±𝑧𝑧 ≠ 0, the problem is solved when 𝑥𝑥 = 𝑦𝑦 = 0:

17)

𝑧𝑧 = ±�𝑑𝑑2 − (𝑥𝑥2 + 𝑦𝑦2) = ±�𝑑𝑑2 = ±𝑑𝑑

Because the objective is to minimize 𝑧𝑧, and because 𝑑𝑑 ≥ 0,

18)

𝑧𝑧 = −𝑑𝑑 = −�𝑥𝑥0
2 + 𝑦𝑦0

2 + 𝑧𝑧0
2

19)

𝑐𝑐𝐼𝐼epitope = �
0
0
−𝑑𝑑

� = �

0
0

−�𝑥𝑥0
2 + 𝑦𝑦0

2 + 𝑧𝑧0
2
�

It is possible to construct a 3D rotation matrix 𝐻𝐻 that rotates the initial epitope center of

geometry 𝑐𝑐𝐼𝐼epitope0 = �
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� to the desired coordinate 𝑐𝑐𝐼𝐼epitope . While several formulations exist

for 𝐻𝐻, the most convenient rotates by angle 𝜅𝜅 around a unit vector 𝑢𝑢 = �
𝑢𝑢𝑥𝑥
𝑢𝑢𝑦𝑦
𝑢𝑢𝑧𝑧
� (Figure 5) [41]. Note

that because 𝑢𝑢 is the axis of rotation, 𝑐𝑐𝐼𝐼epitope ⊥ 𝑢𝑢 ⊥ 𝑐𝑐𝐼𝐼epitope0. Thus, 𝑢𝑢 can be calculated as 𝑢𝑢 =

37
(𝑐𝑐𝐼𝐼epitope0 × 𝑐𝑐𝐼𝐼epitope) ÷ �𝑐𝑐𝐼𝐼epitope0 × 𝑐𝑐𝐼𝐼epitope�, because the cross product yields a vector

perpendicular to the two given vectors; the division is necessary to normalize 𝑢𝑢. We obtain

𝑐𝑐𝐼𝐼epitope0 × 𝑐𝑐𝐼𝐼epitope = �
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� × �

0
0
−𝑑𝑑

� = �
−𝑦𝑦0𝑑𝑑 − 𝑧𝑧0 ∙ 0
𝑧𝑧0 ∙ 0 + 𝑥𝑥0𝑑𝑑
𝑥𝑥0 ∙ 0 − 𝑦𝑦0 ∙ 0

� = �
−𝑑𝑑𝑦𝑦0
𝑑𝑑𝑥𝑥0

0
�

20)

𝑢𝑢 = �
𝑢𝑢𝑥𝑥
𝑢𝑢𝑦𝑦
𝑢𝑢𝑧𝑧
� = �

−𝑑𝑑𝑦𝑦0
𝑑𝑑𝑥𝑥0

0
� ÷ ��

−𝑑𝑑𝑦𝑦0
𝑑𝑑𝑥𝑥0

0
�� =

⎝

⎜
⎛
−𝑦𝑦0 ÷ �𝑥𝑥0

2 + 𝑦𝑦0
2

𝑥𝑥0 ÷ �𝑥𝑥0
2 + 𝑦𝑦0

2

0 ⎠

⎟
⎞

Furthermore, cos 𝜅𝜅 and sin𝜅𝜅 can be obtained using the standard relations:

21)

cos 𝜅𝜅 = �𝑐𝑐𝐼𝐼epitope0 ∙ 𝑐𝑐𝐼𝐼epitope� ÷ ��𝑐𝑐𝐼𝐼epitope0�‖𝑐𝑐𝐼𝐼epitope‖� = ��
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� ∙ �

0
0
−𝑑𝑑

�� ÷ (𝑑𝑑 ∙ 𝑑𝑑) =
−𝑧𝑧0
𝑑𝑑

22)

sin𝜅𝜅 = �𝑐𝑐𝐼𝐼epitope0 × 𝑐𝑐𝐼𝐼epitope� ÷ ��𝑐𝑐𝐼𝐼epitope0�‖𝑐𝑐𝐼𝐼epitope‖� = ��
−𝑑𝑑𝑦𝑦0
𝑑𝑑𝑥𝑥0

0
�� ÷ (𝑑𝑑 ∙ 𝑑𝑑)

=
�𝑥𝑥0

2 + 𝑦𝑦0
2

𝑑𝑑

Finally, 𝐻𝐻 can be found using this standard formula [41]:

38
23)

𝐻𝐻 = �
𝑢𝑢𝑥𝑥2 + (𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2) cos 𝜅𝜅 𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦(1 − cos 𝜅𝜅) − 𝑢𝑢𝑧𝑧sin𝜅𝜅 𝑢𝑢𝑧𝑧𝑢𝑢𝑥𝑥(1 − cos 𝜅𝜅) + 𝑢𝑢𝑦𝑦sin 𝜅𝜅
𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦(1 − cos 𝜅𝜅) + 𝑢𝑢𝑧𝑧sin𝜅𝜅 𝑢𝑢𝑦𝑦2 + (𝑢𝑢𝑧𝑧2 + 𝑢𝑢𝑥𝑥2) cos 𝜅𝜅 𝑢𝑢𝑦𝑦𝑢𝑢𝑧𝑧(1 − cos 𝜅𝜅) − 𝑢𝑢𝑥𝑥sin 𝜅𝜅
𝑢𝑢𝑧𝑧𝑢𝑢𝑥𝑥(1 − cos𝜅𝜅) − 𝑢𝑢𝑦𝑦sin𝜅𝜅 𝑢𝑢𝑦𝑦𝑢𝑢𝑧𝑧(1 − cos𝜅𝜅) + 𝑢𝑢𝑥𝑥sin𝜅𝜅 𝑢𝑢𝑧𝑧2 + (𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2) cos 𝜅𝜅

�

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 𝑦𝑦0

2

𝑥𝑥0
2 + 𝑦𝑦0

2 + �
𝑥𝑥0

2

𝑥𝑥0
2 + 𝑦𝑦0

2�
−𝑧𝑧0
𝑑𝑑

−𝑥𝑥0𝑦𝑦0
𝑥𝑥0

2 + 𝑦𝑦0
2 �1 +

𝑧𝑧0
𝑑𝑑
� − 0 0 +

𝑥𝑥0

�𝑥𝑥0
2 + 𝑦𝑦0

2

�𝑥𝑥0
2 + 𝑦𝑦0

2

𝑑𝑑

−𝑥𝑥0𝑦𝑦0
𝑥𝑥0

2 + 𝑦𝑦0
2 �1 +

𝑧𝑧0
𝑑𝑑
� + 0

𝑥𝑥0
2

𝑥𝑥0
2 + 𝑦𝑦0

2 + �
𝑦𝑦0

2

𝑥𝑥0
2 + 𝑦𝑦0

2�
−𝑧𝑧0
𝑑𝑑

0 +
𝑦𝑦0

�𝑥𝑥0
2 + 𝑦𝑦0

2

�𝑥𝑥0
2 + 𝑦𝑦0

2

𝑑𝑑

0 −
𝑥𝑥0

�𝑥𝑥0
2 + 𝑦𝑦0

2

�𝑥𝑥0
2 + 𝑦𝑦0

2

𝑑𝑑
0 −

𝑦𝑦0

�𝑥𝑥0
2 + 𝑦𝑦0

2

�𝑥𝑥0
2 + 𝑦𝑦0

2

𝑑𝑑
0 + �

𝑦𝑦0
2

𝑥𝑥0
2 + 𝑦𝑦0

2 +
𝑥𝑥0

2

𝑥𝑥0
2 + 𝑦𝑦0

2�
−𝑧𝑧0
𝑑𝑑
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑦𝑦0
2 − 𝑥𝑥0

2𝑧𝑧0
𝑑𝑑

𝑥𝑥0
2 + 𝑦𝑦0

2
−𝑥𝑥0𝑦𝑦0

𝑥𝑥0
2 + 𝑦𝑦0

2 �1 +
𝑧𝑧0
𝑑𝑑
�

𝑥𝑥0
𝑑𝑑

−𝑥𝑥0𝑦𝑦0
𝑥𝑥0

2 + 𝑦𝑦0
2 �1 +

𝑧𝑧0
𝑑𝑑
�

𝑥𝑥0
2 −

𝑦𝑦0
2𝑧𝑧0
𝑑𝑑

𝑥𝑥0
2 + 𝑦𝑦0

2
𝑦𝑦0
𝑑𝑑

−𝑥𝑥0
𝑑𝑑

−𝑦𝑦0
𝑑𝑑

−𝑧𝑧0
𝑑𝑑 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

This rotation matrix 𝐻𝐻 can be used in Equation 2 to minimize the sum of the epitope 𝑧𝑧

coordinates. This rotation is performed with the robust molecular simulation program VMD [42]

and implemented in the TCL script vmd_functions.tcl (in src). VMD performs this rotation

in less than one second, while the original version of OptMAVEn required several minutes

(depending on the antigen size) for the exhaustive search.

39

Figure 5: Schematic of the rotation of an antigen so as to minimize the 𝑧𝑧 coordinates of the epitope. The rotation moves
the initial geometric center of the epitope (an arbitrary point given by 𝑐𝑐0) to a point 𝑐𝑐 located along the negative 𝑧𝑧 axis by rotating
the antigen around a unit axis 𝑢𝑢 (𝑐𝑐0 ⊥ 𝑢𝑢 ⊥ 𝑐𝑐, ‖𝑢𝑢‖ = 1) by an angle 𝜅𝜅. The geometric center of the antigen (𝑐𝑐A) can be set, without
loss of generality, to the origin. The 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 unit axes are labeled as such.

Definition of antigen 𝒛𝒛 angle

Original procedure: none

Problem: The 𝑧𝑧 angle is not well defined and depends on the initial antigen structure.

After minimizing the epitope 𝑧𝑧 coordinates, OptMAVEn generates an ensemble of antigen

positions using translations on all axes and rotations around the 𝑧𝑧 axis. However, the 𝑧𝑧 angle 𝜃𝜃𝑧𝑧 is

defined arbitrarily such that 𝜃𝜃𝑧𝑧 = 0° for the antigen position created by the minimization of the

epitope 𝑧𝑧 coordinates. This leads to three main problems: 1) two experiments that use different

initial positions for the same antigen may have different antigen positions for the same 𝜃𝜃𝑧𝑧; 2) it is

impossible to determine 𝜃𝜃𝑧𝑧 given only the coordinates of an antigen position; 3) it is impossible to

40
generate the coordinates of an antigen position with a given 𝜃𝜃𝑧𝑧 from the coordinates of another

position whose 𝜃𝜃𝑧𝑧 is unknown. Thus, Quick OptMAVEn defines 𝜃𝜃𝑧𝑧 as follows:

24)

𝜃𝜃𝑧𝑧 = cos−1 �
proj𝑥𝑥,𝑦𝑦 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶 ∙𝚤𝚤

�proj𝑥𝑥,𝑦𝑦 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶�‖𝚤𝚤‖
� ∙ sign((proj𝑥𝑥,𝑦𝑦 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑦𝑦)

= cos−1

⎝

⎛ (𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑥𝑥

�(𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑥𝑥
2 + (𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑦𝑦

2
⎠

⎞ ∙ sign((𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶)𝑦𝑦)

where 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶 is the C-alpha atom of the first residue of the antigen; proj𝑥𝑥,𝑦𝑦 𝑐𝑐𝐴𝐴1,𝐶𝐶𝐶𝐶 is the

projection of the coordinates of that atom onto the 𝑥𝑥,𝑦𝑦 plane; 𝚤𝚤 is the unit vector in the positive 𝑥𝑥

direction; and 𝑢𝑢𝑥𝑥 and 𝑢𝑢𝑦𝑦 denote, respectively, the 𝑥𝑥 and 𝑦𝑦 coordinates of a point 𝑢𝑢. Verbally, 𝜃𝜃𝑧𝑧 is

the angle between the positive 𝑥𝑥 axis and the C-alpha atom of the first residue of the antigen, when

looking down on the 𝑥𝑥,𝑦𝑦 plane from the perspective of the positive 𝑧𝑧 axis (Figure 6).

Figure 6: An illustration of 𝜃𝜃𝑧𝑧. When the 𝑧𝑧 coordinates of the epitope (grey spheres) are minimized, 𝜃𝜃𝑧𝑧 ∈ (−180°, 180°]
is the angle between the positive 𝑥𝑥 axis (rightward arrow) and the vector that leads from the antigen center of geometry (yellow
circle) to the C-alpha atom of the first residue of the antigen (brown), when the 𝑥𝑥,𝑦𝑦 plane is in the plane of the page and the positive
𝑧𝑧 axis extends toward the viewer. Here, 𝜃𝜃𝑧𝑧 = −39°. The antigen shown in human interleukin 1-beta (PDB ID 46GM) [35]. The
image was generated with PyMOL [36].

41
Grid search

Original procedure: Grid Search

Problem: A clash-permissive grid search increases cost of subsequent steps

The original version of OptMAVEn permitted up to two clashes between the framework

antibody and the antigen before rejecting an antigen position. This criterion caused OptMAVEn

to test an overly large number of positions using computationally expensive energy calculations in

the next step. Quick OptMAVEn reduces the number of positions that must be tested by an average

factor of 1 − 10−0.494 = 68% (Table 9). While OptMAVEn implemented the grid search in a

house-written script, Quick OptMAVEn uses the open-source software VMD [42] to reposition

the antigen. VMD positions the antigen and checks for clashes more quickly, reducing the amount

of time needed for the grid search. All performance comparisons are discussed thoroughly in

“Direct comparison of OptMAVEn and Quick OptMAVEn on ten antigens.”

Energy calculations

Original procedure: Energy calculations

Problem: Representation of antigen positions as PDB files increases disk storage

requirement

OptMAVEn implements the energy calculations using a house-written script that requires

a separate PDB file for each antigen position. As explained above, this requirement can impose a

large burden on disk storage, particularly for large antigens such as Zika virus. To alleviate this

burden, Quick OptMAVEn calculates energies with the NAMDEnergy plugin [43] from within

VMD [42]. VMD is advantageous because, unlike the house-written script, it can rotate and

42
translate the antigen in memory without needing a PDB file of the pre-positioned antigen. Thus,

only one reference antigen PDB file is needed, which can reduce the disk storage requirement by

up to several gigabytes.

This new implementation causes a fundamental difference in the organization of energy

calculations. OptMAVEn cannot reposition the antigen during the energy calculation step but can

load all of the MAPs parts simultaneously: thus, it creates a directory for each antigen position,

and the script within a given directory calculates the interaction energy between every MAPs part

and the antigen at that position. Quick OptMAVEn can efficiently reposition the antigen during

the energy calculation step but can load only one MAPs part at a time; thus, it creates a directory

for each MAPs part, and the script within a given directory calculates the interaction energy

between that MAPs part and the antigen in every position. Quick OptMAVEn can load only one

MAPs part at a time because NAMDEnergy requires a protein structure file (PSF) specifying all

atoms in the system. For each MAPs part, Quick OptMAVEn creates a PSF containing the atoms

in the MAPs part and the antigen. To prevent these PSFs from occupying excessive disk storage,

Quick OptMAVEn writes the PSF immediately before starting the energy calculations on a MAPs

part and deletes the PSF immediately upon finishing the calculations. Because Quick OptMAVEn

simultaneously calculates the energies of a limited number of MAPs parts (up to ~100, rather than

924), the PSF files do not occupy excessive disk storage.

43
Germline design

Original procedure: Germline design

Problem: Design of multiple antibodies for each antigen position does not increase design

quality

OptMAVEn designs five antibodies for each antigen position, while Quick OptMAVEn

designs only one. As described in “Germline design,” OptMAVEn creates a series of five designs

in order of decreasing predicted affinity. Because the first design has the greatest predicted affinity

in each case, Quick OptMAVEn stops after creating this first design, which reduces the time

needed to create the designs without sacrificing the affinity of the best design for each position.

Clustering of designs

Original procedure: none

Problem: Absence of a method to ensure diversity among designs

Quick OptMAVEn introduces a clustering procedure to maximize the diversity of the

designs it selects for subsequent steps. The selected designs are subject to relaxation: relative to

unrelaxed interaction energies, interaction energies of relaxed structures correlate more closely

with and have been used as approximations of experimental binding affinities [44]. However,

relaxing all of the designs generated during the MILP step (typically hundreds or thousands: see

Table 10) is very computationally intensive. Thus, the goal is to predict which designs will have

the most negative post-relaxation interaction energies before relaxing them.

OptMAVEn predicted post-relaxation energy solely on the basis of MILP (unrelaxed)

energy. However, we have often observed designs whose MILP energies incorrectly predict their

44
post-relaxation energies. Furthermore, we assumed that the greater the diversity among designs

that are predicted to have high affinities, the greater the likelihood that at least one of these designs

will actually bind the antigen with high affinity. For example, suppose that the ten designs with

the highest predicted affinities all have HV part 100 and HCDR3 part 300. If, in reality, these two

parts interact unfavorably with the antigen in a way that Quick OptMAVEn cannot predict, then

all of the top ten designs would have low affinities.

Quick OptMAVEn selects a feasibly small number of designs to relax, limits reliance on

MILP energies, and prevents itself from selecting highly similar designs as follows. Each design

is converted into a 23-dimensional vector that concatenates the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 coordinates of the

antigen, cos 𝜃𝜃𝑧𝑧 and sin𝜃𝜃𝑧𝑧 of the antigen, and a three-dimensional coordinate for each of the six

MAPs parts. Subsequently, the designs are clustered using a k-means algorithm. Similar designs

cluster together, and then the design with the lowest MILP energy is selected from each cluster. If

more designs are needed, then the design with the second-lowest MILP energy is selected from

each cluster, and so on. Thus, Quick OptMAVEn uses MILP energy to guide selection (within

each cluster, designs are selected in order of ascending MILP energy), and it ensures diversity

among designs (𝑛𝑛 designs must be selected from every cluster before 𝑛𝑛 + 1 designs are selected

from any cluster).

Creating coordinate vectors for the MAPs parts

The major challenge with this approach is simultaneously clustering the designs based on

their antigen coordinates, which are numerical vectors, and their sets of six MAPs parts, which are

not. We solved this challenge by converting each MAPs part into a three-dimensional coordinate

45
vector using a pre-processing step. We tried a number of approaches to convert the amino acid

sequence of each MAPs part. For each approach, our strategy was to compute “distances” between

each pair of MAPs parts within the same category and then embed these distances in Euclidean

space by solving the distance geometry problem (DGP) [45]. In order for the distances to be

embeddable in Euclidean space, which is a metric space, they must satisfy the following definition

of a metric space 𝑅𝑅 with an associated distance metric function 𝑑𝑑 [45]:

25)

𝑑𝑑(𝑥𝑥,𝑦𝑦) ≥ 0 ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅

26)

𝑑𝑑(𝑥𝑥,𝑦𝑦) = 0 ⇔ 𝑥𝑥 = 𝑦𝑦 ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅

27)

𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑥𝑥) ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅

28)

𝑑𝑑(𝑥𝑥,𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧) ≥ 𝑑𝑑(𝑥𝑥, 𝑧𝑧) ∀ 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅

In this case, 𝑅𝑅 is one category of MAPs parts (e.g. HV) and 𝑑𝑑 is distance metric: a function

that assigns a distance to each pair of parts in that category. We tested multiple distance metrics

based on the normalized information distance proposed by Li et al. [46]. This distance is defined

as follows:

29)

𝑑𝑑(𝑥𝑥,𝑦𝑦) =
max {𝐾𝐾(𝑥𝑥|𝑦𝑦∗),𝐾𝐾(𝑦𝑦|𝑥𝑥∗)}

max {𝐾𝐾(𝑥𝑥),𝐾𝐾(𝑦𝑦)}

where 𝑥𝑥 and 𝑦𝑦 are the two objects to compare (e.g. MAPs part sequences); 𝑥𝑥∗ and 𝑦𝑦∗ are

the shortest programs capable of computing 𝑥𝑥 and 𝑦𝑦, respectively, on a universal computer (e.g. a

universal Turing machine); 𝐾𝐾 is the Kolmogorov complexity function such that 𝐾𝐾(𝑥𝑥) equals the

length of 𝑥𝑥∗, and 𝐾𝐾(𝑥𝑥|𝑦𝑦) is the length of the shortest program capable of computing 𝑥𝑥 given an

46
auxiliary input 𝑦𝑦 [46]. Importantly, 𝐾𝐾 is a metric, and so the distances between MAPs parts

computed using Equation 29 are embeddable in Euclidean space (i.e. a Euclidean coordinate can

be generated for each part such that the distances are satisfied).

However, 𝐾𝐾 is not computable, which means that the exact Kolmogorov complexity 𝐾𝐾(𝑥𝑥)

cannot be computed in finite time [46]. Nevertheless, 𝐾𝐾(𝑥𝑥) is upper semi-computable and can be

approximated using a standard file compression program, such as gzip, under the assumption that

the size of the compressed file 𝑥𝑥∗ accurately estimates 𝐾𝐾(𝑥𝑥). Li et al. [46] note that this assumption

is not necessarily valid and present an example of compressing a binary file 𝑥𝑥 of the first 1023 bits

of 𝜋𝜋. While 𝑥𝑥 could be computed by a program 𝑥𝑥∗ of a relatively small size (e.g 104 bits), most—

if not all—file compressors would be unable to recognize the particular structure of 𝜋𝜋 and would

thus fail to produce an 𝑥𝑥∗ significantly smaller than 𝑥𝑥. Neglecting such cases, Li et al. proposed

the following equation to approximate the normalized information distance 𝑁𝑁𝐶𝐶𝐷𝐷(𝑥𝑥,𝑦𝑦) in practice:

30)

𝑁𝑁𝐶𝐶𝐷𝐷(𝑥𝑥,𝑦𝑦) =
𝐶𝐶(𝑥𝑥𝑦𝑦) − min{𝐶𝐶(𝑥𝑥),𝐶𝐶(𝑦𝑦)}

max{𝐶𝐶(𝑥𝑥),𝐶𝐶(𝑦𝑦)}

where 𝑥𝑥 and 𝑦𝑦 are files that contain a representation of the objects whose distance is to be

calculated (e.g. text files of the sequences of the MAPs parts), 𝑥𝑥𝑦𝑦 is the file produced by

concatenating 𝑥𝑥 and 𝑦𝑦, and 𝐶𝐶(𝑥𝑥) signifies the size of the compressed file 𝑥𝑥∗ produced by using a

compression program 𝐶𝐶 to compress the file 𝑥𝑥.

We tested multiple variations of this procedure to calculate distances between MAPs parts.

First, we created plain text files of the coordinates of the MAPs parts (one file per part, one space-

delimited atomic coordinate per line) and computed the distances between the parts using Equation

30 with the compressor gzip. However, gzip appeared to perform poorly at compressing

47
redundant information in files in this format. In particular, the distances 𝑁𝑁𝐶𝐶𝐷𝐷(𝑥𝑥, 𝑥𝑥) (i.e. from each

part 𝑥𝑥 to itself) were significantly greater than their theoretical values of 0. Thus, we tested two

alternate formats for representing the MAPs part coordinates: concatenating the coordinates for

each part on one line and converting the coordinates to binary data. Both representations yielded

distances similar to those of the first representation. Additionally, we tried explicitly writing the

shortest program in Python capable of generating the coordinate files used in our first attempt to

compare distances, but we were unable to prove that such programs were of minimal length.

Therefore, we abandoned the structure-based normalized information distance in determining the

distances between MAPs parts.

Instead, we adopted a sequence-based distance measure based on the BLOSUM62 matrix

[47], which is commonly used to quantify the similarity between two protein sequences [48]. In

order to quantify distances, not similarities, between sequences, we computed distance matrices

using the following method adapted from Stojmirović [49].

First, let there be two amino acid sequences 𝑋𝑋 and 𝑌𝑌. Label each amino acid in 𝑋𝑋 and 𝑌𝑌

with an integer such that these numbers increase monotonically but may have gaps and need not

start at 1. Let 𝐻𝐻 and 𝐵𝐵 be, respectively, the sequences of amino acid numbers for 𝑋𝑋 and 𝑌𝑌. Let 𝑥𝑥𝑖𝑖

be the amino acid numbered 𝑖𝑖 in sequence 𝑋𝑋 if 𝑖𝑖 ∈ 𝐻𝐻 (i.e. if 𝑋𝑋 has an amino acid numbered 𝑖𝑖); if

not, then let 𝑥𝑥𝑖𝑖 be a gap. Define 𝑦𝑦𝑖𝑖 analogously. Then, the similarity score 𝑅𝑅(𝑋𝑋,𝑌𝑌) between two

sequences 𝑋𝑋 and 𝑌𝑌 was defined as follows:

31)

𝑅𝑅(𝑋𝑋,𝑌𝑌) = � 𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑖𝑖∈𝐴𝐴∪𝐵𝐵

48
where 𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) is the BLOSUM62 similarity score between amino acids 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 if neither

𝑥𝑥𝑖𝑖 nor 𝑦𝑦𝑖𝑖 is a gap; and 𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) is a gap penalty −𝑔𝑔 if either 𝑥𝑥𝑖𝑖 or 𝑦𝑦𝑖𝑖 is a gap. Note that we did not

know the optimal 𝑔𝑔 a priori; we discuss later our method for finding the optimal 𝑔𝑔. It is never the

case that both 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are gaps, which would imply that 𝑖𝑖 ∉ 𝐻𝐻 ∪ 𝐵𝐵. The motivation for letting 𝑥𝑥𝑖𝑖

denote the amino acid numbered 𝑖𝑖 instead of the 𝑖𝑖th amino acid in 𝑋𝑋 is that MAPs part sequences,

by following the IMGT numbering system [12], may contain gaps and start at a number other than

1. For example, the alignment between 𝑋𝑋 = HCDR3-1 and 𝑌𝑌 = HCDR3-400 is as follows:

𝐻𝐻 = {105,106,107,116,117}

𝐵𝐵 = {105,106,107,108,109,114,115,116,117}

𝒊𝒊 105 106 107 108 109 114 115 116 117
𝒙𝒙𝒊𝒊 Ala Asn Phe (gap) (gap) (gap) (gap) Asp Tyr
𝒚𝒚𝒊𝒊 Ala Arg Leu Thr Gly Asn Phe Asp Tyr
𝒔𝒔(𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊) 4 0 0 −g −g −g −g 6 7

𝑅𝑅(𝑋𝑋,𝑌𝑌) = 17 − 4𝑔𝑔.

It is possible to convert such similarity scores into quasi-metric distances if the following

conditions hold [49] for every category 𝑅𝑅𝑖𝑖𝑗𝑗| 𝑖𝑖 ∈ {𝐻𝐻,𝐾𝐾, 𝐿𝐿}, 𝑖𝑖 ∈ {𝑉𝑉,𝐶𝐶𝐷𝐷𝑅𝑅3, 𝐽𝐽} of MAPs parts:

32)

𝑅𝑅(𝑋𝑋,𝑋𝑋) ≥ 𝑅𝑅(𝑋𝑋,𝑌𝑌) ∀ 𝑋𝑋,𝑌𝑌 ∈ 𝑅𝑅𝑖𝑖𝑗𝑗

33)

𝑅𝑅(𝑋𝑋,𝑋𝑋) = 𝑅𝑅(𝑋𝑋,𝑌𝑌) ∧ 𝑅𝑅(𝑌𝑌,𝑋𝑋) = 𝑅𝑅(𝑌𝑌,𝑌𝑌) ⇒ 𝑋𝑋 = 𝑌𝑌 ∀ 𝑋𝑋,𝑌𝑌 ∈ 𝑅𝑅𝑖𝑖𝑗𝑗

34)

𝑅𝑅(𝑋𝑋,𝑌𝑌) + 𝑅𝑅(𝑌𝑌,𝑍𝑍) ≤ 𝑅𝑅(𝑋𝑋,𝑍𝑍) + 𝑅𝑅(𝑌𝑌,𝑌𝑌) ∀ 𝑋𝑋,𝑌𝑌,𝑍𝑍 ∈ 𝑅𝑅𝑖𝑖𝑗𝑗

We verified these three conditions for all categories of MAPs parts. Five violations of

condition 33 led us to discover five redundant MAPs parts: HV-135 = HV-136, KV-2 = KV-3,

KV-25 = KV-26, KV-41 = KV-42, and LV-6 = LV-5. Thus, we removed from each redundant pair

49
the part with the larger number, reducing the total number of MAPs parts from 929 to 924.

Thereafter, conditions 32, 33, and 34 held for all categories of MAPs parts. The similarity scores

were converted into quasi-metric distances 𝑄𝑄 using the following [49]:

35)

𝑄𝑄(𝑋𝑋,𝑌𝑌) = 𝑅𝑅(𝑋𝑋,𝑋𝑋) − 𝑅𝑅(𝑋𝑋,𝑌𝑌)

Note that 𝑄𝑄(𝑋𝑋,𝑋𝑋) = 𝑅𝑅(𝑋𝑋,𝑋𝑋) − 𝑅𝑅(𝑋𝑋,𝑋𝑋) = 0. This quasi-metric distance was then

converted into its associated metric 𝐷𝐷align [49]:

36)

𝐷𝐷align(𝑋𝑋,𝑌𝑌) = max{𝑄𝑄(𝑋𝑋,𝑌𝑌),𝑄𝑄(𝑌𝑌,𝑋𝑋)}

We verified that 𝐷𝐷align satisfied the definition of a metric (Equations 25, 26, 27, and 28)

for all categories of MAPs parts. However, we failed to embed any 𝐷𝐷align matrix in Euclidean

space using the analytical solution to the distance geometry problem [45] because every 𝐷𝐷align

matrix had at least one negative eigenvalue: thus, it is impossible to find Euclidean coordinates

that satisfy exactly the distances specified in 𝐷𝐷align.

There exist multiple software packages to solve distance geometry problems, e.g. MD-jeep

[50], Xplor-NIH [51], TINKER [52], and DGSOL [53]. All of the aforementioned software was

designed specifically to infer molecular coordinates from sparse and potentially erroneous nuclear

magnetic resonance (NMR) data. Thus, they all embed into three-dimensional Euclidean space. In

the general distance geometry problem, pairwise distances between 𝑁𝑁 entities can be embedded in

a space of dimensionality up to 𝑁𝑁 − 1, assuming that the 𝑁𝑁 × 𝑁𝑁 distance matrix is positive

semidefinite [45]. Thus, for MAPs categories with many members (e.g. HCDR3, 𝑁𝑁 = 428), a

three-dimensional embedding crushes 𝑁𝑁 − 1 − 3 dimensions (424 for HCDR3). While reducing

the dimensionality is likely to bring many distant parts closer than they should be, such

50
dimensionality reduction is routinely applied to high-dimensional data (e.g. via principal

component analysis [54] and t-distributed stochastic neighbor embedding [55]) and could actually

help mitigate the so-called “curse of dimensionality” that occurs when clustering sparse, high-

dimensional data [56].

Among the aforementioned distance geometry solvers, DGSOL proved the most

straightforward for us to install and was able to successfully embed the distances in three-

dimensional space. DGSOL finds coordinates so as to minimize penalty function 𝑝𝑝(𝐷𝐷embed).

DGSOL accepts a lower (𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗) and upper (𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗) bound on each pairwise distance 𝐷𝐷embed𝑖𝑖𝑗𝑗

produced by the embedding. If 𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 ≤ 𝐷𝐷embed𝑖𝑖𝑗𝑗 ≤ 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗, then 𝐷𝐷embed𝑖𝑖𝑗𝑗 does not contribute to the

penalty function (i.e. 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑝𝑝 �𝐷𝐷embed𝑖𝑖𝑗𝑗� = 0). If 𝐷𝐷embed𝑖𝑖𝑗𝑗 < 𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗, then 𝑝𝑝𝑖𝑖𝑗𝑗 = �
𝐷𝐷embed𝑖𝑖𝑗𝑗

2−𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗2

𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗2
�
2

;

if 𝐷𝐷embed𝑖𝑖𝑗𝑗 > 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗, then 𝑝𝑝𝑖𝑖𝑗𝑗 = �
𝐷𝐷embed𝑖𝑖𝑗𝑗

2−𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗2

𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗2
�
2

. The overall penalty is:

37)

𝑝𝑝(𝐷𝐷embed) = � 𝑝𝑝𝑖𝑖𝑗𝑗
𝑖𝑖,𝑗𝑗∈𝑀𝑀𝑘𝑘

where 𝑅𝑅𝑘𝑘 is a category of MAPs parts.

We generated values for 𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 and 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗 using the alignment distances 𝐷𝐷align. We did not

know a priori the optimal width of the bounds, i.e. whether to let 𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 = 𝐷𝐷align𝑖𝑖𝑗𝑗 = 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗 or to use

wider bounds (𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 < 𝐷𝐷embed𝑖𝑖𝑗𝑗 < 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗). Thus, we tested multiple bounds given by the following

equations:

38)

𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 = (1 − 𝜌𝜌)𝐷𝐷align𝑖𝑖𝑗𝑗

51
39)

𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗 = (1 + 𝜌𝜌)𝐷𝐷align𝑖𝑖𝑗𝑗

where 𝜌𝜌 is a width parameter. For each category 𝑅𝑅𝑘𝑘 of MAPs parts, we varied 𝜌𝜌 from 0

(𝐿𝐿𝐵𝐵𝑖𝑖𝑗𝑗 = 𝑈𝑈𝐵𝐵𝑖𝑖𝑗𝑗) to 0.5 in increments of 0.05. Note that 𝜌𝜌 = 0 imposes the greatest penalty and 𝜌𝜌 =

0.5 the least. At each level of 𝜌𝜌, we computed the Spearman rank correlation 𝜌𝜌𝑤𝑤 between the

flattened upper triangles of 𝐷𝐷align and 𝐷𝐷embed, as well as the root mean squared error 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤 =

�∑ ∑ �𝐷𝐷embed𝑖𝑖𝑗𝑗−𝐷𝐷align𝑖𝑖𝑗𝑗�
2

𝑁𝑁
𝑗𝑗=𝑖𝑖+1

𝑁𝑁−1
𝑖𝑖=1

1
2(𝑁𝑁2−𝑁𝑁)

. For the purposes of clustering, it is more important to perturb the

ranks minimally (i.e. 𝜌𝜌𝑤𝑤 is close to unity) during the embedding rather than to keep the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤

small. Thus, we let the optimal 𝜌𝜌opt = argmax
𝑤𝑤

(𝜌𝜌𝑤𝑤). Ties were broken using 𝜌𝜌opt =

argmin
𝑤𝑤

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤). We used the coordinates generated at 𝜌𝜌 = 𝜌𝜌opt as the definitive coordinates

for each MAPs category. Recall that the above calculations require the gap penalty parameter 𝑔𝑔,

which was unknown a priori. Thus, to find the optimal 𝑔𝑔, we performed all of the above steps

(from computing 𝐷𝐷align to finding 𝜌𝜌opt) for 𝑔𝑔 = 4, 6, 8, 10, and 12. Images of the coordinates

generated for each MAPs category at each 𝑔𝑔 are given in Figure 10. We computed 𝜌𝜌𝑤𝑤opt (Table 2)

and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt (Table 3). Note that these values are independent of 𝑔𝑔 for parts in the HJ, KJ, and

LJ categories because the J parts do not contain any gaps.

Table 2: The values of 𝜌𝜌𝑤𝑤opt for each gap penalty and each MAPs category.

𝒈𝒈 HV HCDR3 HJ LV LCDR3 LJ KV KCDR3 KJ

4 0.932 0.804 0.982 0.987 0.818 1.000 0.934 0.910 0.996
6 0.935 0.831 0.982 0.988 0.838 1.000 0.935 0.922 0.996
8 0.939 0.855 0.982 0.987 0.852 1.000 0.939 0.931 0.996

10 0.935 0.774 0.982 0.986 0.839 1.000 0.921 0.894 0.996
12 0.948 0.891 0.982 0.987 0.875 1.000 0.941 0.946 0.996

52
Table 3: The values of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt for each gap penalty and each MAPs category.

𝒈𝒈 HV HCDR3 HJ LV LCDR3 LJ KV KCDR3 KJ

4 26.313 15.441 0.593 13.005 9.833 0.321 21.669 8.484 1.124
6 26.793 15.133 0.593 13.146 9.585 0.321 21.983 8.508 1.124
8 27.179 15.306 0.593 13.244 9.585 0.321 21.906 8.574 1.124

10 27.360 15.902 0.593 13.513 10.096 0.321 22.877 9.551 1.124
12 27.404 15.439 0.593 13.620 9.674 0.321 22.468 8.699 1.124

To determine the optimal 𝑔𝑔, for each part category (except the J parts), we ranked the levels

of 𝑔𝑔 from most to least optimal on the basis of 𝜌𝜌𝑤𝑤opt (higher is more optimal) and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt

(lower is more optimal) (Table 4). We then computed the average rank of each 𝑔𝑔 across both 𝜌𝜌𝑤𝑤opt

and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt (Table 5). This analysis revealed that 𝑔𝑔 = 8, with an average rank of 2.1, yielded

the most optimal embeddings according to our criteria. Thus, we let 𝑔𝑔 = 8 in our benchmarking

tests for Quick OptMAVEn. However, the user has the option of selecting a different 𝑔𝑔 from

among the levels tested herein.

Table 4: The rank of each 𝑔𝑔 level in terms of each criterion and each part. Rank 1 corresponds to the 𝑔𝑔 level that optimized
the criterion (i.e. maximized 𝜌𝜌𝑤𝑤opt or minimized 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt); rank 5 corresponds to the 𝑔𝑔 level that yielded the least optimal value
of the criterion.

Category Criterion Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
HV 𝜌𝜌𝑤𝑤opt 12 8 6 10 4
HCDR3 𝜌𝜌𝑤𝑤opt 12 8 6 4 10
KV 𝜌𝜌𝑤𝑤opt 12 8 6 4 10
KCDR3 𝜌𝜌𝑤𝑤opt 12 8 10 6 4
LV 𝜌𝜌𝑤𝑤opt 12 8 6 4 10
LCDR3 𝜌𝜌𝑤𝑤opt 12 8 6 4 10
HV 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt 4 6 8 10 12
HCDR3 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt 6 8 12 4 10
KV 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt 4 8 6 12 10
KCDR3 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt 8 6 12 4 10
LV 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt 4 8 6 12 10
LCDR3 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑤𝑤opt 4 6 8 12 10

53
Table 5: The average rank assigned to each 𝑔𝑔 level according to the rankings in Table 4.

𝒈𝒈 Average rank
4 3.2
6 2.7
8 2.1

10 4.7
12 2.4

k-means clustering

k-means clustering groups similar antibody designs on the basis of the antigen position (𝑥𝑥,

𝑦𝑦, 𝑧𝑧, and 𝜃𝜃𝑧𝑧) and the identities of the six MAPs parts in the antibody. As stated at the beginning of

the section “Clustering of designs,” this step enables Quick OptMAVEn to avoid selecting designs

that are highly similar. Prior to clustering, for each design, a 23-dimensional vector concatenating

the antigen’s 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 coordinates; cos (𝜃𝜃𝑧𝑧) and sin (𝜃𝜃𝑧𝑧); and the 3D coordinates representing

the six MAPs parts. The designs are then clustered by clustering their corresponding vectors.

The k-means clustering algorithm was written in-house and implemented in the module

kmeans.py. The following pseudocode describes how the algorithm functions:

54
k # the number of clusters
vectors # a list of vectors, each representing one design
max_iter # the maximum number of iterations
centroids = random_choice(vectors, k) # randomly choose k vectors without
replacement to be the initial cluster centroids
iter = 1 # number of iterations
converged = False # Have the centroids converged (stopped moving)?
convergence_limit # maximum mean square movement to be considered not moving
while not converged and iter <= max_iter:
 clusters = empty_list(length=k, data_type=set) # a list of clusters; each
 # cluster is a set of vectors in the cluster
 # Assign each vector to the cluster with the closest centroid.
 for vector in vectors:
 index = argmin(distance(vector, centroids))
 clusters[index].add(vector)
 # If there are any empty clusters, move a random vector from another cluster
 # into each empty cluster.
 for cluster in clusters:
 if cluster.is_empty():
 other_cluster = random_choice(clusters, 1) # choose one cluster
 # Ensure the other cluster can relinquish a vector without becoming
 # empty
 while other_cluster.size() > 1
 other_cluster = random_choice(clusters, 1)
 # Transfer one random vector from the other cluster.
 vector = random_choice(other_cluster, 1)
 other_cluster.remove(vector)
 cluster.add(vector)
 # Move each cluster’s centroid to the mean coordinate of the cluster’s
 # vectors.
 movement_distances = empty_list(length=k, data_type=numeric)
 for index in {1, 2, ..., k}:
 mean_coordinate = mean(clusters[index])
 movement_distances[index] = distance(mean_coordinate, centroids[index])
 centroids[index] = mean_coordinate
 if square_root(sum(movement_distances^2)) <= convergence_limit:
 converged = True
 iter += 1
return clusters

Figure 7: Pseudo-code for implementing the k-means clustering step. The full implementation is located in the module
kmeans.py.

 Note that in the above implementation, the value of 𝑘𝑘 is fixed. The optimal value of 𝑘𝑘 is

unknown a priori. In order to find the optimal value of 𝑘𝑘, the algorithm calculates the maximum

variance 𝜎𝜎2𝑘𝑘 of the data in each cluster using the following equation:

55
40)

𝜎𝜎2𝑘𝑘 = max�
∑ ��𝑣𝑣𝑖𝑖𝑗𝑗 − 𝑐𝑐𝚤𝚤���

2𝑛𝑛𝑖𝑖
𝑗𝑗=1

𝑛𝑛𝑖𝑖
|𝑖𝑖 ∈ 𝐶𝐶𝑘𝑘�

where 𝐶𝐶𝑘𝑘 is the set of clusters for a given value of 𝑘𝑘, 𝑛𝑛𝑖𝑖 is the number of vectors in cluster

𝑖𝑖, 𝑐𝑐𝚤𝚤� is the centroid of cluster 𝑖𝑖, and 𝑣𝑣𝑖𝑖𝑗𝑗 denotes vector 𝑖𝑖 of cluster 𝑖𝑖. The 𝜎𝜎2𝑘𝑘 value measures the

efficacy of the clustering—specifically the maximum intra-cluster variance: superior clustering

will yield a lower 𝜎𝜎2𝑘𝑘. For each 𝑘𝑘 > 1, the ratio 𝜎𝜎
2
𝑘𝑘

𝜎𝜎21
 was calculated; the optimal 𝑘𝑘 was chosen to

be the minimum 𝑘𝑘 for which 𝜎𝜎
2
𝑘𝑘

𝜎𝜎21
≤ 𝑡𝑡, where 0 < 𝑡𝑡 < 1 is a pre-defined threshold. We used 𝑡𝑡 =

0.2. The maximum possible value for 𝑘𝑘 is 𝑛𝑛𝑣𝑣 (where 𝑛𝑛𝑣𝑣 is the total number of vectors being

clustered) because when 𝑘𝑘 = 𝑛𝑛𝑣𝑣, there is exactly one vector in each cluster, so each centroid must

equal its corresponding vector (𝑣𝑣𝑖𝑖1 = 𝑐𝑐𝚤𝚤� ∀ 𝑖𝑖), thus 𝜎𝜎2𝑛𝑛𝑣𝑣 = 0 < 𝑡𝑡.

Selection of clustered designs

Quick OptMAVEn select a diverse set of antibodies with high predicted affinities in the

following manner. Let 𝑅𝑅𝑖𝑖𝑗𝑗 be the interaction energy (see Equation 3) of antibody 𝑖𝑖 in cluster 𝑖𝑖

(denoted 𝐶𝐶𝑖𝑖). Let 𝑅𝑅𝑖𝑖,min = min�𝑅𝑅𝑖𝑖𝑗𝑗|𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖�, i.e. the interaction energy of the antibody in cluster 𝑖𝑖

with the most negative interaction energy (greatest predicted affinity). Quick OptMAVEn ranks

the 𝐶𝐶𝑖𝑖s from most to least negative 𝑅𝑅𝑖𝑖,min. Indexing along 𝑖𝑖, in order of increasing 𝑅𝑅𝑖𝑖,min, it selects

from each 𝐶𝐶𝑖𝑖 the antibody 𝑖𝑖 for which 𝑖𝑖 = argmin�𝑅𝑅𝑖𝑖𝑗𝑗|𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖�, i.e. the antibody with the most

negative interaction energy from cluster 𝑖𝑖. Quick OptMAVEn stops when the number of selected

antibodies 𝑛𝑛selected reaches a user-specified goal 𝑛𝑛Abs. By default, 𝑛𝑛Abs = 30. If 𝑛𝑛selected = 𝑛𝑛Abs

56
before an antibody has been selected from each of the 𝑘𝑘 clusters (i.e. 𝑘𝑘 > 𝑛𝑛Abs), then no antibody

is selected from any of the remaining 𝑛𝑛Abs − 𝑘𝑘 clusters.

If, after selecting one antibody from each cluster, an insufficient number of antibodies have

been selected (i.e. 𝑛𝑛selected = 𝑘𝑘 < 𝑛𝑛Abs), then Quick OptMAVEn repeats the above steps, starting

by re-ranking the 𝐶𝐶𝑖𝑖s from most to least negative 𝑅𝑅𝑖𝑖,min, but ignoring any antibodies that have

already been selected. This procedure is repeated either until 𝑛𝑛selected = 𝑛𝑛Abs or, if the total

number of antibodies designed is less than 𝑛𝑛Abs, until all antibodies have been selected.

After selecting these antibodies, Quick OptMAVEn performs a structural relaxation on

every antigen-antibody complex using CHARMM. The relaxed structures are saved in both PDB

and FASTA format in the Results directory within the experiment’s directory.

Benchmarking of Quick OptMAVEn

To compare the performances of OptMAVEn and Quick OptMAVEn, we used both

programs to design antibodies for 10 antigens and used Quick OptMAVEn to design antibodies

for an additional 54 antigens that had been tested previously with OptMAVEn [7]. During the

benchmarking we used the default parameters of Quick OptMAVEn (Table 6). The antigen chains

and epitopes are given in Table 12. The computations were performed on the (now

decommissioned) Lion-XF cluster at the Pennsylvania State University.

57
Table 6: The setup and parameters used for the benchmarking of Quick OptMAVEn.

Software Version CHARMM
settings

Value k-means
settings

Value Grid search
settings

Value

Python 2.7.13 CHARMM
energy
terms

angl, bond,
dihe, elec,

impr, urey,
vdw, gbener

Gap
penalty

8 MAPs clash
cutoff

1.25 Å

CHARMM 34b1 CHARMM
iterations

5000 k-means
max
iterations

1000 𝑥𝑥min, 𝑥𝑥max,
𝑥𝑥step

-10.0,
5.0,

2.5 Å
VMD 1.9.3 k-means

tolerance
0.01 𝑦𝑦min, 𝑦𝑦max,

𝑦𝑦step
-5.0,
10.0,
2.5 Å

NAMD 2.12 k-means
threshold

0.20 𝑧𝑧min, 𝑧𝑧max,
𝑧𝑧step

3.75,
16.25,
2.25 Å

 𝜃𝜃𝑧𝑧min,
𝜃𝜃𝑧𝑧max, 𝜃𝜃𝑧𝑧step

0,
300,
60°

Direct comparison of OptMAVEn and Quick OptMAVEn on ten antigens

We had the computational resources to directly compare the performance of OptMAVEn

and Quick OptMAVEn on ten antigens. We randomly selected ten of the antigens against which

OptMAVEn had previously designed antibodies [7]: 1NSN, 2IGF, 2R0W, 2VXQ, 2ZUQ, 3BKY,

3FFD, 3G5V, 3L5W, and 3MLS. Performance was assessed on the basis of the times taken for the

Initial antigen positioning plus the Grid search (𝑇𝑇pos; we were able to measure only the sum of

these times), the Energy calculations (𝑇𝑇ener), the Germline design (𝑇𝑇MILP), and the total CPU time

(𝑇𝑇CPU = 𝑇𝑇pos + 𝑇𝑇ener + 𝑇𝑇MILP); the maximum amount of disk storage used at any point (𝐷𝐷max);

and the interaction energy between the antigen and the antibody with the most negative predicted

interaction energy (𝑅𝑅min). Additionally, we recorded the number of positions sampled (𝑁𝑁pos) and

energy obtained from the MILP (𝑅𝑅MILP; i.e. the value of Equation 3).

58
The results are given in Table 7, Table 8, and Table 9. Quick OptMAVEn performed

significantly better (𝑃𝑃 < 0.05) in every performance measure except for 𝑅𝑅min and 𝑅𝑅MILP. For 𝑅𝑅min,

the programs yielded equivalent results (𝑃𝑃 = 0.79). Note that 𝑅𝑅MILP is a temporary energy used to

select designs for which to calculate the more computationally intensive quantity 𝑅𝑅min. Thus, the

significantly worse performance of Quick OptMAVEn in terms of 𝑅𝑅MILP does not suggest that the

final, relaxed designs are worse. Thus, these results indicate that, relative to OptMAVEn, Quick

OptMAVEn designs antibodies of equivalent affinities using approximately 10−0.591 = 26% of

the CPU time and 10−0.788 = 16% of the disk storage on average.

Figure 8: Quick OptMAVEn performs significantly better than OptMAVEn in terms of 𝐷𝐷max, 𝑇𝑇pos, 𝑇𝑇ener, 𝑇𝑇MILP, and
𝑇𝑇CPU. Values are base-10 logarithms of the ratio of the Quick OptMAVEn and OptMAVEn performance measures. Box plots report
the minimum, Q1, median (orange lines), Q3, and maximum values.

59
Table 7: The performance of OptMAVEn. Times are in hours, sizes in megabytes, and energies in kcal/mol.

Antigen 𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩 𝑻𝑻𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑻𝑻𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑻𝑻𝐂𝐂𝐌𝐌𝐂𝐂 𝑫𝑫𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 𝑬𝑬𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑵𝑵𝐩𝐩𝐩𝐩𝐩𝐩
1NSN 32.7 214.2 26.8 273.7 1004 -658.7 -850.1 2428
2IGF 2.1 20.0 26.4 48.4 820 -76.4 -383.9 3023
2R0W 2.0 17.8 20.2 40.0 779 -277.0 -480.5 2955
2VXQ 26.1 174.4 19.6 220.1 970 -174.5 -576.4 2711
2ZUQ 41.6 290.9 18.8 351.4 1094 -346.0 -363.6 2645
3BKY 5.0 54.8 33.7 93.5 824 -216.1 -356.4 3035
3FFD 5.3 35.0 19.5 59.8 657 +576.6 -397.4 2347
3G5V 22.0 33.1 20.8 75.9 808 -309.9 -413.0 2976
3L5W 29.6 173.9 24.4 227.9 1008 -281.4 -698.2 2798
3MLS 5.8 53.0 21.9 80.7 809 -249.6 -395.1 2903

Table 8: The performance of Quick OptMAVEn. Times are in hours, sizes in megabytes, and energies in kcal/mol.

Antigen 𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩 𝑻𝑻𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑻𝑻𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑻𝑻𝐂𝐂𝐌𝐌𝐂𝐂 𝑫𝑫𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 𝑬𝑬𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑵𝑵𝐩𝐩𝐩𝐩𝐩𝐩
1NSN 0.036 22.3 1.8 24.2 142.4 -438.1 -255.6 442
2IGF 0.009 26.1 5.6 31.7 169.7 -118.5 -106.6 1374

2R0W 0.010 22.4 4.9 27.4 152.9 -127.9 -186.0 1204
2VXQ 0.033 33.7 3.6 37.4 135.4 -235.3 -185.0 893
2ZUQ 0.046 40.4 3.2 43.6 167.3 -131.3 -99.4 774
3BKY 0.011 33.9 6.7 40.6 197.4 -208.4 -77.7 1647
3FFD 0.014 10.9 2.0 13.0 83.8 +92.6 -153.9 492
3G5V 0.012 21.0 4.2 25.2 137.6 -458.5 -185.0 1035

3L5W 0.033 36.4 3.8 40.2 144.7 -394.0 -169.7 910
3MLS 0.009 18.0 3.3 21.3 114.7 -171.2 -229.4 807

60
Table 9: Comparison of the performance of OptMAVEn and Quick OptMAVEn. For 𝑅𝑅min and 𝑅𝑅MILP, entry 𝑖𝑖𝑖𝑖 is

(Table 8𝑖𝑖𝑗𝑗 − Table 7𝑖𝑖𝑗𝑗) because the interest is the difference in energy. For all other measures, entry 𝑖𝑖𝑖𝑖 is log10 �
Table 8𝑖𝑖𝑗𝑗
Table 7𝑖𝑖𝑗𝑗

� because

the interest is the ratio of the values. For all measures, negative values show better performance for Quick OptMAVEn. Statistics
are as follows: Shapiro, P-value of Shapiro-Wilk test for normality of the measure: because all 𝑃𝑃 > 0.05, the assumption that all
differences are normally distributed is supported; mean, mean difference between Quick OptMAVEn and OptMAVEn; s. d.,
standard deviation of measurements; P-value, two-tailed t-test of 𝐻𝐻0: 𝜇𝜇 = 0, 𝐻𝐻𝐴𝐴: 𝜇𝜇 ≠ 0, 𝑃𝑃 < 0.05 in bold.

Antigen 𝑻𝑻𝐩𝐩𝐩𝐩𝐩𝐩 𝑻𝑻𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑻𝑻𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑻𝑻𝐂𝐂𝐌𝐌𝐂𝐂 𝑫𝑫𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 𝑬𝑬𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑵𝑵𝐩𝐩𝐩𝐩𝐩𝐩
1NSN -2.96 -0.982 -1.162 -1.053 -0.848 +220.6 +594.5 -0.740
2IGF -2.35 +0.116 -0.674 -0.184 -0.684 -42.1 +277.2 -0.342
2R0W -2.29 +0.102 -0.613 -0.165 -0.707 +149.1 +294.5 -0.390
2VXQ -2.90 -0.714 -0.732 -0.770 -0.855 -60.8 +391.4 -0.482
2ZUQ -2.95 -0.857 -0.774 -0.906 -0.815 +214.6 +264.3 -0.534
3BKY -2.65 -0.208 -0.700 -0.362 -0.620 +7.7 +278.7 -0.265
3FFD -2.58 -0.505 -0.984 -0.663 -0.895 -484.0 +243.5 -0.679
3G5V -3.27 -0.198 -0.698 -0.479 -0.769 -148.6 +228.1 -0.459
3L5W -2.95 -0.680 -0.806 -0.753 -0.843 -112.6 +528.6 -0.488
3MLS -2.80 -0.469 -0.823 -0.578 -0.848 +78.4 +165.7 -0.556
Shapiro 6.0E-01 5.8E-01 1.0E-01 8.2E-01 1.8E-01 2.8E-01 6.9E-02 9.4E-01
mean -2.77 -0.440 -0.797 -0.591 -0.788 -17.8 +326.7 -0.494
s. d. 0.303 0.383 0.164 0.296 0.090 209.4 137.0 0.145
P-value 3.5E-10 5.5E-03 9.2E-08 1.4E-04 5.0E-10 7.9E-01 3.5E-05 1.9E-06

Test of Quick OptMAVEn on 54 additional antigens

We used Quick OptMAVEn to design antibodies against 54 additional antigens for which

OptMAVEn had previously been used to design antibodies (Table 10). In addition to the

performance measures for the Direct comparison of OptMAVEn and Quick OptMAVEn on ten

antigens, we report here the numbers of residues and atoms in each antigen.

Table 10: The performance of Quick OptMAVEn on 54 additional antigens, as well as those from the Direct comparison
of OptMAVEn and Quick OptMAVEn on ten antigens (the first ten entries) and the Zika virus E protein (from 5GZN). Every
antigen comprised one chain. 𝑁𝑁res: number of residues in the antigen; 𝑁𝑁res: number of atoms in the antigen; 𝑁𝑁pos, 𝑇𝑇CPU, 𝐷𝐷max, and
𝑅𝑅min are defined above in the Direct comparison of OptMAVEn and Quick OptMAVEn on ten antigens.

Antigen 𝑵𝑵𝐞𝐞𝐞𝐞𝐩𝐩 𝑵𝑵𝐦𝐦𝐭𝐭𝐩𝐩𝐦𝐦 𝑵𝑵𝐩𝐩𝐩𝐩𝐩𝐩 𝑻𝑻𝐂𝐂𝐌𝐌𝐂𝐂 𝑫𝑫𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞
1NSN 138 2262 442 28.1 142.4 -1045.4
2IGF 7 125 1374 33.7 169.7 -376.3
2R0W 7 112 1204 29.3 152.9 -634.7
2VXQ 92 1430 893 40.3 135.4 -674.8
2ZUQ 148 2390 774 47.2 167.3 -404.8

61
3BKY 17 242 1647 42.8 197.4 -228.1
3FFD 18 328 492 15.2 83.8 -730.2
3G5V 16 229 1035 27.1 137.6 -447.6
3L5W 101 1577 910 43.5 144.7 -566.1
3MLS 20 288 807 23.3 114.7 -509.8
1ACY 10 156 1558 40.9 188.3 -370.6
1CE1 8 93 1694 44.3 200.9 -513.3
1CFT 5 84 1554 38.9 187.9 -253.5
1DZB 129 1958 749 42.2 136.3 -775.8
1EGJ 101 1643 650 34.1 106.9 -618.6
1F90 9 156 1328 35.0 165.8 -377.5
1FPT 11 162 1478 38.4 180.0 -455.6
1HH6 11 159 718 20.8 104.6 -385.5
1I8I 9 142 1480 38.4 179.7 -350.8
1JHL 129 1962 985 53.7 132.3 -766.6
1JRH 95 1491 397 21.9 99.6 -541.4
1KC5 8 119 1299 36.8 162.1 -376.1
1KIQ 129 1968 730 41.4 119.1 -750.1
1MLC 129 1968 618 35.9 111.2 -752.0
1N64 16 241 990 28.1 132.9 -386.6
1NAK 10 166 1192 41.5 154.1 -393.3
1OBE 13 195 417 13.5 77.9 -397.0
1ORS 132 2146 1001 55.7 162.4 -625.5
1PZ5 8 124 1348 34.1 167.4 -419.5
1QNZ 18 301 575 18.5 91.4 -367.3
1SM3 9 126 1354 34.8 167.9 -454.2
1TQB 102 1659 489 26.8 104.1 -534.6
1V7M 145 2258 588 37.5 115.4 -561.0
1XGY 6 85 1811 45.4 212.8 -293.1
1ZA3 91 1346 71 7.5 91.8 -758.7
2A6I 9 136 1093 29.1 141.8 -365.2
2BDN 68 1106 810 35.2 115.1 -740.6
2DQJ 129 1968 590 34.0 111.6 -852.4
2FJH 98 1565 312 18.4 99.7 -528.8
2H1P 11 182 561 17.0 90.4 -355.0
2HH0 9 151 1062 28.6 140.0 -282.7
2HRP 10 177 1013 27.9 135.4 -366.5
2IFF 129 1966 595 33.9 126.7 -594.4
2JEL 85 1293 596 28.1 101.9 -539.5

62
2OR9 11 181 734 21.1 106.7 -387.8
2QHR 11 185 761 20.3 111.3 -340.2
2R29 97 1553 641 33.2 105.3 -698.4
3AB0 136 1955 380 23.9 107.8 -765.0
3BDY 95 1521 779 36.3 133.9 -439.7
3CVH 8 142 1168 30.7 149.6 -333.7
3D85 133 2074 441 27.9 109.8 -717.0
3E8U 11 136 1481 38.1 180.8 -431.4
3ETB 144 2332 296 21.8 111.3 -898.6
3F58 11 136 1317 34.6 168.5 -322.6
3G6D 106 1667 418 24.2 103.2 -876.8
3GHB 10 146 1341 33.5 166.7 -383.4
3GHE 15 255 773 26.9 112.2 -430.1
3HR5 9 142 1340 38.4 166.5 -478.7
3KS0 92 1443 1148 54.3 148.0 -578.5
3MLX 14 235 621 20.5 94.7 -367.7
3NFP 124 1909 292 19.7 104.5 -771.6
3P30 84 1437 32 4.7 65.2 -714.9
3QG6 6 105 1425 36.1 175.2 -362.4
3RKD 146 2185 776 46.1 124.5 -793.7
5GZN 402 6081 77 18.9 176.7 -1244.8

To understand the factors affecting 𝑇𝑇CPU and 𝐷𝐷max, we investigated correlations between

these performance measures and the inputs. We excluded 5GZN from the analysis because its

𝑁𝑁res = 402 and 𝑁𝑁atom = 6081 were outliers. Among the other antigens, the Pearson correlation

𝑟𝑟 between 𝑇𝑇CPU and both 𝑁𝑁res (𝑟𝑟 = 0.144) and 𝑁𝑁atom (𝑟𝑟 = 0.136) was small, indicating that the

size of the antigen did not affect 𝑇𝑇CPU. Correlations between 𝐷𝐷max and 𝑁𝑁res (𝑟𝑟 = −0.391) and

𝑁𝑁atom (𝑟𝑟 = −0.396) were also modest. However, there were stronger correlation between 𝑁𝑁pos

and both 𝐷𝐷max (𝑟𝑟 = 0.928) and 𝑇𝑇CPU (𝑟𝑟 = 0.634), suggesting that one of the most important

factors in the performance is the number of positions sampled. Of note, there appeared to be two

clusters in each plot: these clusters separated perfectly by partitioning the antigens into those small

(𝑁𝑁res ≤ 50) and large (𝑁𝑁res > 50). There were no substantial differences in correlations after

63
partitioning. Thus, it seems that the most significant predictor of 𝑇𝑇CPU and 𝐷𝐷max is 𝑁𝑁pos, which is

determined by the antigen shape as well as the size and grid search settings.

Design of 77 antibodies for Zika E protein, including 9 predicted to be superior to native

We used Quick OptMAVEn to design 77 antibodies that targeted the Zika envelope (E)

protein. We tested two Zika epitopes that we identified in PDBs 5GZN and 5GZO [16]. Both PDBs

comprise several complexes of Zika E protein bound to neutralizing antibodies that were isolated

from an infected patient. We used chain A as the antigen for both 5GZN and 5GZO. We defined

the epitope as the set of all residues of chain A for which at least one atom lay within 4.0 Å of any

atom in the antibody complexed with chain A. The epitope residues were as follows. 5GZN: 46,

47, 52, 136, 138, 140, 156, 158, 159, 166, 168, 276, 277, 278, 279, 280, 281, 283. 5GZO: 64, 65,

66, 67, 68, 69, 84, 87, 89, 90, 118, 119, 120, 233, 252. Note that if no structures of Zika in complex

with an antibody had been available, we could have predicted these epitopes using existing

software [33]. We used the default settings for Quick OptMAVEn (Table 6).

Quick OptMAVEn successfully designed 77 antibodies against the 5GZN epitope but

failed to find any non-clashing positions for the epitope of 5GZO. However, using a different grid

could enable Quick OptMAVEn to find non-clashing positions for this epitope as well. By default,

Quick OptMAVEn clusters the designs and then relaxes and calculates 𝑅𝑅min for the top 30 designs.

In order to evaluate the clustering algorithm, we computed the relaxed interaction energies of all

77 designs. We compared retaining the top 30 identified by the Quick OptMAVEn clustering

algorithm to retaining the top 30 on the sole basis of MILP energy (the OptMAVEn procedure).

We defined a true positive (TP) as a retained design with a relaxed energy in the top 30 and a false

64
positive (FP) as a retained design whose relaxed energy was not in the top 30. Likewise, a true

negative (TN) was a discarded design whose relaxed energy was not in the top 30, and a false

negative (FN) was a discarded design whose relaxed energy was in the top 30. We found that

Quick OptMAVEn yielded more TPs (15 vs 8) and TNs (32 vs 25) than did the OptMAVEn

procedure, as well as a higher Matthews Correlation Coefficient (MCC) [57] of 0.18 vs −0.20.

These results indicate that the clustering algorithm is superior to the method of OptMAVEn.

Figure 9: The confusion matrices for the OptMAVEn and Quick OptMAVEn procedures of selecting designs. Designs
among the top 30 in terms of relaxed energy fall into Post-Relaxation True: otherwise, False. Designs retained by OptMAVEn and
Quick OptMAVEn fall into OptMAVEn and Quick-OptMAVEn True, respectively: otherwise, False.

For the 5GZN epitope, 9 of the 77 antibodies (12%) had a value for 𝑅𝑅min more negative

than the interaction energy of the native 5GZN antibody, meaning that their affinities for Zika E

protein were predicted to be greater than that of an antibody isolated from a human patient (Table

13). Furthermore, the sum of the humanization scores [7] (a measure of immunogenicity) of the

light and heavy chains for four of these antibodies (11, 19, 39, and 1) were less than that of the

native human antibody in 5GZN, suggesting that these antibodies are unlikely to elicit an immune

response. However, these promising results await experimental validation.

65

Chapter 4

Future directions and conclusion

This thesis describes the development of Quick OptMAVEn, a new version of the

OptMAVEn [7] framework for de novo mAb design. During benchmarking, Quick OptMAVEn

took an average of 74% less time and used 84% less storage on disk than its predecessor. To the

best of my knowledge, OptMAVEn is the only published software capable of designing entire

variable domains (VH and VL) of mAbs de novo, i.e. without requiring a structure of an antigen-

antibody complex. The ability to design antibodies de novo could offer an enormous advantage in

time-critical scenarios, such as an outbreak of a disease. For example, during the recent Zika

epidemic, the structure of the Zika E protein [31] was published over six months before the

identification of the first human antibodies capable of neutralizing Zika [17].

OptMAVEn failed to design mAbs for Zika during this time interval due to excessive CPU

time and disk storage requirements. However, Quick OptMAVEn successfully designed 50 mAbs

for Zika E protein within 24 hours of real time (albeit not CPU time) on the ACI-b supercomputing

cluster at Pennsylvania State University. Nine designs are predicted to bind with greater affinity

than the natural antibody (PDB ID: 5GZN [16]) isolated from an infected human. Our collaborator,

Klaus Schulten (whose lab developed VMD [42] and NAMD [43]), had planned to validate our

designs experimentally but tragically passed away in 2016. Thus, an important future step is to

measure the affinities of our designs for Zika E protein. If our designs do bind Zika, comparing

predicted and experimentally-determined structures of their antigen-antibody complexes would

66
reveal if Quick OptMAVEn can not only design high-affinity antibodies but also predict atomistic

interactions between the antigen and antibodies.

Despite the significant improvements of Quick OptMAVEn over OptMAVEn, several

challenges remain for the future development of software based on OptMAVEn. Quick

OptMAVEn currently does not explicitly account for stability when designing mAbs, which is

considered or even optimized by other software (e.g. AbDesign [22] and Rosetta Antibody Design

[23]). Quick OptMAVEn does prevent clashes between the six MAPs parts (which would

destabilize the antibodies) by incorporating a pre-computed set of clashing parts into the MILP.

However, there is no means to predict—much less optimize—thermostability, propensity to

aggregate, or shelf life of the mAbs, which are all clinically relevant indicators of stability [19].

Potentially, the MILP could be modified to incorporate the interaction energies among the MAPs

parts—not just their interaction energies with the antigen—which could simultaneously optimize

stability and affinity. Alternatively, the MILP could remain unchanged, but designs below a certain

stability threshold would be filtered out after the MILP step.

Another limitation of Quick OptMAVEn is that it uses a substantially simplified energy

function to improve speed and throughput. During the MILP step, Quick OptMAVEn assumes that

the sum of the interaction energies of the MAPs parts with the antigen will accurately predict

experimental affinity. As Li et al. [7] state about OptMAVEn, this simplification ignores entropy,

which may be significant for antigens that are especially flexible. Moreover, it ignores the potential

to alleviate steric clashes during the structural relaxation following the assembly of the variable

domains. Because NAMDEnergy [43] does not support solvation, the interaction energies are

calculated using only electrostatic and van der Waals energy terms, which could overestimate the

interaction energies between charged residues and underestimate interactions between

67
hydrophobic residues. Generalized Born solvation energies are incorporated into the energy

calculations (using CHARMM [34]) on the assembled variable domains. We can see no

straightforward solutions to these limitations in the energy function without abandoning

NAMDEnergy, which is a primary contributor to the performance of Quick OptMAVEn. A

potential solution is to remove these limitations by re-implementing them in customized C++ code,

as was done in OptMAVEn. However, a major disadvantage to this approach is that it would

increase the difficulty of keeping Quick OptMAVEn up to date with changes in file formats or

energy functions.

Currently, Quick OptMAVEn is configured to run on only the ACI-b supercomputing

cluster at Pennsylvania State University. We could take two approaches to enable other labs to use

Quick OptMAVEn. One approach would be to share the source code on the website of the Maranas

lab (http://www.maranasgroup.com/) or on GitHub. However, Quick OptMAVEn depends on

CHARMM [34], which is available only through a commercial license, and so we cannot assume

that any lab would be able to run Quick OptMAVEn on its own computers. Thus, we plan to

establish a web server with which anyone may submit jobs to Quick OptMAVEn. These jobs will

be executed on the ACI-b cluster or another machine in our lab that is equipped with the necessary

software. It is our hope that Quick OptMAVEn, as well as any future versions of OptMAVEn, will

facilitate the computational design of therapeutic mAbs, which hold promise to treat a wide variety

of diseases that have so far remained intractable.

http://www.maranasgroup.com/

68

Chapter 5 Appendix A

Clustering procedure supplementary information

Table 11: The BLOSUM62 similarity matrix for amino acids. Amino acids are shown using standard one-letter
abbreviations.

A R N D C Q E G H I L K M F P S T W Y V

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

69

Figure 10: The embedded coordinates for each category of MAPs parts at each gap penalty 𝑔𝑔. Colors represent the number
of amino acids in each MAPs part. Coordinates for the J parts are independent of 𝑔𝑔 because the J parts do not have gaps.

70

Chapter 6 Appendix B

Inputs and outputs of Quick OptMAVEn

Table 12: The chains and epitopes of the 64 antigens used in benchmarking Quick OptMAVEn.

PDB Antigen
Chain

Heavy
Chain

Light
Chain

Epitope

1NSN S H L 57, 60, 61, 64, 68, 70, 93, 95, 96, 97, 98, 105,
106, 120, 121, 123, 124, 127

2IGF P H L 70, 71, 72, 73, 74, 75
2R0W Q H L 3, 4, 5, 6, 7, 8
2VXQ A H L 32, 34, 39, 40, 41, 43, 67, 68, 69, 74, 75, 76, 77,

78, 79, 80
2ZUQ A C B 95, 96, 97, 98, 99, 100, 101, 132, 133, 134, 141
3BKY P H L 169, 170, 171, 172, 173, 174, 175
3FFD P A B 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31
3G5V C B A 288, 289, 293, 296, 297, 298, 299, 300, 301, 302
3L5W I H L 14, 15, 101, 104, 105, 107, 108, 109
3MLS P H L 3, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18
1ACY P H L 316, 319, 320, 321, 322, 323, 324
1CE1 P H L 0, 1, 2, 3, 4, 5, 6, 7
1CFT C B A 1, 2, 3, 4, 5
1DZB X A A 20, 21, 23, 62, 63, 73, 75, 96, 97, 98, 100, 101,

102, 103, 104, 106, 112, 116
1EGJ A H L 362, 363, 364, 365, 366, 367, 395, 416, 417,

418, 419, 421
1F90 E H L 1, 2, 3, 4, 5, 6, 7, 8
1FPT P H L 96, 97, 98, 99, 100, 101, 102, 103
1HH6 C B A 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1I8I C B A 502, 503, 505, 506, 507, 508, 509
1JHL A H L 21, 22, 23, 102, 103, 104, 106, 111, 112, 113,

116, 117, 118, 119, 121
1JRH I H L 47, 49, 50, 51, 52, 53, 54, 55, 56, 76, 78, 79, 80,

82, 84, 98, 99
1KC5 P H L 1, 2, 3, 4, 5, 6, 7
1KIQ C B A 18, 19, 22, 23, 24, 25, 27, 102, 103, 116, 117,

118, 119, 120, 121, 124, 125
1MLC E B A 41, 43, 45, 46, 47, 48, 49, 50, 51, 53, 66, 67, 68,

70, 79, 81, 84

71
1N64 P H L 26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
1NAK P H L 313, 314, 315, 316, 319, 320, 321, 322
1OBE P H L 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1ORS C B A 111, 112, 113, 114, 115, 116, 117, 119, 120, 123
1PZ5 C B A 1, 2, 3, 4, 5, 6, 7, 8
1QNZ P H L 233, 234, 235, 236, 237, 238, 239, 240, 241,

242, 243, 244, 245, 248
1SM3 P H L 2, 3, 4, 5, 6, 7, 8, 9, 10
1TQB A B C 127, 128, 158, 159, 185, 188, 189, 190, 191,

192, 193, 194, 195, 196, 197, 198, 199
1V7M V H L 57, 58, 61, 68, 71, 75, 98, 101, 102, 105, 106,

109, 110, 111, 112, 113, 114
1XGY P H L 1, 2, 3, 4, 5, 6
1ZA3 R H L 25, 26, 27, 34, 36, 37, 38, 53, 54, 56, 57, 58, 59,

61, 62
2A6I P B A 3, 4, 5, 6, 7, 8, 9, 10
2BDN A H L 28, 30, 31, 32, 34, 37, 38, 39, 40, 41, 55, 56, 61,

64, 65, 68, 69
2DQJ Y H L 14, 15, 16, 19, 20, 21, 62, 63, 73, 74, 75, 77, 93,

96, 97, 98, 100, 101, 102, 103
2FJH V H L 16, 17, 18, 19, 21, 22, 23, 25, 61, 66, 101, 104
2H1P P H L 602, 603, 604, 605, 606, 608, 609, 610, 611, 612
2HH0 P H L 2, 3, 4, 5, 6, 7, 8, 9, 10
2HRP P H L 36, 37, 38, 39, 40, 41, 42, 43, 44, 45
2IFF Y H L 41, 43, 45, 46, 47, 48, 49, 51, 53, 67, 68, 69, 70,

81, 84
2JEL P H L 1, 2, 3, 4, 34, 36, 41, 64, 66, 67, 68, 70, 71, 72,

75, 76
2OR9 P H L 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2QHR P H L 405, 406, 407, 408, 409, 410, 411, 412, 413, 414
2R29 A H L 306, 307, 308, 309, 310, 311, 312, 325, 362,

363, 364, 387, 388, 389, 390, 391
3AB0 A B C 102, 104, 113, 119, 120, 121, 122, 123, 125,

154, 156, 157, 158, 186, 188, 190, 192
3BDY V H L 48, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93
3CVH C H L 4, 5, 6, 7, 8
3D85 C B A 82, 86, 87, 88, 91, 92, 93, 94, 95, 106, 110, 133,

134, 135, 136, 137, 139, 140
3E8U P H L 4, 5, 6, 7, 8, 9, 10, 11, 13
3ETB J H L 649, 651, 652, 653, 654, 655, 657, 680, 681,

682, 683, 684, 685, 686, 687, 716, 718
3F58 P H L 315, 316, 319, 320, 321, 322, 323, 324, 10, 11

72
3G6D A H L 5, 6, 14, 18, 19, 21, 22, 23, 24, 97, 100, 101, 104,

105, 107, 108, 109
3GHB P H L 306, 307, 308, 309, 312, 313, 314, 315
3GHE P H L 304, 305, 306, 307, 308, 309, 312, 313, 314,

315, 316
3HR5 R H L 7, 8, 9, 10, 11, 12, 13, 14, 15
3KS0 B H L 30, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74
3MLX P H L 305, 306, 307, 308, 309, 312, 313, 314, 315,

316, 317, 318, 319
3NFP I H L 1, 2, 3, 4, 5, 6, 25, 27, 43, 45, 116, 118, 120, 149,

152, 153, 154, 155
3P30 A H L 640, 643, 647, 650, 651, 653, 654, 657, 658, 661
3QG6 C H L 3, 4, 5, 6, 7, 8
3RKD A H L 476, 477, 479, 484, 485, 496, 497, 498, 499,

508, 510, 512, 513, 514, 515, 534, 572, 573,
574, 575, 576, 577, 578, 592

Table 13: The nine designs whose values of 𝑅𝑅min (in kcal/mol) were more negative than that of the native 5GZN antibody
(shown below). Design gives the number Quick OptMAVEn assigned to each design; HS gives the humanization score [7] of each
sequence.

Design 𝑬𝑬𝐦𝐦𝐦𝐦𝐞𝐞 Chain Sequence HS
31 -1244.8 H QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGK

GLEWIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAA
DTAVYYCTWFAYWGRGTLVTVSS

19

L QAGLTQPPSVSKGLRQTATLTCTGNSNNVGNQGAAWPEQQGP
PKLLSYRNNNRPSGISERLSASRSGNTASLTITGLQPEDEADYYC
QSYDSSLSAVFGGGTQLTVL

38

28 -1031.5 H EVQLVESGGGLVQPGGSLRLSCSASGFTFSSYAMWVRQAPGKGL
EYVSAISSNGGSTYYADSVKGRFTISRDNSKNTLYVQMSSLRAE
DTAVYYCVSYGYGGDRFSYWGQGTLVTVSS

46

L DIQMTQSPSSLSASVGDRVTITCRASQGISNSLAWYQQKPGKAP
KLLLYAASRLESGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQS
RELPPWTFGQGTKLEIK

29

11 -1017.2 H EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGK
GLEWMGIIYPGDSDTRYSPSFQGQVTISADKPISTAYLQWSSLK
ASDTAMYYCARGVDYYAMDYWGKGTTVTVSS

17

L EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAP
RLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCFQ
GSVPTFGPGTKVDIK

25

19 -991.5 H QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGK
GLEWIGEIISGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAAD
TAVYYCARDRSYYFDYWGKGTTVTVSS

24

L EIVLTQSPATLSLSPGERATLSCGASQSVSSSYLAWYQQKPGLAP
RLLIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQN
DSYPLTFGQGTRLEIK

16

73
39 -973.6 H QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMWVRQAPGKG

LEWMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSL
RSEDTAVYYCARYFDYWGKGTTVTVSS

25

L DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAP
KRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQN
DSYPLTFGPGTKVDIK

16

0 -963.3 H EVQLVESGGGVVRPGGSLRLSCAASGFTFDDYGMSWVRQAPGK
GLEWVSGINWNGGSTGYADSVKGRFTISRDNAKNSLYLQMNSL
RAEDTALYCTRSDGRNDMDSWGQGTTVTVSS

39

L EIVLTQSPATLSLSPGERATLSCRASQGVSSYLAWYQQKPGQAP
RLLIYDASNRATGIPARFSGSGPGTDFTLTISSLEPEDFAVYYCQ
QSKEVPLTFGPGTKVDIK

23

1 -941.6 H EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMWVRQAPGKG
LEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRA
EDTALYYCARDRSYYFDYWGQGTLVTVSS

18

L EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP
RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQ
NEYPWTFGPGTKVDIK

21

2 -898.2 H QVQLQESGPGLVKPSDTLSLTCAVSGYSISRSSNWWGWIRQPPG
KGLEWIGYIYYSGSTYYNPSLKSRVTMSVDTSKNQFSLKLSSVTA
VDTGVYYCAKVKFYDPAPNDYWGKGTTVTVSS

67

L EIVMMQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQA
PRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQ
QYWSTWTFGPGTKVDIK

13

16 -873.9 H EVQLVESRGVLVQPGGSLRLSCAASGFTVSSNEMSWVRQAPGK
GLEWVSSISGSGGSTYYADSRKGRFTISRDNSKNTLLQMNSLRA
EDTAVYYCARGDYYAMDYWGQGTLVTVSS

51

L DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAP
KLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQ
GQSYPFTFGPGTKVDIK

15

Native -856.4 H EVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGK
GLEWVAVISYDGSNKYYADSVKGRFTISRDNSKSTLYLQMNNL
RAEDTAVYYCARDHLGWSSIWSAPESFLDYWGQGTLVTVSS

52

L QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTA
PKLLIYDSNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYC
GTWDSSLSVWVFGGGTKLTVL

4

74

Chapter 7 Bibliography

[1] D. M. Ecker, S. D. Jones and H. L. Levine, "The therapeutic monoclonal

antibody market," mAbs, vol. 7, no. 1, pp. 9-14, 2014.

[2] A. Mahmuda, F. Bande, K. J. K. Al-Zihiry, N. Abdulhaleem, R. A. Majid, R.

A. Hamat, W. O. Abdullah and Z. Unyah, "Monoclonal antibodies: A review of

therapeutic applications and future prospects," Tropical Journal of Pharmaceutical

Research, vol. 16, no. 3, pp. 713-722, 2017.

[3] M. H. Shepard, G. L. Phillips, C. D. Thanos and M. Feldmann,

"Developments in therapy with monoclonal antibodies and related proteins," Clinical

Medicine, vol. 17, no. 3, pp. 220-232, 2017.

[4] M. Leenaars and C. F. M. Hendriksen, "Critical Steps in the Production of

Polyclonal and Monoclonal Antibodies: Evaluation and Recommendations," ILAR

Journal, vol. 46, no. 3, pp. 269-279, 2005.

[5] P. J. Klasse, "Neutralization of Virus Infectivity by Antibodies: Old Problems

in New Perspectives," Advances in Biology, vol. 2014, pp. Article ID 157895, 24

pages, 2014.

[6] R. J. Pantazes and C. D. Maranas, "OptCDR: a general computational method

for the design of antibody complementarity determining regions for targeted epitope

75
binding," Protein Engineering, Design & Selection, vol. 23, no. 11, pp. 849-858,

2010.

[7] T. Li, R. J. Pantazes and C. D. Maranas, "OptMAVEn - A New Framework

for the de novo Design of Antibody Variable Region Models Targeting Specific

Antigen Epitopes," PLOS One, vol. 9, no. 8, p. e105954, 2014.

[8] R. J. Pantazes and C. D. Maranas, "MAPs: a database of modular antibody

parts for predicting tertiary structures and designing affinity matured antibodies,"

BMC Bioinformatics, vol. 14, no. 168, p. n.p., 2013.

[9] S. Tonegawa, "Somatic generation of antibody diversity," Nature, vol. 302,

no. 5909, pp. 575-581, 1983.

[10] A. F. U. H. Saeed, R. Wang, S. Ling and S. Wang, "Antibody Engineering

for Pursuing a Healthier Future," Frontiers in Microbiology, vol. 8, p. 495, 2017.

[11] T. W. LeBien and T. F. Tedder, "B lymphocytes: how they develop and

function," Blood, vol. 112, no. 5, pp. 1570-1580, 2008.

[12] M.-P. Lefranc, "IMGT Unique Numbering for the Variable (V), Constant (C),

and Groove (G) Domains of IG, TR, MH, IgSF, and MhSF," Cold Spring Harbor

Protocols, vol. 2011, no. 6, p. 633–642, 2011.

[13] J. Foote and H. N. Eisen, "Kinetic and affinity limits on antibodies produced

during immune responses," Proceedings of the National Academy of Sciences, vol.

92, no. 5, pp. 1254-1256, 1995.

[14] G. D. Victoria and M. C. Nussenzweig, "Germinal Centers," Annual Review

of Immunology, vol. 30, pp. 429-457, 2012.

76
[15] G. Teng and F. N. Papavasiliou, "Immunoglobulin Somatic Hypermutation,"

Annual Reviews of Genetics, vol. 41, pp. 107-120, 2007.

[16] Q. Wang, H. Yang, X. Liu, L. Dai, T. Ma, J. Qi, G. Wong, R. Peng, S. Liu, J.

Li, S. Li, J. Song, J. Liu, J. He, H. Yuan, Y. Xiong, Y. Liao, J. Li, J. Yang, Z. Tong,

B. Griffin, Y. Bi, M. Liang, X. Xu, C. Qin, G. Cheng, X. Zhang, P. Wang, X. Qiu,

G. Kobinger, Y. Shi, J. Yan, and G. F. Gao, "Molecular determinants of human

neutralizing antibodies isolated from a patient infected with Zika virus," Science

Translational Medicine, vol. 8, no. 369, p. 369ra179, 2016.

[17] G. Sapparapu, E. Fernandez, N. Kose, B. Cao, J. Fox, R. Bombardi, H. Zhao,

C. Nelson, A. Bryan, T. Barnes, E. Davidson, I. Mysorekar, D. Fremont, B. Doranz,

M. Diamond and J. Crowe, "Neutralizing human antibodies prevent Zika virus

replication and fetal disease in mice," Nature, vol. 540, no. 7633, pp. 443-447, 2016.

[18] A. Wec, A. Herbert, C. Murin, E. Nyakatura, D. Abelson, J. Fels, S. He, R.

James, L. V. M. de, W. Zhu, R. Bakken, E. Goodwin, H. Turner, R. Jangra, L. Zeitlin,

X. Qiu, J. Lai, L. Walker, A. Ward, J. Dye, K. Chandran and Z. Bornholdt,

"Antibodies from a Human Survivor Define Sites of Vulnerability for Broad

Protection against Ebolaviruses," Cell, vol. 169, no. 5, pp. 878-890, 2017.

[19] S. S. W. X. R. B. G. D. Kumar S, "Coupling of Aggregation and

Immunogenicity in Biotherapeutics: T- and B-Cell Immune Epitopes May Contain

Aggregation-Prone Regions," Pharmaceutical Research, vol. 28, no. 5, pp. 949-961,

2011.

77
[20] A. Murphy, L. Macdonald, S. Stevens, M. Karow, A. Dore, K. Pobursky, T.

Huang, W. Poueymirou, L. Esau, M. Meola, W. Mikulka, P. Krueger, J. Fairhurst, D.

Valenzuela, N. Papadopoulos and G. Yancopoulos, "Mice with megabase

humanization of their immunoglobulin genes generate antibodies as efficiently as

normal mice," Proceedings of the National Academy of Sciences, vol. 111, no. 14,

pp. 5153-5158, 2014.

[21] N. Chennamsetty, V. Voynov, V. Kayser, B. Helk and B. L. Trout, "Design

of therapeutic proteins with enhanced stability," Proceedings of the National

Academy of Sciences, vol. 106, no. 29, pp. 11937-11942, 2009.

[22] G. D. Lapidoth, D. Baran, G. M. Pszolla, C. Norn, A. Alon, M. D. Tyka and

S. J. Fleishman, "AbDesign: an algorithm for combinatorial backbone design guided

by natural conformations and sequences," Proteins, vol. 83, no. 8, pp. 1385-1406,

2015.

[23] J. Adolf-Bryfogle, O. Kalyuzhniy, M. Kubitz, B. D. Weitzner, X. Hu, Y.

Adachi, W. R. Schief and R. L. J. Dunbrack, "Rosetta Antibody Design (RAbD): A

General Framework for Computational Antibody Design," bioRxiv, no. 183350, p.

doi: https://doi.org/10.1101/183350 , 2017.

[24] B. S. Der, C. Kluwe, A. E. Miklos, R. Jacak, S. Lyskov, J. J. Gray, G.

Georgiou, A. D. Ellington and B. Kuhlman, "Alternative Computational Protocols

for Supercharging Protein Surfaces for Reversible Unfolding and Retention of

Stability," PLoS One, vol. 8, no. 5, p. e64363, 2013.

78
[25] A. Miklos, C. Kluwe, B. Der, S. Pai, A. Sircar, R. Hughes, M. Berrondo, J.

Xu, V. Codrea, P. Buckley, A. Calm, H. Welsh, C. Warner, M. Zacharko, J. Carney,

J. Gray, G. Georgiou, B. Kuhlman and A. Ellington, "Structure-based design of

supercharged, highly thermoresistant antibodies," Chemical Biology, vol. 19, no. 4,

pp. 449-455, 2012.

[26] V. Pulito, V. A. Roberts, J. R. Adair, A. Rothermel, e. M. Collins, S. S. Varga,

C. Martocello, M. Bodmer, L. K. Jolliffe and R. A. Zivin, "Humanization and

molecular modeling of the anti-CD4 monoclonal antibody, OKT4A," The Journal of

Immunology, vol. 156, no. 8, pp. 2840-2850, 1996.

[27] G. Lazar, J. Desjarlais, J. Jacinto, S. Karki and P. Hammond, "A molecular

immunology approach to antibody humanization and functional optimization,"

Molecular Immunology, vol. 44, no. 8, pp. 1986-1998, 2007.

[28] D. Kuroda, H. Shirai, M. P. Jacobson and H. Nakamura, "Computer-aided

antibody design," Protein Engineering, Design & Selection, vol. 25, no. 10, pp. 507-

521, 2012.

[29] V. G. Poosarla, T. Li, B. C. Goh, K. Schulten, T. K. Wood and C. D. Maranas,

"Computational De Novo Design of Antibodies Binding to a Peptide With High

Affinity," Biotechnology and Bioengineering, vol. 114, no. 6, pp. 1331-1342, 2017.

[30] K. C. Entzminger, J.-m. Hyun, R. J. Pantazes, A. C. Patterson-Orazem, A. N.

Qerqez, Z. P. Frye, R. A. Hughes, A. D. Ellington, R. L. Lieberman, C. D. Maranas

and J. A. Maynard, "De novo design of antibody complementarity determining

79
regions binding a FLAG tetra-peptide," Scientific Reports, vol. 7, no. 1, p. 10295,

2017.

[31] D. Sirohi, Z. Chen, L. Sun, T. Klose, T. C. Pierson, M. G. Rossmann and R.

J. Kuhn, "The 3.8 Å resolution cryo-EM structure of Zika virus," Science, vol. 352,

no. 6284, pp. 467-470, 2016.

[32] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

I. N. Shindyalov and P. E. Bourne, "The Protein Data Bank," Nucleic Acids Research,

vol. 28, no. 1, pp. 235-242, 2000.

[33] R. E. Soria-Guerra, R. Nieto-Gomez, D. O. Govea-Alonso and S. Rosales-

Mendoza, "An overview of bioinformatics tools for epitope prediction: Implications

on vaccine development," Journal of Biomedical Informatics, vol. 53, pp. 405-414,

2015.

[34] B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella, B.

Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui,

A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T.

Lazaridis, J. Ma and Ovchi, "CHARMM: The Biomolecular Simulation Program,"

Journal of Computational Chemistry, vol. 30, no. 10, pp. 1545-1614, 2009.

[35] M. Blech, D. Peter, P. Fischer, M. M. T. Bauer, M. Hafner, M. Zeeb and H.

Nar, "One Target—Two Different Binding Modes: Structural Insights into

Gevokizumab and Canakinumab Interactions to Interleukin-1β," Journal of

Molecular Biology, vol. 425, no. 1, pp. 94-111, 2013.

[36] Schrödinger, LLC, "The PyMOL Molecular Graphics System, Version 1.8".

80
[37] M. C. Saraf, G. L. Moore, N. M. Goodey, V. Y. Cao, S. J. Benkovic and C.

D. Maranas, "IPRO: An Iterative Computational Protein Library Redesign and

Optimization Procedure," Biophysical Journal, vol. 90, no. 11, pp. 4167-4180, 2006.

[38] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller,

"Equation of State Calculations by Fast Computing Machines," Journal of Chemical

Physics, vol. 21, no. 6, pp. 1087-1092, 1953.

[39] S. Tapryal, V. Gaur, K. J. Kaur and D. M. Salunke, "Structural Evaluation of

a Mimicry-Recognizing Paratope: Plasticity in Antigen–Antibody Interactions

Manifests in Molecular Mimicry," The Journal of Immunology, vol. 191, no. 1, pp.

456-463, 2013.

[40] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I.

Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski and M. J. L. de Hoon, "Biopython:

freely available Python tools for computational molecular biology and

bioinformatics," Bioinformatics, vol. 25, no. 11, pp. 1422-1423, 2009.

[41] P. R. Evans, "Rotations and rotation matrices," Acta Crystallographica

Section D, vol. 57, no. 10, pp. 1355-1359, 2001.

[42] W. Humphrey, A. Dalke and K. Schulten, "VMD: Visual Molecular

Dynamics," Journal of Molecular Graphics, vol. 14, no. 1, pp. 33-38, 1996.

[43] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C.

Chipot, R. D. Skeel, L. Kale and K. Schulten, "Scalable molecular dynamics with

NAMD," Journal of Computational Chemistry, vol. 26, no. 16, pp. 1781-1802, 2005.

81
[44] M. J. Grisewood, N. P. Gifford, R. J. Pantazes, Y. Li, P. C. Cirino, M. C.

Janik and C. D. Maranas, "OptZyme: Computational Enzyme Redesign Using

Transition State Analogues," PLoS One, vol. 8, no. 10, p. e75358, 2013.

[45] T. F. Havel, I. D. Kuntz and G. M. Crippen, "The Theory and Practice of

Distance Geometry," Bulletin of Mathematical Biology, vol. 45, no. 5, pp. 665-720,

1983.

[46] M. Li, X. Chen, X. Li, B. Ma and P. M. B. Vitányi, "The Similarity Metric,"

IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3250-3264, 2004.

[47] S. Henikoff and J. G. Henikoff, "Amino acid substitution matrices from

protein blocks," Proceedings of the National Academy of Sciences, vol. 89, no. 22,

pp. 10915-10919, 1992.

[48] S. R. Eddy, "Where did the BLOSUM62 alignment score matrix come

from?," Nature Biotechnology, vol. 22, no. 8, pp. 1035-1036, 2004.

[49] A. Stojmirović, "Quasi-metric spaces with measure," Topology Proceedings,

vol. 28, no. 2, pp. 655-671, 2004.

[50] A. Muncherino, L. Liberti and C. Lavor, "MD-jeep: An Implementation of a

Branch and Prune Algorithm for Distance Geometry Problems," in Mathematical

Software - ICMS 2010, Berlin, 2010.

[51] C. Schwieters, J. Kuszewski and G. Clore, "Using Xplor-NIH for NMR

molecular structure determination," Progress in Nuclear Magnetic Resonance

Spectroscopy, vol. 48, pp. 47-62, 2006.

82
[52] J. W. Ponder, TINKER: Software tools for molecular design, St. Louis, MO:

Washington University School of Medicine, 2004.

[53] J. J. Moré and Z. Wu, "Distance Geometry Optimization for Protein

Structures," Journal of Global Optimization, vol. 15, no. 3, pp. 219-234, 1999.

[54] J. Lever, M. Krzywinski and N. Altman, "Principal Component Analysis,"

Nature Methods, vol. 14, no. 7, pp. 641-642, 2017.

[55] L. van der Maaten and G. Hinton, "Visualizing Data using t-SNE," Journal

of Machine Learning Research, vol. 9, pp. 2579-2605, 2008.

[56] R. Marimont and M. Shapiro, "Nearest Neighbour Searches and the Curse of

Dimensionality," IMA Journal of Applied Mathematics, vol. 24, no. 1, pp. 59-70,

1979.

[57] D. M. W. Powers, "Evaluation: From Precision, Recall and F-Factor to ROC,

Informedness, Markedness & Correlation," Journal of Machine Learning

Technologies, vol. 2, no. 1, pp. 37-63, 2011.

Academic Vita

Matthew F. Allan

EDUCATION
BS in Biochemistry and Molecular Biology, Minor in Statistics August 2014 – May 2018
The Pennsylvania State University University Park, PA
Schreyer Honors College

RESEARCH EXPERIENCE
Undergraduate Research Assistant Academic Year, June 2015 – present
Pennsylvania State University University Park, PA
Department of Chemical Engineering
Laboratory of Dr. Costas Maranas

• Explained structure-function relationships for an E. coli thioesterase enzyme
• Developing and benchmarking a new version of OptMAVEn antibody design software
• Designing and testing therapeutic antibodies for Zika using new version of OptMAVEn

DAAD RISE Research Scholar May – August 2016
Forschungszentrum Jülich Jülich, Germany
Institute of Complex Systems 6: Structural Biochemistry
Laboratory of Dr. Birgit Strodel

• Created a computational method to engineer product selectivity of enzymes
• Designed 38 variants of a cytochrome P450 enzyme to demonstrate efficacy of method

PROFESSIONAL EXPERIENCE
Quality Control Summer Intern May – August 2017
Regeneron Pharmaceuticals Rensselaer, NY
Quality Control Analytical Sciences

• Researched factors affecting the robustness of a microchip capillary electrophoresis assay
• Quantified relationships between factor levels and assay results
• Performed Design of Experiment and statistical analysis using JMP software

TEACHING EXPERIENCE
Learning Assistant for General Biochemistry I (BMB 401) August – December 2017
Pennsylvania State University University Park, PA

• Assisted ~170 students with learning structures/functions of biological macromolecules
and using software including PyMOL

• Organized workshop outside of class to help students learn structures of amino acids

Learning Assistant for Introduction to Research (SC 297) August – December 2016
Pennsylvania State University University Park, PA

• Mentored 10 students to help them identify and apply to research opportunities

PAPERS CO-AUTHORED
Petrović, D., Ansgar Bokel, Matthew Allan, Vlada B. Urlacher, and Birgit Strodel (2018), “A

Simulation Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic
Oxidation,” J. Chem. Inf. Model., Just Accepted Manuscript.

Grisewood, M., Néstor Hernández-Lozada, James Thoden, Nathanael Gifford, Daniel Mendez-
Perez, Haley Schoenberger, Matthew Allan, Martha Floy, Rung-Yi Lai, Hazel
Holden, Brian Pfleger, and Costas Maranas (2017), “Computational Redesign of Acyl-ACP
Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids,” ACS
Catal., Vol. 7, Issue 6, 3837-3849.

PRESENTATIONS
“Robust Parameter Design of a Microchip Capillary Electrophoresis Assay,” Regeneron

Pharmaceuticals, Rensselaer NY, August 2017
“Engineering Product Selectivity into a Cytochrome P450 Enzyme,” The Pennsylvania State

University, University Park PA, October 2016

SKILLS
Programming Languages: Bash, C++, Python, R
Software: Burrows-Wheeler Aligner, CHARMM, Empower, Git, GROMACS, JMP, NAMD,

PyMOL, SAMtools, VMD
Operating Systems: Linux (Ubuntu), MacOS X, Windows
Laboratory Skills: agarose gel electrophoresis, enzyme activity assays, microchip capillary

electrophoresis, molecular cloning, PCR, SDS PAGE, small-scale protein purification

HONORS AND AWARDS
Student Marshal of Biochemistry and Molecular Biology, Penn State University 2018
Ronald Venezie Scholarship, Penn State University 2017
Evan Pugh Senior Scholar Award, Penn State University 2017
Morrow Family Endowment Prize, Penn State University 2016
DAAD RISE Scholarship, German Academic Exchange Service (DAAD) 2016
President Sparks Award, Penn State University 2016
President’s Freshman Award, Penn State University 2015
Braddock Scholarship, Penn State University 2014
Academic Excellence Scholarship, Penn State University 2014
National AP Scholar 2014
National Merit Finalist 2014

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	Chapter 1 Antibodies as therapeutics
	Background on therapeutic monoclonal antibodies
	Antibody structure and function
	Generation of antibodies by the immune system
	V-(D)-J recombination
	Affinity maturation

	Engineering therapeutic antibodies
	Laboratory-based methods of engineering mAbs
	Computational methods of engineering mAbs

	Thesis objectives

	Chapter 2 OptMAVEn
	Background of OptMAVEn
	Workflow of OptMAVEn
	Preparation of input files
	Initial antigen positioning
	Grid search
	Energy calculations
	Germline design
	Computational affinity maturation
	Selection of residues to mutate
	Backbone perturbation
	Humanized rotamer selection
	Antigen redocking
	Energy calculation

	Output and validation of OptMAVEn

	Chapter 3 Quick OptMAVEn
	Motivation for Quick OptMAVEn
	Use of separate tools increases risk of user error
	Minimization of epitope 𝒛 coordinates is inefficient and imprecise
	A clash-permissive grid search increases cost of subsequent steps
	Representation of antigen positions as PDB files increases disk storage requirement
	Design of multiple antibodies for each antigen position does not increase design quality
	Absence of a method to ensure diversity among designs

	Development of Quick OptMAVEn
	New coherent directory structure
	Robust input-output methods
	Improved user interface
	Initial antigen positioning
	Definition of antigen 𝒛 angle
	Grid search
	Energy calculations
	Germline design
	Clustering of designs
	Creating coordinate vectors for the MAPs parts
	k-means clustering
	Selection of clustered designs

	Benchmarking of Quick OptMAVEn
	Direct comparison of OptMAVEn and Quick OptMAVEn on ten antigens
	Test of Quick OptMAVEn on 54 additional antigens

	Design of 77 antibodies for Zika E protein, including 9 predicted to be superior to native

	Chapter 4 Future directions and conclusion
	Chapter 5 Appendix A Clustering procedure supplementary information
	Chapter 6 Appendix B Inputs and outputs of Quick OptMAVEn
	Chapter 7 Bibliography

