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ABSTRACT 
 

The vapor growth of ice crystals has long been misrepresented in cloud and climate 

models.  Ice crystals growing from water vapor are limited by both the diffusion of vapor 

to the particle and the kinetics of surface attachment, the latter of which model 

parameterizations typically ignore.  Model parameterizations’ incompleteness is in part due 

to an incomplete understanding of surface attachment kinetics, which are often represented 

by a growth efficiency known as the deposition coefficient.  This work seeks to improve 

understanding of the deposition coefficient by studying mass growth from vapor of ten ice 

particles formed from frozen pure water in a levitation diffusion chamber at temperatures 

between -43.4 and -40.2 °C.  The data are analyzed using a diffusion-kinetics model to 

predict the particles’ deposition coefficients, and it is found that the model cannot replicate 

some of the growth rates in the data timeseries.  Thus, two new analysis methods are 

developed to eliminate the deposition coefficient’s dependence on the ice supersaturation, 

which is uncertain.  Estimates of the deposition coefficients using the new analysis methods 

for five ice particles are in the range of 0.018 – 0.066, 0.008 – 0.02, 0.001, 0.048 – 0.5, and 

0.006 – 0.014.  These particles can be modeled by a classical, faceted growth method.  The 

remaining ice particles demonstrate growth features linked to ice crystal surface transitions.  

These particles’ growth timeseries cannot be modeled with a classical growth method, 

instead requiring variable growth mechanisms in time.  Surface transitions cause the 

deposition coefficient to change rapidly, and they may be responsible for discrepancies in 

past deposition coefficient measurements. 
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Chapter 1  
 

Introduction and Background 

Understanding the growth of ice crystals from vapor is imperative to understanding the 

development of cold clouds.  Cold clouds form in regions of the atmosphere where the temperature 

is below the melting point of water (0 °C).  Cold clouds play an integral role in producing 

precipitation and determining Earth’s radiative budget (Chen and Lamb, 1994).  Since cold clouds 

affect both the environment and everyday life, we need to understand how their constituent ice 

crystals initially form and grow.  Despite their importance, the details of ice particle growth are 

not well understood. 

Ice particle growth is complex; though the particles may share similar beginnings, such as 

frozen water droplets, they grow into a wide array of shapes and sizes.  Further consideration for 

growth from vapor must be made for ice clouds, because unlike liquid-phase clouds, vapor growth 

alone is enough to produce precipitation-size particles (Pruppacher and Klett, 1997).  Thus, vapor-

grown ice is directly linked to all other ice microphysical processes, including nucleation, 

aggregation, riming, and precipitation formation.  The underlying structure of ice follows a 

hexagonal prism form at atmospheric temperatures and pressures, and single crystals have two 

basal (hexagonal) facets and six prism (rectangular) facets, ranging in shape from thin needles to 

flat dendrites.  It has been well established that the environment’s temperature and supersaturation 

dictate the crystal habit, at least at temperatures T ≥ -20 °C (Figure 1.1 from Libbrecht, 2003).  

However, little is known about the physical mechanisms responsible for this habit diagram.  The 

habit diagram even lacks any phenomenological explanation (Libbrecht, 2005). 
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Laboratory studies have been critical for developing an empirical and theoretical 

understanding of ice crystal growth.  They have also simplified mathematical frameworks for 

estimating rates of axis and mass growth.  Although a relatively large number of laboratory studies 

exist for T ≥ -20 °C, which is comparatively warm for a cold cloud, few laboratory measurements 

of early ice vapor growth exist for temperatures below -30 °C, and almost none exist for T < -40 

°C.  It is perhaps not surprising that habit diagrams conspicuously end at about -40 °C (Figure 1.1 

and Lamb and Verlinde, 2011).  This is worth noting because high cirrus clouds generally have T 

≤ -35 °C where water can homogeneously freeze.  Consequently, our knowledge of ice vapor 

growth is most lacking in the temperature range where ice is particularly common. 

1.1 Theories and Measurements of Vapor-grown Ice 

A few models have been developed in an attempt to describe ice particle growth from 

vapor.  The classic capacitance growth model determines the ice particle’s growth from the 

diffusion of water vapor to the particle surface for particles of various shapes (Pruppacher and 

Klett, 1997).  This process is a function of the temperature, pressure, partial pressure of water 

vapor, the particle’s size, and its shape.  The model accounts for the diffusion of gaseous vapor 

molecules through “dry” air molecules to reach and deposit onto the particle surface.  However, 

this model has two highly fallacious assumptions (Lamb and Verlinde, 2011).  First, it assumes 

that the ice particle’s surface always is rough on the nanometer scale, such that all of the impinging 

vapor molecules are incorporated into the bulk particle structure.  Second, growth based purely on 

diffusion, which is known as diffusion-limited growth, cannot change the particle’s aspect ratio 

(Nelson, 1994, pg 83).  Models have approximate methods for dealing with this fundamental 
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problem, such as distributing mass over the crystal surface based on laboratory-determined ratios 

of deposition coefficients (Chen and Lamb, 1994; Harrington et al., 2013) or using mass-

dimensional relationships (e.g., Walko et al., 1995; Woods et al., 2008).  At liquid saturation, the 

Chen and Lamb (1994) deposition coefficient ratio method seems to work accurately, but it often 

fails at lower ice supersaturations (Zhang and Harrington, 2014).  This clearly indicates a general 

flaw in the framework of the capacitance model, as ice crystals develop into hexagonal prisms and 

other shapes.  As a result, the capacitance model predicts growth that is inconsistent with what is 

seen in most laboratory measurements and the atmosphere (e.g., Bailey and Hallett, 2009; Zhang 

and Harrington, 2014). 

The main flaw with the capacitance growth model is that it assumes a constant vapor 

density over the surface and, therefore, explicitly ignores surface attachment kinetics, which are 

illustrated in Figure 1.2.  For the vapor density to be constant over the ice crystal, the surface must 

be rough on a molecular scale.  This typically only occurs when the crystal’s temperature exceeds 

the roughening transition temperature, which is thought to be about -1.3 °C on the prism facet 

(Elbaum, 1991).  When ice is not molecularly rough, vapor molecules that have diffused to the ice 

surface must first adsorb to the surface.  At this point, the molecules diffuse across the ice surface 

until they either desorb from the surface or encounter ledges, or “kink sites”, into which they can 

incorporate as a part of the ice lattice.  As a result, the ice particle’s surface structure influences 

the ratio of the number of vapor molecules incorporated into the ice particle to the number of vapor 

molecules impinging on the particle’s surface.  This ratio, known as the “deposition coefficient”, 

α, can be interpreted as a growth efficiency ranging from zero to unity.  An ice particle with an α 

of unity across the entire surface, which would be either a “rough” surface or one that has a high 

density of surface ledges, follows diffusion-limited growth.  However, if α is very low, then the 
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particle’s growth is determined primarily by surface attachment kinetics, and it is referred to as 

“kinetics-limited” growth.  Most particles have growth rates between these two extrema, which 

are therefore identified to have “diffusion-kinetics limited” growth. 

Several theories and models have been developed in the past to expressly calculate 

diffusion-kinetics limited ice particle growth (Nelson and Baker, 1996; Wood et al., 2001, Zhang 

and Harrington, 2014).  These models solve some of the problems with the capacitance growth 

model.  In numerical cloud models, and some laboratory studies, the typical diffusion-kinetics 

limited model assumes a constant value for the deposition coefficient and uses that value in tandem 

with the capacitance model (Gierens, 2003; Magee et al., 2006; Harrington et al., 2009; Skrotzki 

et al., 2013).  This allows the modeled ice particle to have a reduced growth efficiency, as seen in 

nature, but it cannot account for the changes in growth efficiency required for different ice crystal 

shapes to emerge in time.  Some laboratory studies have implicitly justified the use of a constant 

deposition coefficient due to the small sizes of their particles grown (Magee et al., 2006, Skrotzki 

et al., 2013).  The issue here is that not all ice particles have the same deposition coefficient.  In 

fact, it is not constant across the entire particle, but varies for each facet (Lamb and Scott, 1974).  

The constant deposition coefficient model can only be strictly correct for a small range of 

temperature, supersaturation, particle size, and ice crystal surface structure. 

The results of past laboratory studies investigating constant deposition coefficient values 

have been scattered, especially with temperature (Skrotzki et al., 2013).  This is also true of 

measurements taken by our group (Figure 1.3, Harrington et al., 2018).  Additionally, these 

measurements have not been consistent in the type of ice studied.  For example, measurements of 

the deposition coefficient on flat ice surfaces in very cold (T < -70 °C), near-vacuum conditions 

determined α to high and > 0.3 (Haynes et al., 1992; Brown et al., 1996; Pratte et al., 2006; Kong 
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et al., 2014).  Other studies have instead measured the growth or sublimation of individual ice 

particles, and their deposition coefficient values tend to be low.  Measurements made by 

Choularton and Latham (1977) of sublimating small ice spheres at -37 °C found the deposition 

coefficient to be about 0.001.  On the other hand, large, frozen droplets grown on a substrate 

measured by Korolev et al. (2004) had α values of almost unity.  However, some studies of the 

deposition coefficient have measured individual, small, growing frozen droplets in levitation 

chambers, which avoids thermal effects from the substrate:  Magee et al. (2006) and Harrison et 

al. (2016) both found that, at low temperatures (-60 to -31 °C), levitated particles had small 

deposition coefficients (0.001 to 0.1).  Furthermore, a single value of α was not sufficient to fit the 

data of Magee et al. (2006).  Other studies of the deposition coefficient measured the growth of 

crystal populations, but they too lack consistency.  For instance, Earle et al. (2010) homogeneously 

froze ice particles and estimated a low α of 0.031.  Conversely, Skrotzki et al. (2013) used a cloud 

chamber to study the formation of ice on aerosol and found fairly high deposition coefficients of 

0.2 to 0.7.  There are many potential sources for the discrepancies between these results, including 

the state of the ice surface being studied, different measurement techniques, size and 

supersaturation dependencies, nucleation on heterogeneous particles, and polycrystalline ice 

containing grain boundaries to serve as sources of dislocations. 

The results of the studies discussed above are difficult to interpret, as they all measured the ice in 

different states.  For example, some measurements used nearly equilibrated ice.  The surfaces of 

equilibrated and growing ice behave differently as ledges will form and propagate across growth 

surfaces, but equilibrium surfaces are static and crystal edges tend to round over time.  This key 

difference likely alters the measured deposition coefficient.  If one assumes that all atmospheric 

ice eventually grows by surface ledges, which is arguably both reasonable and likely general, then 
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the deposition coefficient can be computed by theoretical (Burton et al., 1951; Lewis, 1974) and 

parametric (Lamb and Chen, 1995; Nelson and Knight, 1996) models. One such model that 

accounts for the deposition coefficient is to parameterize it as 

𝛼𝛼 = �
𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑆𝑆𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐

�
𝑀𝑀

tanh ��
𝑆𝑆𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐
𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�
𝑀𝑀

�, 
(1.1) 

where 𝛼𝛼 is the deposition coefficient, 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the supersaturation at the ice surface, 𝑆𝑆𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐 is the 

critical supersaturation that controls the formations and density of surface growth ledges, and 𝑀𝑀 

is a growth mechanism parameter.  The value of M allows for either strong or weak α dependence 

on Slocal that is unique to the ice particle’s growth conditions (Figure 1.4 from Zhang and 

Harrington, 2015). 

An important part of determining the deposition coefficient is its dependence on the critical 

supersaturation.  Published measurements of the critical supersaturation exist for temperatures as 

low as -40 °C, and a composite of all known measurements by our group is shown in Figure 1.5 

(Harrington et al., 2018).  Nelson and Knight (1998) determined that, above temperatures of -20 

°C, the variation of Scrit with temperature on the basal and prism facets is consistent with primary 

ice habits, ranging from about 0.2% to 2.0%.  The Scrit between -25 and -15 °C was found to be 

between 2.0% and 5.0% by Bacon et al. (2003).  Not many measurements of the critical 

supersaturation exist for temperatures below -20 °C, but the measurements from Libbrecht et al. 

(2003) and Libbrecht and Rickerby (2013) suggest that Scrit increases as temperature declines.  The 

results of these measurements and Equation 1.1 indicate that the deposition coefficient has a strong 

supersaturation dependence. 

One drawback faced by many laboratory studies is that small uncertainties in the ice 

particles’ mass or environmental conditions, such as the supersaturation, may produce large 
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uncertainties when determining the deposition coefficient.  This issue stems from α being defined 

on a logarithmic scale.  As a result, it is possible to misinterpret kinetics-limited growth as 

diffusion-limited.  This problem of uncertainty on α will be explored in more depth in Section 2.5.  

In Equation 1.1, Nelson and Baker (1996) suggest that M ranges from 1 to 30, depending 

on the surface attachment mechanism.  For instance, an M = 1 signifies that the ice lattice has a 

permanent a dislocation, which produces spiral growth on the surface and many attachment sites.  

An example of this is shown in Figure 1.6b.  As a result, α approaches unity rapidly, or the diffusion 

limit, as 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 increases (Figure 1.4a).  Conversely, an M between 10 and 30 represents two-

dimensional (2D) ledge nucleation, shown in Figure 1.6a.  In this case, the ice surface has few 

attachment sites when 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑆𝑆𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐, resulting in a small α, and therefore kinetics-limited growth.  

However, if 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 > 𝑆𝑆𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐, then ledges nucleate on the ice surface and serve as the attachment sites 

necessary to drive the deposition coefficient to unity. 

The only models of atmospheric relevance that include surface attachment kinetics are the 

cylinder model of Nelson and Baker (1996), the hexagonal prism model of Wood et al., (2001), 

and the Kinetics-Limited Adaptive Habit (KLAH) model of Zhang and Harrington (2014).  The 

Nelson and Baker (1996) and Wood et al. (2001) models are consistent with the growth of ice 

crystals with relatively sharp edges, which best represents reality, but they are restrictive since 

they are applicable to only a single shape.  Conversely, the KLAH model uses the capacitance 

model to describe the far-field diffusion fluxes coupled with a constant flux surface model.  

Although the KLAH model is not consistent in its treatment of the far-field diffusion coupling with 

the surface, it does capture the main features of ice crystal growth and is general enough to apply 

to a variety of ice particle shapes (Zhang and Harrington, 2014).  The KLAH model incorporates 

the parameterization of the deposition coefficient given in Equation 1.1 and therefore predicts the 
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deposition coefficients for the basal and prism facets.  These predicted values, which are derived 

from the best fit to laboratory measurements, allow for the model to produce ice particles with a 

variety of aspect ratios (as in the ratio of the length of the prism facet to the length of the basal 

facet).  

1.2 Ice Crystal Surface Transitions 

Equation 1.1 shows that an ice particle’s deposition coefficient will depend on its growth 

mechanism (M), which in turn depends on the ice surface structure.  The KLAH model uses a 

constant growth mechanism parameter M to predict α, and this assumption is true for crystals with 

pre-existing facets (such as hexagonal plates and columns).  However, the M cannot be constant 

in all cases, especially for freshly nucleated ice.  Laboratory studies, such as those reported by 

Gonda and Yamazaki (1983), have shown that the facet structure of a frozen droplet will appear 

over time in a surface transition.  Gonda and Yamazaki (1983) produced an intermediate phase as 

a newly-frozen, spherical particle grew into a hexagonal prism.  In the intermediate stage, the 

particle contained pyramidal facets in addition to the basal and prism facets (Figure 1.7).  Unlike 

the basal and prism facets, the pyramidal facets were apparently comprised of many growth ledges 

stacked at an angle (like a pyramid) that served as vapor attachment sites.  Thus, the pyramidal 

facets had a high growth efficiency and grew rapidly compared to the other facets, eventually 

growing themselves out of existence.  As a result, the particle growth was first dominated by 

efficient growth (M that is near 1), to later be dominated by slower 2D nucleation growth for the 

basal and prism facets (M is near 10). 
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What Gonda and Yamazaki (1983) showed was that frozen droplets undergo a surface 

transition that substantially affects the growth rate prior to taking on the standard hexagonal prism 

form.  The extent of the impact from this transition on the deposition coefficient has not been 

explored before, and it may shed light on the disparity in many of the previously discussed 

laboratory measurements of the deposition coefficient.  In fact, there appear to be no prior existing 

mass growth data sets that reflect the presence of a surface transition, nor is there a model of this 

type of growth. 

1.3 The Current Work 

For the work presented, I grew frozen pure water droplets from the vapor inside a levitation 

diffusion chamber at temperatures near -40 °C.  Using the diffusion-kinetics model, I estimated 

the deposition coefficients for those ice particles by calculating the best fits to the data.  I 

discovered that the model could not duplicate some of the particles’ growth rates.  Upon further 

analysis (see Chapter 3), I found that approximating a surface transition by allowing M to vary 

produced modeled growth that behaved like the data.  From this I inferred that surface transitions 

might have been present on the growing ice particles.  Additionally, due to uncertainties on the 

vapor supersaturation in the experiments, an analysis method was developed to remove the 

deposition coefficient’s dependence on the supersaturation. 

This work sheds light on important knowledge missing from the cloud physics literature.  

It explores the growth of ice particles from the vapor at temperatures where homogeneous freezing 

is possible and below, which has been rarely been measured previously.  Furthermore, it presents 

a method for determining the extent to which attachment kinetics limit the growth of ice without 
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the uncertainty inherent in the measured ice supersaturation.  With this method, I also show that 

the mass growth data indicate the existence of a surface transition.  This phenomenon is known to 

occur, but is rarely measured and found infrequently in the cloud physics literature.  The existence 

of surface transitions has not been previously shown with mass growth data from cloud growth 

chambers. 

Chapter 2  
 

Methods and Analysis 

2.1 The Experiment Apparatus 

I conducted experiments in the levitation diffusion chamber as described in Harrison et al. 

(2016).  The top and bottom of the chamber are the surfaces of two parallel copper plates that are 

2.57 cm thick and 17.78 cm in diameter.  Note that the plates’ circular shapes have been trimmed 

to be squares with rounded edges (Figure 2.1 from Harrison et al., 2016).  A Plexiglas® ring, with 

an inner diameter of 10.2 cm, is centered between the plates, separating them by 1.27 cm.  The 

result is a cylinder with an 8:1 diameter-height ratio, which is large enough to avoid the possibility 

of wall effects (Elliot, 1971).  Locate on the sides of the plates opposite the Plexiglas® ring are 

Plexiglas® cryogen housings.  Using two NESLAB ULT-95 baths to circulate the cryogen with 

precisely set temperatures, the plate temperatures are controlled independently of each other.  The 

temperatures of the cryogen and the copper plates are monitored by four Type-T thermocouples, 

with one floating in each cryogen housing and one imbedded just beneath the ice-coated surface 
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of each of the copper plates.  The bottom plate is set to a lower temperature than the upper plate to 

produce a stable environment maintained by thermal and vapor diffusion. 

The chamber’s top plate is not completely flat like the bottom plate.  The top plate has a 1 

cm diameter hole at its center to allow for the introduction of water droplets.  Additionally, it 

contains four button electrodes, each 0.95 cm in diameter.  The electrodes are attached to the plate 

such that they form a 3.4 cm diameter circle about the launch opening (Figure 2.1b).  Filter paper 

soaked in high-pressure liquid chromatography (HPLC) water from J.T.Baker® is attached to the 

upper and lower plates to serve as the vapor source in the experiments.  The bottom plate is fully 

covered with filter plate, but the top plate has filter paper with holes for the launch opening and 

the electrodes.  Vapor produced from ice sublimation on the upper, warmer plate descends to the 

lower, colder plate via diffusion, resulting in a supersaturated environment.  Note that it is possible 

to measure the supersaturation profile by equilibrating sulfuric acid solution droplets within the 

chamber, but this method risks contaminating the bottom ice surface, thus altering the vapor field 

(Harrison et al., 2016). 

To levitate ice particles, the chamber utilizes six electrodes in conjunction with the charge 

on the particle.  The electrodes in question are the copper plates and the four button electrodes.  

The bottom copper plate is given a direct current voltage that produces a vertically positive electric 

field.  This voltage is adjustable and is used to track changes to the levitating particle’s mass.  The 

top plate is a grounded electrode.  The button electrodes on the top plate receive 180° out-of-phase 

alternating current voltages.  These electrodes serve as a quadrupole, and the resulting AC field 

produces a saddle point that centers and stabilizes the levitating particle.  The particle is charged 

by exposure to a ~450 V direct current prior to launch. 
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Once launched, a particle’s location and initial size are determined using two digital 

cameras and a laser.  Monochromatic Point Grey® Blackfly® cameras view the interior of the 

levitation diffusion chamber through windows on opposite sides of the Plexiglas® ring.  A 5-mW, 

632.8-nm helium–neon laser is directed at the particle, scattering light to both cameras.  One 

camera records the diffraction pattern at nearly 45° from the forward scatter direction.  Though the 

particle remains approximately spherical, the particle’s initial size is determined by comparing the 

diffraction patterns to Mie scatter theory.  The other camera views the center of the chamber with 

both plates visible in the images.  Particles in these experiments are too small to see without 

magnification, but they do reflect enough of the incident laser light to appear as a bright dot to the 

camera.  With the top and bottom of the chamber as references, the particle’s height from the 

bottom of the chamber can be determined, which is necessary to calculate the temperature and ice 

supersaturation at its location. 

2.2 Experiment Process 

Prior to experimentation, I apply pure, HPLC water to the filter paper on the copper plates.  

This ensures a supersaturated environment within most of the levitation diffusion chamber.  Recall 

that the filter paper on the top plate has holes for the button electrodes and the launch opening.  It 

should be noted that this results in a subsaturated area near the top of the chamber (Harrison et al., 

2016).  However, the experiments presented in this work did not occur in that region.  Once wetted, 

the copper plates cool to approximately -42 °C, freezing the filter paper to the plates.  The vapor 

and thermal fields within the chamber are then allowed to equilibrate for about an hour before any 

experiments commence. 
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Experimental runs begin by applying a charge to HPLC water in the droplet launcher.  

Tapping the launcher causes liquid water to be ejected into the chamber as small (6 – 20 micron) 

drops.  The drops are captured manually by changing the voltage on the bottom plate and the 

voltage on the button electrodes.  A PythonTM program developed in the lab adjusts and records 

the bottom plate’s voltage to maintain the particle’s vertical location.  It is this record of the bottom 

plate voltage that is used to determine the particle’s evolving mass.  Simultaneously, I set 

FlyCapture, the digital camera’s user interface, to record the light diffraction patterns.  The particle 

typically freezes within this time. 

 Throughout the experiment, I may make slight adjustments to the quadrupole in an attempt 

to stabilize the ice particle, as it might drift from the chamber’s center.  One such adjustment is to 

either raise the voltage on the button electrodes or to lower their oscillation frequency.  The goal 

of this is to re-center the particle without disrupting the net vertical component of the electric field.  

If the particle cannot return to its original horizontal location, the laser may need to be shifted to 

ensure that the particle is illuminated well enough for the PythonTM program to track it. 

The experiment ends once the ice particle becomes too unstable to contain.  This can occur 

from either excessive movement or when the particle has gained too much mass during growth.  

After the experiment, I record the ice thickness on the copper plates with dial calipers to calculate 

the actual height within the chamber.  Additionally, I capture images of a #0-80 threaded rod within 

the chamber for the purpose of calibrating image pixels to a real distance.  After completion of the 

experiment, the data need to be analyzed, and I turn to that in the following sections. 
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2.3 Diffusion Chamber Model 

Quantifying the growth of an ice particle requires a description of the environment, and 

one must know the pressure, temperature, and partial pressure of water vapor.  During these 

experiments, I record the pressure and the temperatures of the two copper plates.  According to 

diffusion chamber theory, the temperature within the chamber follows a linear profile, which has 

been confirmed by prior measurements (Harrison et al., 2016), and makes the process of 

calculating the temperature at the particle’s height straight-forward. 

Calculating the vapor pressure is not trivial.  Diffusion chamber theory predicts that the 

vapor field should be parabolic with a maximum vapor density at the vertical center of the 

chamber.  However, this theory assumes that both the top and bottom of the chamber are 

completely covered in ice.  In this diffusion chamber, the ice on the top plate has holes for the 

button electrodes and launch opening.  As a result, the vapor field is non-uniform in those regions.  

To account for this, I estimate the supersaturation using the diffusion chamber model described in 

the Appendix of Harrison et al. (2016).  This model predicts the vapor and thermal fields with a 

two-dimensional rectangular diffusion chamber model. 

An example of the vapor profile simulated by the model is compared to standard diffusion 

chamber theory in Figure 2.2.  The modeled profile shows a vapor maximum occurring near the 

bottom third of the chamber.  In contrast, diffusion chamber theory states that the vapor maximum 

should occur at the chamber’s midpoint.  Also note that the modeled maximum value is expected 

to be less than the theoretical value.  Furthermore, the model produces a subsaturated region near 

the top of the chamber in response to the “dry” electrodes and launcher opening.  The existence of 

the subsaturated region within this diffusion chamber has been confirmed in previous experiments 

(Hanson et al., 2016). 
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2.4 Predicting α with the Diffusion-kinetics Model 

Diffusion-kinetics growth can be modeled using the Kinetic Limited Adaptive Habit 

(KLAH) model of Zhang and Harrington (2014).  This model uses parameters determined from 

the laboratory experiments to model the mass growth of an ice particle.  The model does allow for 

a closed-form solution due to the dependence of the deposition coefficient on the local 

supersaturation, which further depends on the vapor and thermal diffusion rates.  Thus, to calculate 

the mass of an ice crystal, the KLAH model involves solving the following equations 

simultaneously (Zhang and Harrington, 2014): 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝜋𝜋(𝑐𝑐,𝑎𝑎)𝐷𝐷(𝑇𝑇,𝑝𝑝, 𝑐𝑐,𝑎𝑎,𝛼𝛼𝑙𝑙,𝛼𝛼𝑙𝑙)𝑆𝑆𝑐𝑐 
(2.1) 
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(2.4) 

In this system of equations, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑐𝑐

 is the mass growth rate, C is the particle capacitance as a function 

of its shape and semi-major axis length, D is the effective diffusivity, 𝑆𝑆𝑐𝑐 is the ambient 

supersaturation relative to ice, 𝑇𝑇∞ is the ambient temperature, p is pressure, c is the prism axis 

semi-length, a is the basal axis semi-length, 𝛼𝛼𝑙𝑙 is the prism facet deposition coefficient, 𝛼𝛼𝑙𝑙 is the 

basal facet deposition coefficient, 𝐷𝐷𝑣𝑣′  is the modified vapor diffusivity, and 𝑘𝑘𝑇𝑇′  is the modified 

thermal diffusivity.  The remaining variables are defined in the Appendix.  The axis evolution is 

found by also solving 
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𝑑𝑑𝑐𝑐
𝑑𝑑𝑎𝑎

=
𝛼𝛼𝑙𝑙(𝑇𝑇, 𝑆𝑆𝑐𝑐)
𝛼𝛼𝑙𝑙(𝑇𝑇, 𝑆𝑆𝑐𝑐)

 
(2.5) 

for the growth of the prism and basal axes, which assumes that ledge growth begins at crystal 

edges (Nelson and Baker, 1998).  The model initializes with the particle’s initial radius, ambient 

temperature, supersaturation, and critical supersaturation.  The ice crystals are assumed to be 

initially spherical, with a radius, 𝑟𝑟0.  This assumption is justified since the particles are formed 

from frozen droplets is with an initial radius that is experimentally determined, as discussed above.  

The values used for the critical supersaturation, 𝑆𝑆𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐, are temperature dependent, have been 

experimentally determined in the past (Libbrecht, 2003), and can also be determined from our 

measurements. 

Pairing laboratory mass growth data with the KLAH model allows me to estimate the 

deposition coefficient of each ice particle.  This is achieved by simulating the growth of an ice 

crystal using the KLAH model with different values of α.  The results from the KLAH model are 

then compared to results from the laboratory data via the root mean square mass error to determine 

the best fit.  The model run with the lowest root mean squared is used to select the best-fit value 

of α.  Results presented in Chapter 3 usually use the assumption that the particle is spherical 

because information on the particle shape is not available, but they remain relatively small, and 

likely isometric. 

2.5 Uncertainty on α 

The process of determining the deposition coefficient from laboratory data relies on the 

data providing an accurate representation of the growth process.  Even small errors in experiment 

conditions, such as supersaturation, can produce large uncertainties on the value of α.  If one 
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desires to know a specific deposition coefficient value, the range of error tolerance must be known.  

One can expect high precision to be needed to determine deposition coefficients near unity, as the 

growth equation (2.1) loses sensitivity to α if it exceeds about 0.2.  This effect can be clearly shown 

by simulating the impact of using erroneous mass values in determining the deposition coefficient.  

For this analysis, I use an error of 

𝜀𝜀 =
∑(𝑑𝑑𝑐𝑐 − 𝑑𝑑𝑐𝑐)2

∑𝑑𝑑𝑐𝑐
2 , 

(2.6) 

where 𝜀𝜀 is the mass error, 𝑑𝑑𝑐𝑐 is the hypothetical “true” mass of the particle as would be measured 

in the diffusion chamber, and 𝑑𝑑𝑐𝑐 is modeled mass.  The summations denote an a time integration 

as the particle grows.  I use the KLAH model to simulate an ice particle growing for 300 seconds 

under identical initial conditions of 1000 hPa pressure, -30 °C temperature, 0.1 ice supersaturation, 

and 10 µm radius.  A “measured” mass timeseries is generated by giving the particle a true 

deposition coefficient of 𝛼𝛼𝑐𝑐.  Essentially, 𝛼𝛼𝑐𝑐 is the deposition coefficient that a measurement would 

try to extract.   The “true” growth timeseries is then compared to the growth of a particle with a 

different deposition coefficient, 𝛼𝛼𝑐𝑐.  The error in the modeled mass timeseries is then computed 

using Equation 2.6 at each timestep, which provides insight on the accuracy in the mass growth 

rate necessary to determine the deposition coefficient within an estimated range. 

Results of running these simulations for the known range of 𝛼𝛼𝑐𝑐 and a few select 𝛼𝛼𝑐𝑐 values 

are displayed in Figure 2.3.  The x-axis represents the predicted deposition coefficient, the y-axis 

corresponds to the mass error at the end of the simulation, and each curve is for a different true 

deposition coefficient.  Unsurprisingly, the error minimizes when 𝛼𝛼𝑐𝑐 =  𝛼𝛼𝑐𝑐.  Note that any value 

of 𝛼𝛼𝑐𝑐 below a given error threshold cannot be distinguished from 𝛼𝛼𝑐𝑐.  For example, if a mass error 

of 5% can be tolerated, the curve for 𝛼𝛼𝑐𝑐 = 0.01 has 0.006 ≤ 𝛼𝛼𝑐𝑐 ≤ 0.015.  In such a scenario, while 
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the true deposition coefficient is 0.01, one may determine the deposition coefficient to be anywhere 

between 0.006 and 0.015 with equal certainty.  Thus, if mass growth errors are small (i.e. 5 – 10%), 

relatively low values of the deposition coefficient can be accurately determined.  Figure 2.3 also 

reveals that, as α approaches unity, it becomes increasingly difficult to distinguish among other 

deposition coefficients.  It will become clear in later sections that this effect is critical, causing 

growth curves with α greater than about 0.05 to be nearly identical and making it nearly impossible 

to conclude if growth is limited by attachment kinetics. 

The difficultly in distinguishing deposition coefficient values greater than about 0.05 can 

be more clearly shown through the following analysis:  allow the points at which the 𝛼𝛼𝑐𝑐 curves 

cross a chosen error threshold (5% in Figure 2.3) to be 𝛼𝛼1 and 𝛼𝛼2, with 𝛼𝛼1 the lesser value and 𝛼𝛼2 

the greater value.  If the curve only crosses the threshold once, and it ascends to the right, then 𝛼𝛼1 

is taken as the minimum 𝛼𝛼𝑐𝑐 value used.  Conversely, if the curve crosses only once, and descends 

tot the right at that point, then 𝛼𝛼2 is unity.  Now let  

∆𝛼𝛼 = 𝛼𝛼2 − 𝛼𝛼1, (2.7) 

where ∆𝛼𝛼 is the range of 𝛼𝛼𝑐𝑐 below the chosen mass error threshold.  For example, recall that the 

𝛼𝛼𝑐𝑐 = 0.01 curve on Figure 2.2 crosses the 𝜀𝜀 = 5% at 0.006 and 0.015.  In this case 𝛼𝛼1 = 0.006 

and 𝛼𝛼2 = 0.015, resulting in ∆𝛼𝛼 = 0.009.  If one compares many values of 𝛼𝛼𝑐𝑐 to ∆𝛼𝛼 for various 

error thresholds (Figure 2.4), an intriguing pattern emerges.  For small 𝛼𝛼𝑐𝑐, ∆𝛼𝛼 is near zero, but 

larger 𝛼𝛼𝑐𝑐 have ∆𝛼𝛼 rapidly ascending towards unity, indicating that determining α becomes 

impossible.  An error of 5% in the mass growth rate causes ∆𝛼𝛼 rise abruptly between 0.03 and 

0.04. 

The jump in ∆𝛼𝛼 toward unity has significance.  It indicates that if the true deposition 

coefficient is above some critical value, then a small error or uncertainty in the mass data makes it 
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nearly impossible determine 𝛼𝛼 accurately.  If a particle has a true deposition coefficient of 𝛼𝛼𝑐𝑐 =

0.05, and there is a mass error in the data of 𝜀𝜀 = 5%, then ∆𝛼𝛼 = 0.97.  As Figure 2.3 reveals, this 

would mean that α lies between 𝛼𝛼1 ≈ 0.02 and 𝛼𝛼2 ≈ 0.99.  That range in deposition coefficients 

covers nearly all of kinetics-limited growth and diffusion-limited growth.  As a result, there is no 

definitive way to determine this particle’s growth mode, and the reported deposition coefficient 

may be up to 0.95 larger than its true value.  The implications of a ∆𝛼𝛼 close to unity are unsettling, 

as it means that any deposition coefficient determined from growth data may be flawed and far 

from the true value if that value is above about 0.04.  This may in part explain the divide between 

high and low values of the deposition coefficient found in past studies, as discussed in Section 1.1.  

Thus, uncertainties in laboratory data can have a substantial impact on the reported deposition 

coefficient, which casts doubt onto past, present, and future measurements. 

Note that the value of 𝛼𝛼𝑐𝑐 at which the jump in ∆𝛼𝛼 occurs depends on the surrounding 

environment, though the strongest dependence is on temperature and pressure.  Using the above 

process, I calculated the values of 𝛼𝛼𝑐𝑐 when ∆𝛼𝛼 reached 0.1 (the beginning of the jump shown in 

Figure 2.4) and 0.5 (the middle of the jump shown in Figure 2.4).  I focused the calculations on a 

mass error of 10%, as this is likely the highest expected precision from most cloud diffusion 

chambers.  I ran simulations for temperatures between 0 and -70 °C, with pressures of 1000 hPa 

and 100 hPa.  Figure 2.5 shows that at 1000 hPa and temperatures above about -45 °C, the jump 

in ∆𝛼𝛼 occurs when 𝛼𝛼𝑐𝑐 is on the order of 0.01 to 0.02.  However, the jump appears for much smaller 

𝛼𝛼𝑐𝑐 values at lower temperatures.  As a result, it would be nearly impossible to determine the 

relatively high values of the deposition coefficient for ice particles growing at temperature less 

than -45 °C and 1000 hPa, if the mass data had a 10% error.  This is problematic for any future 

experiments that attempt to study the deposition coefficient at low temperatures found in cirrus 
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clouds, which fall well below -45 °C.  Fortunately, at lower pressure the ∆𝛼𝛼 jump happens at larger 

values of 𝛼𝛼𝑐𝑐.  Lower pressure provides better resolution at higher 𝛼𝛼𝑐𝑐 values.  If the pressure is 100 

hPa, then about -65 °C becomes the temperature at which 𝛼𝛼𝑐𝑐 greater than about 0.001 cannot be 

resolved.  Since cirrus clouds may form above the 200 hPa pressure level and at temperatures 

below -40 °C, having better resolution on 𝛼𝛼𝑐𝑐 in experiments under such conditions is preferred. 

2.6 Power-law Analysis 

Relatively accurate estimates of the supersaturation within the chamber and the initial size 

of the ice particle are required to fit the measured mass ratio timeseries with a model.  It is difficult 

to achieve the 5% minimum absolute error that the above analysis suggests is necessary to 

accurately determine the deposition coefficient in the range 0.05 to 1.  To address this challenge, 

I conducted a form of scale analysis on the data similar to that of Harrison et al. (2016), which 

removes the dependence on supersaturation.  This analysis generated a growth power law that 

allows me to easily compare the data with model output without the influence supersaturation 

uncertainty.  This analysis method does not provide direct information on the deposition 

coefficient, though it does give insight on whether growth is limited by surface attachment kinetics. 

 Following Swanson et al. (1999), Equation 2.1 is normalized by its initial value.  Due to 

the supersaturation, temperature, and pressure being constants, one finds for diffusion-limited 

growth that 

�̇�𝑑
�̇�𝑑0

=
𝑟𝑟
𝑟𝑟0

, (2.8a) 
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where the mass rate of change has been written in Newtonian notation for convenience, 𝑟𝑟 is the 

radius of an equivalent volume sphere, and the zero subscripts denote initial values.  Additionally, 

this same ratio for growth that is entirely kinetics-limited becomes 

�̇�𝑑
�̇�𝑑0

=
𝑟𝑟2

𝑟𝑟02
. 

(2.8b) 

This ratio goes as the radius squared due to kinetics-limited growth’s dependence on the particle 

surface area.  Diffusion-kinetics limited growth has a similar power law dependence that lies 

between pure diffusion- and kinetics-limited growth.  In such a regime, the effective diffusivity, 

D in Equation 2.1, tends to have a size-dependent power law (as shown by the solid curves in 

Figure 3.8b).  I can then write the effective diffusivity as 

𝐷𝐷 = 𝐷𝐷0 �
𝑟𝑟
𝑟𝑟0
�
1−𝑛𝑛

, 
(2.9) 

with 𝐷𝐷0 as the effective diffusivity at the initial particle size, and n is a power typically between 0 

and 1.  Harrison et al. (2016) showed that the deposition coefficient tends to decrease with 

increasing size, which leads to a similar power law  

𝛼𝛼 = 𝛼𝛼0 �
𝑟𝑟0
𝑟𝑟
�
𝑛𝑛

, (2.10) 

where α0 is the deposition coefficient at the initial size.  Substituting Equation 2.9 into Equation 

2.1, and taking its ratio as in Equation 2.8, shows that for diffusion-kinetics limited growth 

�̇�𝑑
�̇�𝑑0

= �
𝑟𝑟
𝑟𝑟0
�
2−𝑛𝑛

. 
(2.11) 
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We now see that an n of zero applies to kinetics-limited growth and n of unity applies to diffusion-

limited growth.  Experiments with the levitation diffusion chamber produce direct measurements 

of mass ratios.  It is therefore useful to rewrite Equation 2.11 in terms of mass.  Since the radius 

of a sphere is proportional to the cubic root of its mass, 

𝑟𝑟 ∝ 𝑑𝑑1
3� , (2.12) 

with 𝑑𝑑 as the mass, Equation 2.11 can be rewritten as 

�̇�𝑑
�̇�𝑑0

= �
𝑑𝑑
𝑑𝑑0

�
(2−𝑛𝑛) 3⁄

, 
(2.13) 

where 𝑑𝑑0 is the initial particle mass.  Taking the natural logarithm of both sides of 2.13 gives 

ln
�̇�𝑑
�̇�𝑑0

=
2 − 𝑛𝑛

3
ln
𝑑𝑑
𝑑𝑑0

. (2.14) 

Dividing both sides of 2.14 by the natural logarithm of the normalized particle mass results in 

ln � �̇�𝑑�̇�𝑑0
�

ln � 𝑑𝑑𝑑𝑑0
�

=
2 − 𝑛𝑛

3
= 𝑃𝑃, 

(2.15) 

where 𝑃𝑃 is the derived particle mass growth power law.  Equation 2.15 is independent of both the 

supersaturation and the initial particle radius, which are the two largest sources of uncertainty in 

the chamber measurements.  Also, note that the left-hand side of 2.15 can be computed directly 

from the mass data without any model interpretation.  

 One would expect the growth power law 𝑃𝑃 to range from 1/3 for diffusion-limited growth 

to 2/3 for kinetics-limited growth.  Chapter 3 will explore the results of this analysis when applied 
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to the data, the model, and a slightly modified version of the model that includes a variable-M 

growth mechanism. 

2.7 Scale Analysis to Determine α 

 In Section 2.5, it was shown that relatively small uncertainty in measured growth data 

strongly propagates to the deposition coefficient prediction.  Furthermore, the ice supersaturation 

in the experiments described in Chapter 3 is estimated by a model rather than measured.  Though 

the model serves as a reasonable proxy for the supersaturation, it can produce errors on the order 

of 10%, perhaps more (Harrison et al., 2016).  To avoid errors in the supersaturation and the initial 

size, a new analysis method is developed in this work to fit the model output on the effective 

diffusivity, which is then used to determine the deposition coefficient.  Through this analysis, the 

ice particle growth rate is normalized by its mean value and written in terms of mass ratios, which 

eliminates the supersaturation and initial size dependence from the growth equation.  The analysis 

method presented in Section 2.6 could be used, but there retains a significant source of uncertainty 

in its dependence on the particle’s initial mass growth rate.  Conversely, the mean growth rate, as 

used below, is significantly more robust as it is computed over the entire timeseries. 

 In this analysis method, I return to a modified version of Equation 2.1: 

�̇�𝑑 = 4𝜋𝜋𝑟𝑟𝐷𝐷𝑆𝑆𝑐𝑐. (2.16) 

Again, �̇�𝑑 is the mass growth rate, 𝑟𝑟 is the volume-equivalent sphere radius, D is the effective 

diffusivity and 𝑆𝑆𝑐𝑐 is the ice supersaturation.  Converting r into mass, since mass ratios are 

measured, gives 
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�̇�𝑑 = 4𝜋𝜋 �
3

4𝜋𝜋𝜌𝜌𝑐𝑐
𝑑𝑑�

1 3⁄

𝐷𝐷𝑆𝑆𝑐𝑐, 
(2.17) 

where 𝜌𝜌𝑐𝑐 is the density of ice.  I then define the mass growth rate ratio as 

�̇�𝑑𝑐𝑐 ≡
�̇�𝑑
𝑑𝑑0

 (2.18) 

and the mass ratio is 

𝑑𝑑𝑐𝑐 ≡
𝑑𝑑
𝑑𝑑0

, (2.19) 

where 𝑑𝑑0 is the initial ice particle mass.  Normalizing Equation 2.17 by the initial mass then gives 

�̇�𝑑𝑐𝑐 = 𝜅𝜅𝑑𝑑𝑐𝑐
1 3⁄ 𝐷𝐷𝑆𝑆𝑐𝑐, (2.20) 

where 𝜅𝜅 is a constant at 

𝜅𝜅 = �
48𝜋𝜋2

𝑑𝑑0
2𝜌𝜌𝑐𝑐

�

1
3

. 
(2.21) 

Equation 2.20 applies to general diffusion-kinetics growth.  To draw meaning from it, one 

must compare it to the kinetic and diffusion limits of growth.  Following Section 2.6, the kinetics 

and diffusion limits of the mass growth rate ratio are, respectively, 

�̇�𝑑𝑐𝑐 = 𝑟𝑟0𝜅𝜅𝑑𝑑𝑐𝑐
2 3⁄ 𝛼𝛼

1
4
𝑣𝑣𝑣𝑣���𝜌𝜌𝑒𝑒𝑒𝑒𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

(2.22) 

and 

�̇�𝑑𝑐𝑐 = 𝜅𝜅𝑑𝑑𝑐𝑐
1 3⁄ 𝐷𝐷0𝑆𝑆𝑐𝑐, (2.23) 

where 𝑟𝑟0 is the initial particle radius, 𝑣𝑣𝑣𝑣��� is the mean speed of a vapor molecule, 𝜌𝜌𝑒𝑒𝑒𝑒 is the equilibrium 

vapor density, 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the supersaturation at the particle surface, and 𝐷𝐷0 is the diffusivity at the 
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initial size.  Note that Equation 2.22, the kinetics-limited growth equation, follow the standard 

Hertz-Knudsen formulation (see Libbrecht, 2003) by multiplying the crystal surface area (4πr2) 

by the deposition coefficient and the kinetic theory vapor flux.  Keep in mind that the difference 

in exponents of the mass ratio originates from Equation 2.8 and that the exact values of κ, r0, 𝑣𝑣𝑣𝑣���, 

ρeq, Slocal, D0, and Si are not needed, as they are constant and will drop out of the analysis.  The 

scale analysis below assumes that pure kinetics-limited growth has a constant α with size, though 

this approximation will be shown to not always be justifiable.  Recall that the diffusion chamber 

environment is highly stable; thus the supersaturation and temperature do not change with time. 

Beginning with the kinetics limit as a convenient reference growth rate, taking the mean of 

Equation 2.22 gives 

�̇�𝑑𝑐𝑐���� = 𝑟𝑟0𝜅𝜅𝛼𝛼
1
4
𝑣𝑣𝑣𝑣���𝜌𝜌𝑒𝑒𝑒𝑒𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑐𝑐

2 3⁄�������. (2.24) 

Normalizing by the instantaneous growth rate ratio (Equation 2.22) by its mean (Equation 2.24), I 

find that 

�̇�𝑑𝑟𝑟

�̇�𝑑𝑟𝑟����
=
𝑑𝑑𝑟𝑟

2 3⁄

𝑑𝑑𝑟𝑟
2 3⁄������. 

(2.25) 

Realize that these steps are similar to the procedure in Section 2.6.  Both methods remove the 

supersaturation and temperature dependence since everything else is given in terms of mass ratios.  

The main difference between the methods is that the one discussed here utilizes the robustness of 

the mean growth rate instead of the uncertain initial growth rate. 

If I define the scaled mass growth rate ratio as 

�̇�𝑑𝑠𝑠 ≡
�̇�𝑑𝑐𝑐

�̇�𝑑𝑐𝑐����
𝑑𝑑𝑐𝑐
2 3⁄�������, (2.26) 

then I may use the natural logarithm to write Equation 2.25 as 
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ln �̇�𝑑𝑠𝑠 =
2
3

ln𝑑𝑑𝑐𝑐 . (2.27) 

Interestingly, both sides of Equation 2.27 can be derived directly from the laboratory data.  The 

sole variable on the right-hand side is the mass ratio, which is very precisely known.  The left-

hand side depends on the mean of the mass ratio, the instantaneous growth rate ratio, and the mean 

growth rate ratio.  Both averaged values are accurately known, leaving the instantaneous growth 

rate ratio as the main source of error. 

To compare the laboratory determined growth rates, I also need the scaled mass growth 

rate of the diffusion limit.  Following a similar procedure, and rewriting Equation 2.23 with a 

scaled mass growth rate ratio gives 

ln �̇�𝑑𝑠𝑠 = ln �
𝑑𝑑𝑟𝑟

2 3⁄������

𝑑𝑑𝑟𝑟
1 3⁄������� +

1
3

ln𝑑𝑑𝑐𝑐 
(2.28) 

for the diffusion limit.  Again, for Equations 2.27 and 2.28, all of the mass related variables are 

derived directly from the mass ratio data. 

Calculating the scaled mass growth rate ratio for the diffusion-kinetics case is more 

challenging, since the diffusivity varies with size, even if the deposition coefficient is constant.  

As a result, the mean of the mass growth rate ratio becomes 

�̇�𝑑𝑐𝑐���� = 𝜅𝜅𝑆𝑆𝑐𝑐𝑑𝑑𝑐𝑐
1 3⁄ 𝐷𝐷��������� = 𝜅𝜅𝑆𝑆𝑐𝑐𝑑𝑑𝑐𝑐

1 3⁄�������𝐷𝐷𝑐𝑐���, (2.29) 

where  

𝐷𝐷𝑐𝑐��� =
∑𝑑𝑑𝑐𝑐

1 3⁄ 𝐷𝐷
∑𝑑𝑑𝑐𝑐

1 3⁄  
(2.30) 

is the radius-weighted average diffusivity.  Dividing Equation 2.20 by Equation 2.29 and using the 

same natural logarithm manipulation as in the diffusion and kinetics cases results in 
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ln �̇�𝑑𝑠𝑠 = ln �
𝑑𝑑𝑟𝑟

2 3⁄������

𝑑𝑑𝑟𝑟
1 3⁄������� +

1
3

ln𝑑𝑑𝑐𝑐 + ln �
𝐷𝐷
𝐷𝐷𝑟𝑟���
�. 

(2.31) 

Again, all or the mass-related values can be computed directly from the data; uncertain quantities, 

such as the supersaturation and the initial size, have been removed from the analysis.  The only 

remaining unknown values are the effective diffusivity and its mean, as they appear in Equation 

2.31, which weakly depend on temperature and strongly on the deposition coefficient and size 

(Equation 2.2).  All of the other variables in Equation 2.31 can be determined from the mass data.  

Since the temperature is constant, the only parameter that can be adjusted to fit the data is the 

deposition coefficient.  The diffusivity-terms are, therefore, determined by using the KLAH model 

to find the best fit to the data.  The deposition coefficient can then be extracted from the diffusivity 

without reference to the supersaturation or the initial size.  In fact, this method can be used to 

estimate the supersaturation from Equation 2.29 as 

𝑆𝑆𝑐𝑐 =
�̇�𝑑𝑐𝑐����

𝜅𝜅𝑑𝑑𝑐𝑐
1 3⁄�������𝐷𝐷𝑐𝑐���

. 
(2.32) 

This supersaturation and the one derived from the diffusion chamber model are used together as 

the error range on the supersaturation. 

To summarize, the scaling method of computing the mass growth rates proposed above 

removes the supersaturation dependence from the model fitting process.  The scaling method can 

estimate the deposition coefficient more reliably than the traditional method of fitting to the mass 

timeseries due to the deposition coefficient being the only unknown in the scaling method.  

Additionally, a new method of estimating the supersaturation emerges from this analysis.  Note 

that the main equations derived from this analysis are listed in Table 2.1. 
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Table 2.1 Final scale analysis equations 

Listed are the main equations pertinent to the mass growth rate scaling analysis.  The 

right-hand side of the first three equations are calculated from the data, and the fourth is 

derived from a best-fit simulation. 

Data ln �̇�𝑑𝑠𝑠 = ln �
�̇�𝑑𝑟𝑟

�̇�𝑑𝑟𝑟����
𝑑𝑑𝑟𝑟

2 3⁄������� 

Kinetic limit ln �̇�𝑑𝑠𝑠 =
2
3

ln𝑑𝑑𝑐𝑐 

Diffusion limit 
ln �̇�𝑑𝑠𝑠 = ln �

𝑑𝑑𝑟𝑟
2 3⁄������

𝑑𝑑𝑟𝑟
1 3⁄������� +

1
3

ln𝑑𝑑𝑐𝑐 

Diffusion-kinetic 
ln �̇�𝑑𝑠𝑠 = ln �

𝑑𝑑𝑟𝑟
2 3⁄������

𝑑𝑑𝑟𝑟
1 3⁄������� +

1
3

ln𝑑𝑑𝑐𝑐 + ln �
𝐷𝐷
𝐷𝐷𝑟𝑟���
� 

 
 



Chapter 3  
 

Results and Discussion 

3.1 Initial Laboratory Data and Preliminary Analysis 

The theoretical analysis methods proposed in Chapter 2 will be used in the laboratory data 

analysis presented in this chapter.  Prior to utilizing those analysis methods, I display the raw data 

as they are.  Figure 3.1(a-c) shows the mass timeseries data for each of ten successful experiments.  

Most of the particles grew for less than 2200 s (0.56 hr), with the sole exception of particle #5, 

which grew for over 18000 s (5 hr).  (That particle will be explored in more detail later in this 

chapter.)  Additionally, particles typically grew to no more than ten times their initial masses, with 

four exceptions that grew beyond fifteen times the initial mass. 

A few features of interest that are immediately apparent in Figure 3.1 are the following: 

First, as previously mentioned, particle #5 grew for an exceptionally long, 5-hr period (Figure 

3.1c).  Furthermore, its mass growth rate is nearly constant in time, which is not possible without 

an effective diffusivity that decreases with size, as I will elaborate upon below.  Other striking 

features are the rapid growth rates of particles #8, #9, and #10 (Figure 3.1b).  Another noteworthy 

element is similarity between the growth of particle #2 and #3 as their timeseries nearly overlap. 

Interesting, qualitative statements can be made about the data in Figure 3.1, but they have 

little meaning in the absence of the conditions that the particles grew under.  This information, 

listed in Table 3.1, is crucial to the analysis process.  As discussed in Chapter 2, the initial radius 

is determined by analyzing the diffraction fringe patterns resulting from Mie scattering.  The 

uncertainty on this value is the standard deviation from the mean radius calculated from images 



30 

30 
 

taken over ten seconds.  The pressure measurement is taken from a barometer in the laboratory.  

The copper plate temperatures are measured by Type-T thermocouples that have a 0.1 °C 

resolution.  The temperature at the particle location is calculated from diffusion theory that 

produces a linear temperature profile between the two plates, which is relatively accurate 

(Harrison et al., 2016).  The uncertainty in the particle temperature, when accounting for 

uncertainty on the plate temperatures and the particle tracking, is ± 0.17 – 0.20 °C in all cases.  

Since the temperature measurements have a single decimal, I estimate the temperature 

uncertainty to always be ± 0.2 °C.  Note that the particle location uncertainty is ± 0.1 mm, 

according to Harrison (2013). 
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Table 3.1 Environment conditions for each particle 

Listed are the environment parameters necessary to describe and analyze the particle 

growth.  Particle numbers correspond to the date (YYYYMMDD) and time 

(hhmmss) that growth began.  The parenthetical numbers are used for short-hand 

reference within the text.  The copper plate temperatures all have an uncertainty of ± 

0.1 °C.  Particle temperatures have an uncertainty of ± 0.2 °C. 

Particle # Initial radius 
(µm) 

Pressure 
(hPa) 

Top 
plate 
temp. 
(°C) 

Bottom 
plate 
temp. 
(°C) 

Temp. at 
particle 
(°C) 

20160614-132805 (1) 15.05 ± 0.43 978. -36.3 -46.9 -42.2 

20160614-143412 (2) 10.60 ± 0.20 978. -36.1 -46.9 -42.1 

20160614-154240 (3) 10.82 ± 0.42 978. -36.4 -46.9 -42.2 

20160628-144717 (4) 9.25 ± 0.32 973. -37.2 -46.4 -42.4 

20160628-152650 (5) 21.55 ± 0.35 973. -37.3 -46.3 -42.4 

20160726-112828 (6) 17.50 ± 0.88 977. -34.6 -45.3 -40.8 

20160726-124528 (7) 12.41 ± 0.20 976. -34.5 -45.4 -41.1 

20160801-142906 (8) 10.55 ± 0.16 979. -34.6 -45.2 -40.2 

20160809-130942 (9) 8.65 ± 0.39 983. -37.8 -48.1 -43.4 

20160809-135510 (10) 9.82 ± 0.38 983. -37.8 -48.1 -43.4 

Another feature in the raw data is a low frequency oscillation appears in the mass 

timeseries.  While the oscillations are small in the raw data (Figure 3.2a), they have a pronounced 

appearance in the mass derivative (Figure 3.2b).  The mass derivative shows the low frequency 

oscillation superimposed on the high frequency noise associated with the small voltage changes 

that stabilized the particle during levitation.  The low frequency oscillation is presumably 
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generated as an artifact of the particle levitation software.  This assertion is based on evidence 

from the work of Harrison (2013).  The software used by Harrison (2013) only adjusted the 

particle’s location upwards.  As a result, the data have a step-like pattern, leading to high frequency 

features in the mass derivative that are easily removed with a low pass filter.  On the other hand, 

the current software was written to be more general, allowing the particle to move both upwards 

and downwards.  (Downward movement is necessary in the event of particle sublimation (Hanson 

et al., 2016)).  The new software “over-corrects” when moving the particle either upwards or 

downwards, causing a quasi-regular oscillation to appear in the data.  A low pass filter can partially 

remove some of the oscillation, as was done in both this work and that of Harrison (2013), but it 

is not always successful.  Much of the analysis presented below requires the particle growth rate, 

and these oscillations amplify the calculated growth rates (Figure 3.2b). 

Besides using a low pass filter on the data, I follow Magee et al. (2006) and analyze cubic 

spline fits to the data, which are shown as dashed curves in Figures 3.1 and 3.2.  The coefficients 

for each fit are listed in Table 3.2.  Note that in all cases 𝜋𝜋0 ≈ 1.  This is due to the normalization 

of the mass by its initial value (at time t = 0).  Additionally, the coefficients quantify the earlier 

qualitative observations regarding patterns of particle growth.  For example, the second and third 

order terms for particle #5 are two and three orders of magnitude smaller than most of those of the 

other particles.  Thus, for particle #5, 𝑑𝑑𝑐𝑐 ≅ 𝜋𝜋0 + 𝜋𝜋1𝑑𝑑, is nearly a linear function.  The rapid growth 

of the last three particles also becomes clear, as their third order terms are one or two orders of 

magnitude great than what is measured for most other particles.  Likewise, the similarity between 

particles #2 and #3 is quantified by all of their coefficients being within 10% of each other, 

excluding the third order coefficients.  Nevertheless, the cubic fits accurately capture all of the 
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data, and I use both the cubic fits and the data smoothed by a low pass filter in calculating the 

growth rates. 

Table 2.2 Data cubic fit coefficients 

Cubic fit coefficients for each dataset with 𝑑𝑑𝑐𝑐 = 𝜋𝜋0 + 𝜋𝜋1𝑑𝑑 + 𝜋𝜋2𝑑𝑑2 + 𝜋𝜋3𝑑𝑑3, where 𝑑𝑑𝑐𝑐 

is the ratio of the particle mass to its initial value, and 𝑑𝑑 is the time of growth. 

Particle # C0 C1 (× 10-3) C2 (× 10-6) C3 (× 10-10) 

20160614-132805 (1) 0.9553 3.366 1.846 -2.138 

20160614-143412 (2) 0.9577 6.899 3.081 4.250 

20160614-154240 (3) 1.017 6.231 3.015 -0.8887 

20160628-144717 (4) 1.005 2.660 0.7702 -2.032 

20160628-152650 (5) 0.9137 0.7133 0.02477 -0.006254 

20160726-112828 (6) 0.9918 5.625 1.168 6.770 

20160726-124528 (7) 0.9549 3.519 3.642 14.87 

20160801-142906 (8) 1.042 7.858 6.115 -4.037 

20160809-130942 (9) 0.9720 12.88 6.826 153.8 

20160809-135510 (10) 1.096 7.602 8.777 13.06 

The final preliminary analysis is to run the diffusion chamber model to estimate the ice 

supersaturation at the particle location.  This requires the tracked location of the particle, the 

temperatures of the copper plates, and the thickness of the ice-covered filter paper.  The particle 

locations and plate temperatures on a given day were always within the uncertainty range of each 

other, and so I assume the same ice supersaturation for all particles grown on the same day.  The 

model results, listed in Table 3.3, have an uncertainty range dependent upon the uncertainty in the 

thickness of the ice on both plates and the uncertainty in the size of the “dry” region and the 
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chamber’s top (see Chapter 2; Harrison et al., 2016, Appendix A).  These supersaturations will be 

used mainly for fitting the mass growth timeseries data with the KLAH model.  Recall that the 

supersaturation will not be needed for the data analysis using two the methods described in 

Sections 2.6 and 2.7 (power law analysis and scaling analysis). 

Table 3.3 Diffusion chamber model supersaturations 

Modeled ice supersaturations for each day of particle growth. 

Day Si (%) 

20160614 15.4 ± 1.3 

20160628 11.0 ± 0.9 

20160726 15.7 ± 1.2 

20160801 14.9 ± 1.2 

20160809 14.6 ± 1.1 

3.2 Linear Mass Growth and Ice Surface Transitions 

The previous section highlighted the time-linearity of the mass growth of particle #5.  This 

is most intriguing, as the mass growth rate is constant in time, yet according to Equation 2.1, the 

ice particle’s mass growth rate should increase as its radius (capacitance) increases.  As Figure 

3.8c shows, the effective diffusivity (D) increases with size when the deposition coefficient is 

predicted with the standard diffusion-kinetics theory.  The data from particle #5 imply that both C 

and D cannot increase with size, as the mass growth rate would also rise, as should occur in classic, 

faceted growth.  Furthermore, these data cannot be rejected, as there were no known defects with 

the chamber, and the particle growth was highly stable over 5 hours. 
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If I can no longer assume that C and D both increase with size, then the ice crystal growth 

theory must not be general enough and requires modification.  It may be that the growth of a 

particle directly after freezing cannot be accurately modeled by either the capacitance model or 

faceted growth theory.  The capacitance C is proportional to the particle’s semi-axis length, and 

depends only on the particle’s shape; thus, it must increase with the particle size (Lamb and 

Verlinde, 2011).  However, according to faceted growth theory, the effective diffusivity will also 

rise with size.  Therefore, in the case of particle #5, the effective diffusivity D must decrease with 

increasing size, which can only be done through the deposition coefficient.  The size dependence 

of the effective diffusivity appears both explicitly and implicitly through the deposition coefficient.  

If the deposition coefficient substantially decreases as the particle grows, D would also decrease. 

The simplest explanation of a decreasing deposition coefficient, and effective diffusivity, 

is the presence of a surface transition.  A surface transition would cause the growth mechanism M 

to change.  For example, Gonda and Yamazaki (1983) showed that frozen water droplets transform 

into hexagonal prisms through an intermediate stage of rapid growth.  During the formation of a 

single crystal, the prism, basal, and pyramidal facets form shortly after droplet freezing.  Recall 

from Section 1.2 that vicinal faces with numerous ledges comprise the pyramidal facets, and they 

therefore experience highly efficient growth.  In contrast, the basal and prism facets grow more 

slowly, representative of 2D nucleation.  The rapidly growing pyramidal facets quickly grow 

themselves out, leaving only the slowly growing basal and prism facets.  The expected result is a 

transition that causes a rapid decline in particle mass growth efficiency, and therefore the 

deposition coefficient. 

The measurements of Gonda and Yamazaki (1983) offer a plausible mechanism by which 

the deposition coefficient rapidly declines for single crystal ice.  However, it is possible that my 
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droplets, when frozen, produce polycrystalline ice, but a process similar to that shown by Gonda 

and Yamazaki (1983) may occur.  In polycrystalline freezing, crystallographically dissimilar facets 

form grain boundaries between themselves.  Grain boundaries are a source of dislocations that 

propagate away from the source, and therefore produce efficient growth (Figure 3.3 from Pedersen 

et al., 2011).  Initially, grain boundaries are openly exposed to the vapor field, which supplies them 

with vapor.  As the crystal grows, emerging facets expand away from the grain boundaries, as 

would occur during the formation and growth of a bullet rosette.  The grain boundaries are left 

isolated in the interior, away from the water vapor field with only the inefficiently growing facets 

left directly exposed to the vapor.  I hypothesize that my frozen droplets may behave similarly, 

and I therefore expect the growth mechanism to change from dislocation to 2D nucleation growth 

over time.  Quantitatively, this growth transition can be represented by increasing M from 1 to 10 

in the parametric model of the deposition coefficient.  A consequence of increasing M is a decrease 

in α and a decreasing D, which can produce linear particle mass growth.  The impacts of simulating 

particle growth with a variable M will be explored later in this chapter. 

3.3 KLAH Model Timeseries Fits 

Using the KLAH model to fit the measured ice particle mass growth timeseries is the first 

method I utilize to determine the deposition coefficient, which is the typical approach taken in the 

literature (e.g. Magee et al., 2006; Skrotzki et al., 2013).  As described before, the KLAH model 

uses the environmental parameters listed in Tables 3.1 and 3.3 to produce simulations that closely 

resemble the data.  The deposition coefficients and critical supersaturations determined by the 

KLAH model are listed in Table 3.4.  These results assume that the particles are isometric and are 
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growing by ledge nucleation (M = 10), though the crystals may have grown by dislocations (M = 

1), stacking faults (2 ≤ M ≤ 5), or some other mechanism.  In some cases, simulations of columnar 

growth produce smaller errors, but these are not significant enough to change the qualitative 

description of the fit.  Thus, I model isometric particles to fit the data, since the actual shapes are 

unknown and non-spherical fits do little to reduce the fit errors. 
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Table 3.4 Mass ratio timeseries fit results 

Results of the KLAH model fits assuming isometric particles with M = 10.  Four 

particles are fit well with a minimum absolute error less than 5%, three are fit 

moderately well with the error between 5 and 15%, and three are fit poorly with 

errors exceeding 20%. 

Particle # α Scrit (%) Minimum 
absolute error 
(%) 

20160614-132805 (1) 0.76 0.11 9.12 

20160614-143412 (2) 0.12 0.96 0.645 

20160614-154240 (3) 0.078 1.6 1.10 

20160628-144717 (4) 0.0059 10. 2.28 

20160628-152650 (5) 0.0027 10. 6.43 

20160726-112828 (6) 0.85 0.076 53.7 

20160726-124528 (7) 0.032 3.7 8.86 

20160801-142906 (8) 0.065 1.6 1.65 

20160809-130942 (9) 0.92 0.16 23.3 

20160809-135510 (10) 0.97 0.79 42.1 

While the KLAH model produced accurate fits for ice formed from heterogeneously 

nucleated particles (Harrison et al., 2016), the results for homogeneously frozen droplets are 

mixed.  For example, the data for particle #2 are modeled with a minimum absolute error of less 

than 1%.  Conversely, the model’s minimum absolute error for particle #6 is over 50%.  If I set 

qualitative boundaries for accuracy of the model fits to the data as “well” (minimum absolute error: 
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0 – 5%), “moderately well” (minimum absolute error: 5 – 20%), and “poorly” (minimum absolute 

error: > 20%), there is an almost even distribution amongst the categories.  

Particle #8 is an example of one of the particles that was fit accurately by the KLAH model 

(Figure 3.4).  The model fit intersects the data points and has a low overall error.  On the other 

hand, particle #10 was impossible to fit with the model (Figure 3.5) even though a deposition 

coefficient of nearly unity (highly efficient growth) and a critical supersaturation less than 1% 

(readily producing attachment sites) were used.  Particle #10’s growth rate is very large, indicating 

that either the supersaturation estimates are too low or that the particle quickly became non-

isometric.  Alternatively, its growth may have become electrically enhanced.  In such a case, the 

ice particle would have enough electrons on its surface to attract vapor molecules 

electrodynamically.  Such an occurrence would have led to the particle experiencing an 

exponential mass growth rate, so this does not appear to be a likely explanation for the large, but 

not exponential, growth rate. 

Within the spectrum of well and poorly modeled timeseries is the model fit to the measured 

mass growth of particle #5 (Figure 3.6).  As I discussed in the previous section, the current 

theoretical models cannot produce a linear mass timeseries, as current theory predicts that the 

particle’s growth rate must increase with size.  No combination of parameters (i.e. temperature, 

supersaturation, initial size, growth time, or growth mechanism parameter) will produce linear 

mass growth with the classical ice crystal growth theory. 

The KLAH model fit of each mass timeseries demonstrate nearly diffusion-limited growth, 

as the deposition coefficient approaches unity, with the only exceptions being the two from 

20160628 (particle #4 and #5).  Furthermore, the KLAH model suggests that those particles should 

have incredibly low critical supersaturations, with some less than 1%.  This is in contrast to Scrit 
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values found in other experiments conducted at similar temperatures, which range from 5 – 20% 

at -40 °C (see Figure 1.3). 

The results from these fits to the particle mass timeseries are not robust.   They are highly 

sensitive to the supersaturation in the levitation diffusion chamber, and as previously stated, the 

supersaturation is uncertain.  Additionally, the poor fits between the model and the data provide 

little confidence in the α and Scrit values produced.  For these reasons, the data must be analyzed 

with a method that removes the dependence on Si and can explain the growth patterns (i.e., linear, 

rapid) that the model does capture. 

The two analysis methods described in Chapter 2 serve as alternative approaches for fitting 

the data.  Both analyses still utilize the KLAH model, but they remove the supersaturation 

dependence and expose more complex growth features (e.g., possible surface transitions) hidden 

within the timeseries data.  Here, I first use the power law analysis from Section 2.6, followed by 

the scaling analysis from Section 2.7. 

3.4 Power Law Results 

The first analysis technique I will use is the power law analysis on the normalized particle 

growth rate discussed in Section 2.6.  Section 2.6 showed that P = (2 – n) / 3, where n = 0 (P = 

2/3) for kinetics-limited growth, n = 1 (P = 1/3) for diffusion-limited growth, and n should be 

between 0 and 1 (1/3 ≤ P ≤ 2/3) for diffusion-kinetics growth.  This method eliminates the 

supersaturation dependence in quantitatively determining an ice particle growth mode. 

Interestingly, the power laws determined for cubic spline fits of the data are outside of the 

expected 1/3 ≤ P ≤ 2/3 range for about 80% of the grown particles (Figure 3.7, Table 3.5).  Particles 
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#2, 3, 4, 5, and 9 all have power law exponents less than 1/3 for the entirety of their growth, and 

particles #6, 8, and 10 have exponents less than 1/3 for at least the initial stages of growth.  Only 

particles #1 and 7 follow the expected 1/3 ≤ P ≤ 2/3 trend. 

Table 3.5 Power law results 

Average power law exponents for the cubic fits of each dataset.  Pave < 1/3 for all 

particles excluding #1, 7, and 10. 

Particle # Pave 

20160614-132805 (1) 0.362 

20160614-143412 (2) 0.236 

20160614-154240 (3) 0.248 

20160628-144717 (4) 0.221 

20160628-152650 (5) 0.146 

20160726-112828 (6) 0.277 

20160726-124528 (7) 0.643 

20160801-142906 (8) 0.314 

20160809-130942 (9) 0.222 

20160809-135510 (10) 0.428 

These results imply that n is greater than 1 in many cases.  If the deposition coefficient 

follows a power law as suggested by Equation 2.10, α = α0 (r0 / r)n, then it should decrease faster 

when n > 1 than the slower decline of the classic kinetics limit for faceted growth.  These results 

suggest that the deposition coefficient deceases faster than classical faceted growth theory predicts.  

As discussed in Section 3.2, the only known process that could cause a rapid decrease in α is a 

surface transition in which the growth mechanism parameter M increases.  Therefore, I hypothesize 
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that the occurrence of surface transitions can cause the power law exponents to exist outside of the 

range presented by classical theory. 

To examine the plausibility of this hypothesis, I test the idea in idealized simulations using 

the KLAH model across a range of ice supersaturations with both a constant M (classical faceted 

ice growth theory) and a variable M (hypothesized surface transition).  In each case, I model 

particle radius growth across 20 – 100 µm at T = -40 °C and p = 1000 hPa with Scrit = 10%.  For 

constant M, I use M = 10, and for variable M, I assume a simple power-law form of the transition, 

𝑀𝑀 = 1 + 9 �
min�𝑟𝑟, 𝑟𝑟𝑓𝑓� − 𝑟𝑟0

𝑟𝑟𝑓𝑓 − 𝑟𝑟0
�

3
4�

, 
(3.1) 

where 𝑟𝑟 is the particle radius, 𝑟𝑟0 is the initial radius, and 𝑟𝑟𝑓𝑓 is the final radius.  As a result, M 

transitions from 1 to 10 as the particle’s size increase.  Simulations were done with supersaturations 

of 1, 5, 10, and 20%. 

The KLAH simulations that assume classical, faceted growth with constant M behave as 

expected (Figure 3.8a).  P stays within the 1/3 to 2/3 range for every Si.  Furthermore, P ≈ 2/3 at 

low ice supersaturations (Si = 1%) as the growth is near the kinetics limit, while P ≈ 1/3 at high ice 

supersaturations (Si = 20%) as the growth approaches the diffusion limit.  The simulations of a 

surface transition with variable M, on the other hand, all have P < 1/3, regardless of the 

supersaturation.  Moreover, unlike the classical model where M is constant, P decreases with 

decreasing Si.  For low supersaturations, P may become negative.  This indicates that the current 

model can simulate growth with values of P < 1/3, but only if it includes a growth mode change 

from one of efficient growth (M = 1) to another of inefficient growth (M = 10) as would occur 

during a surface transition. 
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Additional scenarios are simulated using different particle sizes, aspect ratios, transition 

lengths (r0 to rf in Equation 3.1), growth modes, and critical supersaturations.  The results are much 

the same as shown by Figure 3.8a with only the simulations with a variable M residing entirely in 

the P < 1/3 region.  It is important to note that the classical faceted growth model (constant M) can 

produce P < 1/3 at the beginning of particle growth, with P increasing to values greater than 1/3 

(Figure 3.8b).  For the simulation to cross the P = 1/3 line, the modeled particle must be columnar 

(planar particles will not produce this result) and the critical supersaturation must be approximately 

equal to the ambient supersaturation.  It is possible that this occurred during the growth of particles 

#6 and 8.  Notice that the Pave values of these two particles are less than 1/3, but Figure 3.7 shows 

that P > 1/3 at the end of their growth cycles.  Since simulations with variable M values do not 

have P ever exceeding 1/3, it is plausible that particles #6 and 8 were non-isometric crystals and 

growing by 2D ledge nucleation. 

Since the behavior of P for half of the grown particles (#2, 3, 4, 5, and 9) can only be 

modeled by the inclusion of a variable M surface transition, further impacts of the transition are 

explored theoretically with the KLAH model.  The impact a surface transition may have on the 

effective diffusivity is shown in Figure 3.8c.  Again, the simulations with classical, faceted growth 

theory (constant M) behave as expected; the normalized diffusivity (D/D0) increases with size, and 

does so fastest at lower supersaturations.  Since the effective diffusivity is normalized by its initial 

value, only the degree of kinetics limitation can be determined by the power law that describes the 

variation of D with particle size (Equation 2.9).  Recall that in Equation 2.9, the exponent on the 

effective diffusivity’s radius dependence is 1 – n, where n = 0 at the kinetics limit, and n = 1 at the 

diffusion limit.  Hence, D is proportional to the particle radius with kinetics-limited growth, 

whereas it is constant for diffusion-limited growth.  Unlike the classical, faceted growth theory 



44 

44 
 

results, the simulations with a variable M (surface transition) have deceasing normalized 

diffusivities, with the decrease occurring most rapidly at low supersaturation. 

Since the normalized diffusivity decreases with size when M increases from 1 to 10 (i.e., 

efficient growth to inefficient growth transition), constant mass growth rates (such as that of 

particle #5) can be produced, and this is the only way they can be produced.  Moreover, half of the 

data have P values that never exceed 1/3, indicating that the model requires a variable M to explain 

them.  Thus, these data analyses and theoretical simulations support the hypothesis that growth 

mode changes, or surface transitions, maybe occurring on the homogeneously frozen particles. 

3.5 Scale Analysis Results 

Further evidence of ice crystal surface transitions appears when the scale analysis method 

detailed in Section 2.7 is applied to the data.  With this analysis method, it becomes easy to 

distinguish among ice particles that follow classical diffusion-kinetics limited growth with a 

constant M for faceted ice, those that follow diffusion-limited growth, and those that indicate that 

they may have experienced a surface transition.  Such a distinction can be seen in Figure 3.9, which 

shows example theoretical calculations with the KLAH model.  When the mass ratio mr is plotted 

against the logarithm of the scaled mass growth rate ratio ln �̇�𝑑𝑠𝑠 (Figure 3.9), the diffusion and 

kinetic limits intersect once.  Particle growth modeled with the classical, faceted growth theory 

(constant M) remains between the diffusion and kinetics limits, and the resulting curves pivot about 

the point of intersection.  Figure 3.9 demonstrates that increasing α by two orders of magnitude 

simply tilts the modeled growth from the kinetics limit to the diffusion limit.  Notice that the curves 
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become easier to distinguish with lower deposition coefficients, especially for values less than 

0.05, which is consistent with the conclusion of Section 2.5. 

 Particles #8 and 10 serve as clear examples of this technique’s utility, with the classic result 

for a faceted crystal appearing in both the data and in the cubic fit (Figure 3.10, Figure 3.11).  In 

the case of each particle, the data points fall between the diffusion and kinetic limits.  Furthermore, 

modeled growth curves with M = 10 fit the data exceptionally well.  The model curves highlight 

that particle #8 has nearly diffusion-limited growth with an average deposition coefficient near 

0.05.  This particle’s results support the discussion in Section 2.5 since the data indicate the 

presence of diffusion-kinetics limited growth, but no certain statement can be made about the 

influence of surface attachment kinetics in this case.  On the other hand, #10 is clearly closer to 

the kinetic limit with an average deposition coefficient of 0.006.  Particles #1, 6, and 7 likewise 

have growth bounded by the diffusion and kinetic limits (Table 3.6).  In these cases, it is possible 

to predict the deposition coefficient and critical supersaturation with less uncertainty than in the 

direct fits to the mass timeseries, which rely on estimated ice supersaturation values.  Additionally, 

by using Equation 2.32, I can estimate a plausible range ice supersaturation for these cases. 

 To approximate the uncertainty on the determined deposition coefficient, I repeated the 

scale analysis on the data after first applying a low-pass filter to remove the low frequency 

oscillations from the data that differentiation amplifies (Figure 3.10b, Figure 3.1b).  The α values 

calculated from the filtered data alone are uncertain due to the low frequency oscillation in the 

data.  However, these values are within the range of the α values derived from the cubic fits for 

particles #1, 6, 7, and 10 (Table 3.6).  Essentially, the same conclusions are drawn from the data 

when using model fits to the filtered data and when using model fits to the cubic splines.  The 

uncertainty range on the deposition coefficient for particle #8 is very large since its growth is near 
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the diffusion limit where the resolution on α is poor (see Section 2.5).  Consequently, it is not 

possible to determine a robust deposition coefficient for particle #8.  Regardless, the exact value 

of the deposition coefficient of particles like #8 is of little importance, as, in this case, the surface 

attachment kinetics only have small impact on the overall mass growth. 

 The remaining ice particles (#2, 3, 4, 5, and 9) all show signs of surface transitions.  

Graphically, the surface transitions manifest themselves as curves that begin with a scaled mass 

growth rate that exceeds that of the constant-M diffusion limit, but the curve falls below that limit 

as the particle grows (Figure 3.12).  When modeling the growth of these particles with the classical 

model and M = 10, the diffusion limit curve is the best fit, which produces a large deposition 

coefficient.  This is a result of the classical model being restricted to the diffusion and kinetic 

limits, as shown in Figure 3.9.  However, if the growth is simulated using a transition from efficient 

to inefficient growth (variable M in Equation 3.1), then a fit to the data is possible (Figure 3.12 for 

particle #5).  Note that both the data and the model fit reside outside of the diffusion and kinetic 

limits for classical, faceted ice crystal growth.  Since the variation of M rapidly decreases the 

deposition coefficient, one cannot derive a single α value in these cases (Figure 3.13).  When ice 

particles are small (like the ones in the levitation diffusion chamber), the deposition coefficient 

changes little with size when using the classical, faceted growth model.  Thus, the average value 

of the deposition coefficient suffices in describing faceted growth. 

 Table 3.6 details the results of the scale analysis for each ice particle’s growth.  Comparing 

these results to those of Table 3.4, the utility of this new analysis method becomes apparent.  Half 

of the particles are best fit with a surface transition model (variable M), thus using a single value 

of α is not justifiable.  Additionally, the critical supersaturations determined better reflect past 

results (e.g. Libbrecht, 2003; Libbrecht and Rickerby, 2013).  Furthermore, recall that the KLAH 
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model could not fit the timeseries of particle #6 and 10 well enough to determine any meaningful 

α or Scrit:  The model produced high values of α (near unity) and extremely low values of Scrit.  

However, the scale analysis reveals that particle #6 and 10 likely had classical, faceted growth.  In 

fact, this new scale analysis method generates deposition coefficients (non-transitioning only) and 

critical supersaturations that are reasonable for all of the particle growth data.  Moreover, this 

method unveils the extent to which the uncertainty on the ice supersaturation affects the 

conclusions drawn from the growth data.  The diffusion chamber model generally produced a 

supersaturation uncertainty of ~ ± 1%, but this may be a low estimate with the uncertainty actually 

being much higher.  For instance, if the supersaturation error range is instead taken to be between 

the chamber model’s mean and the supersaturation derived from Equation 2.32, it becomes clear 

that the uncertainty is likely larger than the original estimates.  While the uncertainty range may 

be less than 4% in some cases (particles #2, 3, 6, and 7), it can reach up to 10% (particle #5). 
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Table 3.6 Scale analysis results 

The following are the results of the scale analysis.  The range on the deposition 

coefficients is determined by analyzing both the smoothed data and the data’s cubic fit.  

Some particles are best fit using a variable M and are indicated by an arrow pointing 

from the initial to final deposition coefficients (from the cubic fit).  The uncertainty on 

the ice supersaturation originates from the value derived by this analysis and the value 

produced by the diffusion chamber model.  The critical supersaturation values are 

determined by initiating the diffusion-kinetic model with the ice supersaturation 

extrema. 

Particle # α Scrit (%) Si (%) 

20160614-132805 (1) 0.018 – 0.066 6.5 – 12.8 7.8 – 15.4 

20160614-143412 (2) 0.078 → 0.021 5.8 – 6.6 13.6 – 15.4 

20160614-154240 (3) 0.080 → 0.025 5.8 – 7.3 12.3 – 15.4 

20160628-144717 (4) 0.092 → 0.021 2.2 – 4.4 5.4 – 11.0 

20160628-152650 (5) 0.034 → 0.002 1.1 – 11.1 1.1 – 11.0 

20160726-112828 (6) 0.008 – 0.02 17.9 – 23.2 12.1 – 15.7 

20160726-124528 (7) 0.001* 25.7 – 31.7 12.7 – 15.7 

20160801-142906 (8) 0.048 – 0.5 14.7 – 17.4 14.9 – 17.3 

20160809-130942 (9) 0.126 → 0.042 3.0 – 5.1 14.6 – 25.5 

20160809-135510 (10) 0.006 – 0.014 23.4 – 36.0 14.6 – 22.4 

*Both analyses have α = 0.001 set as a lower limit, and both determined particle #7 to be at or 
below that limit. 
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3.6 The Current Work and Past Data 

The scale analysis method is especially promising when comparing the results in Table 3.6 

and Figure 3.11 through 3.13 to past data.  Magee et al. (2006) found the deposition coefficient to 

be about 0.006 at -40 °C and 0.009 at -44 °C.  About 40% of the particles studied this work have 

deposition coefficients, as determined by the scale analysis method, that resemble values of Magee 

et al. (2006).  Moreover, the critical supersaturation values determined from the Magee et al. 

(2006) data and this work follow a trend of Scrit increasing as the temperature decreases (Figure 

1.7, Harrington et al., 2018). 

The scale analysis and power law analysis have also been used by our group to re-analyze 

the data from Harrison et al. (2016) (Harrington et al., 2018).  Note that the classical, faceted 

growth model could typically fit the mass ratio timeseries as was clearly demonstrated in Harrison 

et al. (2016).  Regardless, the scale analysis method cleanly fits the data as is shown in Figure 3.14 

(Harrington et al., 2018).  Also, it provides more robust deposition coefficient estimates for 

particles grown in low ice supersaturations.  Originally, the deposition coefficients estimated in 

Harrison et al. (2016) never exceeded 0.05, but those estimates were determined from model fits 

to the mass timeseries data, which were influenced by uncertainty in the ice supersaturation.  

However, as Figure 3.14a clearly indicates, the particle that Harrison et al. (2016) grew at -33 °C 

likely experienced growth limited primarily by diffusion.  It is evident that this analysis supports 

the utility of the scaling methods for determining the deposition coefficient. 

Furthermore, the power law analysis results of the Harrison et al. (2016) data reveals a 

distinct pattern, especially when compared to the data from this work as a function of α (Figure 

3.15, Harrington et al., 2018).  The re-analysis results from Harrison et al. (2016) show a strong 
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correlation between the deposition coefficient and the effective diffusivity power law.  This is in 

contrast to the relationship between the deposition coefficient and temperature, shown in Figure 

1.3, which is very scattered.  However, as Figure 3.15 demonstrates, applying an appropriate 

scaling analysis to the data produces organization.  Moreover, the dashed line in Figure 3.15 shows 

the relationship between P and α as predicted by a ledge growth model.  The data from Harrison 

et al. (2016) closely fit the ledge growth model curve, suggesting the that heterogeneously 

nucleated ice particles in that study grew by a surface ledge mechanism.  In contrast, every particle 

with a surface transition, marked with a range on the deposition coefficient, has a power law that 

falls below the diffusion-limited growth line.  Only one non-transitioning particle resides explicitly 

in the P < 1/3 region, and I hypothesized that this occurs because the particle was columnar.  Third, 

the few particles in the 1/3 < P < 2/3 range appear to all follow the classical ledge nucleation 

model. 

When compared to past results and data, the two analysis methods produced by this work 

garner support.  The results of Magee et al. (2006) suggest that the values of the deposition 

coefficient and critical supersaturations for my data determined by the scale analysis are 

reasonable.  Moreover, using the scale analysis on the data of Harrison et al. (2016) produced 

reliable model fits.   Furthermore, the power law analysis of the Harrison et al. (2016) data suggests 

that there may be an underlying relationship between α and P that warrants further investigation.  

This relationship appears to be robust, which may allow it to serve as a basis for model 

parameterizations. 
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Chapter 4  
 

Summary and Conclusion 

The growth of ice crystals from water vapor in cold atmosphere clouds is poorly understood 

and oversimplified in all cloud models.  Most cloud models ignore the effects of surface attachment 

kinetics entirely, opting to instead assume that all ice crystals experience diffusion-limited growth.  

When cloud models do approximate attachment kinetics, they assume a constant deposition 

coefficient for all particles, regardless of the particle size, shape, or length of growth time.  The 

sparse experimental results of ice particle deposition coefficients reveal that the surface attachment 

kinetics often dictates particle growth, more so than vapor diffusion alone.  The deposition 

coefficient, the numerical representation of the growth efficiency of ice, is thus known to often be 

α << 1, even though cloud models assume it to be unity.  As a result, cloud models likely 

overpredict growth in low saturation environments and have the wrong growth size dependence 

(Harrison et al., 2016). 

This work builds upon past laboratory studies of the deposition coefficient by investigating 

ice particle vapor growth at temperatures between -43.4 and -40.2 °C.  The ice particles were 

formed from homogeneously frozen droplets, as can occur in high cirrus clouds.  The particles, 

ranging from about 8 to 22 microns in initial radius, grew in a levitation diffusion chamber with 

ambient ice supersaturations of 1.1 to 25.5%. 

The data were first analyzed fitting the measured mass ratio timeseries with diffusion-

kinetics model simulations.  The intent was to use the best fit to estimate the particle deposition 
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coefficient.  However, this analysis produced values of α with significant uncertainty.  One 

problem of directly analyzing the timeseries is that it depends on the ambient supersaturation, 

which is constant, but contains substantial uncertainty.  Further analysis found that uncertainties 

that cause as small as a 5% error in the particle mass result in large errors when determining values 

of α above about 0.05.  For example, if a particle actually grew with an α = 0.1, the model would 

not be able to distinguish this value as opposed to a deposition coefficient between 0.023 and 1. 

To avoid the uncertainty caused by the supersaturation dependence, two new analysis 

methods were developed.  The first was a power law on the ice particle growth and effective 

diffusivity.  It was demonstrated that a power law function dependent on the ice crystal radius 

approximates the effective diffusivity well.  Furthermore, the exponent of the power law gives a 

qualitative understanding of an ice particle’s deposition coefficient where P = 1/3 applies to 

diffusion-limited growth, while P = 2/3 applies to kinetics-limited growth.  Interestingly, the 

average values of P for my experiments were 0.146 – 0.643, with more than half of the particles 

producing Pave < 1/3.  The diffusion-kinetics model was only able to replicate the Pave < 1/3 

behavior with the introduction of a model of a surface transition. 

Physically, a surface transition represents the ice particle’s transformation from efficient 

growth, with many ledges to serve as vapor attachment sites, to inefficient growth, with few 

attachment sites on the ice surface.  Surface transitions are known to occur while particles evolve, 

especially as crystals form from frozen droplets.  Even so, we lack a growth model this 

phenomenon.  A surface transition can be modeled, in approximation, by increasing the ice growth 

mechanism parameter, M, which represents mechanism by which attachment sites form on the ice 

surface.  Consequently, increasing M rapidly decreases the deposition coefficient, which in turn 

decreases the effective diffusivity. 
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Further evidence of surface transitions occurring on some of the particles grown in the 

diffusion chamber appears by using a second new analysis technique.  The deposition coefficient 

and chamber ice supersaturation can also be estimated with this technique.  The growth data were 

scaled by the mean growth rate ratio to remove the dependence on the supersaturation.  Using this 

analysis, the diffusion-kinetics model fit half of the ice particles with α values of 0.001 – 0.5.  The 

other half could only be fit when an approximate model surface transitions was used.  The scale 

analysis was able to determine deposition coefficients for some particles whose timeseries could 

not be fit easily with the classical, faceted growth model (constant M).  Scale analysis also gave a 

clear signal when a particle likely experienced a surface transition. 

A transitioning ice crystal surface is not new, but it has never been considered in studies of 

the deposition coefficient.  The inconsistencies between laboratory results of deposition 

coefficients may be explained, in part, by the occurrence of surface transitions on the ice particles.  

Many of prior studies begin recording ice crystal growth measurements promptly following 

nucleation (e.g. Magee et al., 2006; Earle et al., 2010; Skrotzki et al., 2013), a period in which 

surface transitions likely occur.  In the future, work should focus on imaging the ice surface as 

transitions occur.  Additionally, the model’s approximation of a surface transition that I developed 

in this thesis should be tested and improved.  Further, the new analysis techniques should be tested 

on more datasets of particles in a wider range of conditions.  Perhaps if the impacts of ice crystal 

surface transitions are thoroughly quantified, the accuracy of cloud models can be improved. 
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List of Variables 

 Variable Definition 

𝛼𝛼 Deposition coefficient 

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Supersaturation at ice surface 

𝑆𝑆𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐 Critical supersaturation for nucleation 

𝑀𝑀 Growth mechanism 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, �̇�𝑑 
Particle mass growth rate 

𝜋𝜋 Particle shape capacitance 

𝐷𝐷 Effective diffusivity 

𝑆𝑆𝑐𝑐 Ambient ice supersaturation 

𝑇𝑇∞ Ambient temperature 

𝑝𝑝 Pressure 

𝑐𝑐 Prism axis semi-length 

𝑎𝑎 Basal axis semi-length 

𝛼𝛼𝑙𝑙 Prism facet deposition coefficient 

𝛼𝛼𝑙𝑙 Basal facet deposition coefficient 

𝐷𝐷𝑣𝑣′  Modified vapor diffusivity 

𝑘𝑘𝑇𝑇′  Modified thermal diffusivity 

𝑅𝑅 Universal gas constant 



55 

55 
 

𝑀𝑀𝑤𝑤 Molar mass of water 

𝑒𝑒𝑐𝑐 Equilibrium vapor pressure over ice 

𝑙𝑙𝑠𝑠 Enthalpy of sublimation 

𝐷𝐷𝑣𝑣 Vapor diffusivity 

𝑣𝑣𝑣𝑣��� Mean vapor molecule speed 

𝜋𝜋∆ Particle capacitance with vapor jump 

𝑘𝑘𝑇𝑇 Thermal diffusivity 

𝛼𝛼𝑇𝑇,𝑙𝑙 Basal thermal accommodation coefficient 

𝛼𝛼𝑇𝑇,𝑙𝑙 Prism thermal accommodation coefficient 

𝜌𝜌𝑙𝑙 Air density 

𝑐𝑐𝑝𝑝 Specific heat of air at constant pressure 

𝑣𝑣𝑙𝑙��� Mean air molecule speed 

𝜀𝜀 Mass error 

𝑑𝑑𝑐𝑐 True particle mass 

𝑑𝑑𝑐𝑐 Incorrect particle mass 

𝛼𝛼𝑐𝑐 Ture deposition coefficient 

𝛼𝛼𝑐𝑐 Predicted deposition coefficient 

�̇�𝑑0 Initial particle mass growth rate 

𝑟𝑟 Equivalent-volume sphere radius 

𝑟𝑟0 Initial equivalent-volume sphere radius 

𝐷𝐷0 Initial effective diffusivity 
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𝛼𝛼0 Initial deposition coefficient 

𝑛𝑛 Power on deposition coefficient 

𝑑𝑑 Particle mass 

𝑑𝑑0 Initial particle mass 

𝑃𝑃 Particle mass growth power law 

𝐷𝐷 Diffusivity of vapor and heat 

𝜌𝜌𝑐𝑐 Density of ice 

�̇�𝑑𝑐𝑐 Mass growth rate ratio 

𝑑𝑑𝑐𝑐 Mass ratio 

𝜅𝜅 Mass growth rate ratio constant 

𝑣𝑣𝑣𝑣��� Mean molecular vapor speed 

𝜌𝜌𝑒𝑒𝑒𝑒 Equilibrium vapor density 

�̇�𝑑𝑠𝑠 Scaled mass growth rate ratio 

𝐷𝐷𝑐𝑐��� Radius-weighted average diffusivity 

𝑃𝑃𝑙𝑙𝑣𝑣𝑒𝑒 Average growth power law exponent 

𝑟𝑟𝑓𝑓 Final particle radius 
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FIGURES 

 
Figure 1.1 Dependence of ice crystal morphology to temperature and saturation 

Ice crystal habit depends on temperature, which controls if the crystal is a plate or a column.  The 
habit also gains complexity with higher supersaturation (Libbrecht, 2003). 
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Figure 1.2 Schematic of ice crystal surface attachment kinetics 
Vapor molecules that diffuse to the ice particle surface undergo surface attachment kinetics.  A 
kink site is necessary for a molecule to be incorporated, otherwise it will desorb (Lamb and 
Verlinde, 2011, Figure 8.15). 
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Figure 1.3 Plot of temperature to deposition coefficient 
Plotted are all of the deposition coefficient measurements taken from our levitation diffusion 
chamber.  No clear dependence on the temperature emerges. (Harrington et al., 2018) 
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Figure 1.4 Dependence of the deposition coefficient on the growth mechanism 
a) The relationship between the ratio of the local supersaturation at the particle surface to the 
critical supersaturation and the deposition coefficient depends on the growth mechanism 
parameter (m in this figure).  For dislocation growth (m = 1), the deposition coefficient is 
comparatively large regardless of the local supersaturation.  For 2-D nucleation (10 ≤ m ≤ 30), 
the local supersaturation must be near or greater than the critical supersaturation for efficient 
growth to occur. b) The growth mechanism parameter also influences the relation between the 
ambient supersaturation and the deposition coefficient.  Smaller values of m generally increase 
the deposition coefficient (Zhang and Harrington, 2015, Figure 1). 
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Figure 1.5 Measured critical supersaturation values 
Plotted are all of the known measurements of the critical supersaturation.  The values taken from 
the levitation chamber and Magee et al. (2006) were analyzed by our lab group.  Note that the 
purple triangle shown are measurements from the current work.  Other than our measurements, 
there are few critical supersaturation measurements below 20 °C supercooling (Supercooling = 0 
°C – T).  Laboratory measurements suggest that the Critical supersaturation rises with the 
supercooling (Harrington at al., 2018). 
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Figure 1.6 Schematic of two growth mechanisms 
Diagram of two ice growth modes from vapor.  a) 2-D Nucleation requires 𝑆𝑆𝑐𝑐 ≥ 𝑆𝑆𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐 to nucleate 
ledges to act as attachment points for vapor molecules.  b) Screw Dislocation utilizes a defect in 
the ice lattice to continuously form kink sites for new molecules (Lamb and Verlinde, 2011, 
Figure 8.16). 
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Figure 1.7 Evolution of a frozen droplet to a hexagonal prism 
A frozen droplet transitioning to a hexagonal prism.  Rapidly growing pyramidal facets are 
visible in c, d, and e, located between the basal (top/bottom) facets and the prism (side) facets 
(Gonda and Yamazaki. 1983, Figure 1). 
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Figure 2.1 Schematic of the levitation diffusion chamber 

Schematic of the levitation diffusion chamber used.  a) The side view of the chamber shows the 
relative positions of the Plexiglas® cryogen housings, the copper plates, the Plexiglas® chamber 
wall, and the droplet launcher.  b) The view of the bottom of the top copper plate reveals the 
locations of the “dry” regions resulting from the presence of the four button electrodes and the 
launcher opening (Harrison et al., 2016, Figure 1). 
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Figure 2.2 Example supersaturation profile from the diffusion chamber model 

Ice supersaturation chamber height as given by classic diffusion chamber theory and the 
diffusion chamber model.  In this example, the top copper plate temperature is -32.6 °C, while 
the bottom plate is at -38.4 °C.  Uncertainty ranges arise from uncertainty of the ice thickness on 
the plates and the moisture content difference due to the electrodes and launcher opening.  The 
blue region indicates the expected supersaturation range for a particle located at 5.6 mm above 
the chamber floor.  In this example, the model predicts Si to be 2.9 – 4.2%, while theory suggests 
it to be 3.7 – 4.9%. 
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Figure 2.8 Plot of predicated deposition coefficients to mass error 

Mass error curves from modeling ice growth based on different deposition coefficients.  Each 
solid curve corresponds to growth with a true deposition coefficient.  The mass error is derived 
from the departure from the true mass when simulating growth using an incorrect deposition 
coefficient.  Additionally, the dashed line marks a 5% mass error.  Sections of each solid curve 
below the dashed line cannot be resolved with a 5% mass error. 
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Figure 2.9 Plot of true deposition coefficient perdition resolution 

Resolution range of determining the true deposition coefficient for various mass error thresholds.  
When Δα is unity, all resolution is lost.  The dashed line is where the true deposition coefficient 
𝛼𝛼𝑐𝑐 = 0.04.  For a mass error 5%, it is nearly impossible to determine the value of the true 
deposition coefficient when it is greater than or equal to 0.04. 
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Figure 2.10 Deposition coefficient resolution temperature and pressure dependence 

This figure shows the deposition coefficients at which resolution is lost at different temperatures 
and pressures, with a mass error threshold of 10%.  Solid curves are at a pressure of 1000 hPa, 
and dashed curves are at 100 hPa.  The blue curves indicate the deposition coefficient value at 
which the transition from high to low resolution begins to occur, and the red curves show when 
the transition is almost complete.  Note that more deposition deficient values have a high 
predication resolution at the lower pressure.  Additionally, the resolution rapidly declines for 
temperatures less than -40 °C at the higher pressure. 
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Figure 3.11 Plotted mass ratio timeseries of all ice particles 

Mass ratio growth timeseries of ice.  Data is shown as points (every hundredth point) with error 
bars, which originate from uncertainty in the temperature, initial radius, and bottom plate 
voltage.  The dashed lines are cubic fits to the data.  Each color represents a separate particle.  
Each subfigure increases the number of datasets shown with a) particles that grew to less than 15 
times the original mass, b) particles that grew for less than 2500 seconds, and c) all particles.  
Note the changes in axis scales in each subplot. 
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Figure 3.12 The cubic fit and low frequency oscillations in the data 

a) Low frequency oscillations appearing in the particle #1 raw mass data.  The light dashed curve 
is the cubic fit to the data.  b) The oscillations become more obvious in the data’s derivative.  
The derivative of the cubic fit (dashed curve) intersects the middle of the waves. 
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Figure 3.13 Grain boundaries producing ledges 

Grain boundaries form as ice crystals interest.  The ice surface transitions to nucleate numerous 
ledged near the grain boundary (Pedersen et al., 2011, Figure 2). 
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Figure 3.14 Mass ratio timeseries and model fit of particle #8 

Displayed is the mass ratio timeseries of particle #8 (points) and the KLAH model’s best fit 
(dashed).  This serves an example of the KLAH model fit capturing the data’s behavior. 
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Figure 3.15 Mass ratio timeseries and model fit of particle #10 

This is the mass ratio timeseries of particle #10 (points) and its best KLAH model fit (dashed).  
Despite the model using a deposition coefficient of nearly unity, its simulated growth is much 
slower than the particle’s actual growth.  This is an example of the model poorly fitting the data. 
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Figure 3.16 Mass ratio timeseries and model fit of particle #5 

Plotted is the mass ratio timeseries of particle #5 (points) and its modeled fit (dashed).  The 
KLAH model fit matches the data fairly well, but it does not capture the distinct linear trend of 
the timeseries. 
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Figure 3.17 Power law analysis of the data 

The power law exponent for many of the ice particles falls outside of the expected 1/3 ≤ P ≤ 2/3 
range.  However, particles #1, 6, 7, 8, and 10 have expected P values for some portion of their 
growth.  The remaining particles behave as though they have a variable growth mode parameter 
M. 
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Figure 3.18 Power law analysis with the diffusion-kinetics model 

(Caption on the following page.) 
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Figure 3.8 a) If M is constant (solid), the power law produced by the diffusion-kinetic model is 
within the 1/3 – 2/3 range, regardless of the environmental conditions.  The example plotted is 
the ambient supersaturation, where increasing Si causes P to asymptote to 1/3.  If M is variable 
(dashed), the modeled power law is less than 1/3, and it decreases with decreasing 
supersaturation. (Note: The dashed Si = 1% power curve descends below -0.2, the minimum on 
the figure.)  b) If a particle is columnar, in this case with Scrit = 5.45% on the c-axis and Scrit = 
10.9% on the a-axis, then is it possible for P to cross the 1/3 line.  The solid curves correspond to 
2D nucleation growth (M = 15), the dotted curves represent dislocation growth (M = 1), and the 
dashed curves are again produced with a variable growth mechanism (M = 1 → 10).  Like in (a), 
the variable-M curves remain below P = 1/3.  However, when Si = 5% (blue), the 2D nucleation 
case begins below P = 1/3 and ends above it.  This does not happen at Si = 1% or 10%.  Also, at 
every supersaturation value, the dislocation growth curves remain with P only slightly greater 
than 1/3.  c) The normalized diffusivity increases if M is constant, but it decreases if M increases.  
This plot exemplifies the effective diffusivity power law on the radius (Equation 2.9). 
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Figure 3.19 Demonstration of scale analysis with the diffusion-kinetics model 

Using the scale analysis method, the diffusion limit, kinetic limit, model, and data are directly 
compared.  This example (excluding the data for clarity) demonstrates that the diffusion and 
kinetic limit curves intersect once, and the constant-M modeled curves pivot about that 
intersection with a dependence on the deposition coefficient.  If M is constant, the model is 
restrained to those extreme growth modes. 
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Figure 3.20 Scale analysis of particle #8 

Displayed are the scale analysis results for particle #8 from a) the cubic fit of the data, and b) the 
smoothed data.  The standard diffusion-kinetic model with a constant M = 10 fits the data’s cubic 
fit with α = 0.048 and the smoothed data with α = 0.5.  This range covers the deposition 
coefficient values produced by the original timeseries analysis (α = 0.065).  Both analysis 
methods suggest that this ice particle experienced nearly diffusion-limited growth. 
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Figure 3.21 Scale analysis of particle #10 

Plotted are the scale analysis results for particle #10 from a) the cubic fit of the data, and b) the 
smoothed data.  The standard diffusion-kinetic model with a constant M = 10 fits the data’s cubic 
fit with α = 0.006 and the smoothed data with α = 0.014.  The scale analysis is able to extract a 
deposition coefficient value while the original timeseries analysis method was not. 
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Figure 3.122 Scale analysis of particle #5 

Shown are the scale analysis results for particle #5 from a) the cubic fit of the data, and b) the 
smoothed data.  The data does not fall within the diffusion and kinetic limit boundaries.  
Modeling this ice particle’s growth using M = 10, produces a scenario where α = 0.5 (not 
shown).  However, modeling with the variable M defined in Equation 3.1 produces a curve that 
behaves much like the data by exiting the boundaries set with a constant growth mode. 
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Figure 3.23 Transitioning deposition coefficients 

The modeled deposition coefficient rapidly declines as particles with surface transitions grow.  
Note that the deposition coefficient for particle #5 spans more than an order of magnitude.  The 
initial and final α values for particles #2, 3, 4, 5, and 9 are listed in Table 3.6. 
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Figure 3.24 Scale analysis of Harrison et al. (2016) data 

Re-analysis of raw data from Harrison et al. (2016) using the scale analysis method accurately 
fits the heterogenous nucleation data.  The fits clearly show the difference between a particle 
with (a) diffusion-limited growth and (b) diffusion-kinetics limited growth (Harrington et al., 
2018). 
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Figure 3.25 Plot of the deposition coefficient v. the power law 

The scale analysis and power law analysis results are directly compared.  The black points are 
from heterogeneously nucleated particles (Harrison et al., 2016), and the purple points are from 
homogeneously nucleated particles (this work).  Uncertainty ranges are taken from the initial and 
final power laws on the timeseries data.  Note that the green horizontal ranges are not 
uncertainties; rather, they are the ranges over which the deposition coefficients change as the 
surfaces transition.  Also, be aware that the y-axis represents P × 3.  Therefore, the y = 1 line 
now applies to diffusion limited growth, and y = 2 to kinetics-limited growth.  Curiously, most of 
the non-transitioning particles cluster around the plot of the classical ledge growth model 
(Harrington et al., 2018). 
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