

THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

THE DISCRETE CURVELET TRANSFORM FOR QUANTUM ALGORITHMS

JUSTIN T. KEREKES
Spring 2010

A thesis
submitted in partial fulfillment

of the requirements
for baccalaureate degrees

in Computer Science and Mathematics
with honors in Computer Science

Reviewed and approved* by the following:

Sean Hallgren
Assistant Professor
Thesis Supervisor

John Hannan
Associate Professor
Honors Adviser

 * Signatures are on file in the Schreyer Honors College.

i

Abstract

This thesis explores the possibility of using the discrete quantum curvelet transform on square

functions in two dimensions for use in different quantum algorithms such as Yi-Kai Liu’s center

finding algorithm. I verify that using the discrete curvelet transform on a uniform quantum state in

two dimensions will yield a new quantum state with a better-than-uniform probability to measure

the corners of the distribution.

ii

Acknowledgment

I want to express my gratitude to my thesis adviser, Professor Sean Hallgren, for his time, patience,

enthusiasm, and all of the different topics he explored with me throughout my junior and senior

years.

iii

 9-2313-6416

TABLE OF CONTENTS

 Abstract ... i

 Table of Contents .. ii

 Chapter 1. INTRODUCTION ... 1

 Chapter 2. BACKGROUND INFORMATION .. 2

 Chapter 3. ASSESSING THE PROBLEM .. 6

 Chapter 4. USING THE QUANTUM CURVELET .. 10

 TRANSFORM IN ONE DIMENSION

 Chapter 5. USINE THE QUANTUM CURVELET .. 22

 TRANSFORM IN TWO DIMENSIONS

 Chapter 6. CONCLUSIONS AND FUTURE WORK ... 27

 Bibliography .. 29

1

1. Introduction
We have known for over a decade that quantum computers can run algorithms that significantly

outperform classical computation, as exemplified by Peter Shor’s integer factorization algorithm

that runs in polynomial time and space [2]. One of the major goals of studying quantum

computation is to understand which computational problems can be solved faster with quantum

algorithms than classical algorithms.

The number of classical algorithms greatly exceeds the number of quantum algorithms in general.

The same is true in the case of algorithms using the curvelet transform, as there are many classical

uses for the curvelet transform, such as image compression [5] and removing noise from images [6].

Therefore, the possibility that the quantum curvelet transform can be used in quantum algorithms

motivates us to look for such algorithms.

The point of this thesis is to help to find another way in which the quantum curvelet is actually

useful. Yi-Kai Liu devised several algorithms that use the quantum curvelet transform (center

finding for a radial function, single-shot measurement of a quantum-sample state)[1], and he

conjectures that his discrete algorithms succeed with constant probability, independent of the

dimension, by imitating the continuous curvelet transform. This thesis moves toward a way to

analyze square uniform distributions and how the quantum curvelet transform acts on them. If there

exists a way to rigorously prove that the discrete curvelet transform has the same properties as the

continuous curvelet transform using square functions, then perhaps the same results could be

applied to radial functions. These findings would verify the validity of Yi-Kai Liu’s conjectures.

We present a starting point for approaching the problem of determining the likeness between

quantum and continuous curvelet transforms. Instead of looking at all uniform distributions in

general, we simplify the problem to a two-dimensional square distribution. However, even a simple

square distribution requires us to first analyze a simpler distribution, the one-dimensional uniform

distribution.

First we will analyze some of the properties of the quantum curvelet transform acting on a one-

dimensional uniform distribution. Then we will apply our analysis to the square uniform

distribution in two dimensions. Finally we will compare the likeness of the discrete versus

continuous curvelet transforms.

2

2. Background Information

We will start with the necessary foundations of quantum computation. While classical computation

uses bits, quantum computation’s most fundamental concept is the quantum bit, or qubit. A qubit’s

state is generally represented in Dirac notation which looks like �|0〉. While a classical bit is either a

zero or a one, a qubit can be any of �|0〉, �|1〉, or a superposition of both �|0〉 and �|1〉. When a qubit is

a superposition of the two basis states, it is unknown whether measuring the qubit would yield a �|0〉

or a �|1〉. Examples of superpositions of quantum states are
�|𝛾𝛾1〉 = �𝑎𝑎1|0〉 + �𝑏𝑏1|1〉
�|𝛾𝛾2〉 = �|0〉
�|𝛾𝛾3〉 = �𝑎𝑎3|00〉 + �𝑏𝑏3|01〉 + �𝑐𝑐3|10〉 + �𝑑𝑑3|11〉 𝑇𝑇ℎ𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑎𝑎𝑎𝑎 2 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

�|𝛾𝛾1〉 and �|𝛾𝛾3〉 are formed by taking a linear combination of quantum states. The coefficients,

𝑎𝑎1, 𝑏𝑏1,𝑎𝑎3, 𝑏𝑏3, 𝑐𝑐3,𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑3, are all complex valued. We can think about �|𝛾𝛾1〉 as a vector in a two-

dimensional vector space whose basis vectors are �|0〉 and �|1〉. Then �|𝛾𝛾3〉 is a vector in a four-

dimensional vector space, and its basis vectors are �|00〉, �|01〉, �|10〉, �|11〉.

We can represent a quantum system as the superposition of quantum states by

𝑐𝑐0
�|𝑥𝑥0〉 + 𝑐𝑐1

�|𝑥𝑥1〉 + ⋯+ 𝑐𝑐𝑁𝑁−1
�|𝑥𝑥𝑁𝑁−1〉 = ��𝑐𝑐𝑖𝑖|𝑥𝑥𝑖𝑖〉

𝑁𝑁−1

𝑖𝑖=0

The Hilbert space associated with this system is the complex vector space, and each of the

states �|𝑥𝑥0〉, �|𝑥𝑥1〉, … , �|𝑥𝑥𝑁𝑁−1〉 are its basis vectors. The state of this system is represented by a unit-

length vector in the Hilbert space, thus the sum of the squares of the coefficients must be equal to

one.

�|𝑐𝑐𝑖𝑖|2
𝑁𝑁−1

𝑖𝑖=0

= 1

When we measure a qubit, �|𝛾𝛾〉 = �𝑎𝑎|0〉 + �𝑏𝑏|1〉, we will see either �|0〉 or �|1〉, but not both. We will

measure �|0〉 with probability |𝑎𝑎|2, and we will measure �|1〉 with probability |𝑏𝑏|2. Thus it makes

sense that the sum of the squares of the probabilities must be 1. When we measure a quantum

superposition, ∑ �𝑐𝑐𝑖𝑖|𝑥𝑥𝑖𝑖〉𝑁𝑁−1
𝑖𝑖=0 , we are given the following relationship between the probability of

3

measuring a particular state in the system and the coefficient associated with that basis state in the

system.

𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥𝑖𝑖) = |𝑐𝑐𝑖𝑖|2

The superposition ∑ �𝑐𝑐𝑖𝑖|𝑥𝑥𝑖𝑖〉𝑁𝑁−1
𝑖𝑖=0 makes up a unit vector in an N-dimensional complex vector space

which is called a Hilbert space. Some examples of unit vectors in this system are

�|𝛾𝛾〉 =
1
√3

�|0〉 +
1
√3

�|1〉 +
1
√3

�|2〉 𝑁𝑁 = 3

�|𝜑𝜑〉 =
1
2
�|0〉 +

1
2
�|1〉 −

1
2
�|2〉 −

1
2
�|3〉 𝑁𝑁 = 4

Classical circuits work by passing classical bits through wires and logic gates. Analogously,

quantum circuits work by passing quantum information through quantum gates. Therefore,

quantum computation will involve sending data through possibly many different quantum gates.

Conveniently, we can express quantum gates in matrix form. For example, taking a single qubit,

�|𝛾𝛾〉 = �𝑎𝑎|0〉 + �𝑏𝑏|1〉 and writing it in vector form looks like� |𝛾𝛾〉 = 𝑎𝑎 �10� + 𝑏𝑏 �01�. Now we apply the

NOT quantum gate by multiplying �|𝛾𝛾〉 by 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 = �0 1
1 0�.

�𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 |𝛾𝛾〉 = 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁 �
1
0� + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁𝑁𝑁 �

0
1�

= 𝑎𝑎 �0 1
1 0� �

1
0� + 𝑏𝑏 �0 1

1 0� �
0
1�

= 𝑏𝑏 �10� + 𝑎𝑎 �01�

= �𝑏𝑏|0〉 + �𝑎𝑎|1〉

As we have shown, applying the NOT gate to a qubit swaps the coefficients associated with the

quantum states �|0〉 and �|1〉. Instead of representing the NOT gate with a matrix, we can simply say

that it takes the state �|1〉 to the state �|0〉 and the state �|0〉 to the state �|1〉.

There are many different useful quantum gates. The only requirement for a quantum gate to work

on a qubit is that the matrix 𝑈𝑈 describing the quantum gate must be unitary. The matrix 𝑈𝑈 is unitary

if 𝑉𝑉𝑉𝑉 = 𝐼𝐼, where 𝐼𝐼 is the identity matrix, and V is the adjoint of U. We can find the adjoint by

4

taking the transpose followed by the complex conjugate of U. The new state vector will still be a

unit vector.

The analysis in this thesis requires us to understand the quantum curvelet transform. We define the

quantum curvelet transform in terms of two quantum gates, the Fourier transform and the inverse

Fourier Transform.

The discrete Fourier transform is as follows. For an integer 𝑎𝑎 in which 0 ≤ 𝑎𝑎 < 𝑁𝑁 where N is the

size of the Hilbert space (the number of basis states), the discrete Fourier transform is the unitary

operation takes the state �|a〉 to the state

1
√𝑁𝑁

� exp �
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁

�
𝑁𝑁−1

𝑥𝑥=0

�|𝑥𝑥〉

We will not be using matrix notation in this thesis, however the matrix form of the Fourier

transform can be found in Michael Nielsen and Isaac Chuang’s book listed in the references chapter

[8]. The inverse discrete Fourier transform is also a unitary operation, and it takes the state �|a〉 to

the state

1
√𝑁𝑁

� exp �
−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝑁𝑁
�

𝑁𝑁−1

𝑥𝑥=0

�|𝑥𝑥〉

The quantum curvelet transform is the unitary operation that maps:

� f(x�⃗)��x�⃗ 〉��0,0�⃗ 〉��
x�⃗

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� �γf(a,b�⃗ ,θ�⃗)

a,b�⃗ ,θ�⃗

��b�⃗ 〉��a,θ�⃗ 〉��

Where both functions are defined on finite domains, 0 < 𝑎𝑎 < 1 is the scale (the smaller this value,

the finer the scale), 𝑏𝑏�⃗ ϵ ℝ𝑛𝑛 is a location, and 𝜃⃗𝜃 ϵ 𝑆𝑆𝑛𝑛−1 (the unit sphere in ℝ𝑛𝑛) is a vector that we use

for a direction. We accomplish the curvelet transform by (1) applying the Fourier transform on f(x�⃗)

to get 𝑓𝑓(x�⃗), (2) applying a window function (explained in Chapter 4) that separates 𝑓𝑓(x�⃗) into different

subspaces, and (3) taking the inverse Fourier transform.

When analyzing expressions with complex exponents, it is helpful to recall Euler’s formula:

𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥, 𝑒𝑒𝑖𝑖𝑖𝑖 = cos(𝑥𝑥) + 𝑖𝑖 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) where e is the base of the natural logarithm,

and i is the imaginary unit.

5

When measuring the norm (or absolute value) of a complex number, we use the following formula:

|𝑎𝑎𝑎𝑎 + 𝑏𝑏| = �𝑎𝑎2 + 𝑏𝑏2

6

3. Assessing the Problem
As mentioned in the introduction, Yi-Kai Liu developed several algorithms using the quantum

curvelet transform. However, he conjectured the validity of his algorithms by comparing the

quantum (discrete) curvelet transform to the continuous curvelet transform [1]. He argues that for a

fine enough scale, the discrete curvelet transform looks more and more like the continuous one, so

for a large enough Hilbert space, the discrete curvelet transform should work for his quantum

algorithms. We set out to prove more rigorously that the discrete curvelet transform works as

intended for a large enough Hilbert space.

One of the major characteristics of the continuous curvelet transform is that after we apply it to a

uniform distribution in n dimensions, the probability density becomes more concentrated near the

edges of the distribution. For example, in two dimensions a uniform distribution looks like a

rectangle. After applying the continuous curvelet transform, the probability of measuring the edges

or corners increases significantly, while the probability of measuring the center of the shape

approaches zero.

The other important characteristic of the continuous curvelet transform that we would like to show

is that the transform returns a relevant direction as well. The direction is essential for Liu’s center

finding algorithms that involve using the returned direction to point towards the center of the

distribution. We will leave the direction vector out of the analysis and include its details in Chapter

6.

Before attempting to prove the properties of the quantum curvelet transform, we needed data that

would suggest that we could get a reasonable lower bound for measuring the edges of a uniform

distribution over some shape. In my 2-dimensional analysis, I focus on a square-shaped

distribution. If the analysis for the square shape yields positive results, then we could have a

starting point which could lead our analysis of distributions with other shapes. Also, if the analysis

in one and two dimensions showed reasonably large lower bounds on the probability densities near

the edges of the uniform distribution, then perhaps that would help lead to a proof for the n-

dimensional case.

First we focused on the one-dimensional case. In one dimension, a uniform distribution from �|𝑎𝑎〉 to
�|𝑏𝑏〉 means we have a quantum system where the probability of measuring �|𝑎𝑎〉, �|𝑏𝑏〉, and everything in

7

between is 1
𝑏𝑏−𝑎𝑎+1

, but the probability of measuring everything else is 0. Using MATLAB, I

computed the curvelet transform of this distribution using different values for a, b, and N. Then I

calculated the probability of measuring �|𝑎𝑎〉 and �|𝑏𝑏〉 for each case and looked for patterns.

I noticed that the probabilities of �|𝑎𝑎〉 and �|𝑏𝑏〉 were equal for all of my test cases. This was good

news because it suggests some degree of symmetry. For this reason, I will continue refer to the

probability of measuring �|𝑎𝑎〉 instead of both �|𝑎𝑎〉 and �|𝑏𝑏〉 with the understanding that the probability

of measuring �|𝑏𝑏〉 acts the same as the probability of measuring �|𝑎𝑎〉.

An interesting fact that we learned by running experimental test cases is that regardless of the

values of �|𝑎𝑎〉 and �|𝑏𝑏〉, we would always get the probabilities if (𝑏𝑏 − 𝑎𝑎) stayed the same. Thus, if

𝑎𝑎 = 5 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏 = 10 then the probability of measuring �|𝑎𝑎〉 and �|𝑏𝑏〉 is the same as the probability of

measuring �|𝑎𝑎〉 and �|𝑏𝑏〉 if 𝑎𝑎 = 22 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 = 27. Therefore, it does not matter where in space the

uniform distribution sits, only the size of the distribution. We were able to prove this; however I

left out the proof because it is not relevant to the goals of this thesis.

Another immediate observation on the experimental data is that the probability of measuring �|𝑎𝑎〉

starts high if the distribution is small, but as the distribution becomes wider, the probability of

measuring the endpoints decreases. If we let 𝑠𝑠 ≔ 𝑏𝑏 − 𝑎𝑎 + 1, the experimental data shows a

negative correlation between s and the probability of measuring �|𝑎𝑎〉.

Although the probability of measuring �|𝑎𝑎〉 decreases as s increases, there is a probability spike

around �|𝑎𝑎〉 and �|𝑏𝑏〉 regardless of how high s is (see Figure 1). The goal in analyzing the distribution

is to find a lower bound on this spike (showing that the probability must be at least some value) and

show that the probability is better than uniform.

8

Figure 1: The probability spikes around a and b after the curvelet transform

Looking at Figure 1, we can see that if N gets really big, then the probability density will be

distributed over more values, so we would normally expect the probability of measuring �|𝑎𝑎〉 to

decrease. This idea is contrary to what actually happens. As N increases, the probability of

measuring �|𝑎𝑎〉 increases and slowly converges to some value, suggesting that the probability of

measuring values far from �|𝑎𝑎〉 and �|𝑏𝑏〉 get smaller and smaller as N increases. This observation is

consistent with Yi-Kai Liu’s suggestion that using finer scales (increasing N) causes the discrete

curvelet transform to act more like the continuous curvelet transform.

These observations suggest that finding a significant lower bound independent of N might be

possible in one dimension. However, applying these findings in higher dimensions presents its own

set of obstacles. When defining the curvelet transform in Chapter 2, we mentioned the use of a

window function. The window function can be one of many different functions from which we can

choose ourselves. Different window functions can influence the probability analysis, making it

easier or more difficult.

In the one-dimensional analysis, we use a power-of-two window function where each window is

twice the size of the window that came before it. This means the last window takes up exactly half

the space, and it is relatively easier to analyze than many other window functions. However, when

we adopt this approach in two dimensions, the last window using power-of-two windows only takes

up one quarter of the space, instead of one half. While it is still a relatively easy window to analyze,

its impact is less significant because it takes up a smaller fraction of the space.

9

We set out to prove a bound that will be asymptotically greater than uniform � 1
𝑠𝑠𝑛𝑛
� with the hope of

achieving a lower bound of around 𝑂𝑂 �1
𝑠𝑠
� regardless of dimension because that would validate

everything in Yi-Kai Liu’s algorithms except the analysis of the direction vector returned by the

discrete curvelet transform. But first we need to start simple. We have data to suggest we can find

a better-than-uniform bound for measuring the edges in one dimension, so Chapter 4 seeks to prove

such a bound. Then in Chapter 5, we try to extend this bound to the two dimensional case and see

why it might not scale well.

10

4. Using the Quantum Curvelet Transform in One Dimension
We start with a quantum superposition over a uniform distribution from �|𝑎𝑎〉 𝑡𝑡𝑡𝑡 �|𝑏𝑏〉 in a size N

Hilbert space. The state vector is a unit vector, so the sum of the squares of the coefficients equals

one. Therefore, we are required to include a normalization factor in front of each of the quantum

states, 1
√𝑏𝑏−𝑎𝑎+1

.

�|𝜑𝜑〉 =
1

√𝑏𝑏 − 𝑎𝑎 + 1
�|𝑎𝑎〉 +

1
√𝑏𝑏 − 𝑎𝑎 + 1

�|𝑎𝑎 + 1〉 + ⋯+
1

√𝑏𝑏 − 𝑎𝑎 + 1
�|𝑏𝑏〉 =

1
√𝑏𝑏 − 𝑎𝑎 + 1

��|𝑥𝑥〉
𝑏𝑏

𝑥𝑥=𝑎𝑎

In Chapter 2, we laid out the steps to applying the quantum curvelet transform. First we need to

apply a Fourier transform, then the windowing function, and finally the inverse Fourier transform.

The Fourier transform and inverse Fourier transform are both unitary operations, so after they are

applied, the sum of the squares of the coefficients must still be one. That is why there is an extra

factor of 1
√𝑁𝑁

 in the formulas for the Fourier and inverse Fourier transforms. We are going to apply

the discrete Fourier transform to the system that we already have.

𝐿𝐿𝐿𝐿𝐿𝐿 𝜔𝜔 ≔ 𝑒𝑒
2𝜋𝜋𝜋𝜋
𝑁𝑁

1
√𝑏𝑏 − 𝑎𝑎 + 1

��|𝑥𝑥〉
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�

1
√𝑁𝑁√𝑏𝑏 − 𝑎𝑎 + 1

��𝜔𝜔𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

�|𝑦𝑦〉
𝑁𝑁−1

𝑦𝑦=0

After we apply the Fourier transform to a function, we say that it is no longer in its time domain, but

its frequency domain. Had we applied the Fourier transform and then the inverse Fourier transform

without any intermediate steps, we would have ended up with the same uniform distribution that we

started with. To get meaningful results using the curvelet transform, we need to separate the

function in the frequency domain into different subspaces before applying the inverse Fourier

transform.

To view only pieces of the function in the frequency domain, we apply an indicator function known

as a window function. This window function “zeroes out” part of the superposition that does not lie

within the window’s bounds (See Figure 2). We also add a new register, �|𝑤𝑤〉, which isolates each of

these windows into their own subspaces.

11

Figure 2: Applying the window function “zeros out” the distribution everywhere outside of each window.

Once we separate the system into different subspaces, the system becomes the superposition over all

of the windows. As mentioned earlier, there are many different ways to define window functions,

and they each grant us different algebraic properties [3].

The type of windows we are going to use will be powers of two. Each window will be twice as

large as the last (we assume N is a power of 2 for simplicity). Other possible constructions for the

window function are given in Emmanuel Candés’ papers [3, 4]. The window function that we will

apply is

𝑔𝑔𝑤𝑤(𝑦𝑦) = �1 𝑖𝑖𝑖𝑖 2𝑤𝑤−1 ≤ 𝑦𝑦 < 2𝑤𝑤
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�

We want to be able to measure a value in a particular window, so we are going to add a register, w,

and sum over all of the windows. This allows us to avoid renormalizing the system and

accomplishes the “zeroing out” by putting different parts of the superposition into different

subspaces.

1
√𝑁𝑁√𝑏𝑏 − 𝑎𝑎 + 1

� ��𝜔𝜔𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑔𝑔𝑤𝑤(𝑦𝑦) �|𝑦𝑦〉
𝑁𝑁−1

𝑦𝑦=0

�|𝑤𝑤〉
log 2 𝑁𝑁

𝑤𝑤=1

The window register indicates in which window each value falls. The window function simply

splits up our space into windows of size 2w, for 𝑤𝑤 ≔ 1, 2, … , log𝑁𝑁 , so that we can measure on each

window individually. Finally, we apply the inverse discrete Fourier transform to get

1
𝑁𝑁

1
√𝑏𝑏 − 𝑎𝑎 + 1

� � ��𝜔𝜔𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝜔𝜔−𝑧𝑧𝑧𝑧𝑔𝑔𝑤𝑤(𝑦𝑦) �|𝑧𝑧〉
𝑁𝑁−1

𝑦𝑦=0

�|𝑤𝑤〉
log 2 𝑁𝑁

𝑤𝑤=1

𝑁𝑁−1

𝑧𝑧=0

12

At this point we have performed all of the steps of the curvelet transform, and the above expression

is what we are left with. Because the continuous curvelet transform causes the probability of

measuring the endpoints of distributions to be high, we expect the same behavior from the discrete

curvelet transform, and we will seek to prove that next. We want to lower bound the probability of

measuring �|𝑎𝑎〉 𝑜𝑜𝑜𝑜 �|𝑏𝑏〉 after applying the quantum curvelet transform, and we are hoping to find a

bound that is better than uniform.

The probability of measuring �|𝑎𝑎〉 is complicated because we have to take into account all windows

that can each contribute some probability of measuring �|𝑎𝑎〉 to find the actual probability. However,

we are only interested in a lower bound for now, so we do not have to find the probability of

measuring �|𝑎𝑎〉 for each window. Instead, we can lower bound the probability of measuring �|𝑎𝑎〉 over

all windows by the probability of measuring �|𝑎𝑎〉 over a particular window.

Claim 4.0: If 𝑃𝑃𝑤𝑤(𝑎𝑎) is the probability of measuring �|𝑎𝑎〉 and window �|𝑤𝑤〉, and 𝑃𝑃(𝑎𝑎) is the

probability of measuring �|𝑎𝑎〉, then 𝑃𝑃𝑤𝑤(𝑎𝑎) ≤ 𝑃𝑃(𝑎𝑎).

Proof:

The probability of measuring �|𝑎𝑎〉 is the probability of measuring �|𝑎𝑎〉 for each window, which can be

expressed as a summation.

𝑃𝑃(𝑎𝑎) = � 𝑃𝑃𝑤𝑤 (𝑎𝑎)
log 𝑁𝑁

𝑤𝑤=1

Since all probabilities must be positive, it follows that 𝑃𝑃𝑤𝑤(𝑎𝑎) ≤ 𝑃𝑃(𝑎𝑎) for any particular window, w.

We mentioned in Chapter 3 that our experimental data led us to believe that the probability of

measuring both endpoints is the same, and this observation made the distribution seem symmetric.

We know that the distribution cannot be completely symmetric because �|𝑎𝑎〉 𝑎𝑎𝑎𝑎𝑎𝑎 �|𝑏𝑏〉 are generally

not centered at 𝑁𝑁
2
, however the peaks of the probability distribution at �|𝑎𝑎〉 𝑎𝑎𝑎𝑎𝑎𝑎 �|𝑏𝑏〉 always have the

same height experimentally.

Claim 4.1: 𝑃𝑃𝑤𝑤0 (𝑎𝑎) = 𝑃𝑃𝑤𝑤0 (𝑏𝑏) for any window 𝑤𝑤0, where a is the lower bound of the distribution in

one dimension, and b is the upper bound.

Proof:

13

In a quantum system, the probability of measuring a particular state is equal to the square of the

norm of the coefficient of that state. The system we have is shown below.

1
𝑁𝑁

1
√𝑏𝑏 − 𝑎𝑎 + 1

� � ��𝜔𝜔𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝜔𝜔−𝑧𝑧𝑧𝑧𝑔𝑔𝑤𝑤(𝑦𝑦) �|𝑧𝑧〉
𝑁𝑁−1

𝑦𝑦=0

�|𝑤𝑤〉
log 2 𝑁𝑁

𝑤𝑤=1

𝑁𝑁−1

𝑧𝑧=0

If we want to find only the probability of measuring �|𝑎𝑎〉�|𝑤𝑤0〉, we need to simplify this summation.

To find the coefficient of �|𝑎𝑎〉�|𝑤𝑤0〉, we simply set 𝑧𝑧 = 𝑎𝑎 and remove the summation over z. Also, we

set 𝑤𝑤 = 𝑤𝑤0 and remove the summation over w. Everything that is left is the coefficient of �|𝑎𝑎〉�|𝑤𝑤0〉.

Then the probability is the square of the norm of the coefficient in front of �|𝑎𝑎〉�|𝑤𝑤0〉. Then by

definition

𝑃𝑃𝑤𝑤0 (𝑎𝑎) = �
1
𝑁𝑁

1
√𝑏𝑏 − 𝑎𝑎 + 1

��𝜔𝜔𝑥𝑥𝑥𝑥

𝑏𝑏

𝑥𝑥=𝑎𝑎

𝜔𝜔−𝑎𝑎𝑎𝑎𝑔𝑔𝑤𝑤0
(𝑦𝑦)

𝑁𝑁−1

𝑦𝑦=0

�

2

𝑃𝑃𝑤𝑤0 (𝑏𝑏) = �
1
𝑁𝑁

1
√𝑏𝑏 − 𝑎𝑎 + 1

��𝜔𝜔𝑥𝑥𝑥𝑥

𝑏𝑏

𝑥𝑥=𝑎𝑎

𝜔𝜔−𝑏𝑏𝑏𝑏𝑔𝑔𝑤𝑤0
(𝑦𝑦)

𝑁𝑁−1

𝑦𝑦=0

�

2

Therefore, it is sufficient to show that �∑ ∑ ωxyb
x=a ω-ay𝑔𝑔𝑤𝑤0(y)N-1

y=0 �= �∑ ∑ ωxyb
x=a ω-by𝑔𝑔𝑤𝑤0(y)N-1

y=0 �, and

that would imply that 𝑃𝑃𝑤𝑤0 (𝑎𝑎) = 𝑃𝑃𝑤𝑤0 (𝑏𝑏).

�� �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑔𝑔𝑤𝑤0(𝑦𝑦)
𝑁𝑁−1

𝑦𝑦=0

� = ��[𝜔𝜔0𝑔𝑔𝑤𝑤(𝑦𝑦)
𝑁𝑁−1

𝑦𝑦=0

+ 𝜔𝜔𝑦𝑦𝑔𝑔𝑤𝑤(𝑦𝑦) + ⋯+ 𝜔𝜔𝑏𝑏𝑏𝑏−𝑎𝑎𝑎𝑎 𝑔𝑔𝑤𝑤0(𝑦𝑦)]�

= �� 𝑔𝑔𝑤𝑤0(𝑦𝑦) �1 + 𝑒𝑒
2𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁 + ⋯+ 𝑒𝑒

2𝜋𝜋(𝑏𝑏𝑏𝑏−𝑎𝑎𝑎𝑎)𝑖𝑖
𝑁𝑁 �

𝑁𝑁−1

𝑦𝑦=0

�

= �� 𝑔𝑔𝑤𝑤0(𝑦𝑦) �1 + cos �
2𝜋𝜋𝜋𝜋
𝑁𝑁 � + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �

2𝜋𝜋𝜋𝜋
𝑁𝑁
� + ⋯+ cos�

2𝜋𝜋(𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎)
𝑁𝑁

� + isin�
2𝜋𝜋(𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎)

𝑁𝑁
� �

𝑁𝑁−1

𝑦𝑦=0

�

= ��� 𝑔𝑔𝑤𝑤0(𝑦𝑦)�1 + cos �
2𝜋𝜋𝜋𝜋
𝑁𝑁 � + ⋯+ cos�

2𝜋𝜋(𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎)
𝑁𝑁 ��

𝑁𝑁−1

𝑦𝑦=0

�

2

+ �� 𝑔𝑔𝑤𝑤0(𝑦𝑦)�𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋𝜋𝜋
𝑁𝑁 � + ⋯+ sin�

2𝜋𝜋(𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎)
𝑁𝑁 ��

𝑁𝑁−1

𝑦𝑦=0

�

2

= ��� 𝑔𝑔𝑤𝑤0(𝑦𝑦)�1 + cos �−
2𝜋𝜋𝜋𝜋
𝑁𝑁 � + ⋯+ cos�

2𝜋𝜋(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)
𝑁𝑁

��
𝑁𝑁−1

𝑦𝑦=0

�

2

+ �(−1) �𝑔𝑔𝑤𝑤0(𝑦𝑦)�𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋𝜋𝜋
𝑁𝑁 � + ⋯+ sin �

2𝜋𝜋(𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎)
𝑁𝑁

��
𝑁𝑁−1

𝑦𝑦=0

�

2

14

= ��� 𝑔𝑔𝑤𝑤0(𝑦𝑦)�1 + cos �−
2𝜋𝜋𝜋𝜋
𝑁𝑁 � + ⋯+ cos�

2𝜋𝜋(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)
𝑁𝑁 ��

𝑁𝑁−1

𝑦𝑦=0

�

2

+ �� 𝑔𝑔𝑤𝑤0(𝑦𝑦)�𝑠𝑠𝑠𝑠𝑠𝑠 �−
2𝜋𝜋𝜋𝜋
𝑁𝑁 � + ⋯+ sin�

2𝜋𝜋(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)
𝑁𝑁 ��

𝑁𝑁−1

𝑦𝑦=0

�

2

= �� 𝑔𝑔𝑤𝑤0(𝑦𝑦) �1 + cos �−
2𝜋𝜋𝜋𝜋
𝑁𝑁 � + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �−

2𝜋𝜋𝜋𝜋
𝑁𝑁 � + ⋯+ cos�

2𝜋𝜋(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)
𝑁𝑁 � + isin�

2𝜋𝜋(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)
𝑁𝑁 � �

𝑁𝑁−1

𝑦𝑦=0

�

= �� 𝑔𝑔𝑤𝑤0(𝑦𝑦) �1 + 𝑒𝑒
−2𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁 + ⋯+ 𝑒𝑒

2𝜋𝜋(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑖𝑖
𝑁𝑁 �

𝑁𝑁−1

𝑦𝑦=0

�

= �� 𝑔𝑔𝑤𝑤0(𝑦𝑦)[𝜔𝜔0 + 𝜔𝜔−𝑦𝑦 + ⋯+ 𝜔𝜔𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]
𝑁𝑁−1

𝑦𝑦=0

� = ���𝜔𝜔−𝑏𝑏𝑏𝑏+𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑔𝑔𝑤𝑤0(𝑦𝑦)
𝑁𝑁−1

𝑦𝑦=0

�

Thus �∑ ∑ 𝜔𝜔−𝑎𝑎𝑎𝑎+𝑥𝑥𝑥𝑥𝑏𝑏
𝑥𝑥=𝑎𝑎 𝑔𝑔𝑤𝑤0(𝑦𝑦)𝑁𝑁−1

𝑦𝑦=0 � = �∑ ∑ 𝜔𝜔−𝑏𝑏𝑏𝑏+𝑥𝑥𝑥𝑥𝑏𝑏
𝑥𝑥=𝑎𝑎 𝑔𝑔𝑤𝑤0(𝑦𝑦)𝑁𝑁−1

𝑦𝑦=0 � which implies 𝑃𝑃𝑤𝑤0 (𝑎𝑎) = 𝑃𝑃𝑤𝑤0 (𝑏𝑏),

and this concludes the proof.

Using Claim 4.1, we know that in order to find a lower bound for P(a) and P(b), it is sufficient to

find a lower bound for just P(a). Using Claim 4.0, in order to find a lower bound for P(a), it is

sufficient to find a lower bound for 𝑃𝑃𝑤𝑤0 (𝑎𝑎) for some window 𝑤𝑤0. Therefore, to show a lower bound

for the probability of measuring �|𝑎𝑎〉 𝑎𝑎𝑎𝑎𝑎𝑎 �|𝑏𝑏〉, we only need to show a lower bound for the

probability of measuring �|𝑎𝑎〉 on one particular window. We will continue this chapter by only

analyzing the very last window. This window contains exactly half of the summation terms by the

way we constructed the window function.

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎) = �1
𝑁𝑁

1
√𝑏𝑏−𝑎𝑎+1

∑ ∑ 𝜔𝜔𝑥𝑥𝑥𝑥𝑏𝑏
𝑥𝑥=𝑎𝑎 𝜔𝜔−𝑎𝑎𝑎𝑎 𝑔𝑔𝑤𝑤(𝑦𝑦)𝑁𝑁

𝑦𝑦=1 �
2
 , but we know that 𝑔𝑔𝑤𝑤(𝑦𝑦) restricts this to only the

y values after 𝑁𝑁
2
 since we are using the final window, w. Therefore, we can eliminate the indicator

function because we know it equals one for all y values such that 𝑁𝑁
2

 ≤ 𝑦𝑦 < 𝑁𝑁 − 1, and it equals zero

everywhere else.

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎) = �
1
𝑁𝑁

1
√𝑏𝑏 − 𝑎𝑎+ 1

� �𝜔𝜔𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝜔𝜔−𝑎𝑎𝑎𝑎𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑦𝑦)
𝑁𝑁−1

𝑦𝑦=0

�

2

= �
1
𝑁𝑁

1
√𝑏𝑏 − 𝑎𝑎 + 1

� �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

�

2

=
1

𝑁𝑁2(𝑏𝑏 − 𝑎𝑎 + 1) �
� � 𝜔𝜔−𝑎𝑎𝑎𝑎+𝑥𝑥𝑥𝑥

𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

𝑏𝑏

𝑥𝑥=𝑎𝑎

�

2

15

This is a very tricky double summation because every omega term adds a complex-valued sine and

cosine function that may not add together very easily. To be able to analyze this probability, we

need to be able to reduce these omega terms into values that add together more easily. We found

the following way to reduce the inner summation into a simpler form.

Claim 4.2: The following formula can be used to reduce summations of omega terms.

� 𝜔𝜔−𝐶𝐶𝑦𝑦
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

= �
 0 𝑖𝑖𝑖𝑖 𝐶𝐶 ≠ 0 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝐶𝐶
𝑁𝑁
− 1 𝑖𝑖𝑖𝑖 𝐶𝐶 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

�

Proof:

 Case exponent, C, is even: C = 2k for some 𝑘𝑘 ∈ 𝑍𝑍 ≠ 0

� 𝜔𝜔−2𝑘𝑘𝑦𝑦
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

= 𝜔𝜔−2𝑘𝑘�𝑁𝑁2� + 𝜔𝜔−2𝑘𝑘�𝑁𝑁2 +1� + 𝜔𝜔−2𝑘𝑘�𝑁𝑁2 +2� + ⋯+ 𝜔𝜔−2𝑘𝑘𝑁𝑁+2𝑘𝑘

= 𝜔𝜔−𝑁𝑁𝑁𝑁 [𝜔𝜔0 + 𝜔𝜔−2𝑘𝑘 + 𝜔𝜔−4𝑘𝑘 + ⋯+ 𝜔𝜔−𝑁𝑁𝑁𝑁+2𝑘𝑘]

= 𝜔𝜔−𝑁𝑁𝑁𝑁 �
𝜔𝜔−𝑁𝑁𝑁𝑁 − 1
𝜔𝜔−2𝑘𝑘 − 1�

=
𝜔𝜔−2𝑘𝑘𝑘𝑘 − 𝜔𝜔−𝑘𝑘𝑘𝑘

𝜔𝜔−2𝑘𝑘 − 1

=
𝑒𝑒−4𝜋𝜋𝜋𝜋𝜋𝜋 − 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋

𝑒𝑒
−4𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁 − 1

=
𝑐𝑐𝑐𝑐𝑐𝑐(4𝜋𝜋𝜋𝜋)− 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(4𝜋𝜋𝜋𝜋)− 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋)

𝑐𝑐𝑐𝑐𝑐𝑐 �4𝜋𝜋𝜋𝜋
𝑁𝑁 � − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �4𝜋𝜋𝜋𝜋

𝑁𝑁 � − 1
= 0

This verifies the top half of the piecewise function.

Case exponent is odd: C = 2k+1 for some 𝑘𝑘 ∈ 𝑍𝑍

� 𝜔𝜔−2𝑘𝑘𝑦𝑦−𝑦𝑦
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

= 𝜔𝜔−(2𝑘𝑘+1)�𝑁𝑁2� + 𝜔𝜔−(2𝑘𝑘+1)�𝑁𝑁2 +1� + 𝜔𝜔−(2𝑘𝑘+1)�𝑁𝑁2 +2� + ⋯+𝜔𝜔−2𝑘𝑘𝑁𝑁−𝑁𝑁+2𝑘𝑘+1

= 𝜔𝜔−𝑁𝑁�𝑘𝑘+1
2� �𝜔𝜔0 + 𝜔𝜔−2𝑘𝑘−1 + 𝜔𝜔−4𝑘𝑘−2 + ⋯+ 𝜔𝜔−𝑁𝑁�𝑘𝑘+1

2�+(2𝑘𝑘+1)�

= 𝜔𝜔−𝑘𝑘𝑘𝑘−𝑁𝑁2 �
𝜔𝜔−𝑘𝑘𝑘𝑘−𝑁𝑁2 − 1
𝜔𝜔−2𝑘𝑘−1 − 1 �

=
𝜔𝜔−2𝑘𝑘𝑘𝑘−𝑁𝑁 − 𝜔𝜔−𝑘𝑘𝑘𝑘−𝑁𝑁2

𝜔𝜔−2𝑘𝑘−1 − 1

=𝜔𝜔
−2𝑘𝑘𝑘𝑘−𝑁𝑁+2𝑘𝑘+1−𝜔𝜔−𝑘𝑘𝑘𝑘−𝑁𝑁2 +2𝑘𝑘+1

1−𝜔𝜔2𝑘𝑘+1

16

=
e−4𝜋𝜋𝜋𝜋𝜋𝜋−2𝜋𝜋𝜋𝜋+4𝜋𝜋𝜋𝜋𝜋𝜋+2𝜋𝜋𝜋𝜋

𝑁𝑁 − e−2𝜋𝜋𝑘𝑘𝑘𝑘−𝜋𝜋𝜋𝜋+4𝜋𝜋𝑘𝑘𝑘𝑘+2𝜋𝜋𝜋𝜋
𝑁𝑁

1 − 𝑒𝑒
4𝜋𝜋𝜋𝜋𝜋𝜋+2𝜋𝜋𝜋𝜋

𝑁𝑁

The following two identities follow from the fact that sine and cosine are 2π-periodic:

(1) e−4𝜋𝜋𝜋𝜋𝜋𝜋−2𝜋𝜋𝜋𝜋+4𝜋𝜋𝜋𝜋𝜋𝜋 +2𝜋𝜋𝜋𝜋
𝑁𝑁 = e

4𝜋𝜋𝜋𝜋𝜋𝜋 +2𝜋𝜋𝜋𝜋
𝑁𝑁

(2) e−2𝜋𝜋𝑘𝑘𝑘𝑘−𝜋𝜋𝜋𝜋+4𝜋𝜋𝑘𝑘𝑘𝑘+2𝜋𝜋𝜋𝜋
𝑁𝑁 = e𝜋𝜋𝜋𝜋+4𝜋𝜋𝑘𝑘𝑘𝑘+2𝜋𝜋𝜋𝜋

𝑁𝑁

𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿 ≔
4𝜋𝜋𝑘𝑘 + 2𝜋𝜋

𝑁𝑁
, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒

e−4𝜋𝜋𝜋𝜋𝜋𝜋−2𝜋𝜋𝜋𝜋+4𝜋𝜋𝜋𝜋𝜋𝜋+2𝜋𝜋𝜋𝜋
𝑁𝑁 − e−2𝜋𝜋𝑘𝑘𝑘𝑘−𝜋𝜋𝜋𝜋+4𝜋𝜋𝑘𝑘𝑘𝑘+2𝜋𝜋𝜋𝜋

𝑁𝑁

1 − 𝑒𝑒
4𝜋𝜋𝜋𝜋𝜋𝜋+2𝜋𝜋𝜋𝜋

𝑁𝑁
=

e𝐿𝐿𝐿𝐿 − e𝜋𝜋𝜋𝜋+𝐿𝐿𝐿𝐿

1 − 𝑒𝑒𝐿𝐿𝐿𝐿

=
cos(𝐿𝐿) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿) − cos(𝐿𝐿 + 𝜋𝜋) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿 + 𝜋𝜋)

1 − cos(𝐿𝐿) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿)

Next we are going to use the following basic trigonometric identities to help us reduce the quotient.

cos(𝑥𝑥 + 𝜋𝜋) = − cos(𝑥𝑥) 𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝑥𝑥 + 𝜋𝜋) = −sin(𝑥𝑥)

e𝐿𝐿𝐿𝐿 − e𝜋𝜋𝜋𝜋+𝐿𝐿𝐿𝐿

1 − 𝑒𝑒𝐿𝐿𝐿𝐿
=

2cos(𝐿𝐿) + 2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿)
1 − cos(𝐿𝐿) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿)

=
2(cos(𝐿𝐿) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿)(1− cos(𝐿𝐿) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿))

�1 − cos(𝐿𝐿) − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿)�(1 − cos(𝐿𝐿) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿))

=
2�−𝑐𝑐𝑐𝑐𝑐𝑐2(𝐿𝐿) − 𝑠𝑠𝑠𝑠𝑠𝑠2(𝐿𝐿) + cos(𝐿𝐿) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿)�

𝑐𝑐𝑐𝑐𝑐𝑐2(𝐿𝐿) + 𝑠𝑠𝑠𝑠𝑠𝑠2(𝐿𝐿)− 2 cos(𝐿𝐿) + 1

=
−1 + cos(𝐿𝐿) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿)

1 − cos(𝐿𝐿)

=
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐿𝐿)

1 − cos(𝐿𝐿) − 1

=
𝑖𝑖sin2(𝐿𝐿)

(sin(𝐿𝐿))(1 − cos(𝐿𝐿)) − 1

=
𝑖𝑖(1 − cos(𝐿𝐿)(1 + cos(𝐿𝐿))

(sin(𝐿𝐿))(1 − cos(𝐿𝐿)) − 1

= 𝑖𝑖�𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿)� − 1

= 𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿) + 𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿) − 1

= 𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝐿𝐿
2
� − 1

= 𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝐶𝐶𝜋𝜋
𝑁𝑁
� − 1

17

This concludes the proof of Claim 4.2, the simplification of the omega summation.

When calculating the norm, we need to be able to separate the real and imaginary parts. Reducing

the omega terms this way is very convenient because it separates the real and imaginary parts

without requiring any extra work. Applying the results of Claim 4.2, we can simplify the double

summation.

� �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑥𝑥𝑥𝑥
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

𝑏𝑏

𝑥𝑥=𝑎𝑎

= � �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

= � [𝜔𝜔0 + 𝜔𝜔𝑦𝑦 + 𝜔𝜔3𝑦𝑦 + ⋯+𝜔𝜔�𝑏𝑏−𝑎𝑎2 �𝑦𝑦]
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

= � �𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 �
(2𝐶𝐶+ 1)𝜋𝜋

𝑁𝑁 � − 1�

�𝑏𝑏−𝑎𝑎2 �

𝐶𝐶=0

= −�
𝑏𝑏 − 𝑎𝑎 + 2

2
� + 𝑖𝑖 ∗ � 𝑐𝑐𝑐𝑐𝑐𝑐 �

(2𝐶𝐶+ 1)𝜋𝜋
𝑁𝑁 �

�𝑏𝑏−𝑎𝑎2 �

𝐶𝐶=0

The first term is approximately −𝑏𝑏−𝑎𝑎+2
2

, but summing over the rest of the terms which include a

cotangent function is fairly challenging. To lower bound the summation, I used the notion that the

integral of a function translates to the area under its curve. If I view each term in the cotangent

summation as a rectangle that also takes up some area, I can show that the area of the integral is less

than or equal to the area of the summing rectangles. This is the basic idea behind the next claim.

Claim 4.3: ∑ 𝑐𝑐𝑐𝑐𝑐𝑐 �(2𝐶𝐶+1)𝜋𝜋
𝑁𝑁 � ≥ ∫ 𝑐𝑐𝑐𝑐𝑐𝑐 �(2𝐶𝐶+1)𝜋𝜋

𝑁𝑁 � 𝑑𝑑𝑑𝑑�𝑏𝑏−𝑎𝑎2 �
0

�𝑏𝑏−𝑎𝑎2 �
𝐶𝐶=0

Proof:

When we look at the graph for the cotangent function (Figure 3), we notice that it is completely

symmetric, and all values on the left side of the symmetry are positive. Therefore, if �𝑎𝑎−𝑏𝑏
2
� ≪ 𝑁𝑁

4
 , we

know that all terms in the summation are positive, and we know that the integral is always positive.

18

Figure 3: The shaded region represents the area returned by the integral

When we look at the graph of cotangent with rectangles over top of where the summation terms are

(Figure 4), we see that each rectangle has a width of one, so the sum of all the terms in the

summation equals the combined area of the rectangles. The area covered by the summation must be

at least the area covered by the integral.

Figure 4: The green is covered by the integral and the summation, while the blue is only covered by the summation.

According to the graphs shown, there is no way to cover more area with the integral than with the

19

summation, since the section of the graph we are interested in is always positive and always

decreasing. This concludes our proof that: ∑ 𝑐𝑐𝑐𝑐𝑐𝑐 �(2𝐶𝐶+1)𝜋𝜋
𝑁𝑁 � ≥ ∫ 𝑐𝑐𝑐𝑐𝑐𝑐 �(2𝐶𝐶+1)𝜋𝜋

𝑁𝑁 � 𝑑𝑑𝑑𝑑�𝑏𝑏−𝑎𝑎2 �
0

�𝑏𝑏−𝑎𝑎2 �
𝐶𝐶=0

It is helpful to note here that ∫ 𝑐𝑐𝑐𝑐𝑐𝑐 �(2𝐶𝐶+1)𝜋𝜋
𝑁𝑁 �𝑑𝑑𝑑𝑑 = 𝑁𝑁

2𝜋𝜋
ln �sin �2𝜋𝜋𝜋𝜋+𝜋𝜋

𝑁𝑁
��. We can easily verify this by taking

the derivative with respect to C.

At this point, we have enough simplification of the terms to be able to lower bound the probability

of measuring �|𝑎𝑎〉 on the final window. We will combine all real terms and imaginary terms, take

the norm, and analyze the behavior as N approaches ∞.

Claim 4.4: For sufficiently large N with respect to 𝑠𝑠 ≔ 𝑏𝑏 − 𝑎𝑎 + 1, 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎) is bounded below by

𝜋𝜋2 + 𝑙𝑙𝑙𝑙2(𝑠𝑠 + 1)
4𝜋𝜋2𝑠𝑠

Proof:

As before, Pfinal refers to the probability of measuring some value only on the last window. Using

Claim 4.1, we find the probability of measuring �|𝑎𝑎〉 on the final window by using the probability of

measuring �|𝑏𝑏〉 on the final window.

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎) = 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑏𝑏)

=
1

𝑁𝑁2(𝑏𝑏 − 𝑎𝑎 + 1) �� � 𝜔𝜔−𝑏𝑏𝑏𝑏+𝑥𝑥𝑥𝑥
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

𝑏𝑏

𝑥𝑥=𝑎𝑎

�

2

We want to simplify the terms, so that we can understand more easily the behavior of this formula.

Let 𝑠𝑠 ≔ 𝑏𝑏 − 𝑎𝑎 + 1

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎) =
1
𝑁𝑁2𝑠𝑠 �

��1 +𝜔𝜔−𝑦𝑦 + 𝜔𝜔−2𝑦𝑦 + ⋯+ 𝜔𝜔(𝑎𝑎−𝑏𝑏)𝑦𝑦�
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

�

2

=
1
𝑁𝑁2𝑠𝑠

�
𝑁𝑁
2

+ ��𝜔𝜔−𝑦𝑦 + 𝜔𝜔−2𝑦𝑦 + ⋯+ 𝜔𝜔(𝑎𝑎−𝑏𝑏)𝑦𝑦�
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

�

2

Here we can use Claim 4.2 to turn the omega terms into complex terms that involve the cotangent

function.

20

1
𝑁𝑁2𝑠𝑠

�
𝑁𝑁
2

+ ��𝜔𝜔−𝑦𝑦 + 𝜔𝜔−2𝑦𝑦 + ⋯+ 𝜔𝜔(𝑎𝑎−𝑏𝑏)𝑦𝑦�
𝑁𝑁−1

𝑦𝑦=𝑁𝑁2

�

2

=
1
𝑁𝑁2𝑠𝑠 �

�𝑁𝑁
2

+ � �𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 �
(2𝐶𝐶 + 1)𝜋𝜋

𝑁𝑁
� − 1�

�𝑏𝑏−𝑎𝑎2 �

𝐶𝐶=0

��

2

=
1

4𝑁𝑁2𝑠𝑠 �
�𝑁𝑁 − (𝑏𝑏 − 𝑎𝑎 + 1) + 2 � �𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 �

(2𝐶𝐶 + 1)𝜋𝜋
𝑁𝑁

��

�𝑏𝑏−𝑎𝑎2 �

𝐶𝐶=0

��

2

We approximated �𝑏𝑏−𝑎𝑎
2

+ 1� ≈ 𝑏𝑏−𝑎𝑎
2

+ 1 which will only be off by at most one. To eliminate

fractions, we also pulled a factor of 1
2
 out of the squared norm. Calculating the norm involves

separating the real parts from the separate parts and following the formula for finding the absolute

value of a complex number.

��𝑁𝑁 − 𝑠𝑠 + 2𝑖𝑖 ∗ � 𝑐𝑐𝑐𝑐𝑐𝑐 �
(2𝐶𝐶 + 1)𝜋𝜋

𝑁𝑁 �

𝑠𝑠
2

𝐶𝐶=0

��

2

= (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)2 + (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)2

= (𝑁𝑁 − 𝑠𝑠)2 + 4��𝑐𝑐𝑐𝑐𝑐𝑐 �
(2𝐶𝐶 + 1)𝜋𝜋

𝑁𝑁 �

𝑠𝑠
2

𝐶𝐶=0

�

2

= 𝑁𝑁2 − 2𝑁𝑁𝑁𝑁 + 𝑠𝑠2 + 4��𝑐𝑐𝑐𝑐𝑐𝑐 �
(2𝐶𝐶 + 1)𝜋𝜋

𝑁𝑁
�

𝑠𝑠
2

𝐶𝐶=0

�

2

Using Claim 4.3, we can lower bound the summation of each cotangent term by the integral of the

cotangent term.

𝑁𝑁2 − 2𝑁𝑁𝑁𝑁 + 𝑠𝑠2 + 4

⎝

⎛�𝑐𝑐𝑐𝑐𝑐𝑐 �
(2𝐶𝐶 + 1)𝜋𝜋

𝑁𝑁
�

�𝑠𝑠2�

𝐶𝐶=0
⎠

⎞

2

≥ 𝑁𝑁2 − 2𝑁𝑁𝑁𝑁 + 𝑠𝑠2 + 4�� 𝑐𝑐𝑐𝑐𝑐𝑐 �
(2𝐶𝐶 + 1)𝜋𝜋

𝑁𝑁 �𝑑𝑑𝑑𝑑
�𝑠𝑠2�

0
�

2

� 𝑐𝑐𝑐𝑐𝑐𝑐 �
(2𝐶𝐶 + 1)𝜋𝜋

𝑁𝑁 �𝑑𝑑𝑑𝑑
�𝑠𝑠2�

0
=
𝑁𝑁
2𝜋𝜋

ln �sin�
2𝜋𝜋 �𝑠𝑠2� + 𝜋𝜋

𝑁𝑁
�� −

𝑁𝑁
2𝜋𝜋

ln �sin�
𝜋𝜋
𝑁𝑁
��

=
𝑁𝑁
2𝜋𝜋

�ln �sin�
2𝜋𝜋 �𝑠𝑠2� + 𝜋𝜋

𝑁𝑁
�� − ln �sin �

𝜋𝜋
𝑁𝑁
���

21

Since we are assuming that 𝑠𝑠 ≪ 𝑁𝑁 and that N is very large, we can approximate very accurately:

𝑁𝑁
2𝜋𝜋

�ln �sin�
2𝜋𝜋 �𝑠𝑠2� + 𝜋𝜋

𝑁𝑁
�� − ln �sin �

𝜋𝜋
𝑁𝑁
��� ≈

𝑁𝑁
2𝜋𝜋

�ln
2𝜋𝜋 �𝑠𝑠2� + 𝜋𝜋

𝑁𝑁
− ln

𝜋𝜋
𝑁𝑁
�

𝑁𝑁
2𝜋𝜋

�ln
2𝜋𝜋 �𝑠𝑠2� + 𝜋𝜋

𝑁𝑁
− ln

𝜋𝜋
𝑁𝑁
� ≈

𝑁𝑁
2𝜋𝜋

ln(𝑠𝑠 + 1)

 Thus for large 𝑁𝑁 ≫ 𝑠𝑠,

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎) ≥
1

4𝑁𝑁2𝑠𝑠
�𝑁𝑁2 − 2𝑁𝑁𝑁𝑁 + 𝑠𝑠2 + 4 �

𝑁𝑁
2𝜋𝜋

ln(𝑠𝑠 + 1)�
2

� =
1

4𝑠𝑠
−

1
2𝑁𝑁

+
𝑠𝑠
𝑁𝑁2 +

𝑙𝑙𝑙𝑙2(𝑠𝑠 + 1)
4𝜋𝜋2𝑠𝑠

When 𝑁𝑁 ≫ 𝑠𝑠, two terms disappear and we are left with:

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎) ≥
𝜋𝜋2 + 𝑙𝑙𝑙𝑙2(𝑠𝑠 + 1)

4𝜋𝜋2𝑠𝑠
= 𝑂𝑂�

𝑙𝑙𝑙𝑙2(𝑠𝑠)
𝑠𝑠

�

If we assume s to be a constant, then we can say that the probability has a constant lower bound for

any sufficiently large N. By Claim 4.1 we know that the probability of measuring b in the final

window shares the same lower bound. Also, by Claim 4.0, we know that the probability of

measuring a and b for any window is lower bounded by 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎).

Immediately we can see that the probability of measuring an endpoint is going to be greater than the

probability of measuring the same endpoint uniformly from 𝑏𝑏 − 𝑎𝑎 points provided that 𝑏𝑏 − 𝑎𝑎 is

sufficiently less than N. This is typical of the curvelet transform in general. The probability for

most shapes (we have a square here) should be denser near the edges. We are going to need this

analysis of the 1-dimensional case in order to analyze the 2-dimensional case.

22

5. Using the Quantum Curvelet Transform in Two Dimensions
Again we start with a quantum superposition over a uniform distribution from �|𝑎𝑎,𝑎𝑎〉 𝑡𝑡𝑡𝑡 �|𝑏𝑏, 𝑏𝑏〉 in a

size 𝑁𝑁2 Hilbert space.

�|𝜑𝜑〉 =
1

𝑏𝑏 − 𝑎𝑎 + 1
�|𝑎𝑎,𝑎𝑎〉 +

1
𝑏𝑏 − 𝑎𝑎 + 1

�|𝑎𝑎 + 1, 𝑎𝑎〉 +
1

𝑏𝑏 − 𝑎𝑎 + 1
�|𝑎𝑎 + 1,𝑎𝑎 + 1〉 + ⋯+

1
𝑏𝑏 − 𝑎𝑎 + 1

�|𝑏𝑏, 𝑏𝑏〉

=
1

𝑏𝑏 − 𝑎𝑎 + 1
���|𝑥𝑥,𝑦𝑦〉

𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑏𝑏

𝑦𝑦=𝑎𝑎

We are going to go through the same steps of the quantum curvelet transform as we did in the one-

dimensional case. First we apply the Fourier transform, followed by a window function, and finally

the inverse Fourier transform.

𝐿𝐿𝐿𝐿𝐿𝐿 𝜔𝜔 ≔ 𝑒𝑒
2𝜋𝜋𝜋𝜋
𝑁𝑁

1
𝑏𝑏 − 𝑎𝑎 + 1

���|𝑥𝑥, 𝑦𝑦〉
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�

1
𝑁𝑁(𝑏𝑏 − 𝑎𝑎 + 1)

����𝜔𝜔𝑥𝑥𝑥𝑥𝜔𝜔𝑦𝑦𝑦𝑦
𝑏𝑏

𝑥𝑥=𝑎𝑎

�|𝑥𝑥, 𝑦𝑦〉
𝑁𝑁−1

𝑘𝑘=0

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=0

Once again, we are going to “zero out” part of the distribution at this point by separating it into

pieces and moving the pieces into different subspaces. To do so we are going to apply a window

function. The choice of window function is up to us. We do not have to use powers of two,

although in this analysis we will.

𝑔𝑔𝑤𝑤1,𝑤𝑤2 (𝑗𝑗,𝑘𝑘) = �1 𝑖𝑖𝑖𝑖 2𝑤𝑤1−1 ≤ 𝑗𝑗 < 2𝑤𝑤1 𝑎𝑎𝑎𝑎𝑎𝑎 2𝑤𝑤2−1 𝑘𝑘 < 2𝑤𝑤2

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�

After applying the window function, our summation looks like this:

1
𝑁𝑁(𝑏𝑏 − 𝑎𝑎 + 1)

� � ����𝜔𝜔𝑥𝑥𝑥𝑥𝜔𝜔𝑦𝑦𝑦𝑦 𝑔𝑔𝑤𝑤1,𝑤𝑤2 (𝑗𝑗,𝑘𝑘)
𝑏𝑏

𝑥𝑥=𝑎𝑎

�|𝑥𝑥, 𝑦𝑦〉
𝑁𝑁−1

𝑘𝑘=0

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=0

log 𝑁𝑁

𝑤𝑤2=1

log 𝑁𝑁

𝑤𝑤1=1

In Euclidean space, the upper-right fourth of our 𝑁𝑁 𝑥𝑥 𝑁𝑁 grid makes up the very last window,

𝑤𝑤1 = 𝑤𝑤2 = 𝑙𝑙𝑙𝑙𝑙𝑙2𝑁𝑁. Figure 5 shows how the window setup looks in two dimensions.

23

Figure 5: The last window is the upper-right hand corner, and it

represents a fourth of all of the summation terms.

After applying the window function, we apply the inverse Fourier transform to complete the

curvelet transform.

1
𝑁𝑁(𝑏𝑏 − 𝑎𝑎 + 1)

� � ����𝜔𝜔𝑥𝑥𝑥𝑥𝜔𝜔𝑦𝑦𝑦𝑦 𝑔𝑔𝑤𝑤1,𝑤𝑤2 (𝑗𝑗,𝑘𝑘)
𝑏𝑏

𝑥𝑥=𝑎𝑎

�|𝑥𝑥,𝑦𝑦,𝑤𝑤��⃗ 〉
𝑁𝑁−1

𝑘𝑘=0

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=0

log 𝑁𝑁

𝑤𝑤2=1

log 𝑁𝑁

𝑤𝑤1=1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�

1
𝑁𝑁2(𝑏𝑏 − 𝑎𝑎 + 1)

� � � � � � � �𝜔𝜔𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦 𝜔𝜔−𝑧𝑧1𝑗𝑗−𝑧𝑧2𝑘𝑘𝑔𝑔𝑤𝑤1,𝑤𝑤2 (𝑗𝑗,𝑘𝑘)
𝑏𝑏

𝑥𝑥=𝑎𝑎

�|𝑧𝑧1, 𝑧𝑧2,𝑤𝑤��⃗ 〉
𝑁𝑁−1

𝑘𝑘=0

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=0

log 𝑁𝑁

𝑤𝑤2=1

log 𝑁𝑁

𝑤𝑤1=1

N-1

𝑧𝑧2=0

N-1

𝑧𝑧1=0

Instead of trying to bound the probability of the edge as in the 1-dimensional case, we are now

interested in bounding the probability of measuring a corner.

Claim 5.0: When measuring on the final window (𝑤𝑤1 = 𝑤𝑤2 = 𝑙𝑙𝑙𝑙𝑙𝑙2𝑁𝑁),

𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑎𝑎,𝑎𝑎)� = 𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑏𝑏, 𝑏𝑏)�

Proof:

We want to measure the corner (𝑎𝑎,𝑎𝑎) in the last window. To find the probability of measuring

(𝑎𝑎,𝑎𝑎) in the last window, we take the square of the norm of the coefficient of �|𝑎𝑎, 𝑎𝑎,𝑤𝑤1 = log𝑁𝑁,𝑤𝑤2 =

log𝑁𝑁〉. Since we are no longer summing over 𝑧𝑧1 and 𝑧𝑧2, we can remove those two summations. Also, we

24

are no longer summing over 𝑤𝑤1 and 𝑤𝑤2, so we can also eliminate those two summations. What we are left

with is

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎,𝑎𝑎) = �
1

𝑁𝑁2(𝑏𝑏 − 𝑎𝑎 + 1)
� � � �𝜔𝜔𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦 𝜔𝜔−𝑎𝑎𝑎𝑎 −𝑎𝑎𝑘𝑘𝑔𝑔𝑤𝑤1,𝑤𝑤2 (𝑗𝑗,𝑘𝑘)

𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑁𝑁−1

𝑘𝑘=0

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=0

�

2

But we know that in the last window, 𝑔𝑔𝑤𝑤1,𝑤𝑤2 (𝑗𝑗,𝑘𝑘) = 0 unless 𝑁𝑁
2
≤ 𝑗𝑗,𝑘𝑘 < 𝑁𝑁 in which case 𝑔𝑔𝑤𝑤1,𝑤𝑤2 (𝑗𝑗,𝑘𝑘) =

1.

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎,𝑎𝑎) = �
1

𝑁𝑁2(𝑏𝑏 − 𝑎𝑎 + 1)
� � � �𝜔𝜔𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦 𝜔𝜔−𝑎𝑎𝑎𝑎 −𝑎𝑎𝑎𝑎

𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑁𝑁−1

𝑘𝑘=𝑁𝑁2

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

We can get the probability to look like what it did in the one-dimensional case.

�
1

𝑁𝑁2(𝑏𝑏 − 𝑎𝑎 + 1) � � � �𝜔𝜔𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦 𝜔𝜔−𝑎𝑎𝑎𝑎 −𝑎𝑎𝑎𝑎
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑁𝑁−1

𝑘𝑘=𝑁𝑁2

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

=
1

𝑁𝑁4(𝑏𝑏 − 𝑎𝑎 + 1)2 �� � � �𝜔𝜔𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦 𝜔𝜔−𝑎𝑎𝑎𝑎 −𝑎𝑎𝑎𝑎
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑁𝑁−1

𝑘𝑘=𝑁𝑁2

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

=
1

𝑁𝑁4(𝑏𝑏 − 𝑎𝑎 + 1)2 �� �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑦𝑦𝑦𝑦 � �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑥𝑥𝑥𝑥
𝑏𝑏

𝑥𝑥=𝑎𝑎

𝑁𝑁−1

𝑘𝑘=𝑁𝑁2

𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

=
1

𝑁𝑁4(𝑏𝑏 − 𝑎𝑎 + 1)2 ���� �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

��

2

From the proof of Claim 4.1, we have the following equality.

�� �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

� = �� �𝜔𝜔−𝑏𝑏𝑏𝑏+𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

Using this equality, we can manipulate the terms inside the norm to eventually become the

probability of measuring (𝑏𝑏, 𝑏𝑏) on the last window.

25

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎, 𝑎𝑎) =
1

𝑁𝑁4(𝑏𝑏 − 𝑎𝑎 + 1)2 �����𝜔𝜔−𝑎𝑎𝑎𝑎 +𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

��

2

=
1

𝑁𝑁4(𝑏𝑏 − 𝑎𝑎 + 1)2 �����𝜔𝜔−𝑏𝑏𝑏𝑏+𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

��

2

= 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏, 𝑏𝑏)

This concludes the proof of Claim 5.0, that the probability of measuring the bottom-left and top-

right corners of the square created by (𝑎𝑎,𝑎𝑎)𝑡𝑡𝑡𝑡 (𝑏𝑏, 𝑏𝑏) is the same.

Claim 5.1: For sufficiently large N with respect to 𝑠𝑠, 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎,𝑎𝑎) is bounded below by

�
𝜋𝜋2 + 𝑙𝑙𝑙𝑙2(𝑠𝑠 + 1)

4𝜋𝜋2𝑠𝑠 �
2

Proof:

By Claim 5.0, we can replace the probability of measuring (𝑎𝑎,𝑎𝑎) with the probability of measuring

(𝑏𝑏, 𝑏𝑏). Also, we can combine the exponent of the summation with the exponent of the norm.

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑎𝑎,𝑎𝑎) =
1

𝑁𝑁4𝑠𝑠2 ���� �𝜔𝜔−𝑎𝑎𝑎𝑎+𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

��

2

= 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏, 𝑏𝑏)

=
1

𝑁𝑁4𝑠𝑠2 ��� �𝜔𝜔−𝑏𝑏𝑏𝑏+𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

��

4

We can manipulate the summation to make the terms resemble the terms in the one-dimensional

analysis.

�𝜔𝜔−𝑏𝑏𝑏𝑏+𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

= 𝜔𝜔𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏 + 𝜔𝜔𝑎𝑎𝑎𝑎 −𝑏𝑏𝑏𝑏+𝑗𝑗 + ⋯+𝜔𝜔−𝑗𝑗 + 𝜔𝜔0 = �𝜔𝜔𝑎𝑎𝑎𝑎−𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑏𝑏, 𝑏𝑏) = �
1
𝑁𝑁2𝑠𝑠 �

� �𝜔𝜔𝑎𝑎𝑎𝑎−𝑦𝑦𝑦𝑦
𝑏𝑏

𝑦𝑦=𝑎𝑎

𝑁𝑁−1

𝑗𝑗=𝑁𝑁2

�

2

�

2

By Claim 4.4, this is bounded below for sufficiently large 𝑁𝑁 ≫ 𝑠𝑠 by �𝜋𝜋
2+𝑙𝑙𝑙𝑙2(𝑠𝑠)
4𝜋𝜋2(𝑠𝑠)

�
2
. This concludes

the proof of Claim 5.1.

26

The probability of measuring one of the two corners (𝑎𝑎,𝑎𝑎) or (𝑏𝑏, 𝑏𝑏) is 𝑂𝑂 �𝑙𝑙𝑙𝑙
2(𝑠𝑠)
𝑠𝑠
� and independent of

N. Immediately it is clear that the probability of measuring the upper-right or lower-left corner is

better than in a uniform distribution, however without measuring over all of the windows and

summing the probability, we cannot tell if the probability of measuring a corner on any window will

be constant. This proof can be extended to n-dimensional shapes as well, where the two corners are

the one closest to the origin and the one farthest from the origin. In general the probability of

measuring one of these corners on the last window is 𝑂𝑂 ��𝑙𝑙𝑙𝑙
2(𝑏𝑏−𝑎𝑎)
𝑏𝑏−𝑎𝑎

�
𝑛𝑛
�. We could prove this the

same way we proved the lower bound in the two dimensional case.

27

6. Conclusions and Future Work

We know for sure that in the closest and farthest corners from the origin, the probability density

spikes. We can easily see that �𝑙𝑙𝑙𝑙
2(𝑠𝑠)
𝑠𝑠
�
𝑛𝑛

= 𝜔𝜔 � 1
𝑠𝑠𝑛𝑛
�, so we achieve asymptotically better-than-

uniform probability on the corners of the square.

One major drawback to the analysis performed in this thesis is that the lower bound probability for

measuring a corner on the last window, 𝑂𝑂 ��𝑙𝑙𝑙𝑙
2(𝑠𝑠)
𝑠𝑠
�
𝑛𝑛
�, does not scale well at all in higher dimensions.

This is mostly because the “last window” is an exponentially small fraction 1
2𝑛𝑛

 of the 𝑁𝑁𝑛𝑛 Hilbert

space. Yi-Kai Liu’s algorithms that use the quantum Fourier transform are very scalable. He

conjectures that his algorithms work with constant probability in terms of the dimension [1]. We

have only provided a starting point for being able to prove whether or not we can achieve constant

probability in terms of the dimension.

We use the powers-of-two window definition in the 2-dimensional case because it is convenient to

analyze. When we calculate the probability of measuring �|𝑎𝑎〉 and � |𝑏𝑏〉 using the powers-of-two

windows, there is much almost no deconstructive interference. This suggests that it is a relatively

good window function to use to maximize probabilities. Since we did not prove otherwise, it is

possible that the way that we defined the windows in this analysis does yield a scalable lower

bound. We only analyzed the probability of the “last window”. Perhaps if we would sum over all

of the windows, we would get a more scalable bound. Understanding the summation over all

windows in the 2-dimensional analysis would require us to simplify six summations which may not

reduce to something as simple as a cotangent function.

If we could prove that we cannot get a scalable lower bound for the powers-of-two window

function, perhaps a different choice of window function could yield a scalable lower bound. Yi-Kai

Liu uses polar coordinates for his window functions, so it makes more sense for his windows to cut

up space into a more spherical shape. His windows are essentially slices of a pie that become more

numerous as N increases. Analyzing this choice of window function for the quantum curvelet

transform could give more concrete results that scale well.

28

We are missing one key component in this analysis that prevents us from applying it to Liu’s center

finding algorithms. The curvelet transform is known to be a “directional” transform that returns

both a location and a direction upon measuring. Yi-Kai Liu’s algorithms rely on the direction

returned to be able to find the center of the inputted radial function or the center of a sphere. The

direction returned is given by the window that is measured, therefore to determine what the

probability distribution looks like for the directional vector, we need to analyze the probability

distribution of measuring a particular window. Because Yi-Kai Liu uses radial functions and

windows that resemble pie slices, he can get a fairly precise direction returned. Because we use

square window functions that get larger as they get farther from the origin, we are very limited to

the number of vectors that the direction could be. I conjecture that the powers-of-two definition of

windows will inhibit us from getting an accurate directional vector with any useful probability. It

would be useful to prove such results.

29

References

[1] Liu, Yi-Kai. Quantum Algorithms Using the Curvelet Transform. Institute for Quantum

Information. California Institute of Technology, March 25, 2009.

[2] Shor, Peter W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms

on a Quantum Computer. Society for Industrial and Applied Mathematics. SIAM J. COMPUT.,

Vol. 26, No. 5:1494-1509, 1997.

[3] Candés, Emmanuel, Laurent Demanet, David Donoho, and Lexing Ying. Fast Discrete Curvelet

Transforms. Applied and Computational Mathematics, California Institute of Technology, 2005.

[4] Ying, Lexing, Laurent Demanet, and Emmanuel Candés. 3D Discrete Curvelet Transform.

Applied and Computational Mathematics, California Institute of Technology, 2005.

[5] Joshi, M. S., R. R. Manthalkar, and Y. V. Joshi. Image Compression Using Curvelet, Ridgelet

and Wavelet Transform, A Comparative Study. ICGST-GVIP, Vol. 8, No. 3, 2008.

[6] Sivakumar, R. Denoising of Computer Tomography Images Using Curvelet Transform. ARPN

Journal of Engineering and Applied Sciences, Vol. 2, No. 1, 2007.

[7] Grover, Lov and Terry Rudolph. Creating Superpositions that Correspond to Efficiently

Integrable Probability Distributions. Bell Labs. 2008

[8] Nielsen, Michael and Isaac Chuang. Quantum Computation and Quantum Information.

Cambridge University Press. 216-221. 2007

ACADEMIC VITA of Justin T. Kerekes

Justin T. Kerekes
P.O. Box 187
1627 Swamp Pike
Gilbertsville, PA 19525
jok5076@psu.edu

Education:

Bachelor of Science Degree in Computer Science,
Penn State University, Spring 2010

 Bachelor of Science Degree in Mathematics,
Penn State University, Spring 2010

Minor in Spanish
Honors in Computer Science
Thesis Title: The Discrete Curvelet Transform for Quantum Algorithms
Thesis Supervisor: Dr. Sean Hallgren

Related Experience:
 Summer REU at Penn State University

Supervisor: Dr. Sean Hallgren
Sponsered by NSF
Summer 2010

Grading Assistant for Data Structures and Algorithms
Penn State University: Department of Computer Science and Engineering
Fall 2009

Awards:
 President’s Freshman Award
 Lockheed Martin Engineering Scholars’ Award
 Dean’s List

Activities:
 Mission work in Guatemala, Puerto Rico, and Peru
 Treasurer of Alliance Christian Fellowship

Member of the National Society of Collegiate Scholars

