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ABSTRACT 

 

When using the correct material coupled with drugs and specific surface ligands, 

nanoparticles can have enhanced targeted drug delivery properties. Currently, scientists can alter 

the size, shape, material, and surface properties among other factors in order to change the 

characteristics of the nanoparticles and how the body reacts to them1. While much research has 

been done looking at how varying the properties of nanoparticles affect nanoparticle uptake, little 

research has been done to see how varying cell properties affect nanoparticle uptake. 

Additionally, it is known that the extracellular matrix of tumor tissue is different than that of 

healthy tissue.  The differences in ECM organization causes the tumor cells to take on certain 

patterns, which may affect nanoparticle and drug uptake.  The aims of this project are twofold: 

first, I will compare the rate of nanoparticle uptake at the leading edge to that at the trailing edge, 

then, I would like to see how cell morphology affects nanoparticle uptake.  The results from 

these experiments indicate that there is a difference in nanoparticle uptake in elongated and non-

elongated cells.  The leading edge of a cell also appears to contain more nanoparticles than the 

trailing edge of a cell; however, this is not dependent on cellular elongation.  
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Chapter 1  

 
Background 

The medical field is constantly evolving to better fit the needs of patients.  A relatively 

new field in medicine is drug delivery.  This area of study focuses on finding the optimal method 

for transporting the drug to a target, which can be an organ, a type of cell, or even a sequence of 

DNA, among other things.  

A History of Drug Delivery  

The history of drug delivery can be traced back thousands of years ago to the first uses of 

herbal remedies to treat diseases2.  However, these remedies hold no scientific merit.  A modern 

history of drug delivery can be separated into three generations: Generation I (1950-1980), 

Generation II (1981-2010), and Generation III (2010-2040)3.  Generation I was characterized by 

only a basic understanding of drug release.  At this time, no technology existed that could control 

the release rate of a drug; these drugs are often known as ñrapid-releaseò drugs because of this.  

Patients were simply told how much and often to take a drug (e.g. one pill twice a day), and most 

delivery methods were either oral or transdermal delivery3.  The concept of controlling the 

release rate of a drug started in the mid-1960s, when Dr. Judah Folkman discovered that 

anesthetic gasses can diffuse through silicone rubber tubing at a specific rate4.  He hypothesized 

that a constant rate of drug delivery could be  achieved using silicone tubing to control the 

release of the drug4.   
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The idea of a constant rate of drug delivery, or zero-order delivery, marked the transition 

from Generation I to Generation II of drug delivery.  A controlled delivery eliminated the need 

for constant dosages, which decreased the frequent changes in drug concentration within the 

body as well as the side effects associated with these fluctuations2.  In the late 1960s, Alejandro 

Zaffaroni, after being inspired by Dr. Folkmanôs work, founded ALZA, a company that focused 

on producing drugs that utilize controlled drug delivery.  By the 1980s, ALZA had developed a 

method for controlled drug release in the GI tract called OROS, which stands for Osmotic 

Release Oral System.  OROS worked by utilizing a rate-controlling membrane, which controlled 

the rate at which water entered the drug capsule through osmosis.  As water entered the capsule, 

the building osmotic pressure would then push the active drug out of an opening in the capsule, 

resulting in a constant rate of drug release2,4.  ALZA also developed a controlled release system 

for implantable devices called DUROS.  This system differs from OROS in that the rate-

controlling membrane is used to control the release of the drug rather than the intake of water.  

One common device to utilize this technology is the intrauterine device (IUD); the rate 

controlling membrane allowed for the device to release the hormone progesterone at a constant 

rate4.   

During Generation II, there was also a push for the development of drug delivery systems 

that can ñsenseò the surrounding environmental factors.  These systems would then release the 

drug based on changes in pH or glucose levels3.  In the 1970s, Folkman and Langer showed that 

hydrophobic polymer matrices could be used to control the release of biomolecular drugs4.  Their 

findings caught the attention of many other researchers, and started an interest in developing 

smart polymers and hydrogels.  Research on the pharmacologic uses of nanoparticles as drug 

delivery vehicles also began during this generation in the 1970s4.  The development of smart 
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polymers and hydrogels merged with the interest in nanoparticle drug delivery, creating 

nanoparticles with various types of material properties.  This new but rapidly growing field of 

research combined material sciences, biology, and engineering.  When using the correct material 

coupled with drugs and specific surface ligands, nanoparticles can have enhanced targeted drug 

delivery properties.   

These research trends continued past the turn of the century, and into the 2010s where 

research currently stands.  These years also mark the transition into the third generation of drug 

delivery systems.  New developments in nanomedicine and modular drug delivery systems are a 

hallmark of this generation3. 

Nanoparticles 

Jörg Kreuter may have been the first to use the term ñnanoparticleò in 1976 when 

describing the drug-containing micelles developed by Dr. Birrenbach3,5,6.  Birrenbach pioneered 

the idea of attaching drugs and antigens to these nanoparticles to aid in drug delivery systems.  

His research showed that fragile biological molecules, such as proteins, could be stably 

contained within the micelle nanoparticle and released when they enter the body5.  Modern 

nanoparticle research builds upon the foundation established by Birrenbach; now, in addition to 

creating drug-containing micelles, scientists can alter the size, shape, material, and surface 

properties among other factors in order to change the characteristics of the nanoparticles and how 

the body reacts to them1.   

Nanoparticle material plays an important role in how the nanoparticles behave in vivo.  

Birrenbach utilized amphipathic lipids to encase the drugs or biological molecules in self 
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assembling micelles.  Micelle-like nanoparticles and their drug delivery abilities are still being 

studied today.  In addition to micelle-like nanoparticles, scientists can now make nanoparticles 

out of various polymers.  These polymeric nanoparticles were initially made of 

nonbiodegradable polymers, such as poly(methyl methacrylate) (PMMA), polystyrene, and 

polyacrylates.  Since these polymers are not biodegradable, they must be excreted from the body 

so that they do not reach a toxic concentration within the body.  Due to the risks of toxicity, there 

has been a shift towards biodegradable polymers, such as poly(lactide) (PLA) and poly (Ů-

caprolactone) (PCL), as well as other natural polymers7.  Polymeric nanoparticles are not hollow 

so the drugs and biological molecules must be adhered to the surface of the nanoparticle rather 

than being contained on the inside of the nanoparticle.  This paper will focus mainly on 

polymeric nanoparticles. 

One of the most widely studied nanoparticle factors is size.  Depending on the fabrication 

method and material, the size of the nanoparticles can be controlled7.  The size of a nanoparticle 

can range anywhere from 1 nm to slightly over 1 µm.  This property plays a large role in the 

cellular uptake of nanoparticles.  Some cells will not take in nanoparticles if they are too large or 

too small; Caco-2 and Madin-Darby cells were found to only take in nanoparticles smaller than 

200 nm in diameter.  Additionally, nanoparticles in the range of 100-200 nm show the most 

potential in crossing the gastrointestinal barrier and blood-brain barrier8.  Current research also 

shows that nanoparticles in the 10-100 nm range should be used for cancer therapy due to the 

enhanced permeability and retention (EPR) effect.  This effect stems from the non-functioning 

lymph system in tumors; the blood vessels in the tumor leak macromolecules (or in this case, 

nanoparticles) into the tumor where they accumulate1.  One must also consider how size affects 

the cellular uptake method; cells utilize receptor-medicated endocytosis to consume 
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nanoparticles in the 100-200 nm range, whereas larger nanoparticles are consumed through 

phagocytosis.   The size of the nanoparticle can also affect toxicity, targeting, circulation, 

opsonization, and degredation7.   

 

Another important factor regarding the efficacy of nanoparticles is the geometry of the 

nanoparticle.  While nanoparticles are typically spherical, they can also be shaped like 

rectangular disks, rods, worms, oblate ellipses, elliptical disks, UFOs, and circular disks (Figure 

1)7.  The shape of the nanoparticle will affect cellular interactions.  Researchers have found that 

the cellular uptake rate of the nanoparticles in the 1 ï 10 µm range is determined by the angle 

formed by the line defining the particle curvature at the point of contact between the particle and 

the cell, and the membrane normal at the point of contact (Figure 2)9.  There is a critical angle of 

about 45х where any angle larger than this will cause the cell to not consume the nanoparticle, 

and instead the cell will spread over the particle9.  The morphology will also affect how the 

nanoparticles travel in the blood stream and how they will dissolve, if they are biodegradable7.  

Currently, it is difficult to make any hard conclusions about the effects of nanoparticle 

Figure 1. Nanoparticle morphology. (a) Spheres, (b) rectangular disks, (c) rods, (d) worms, (e) oblate ellipses, (f) 

elliptical disks, (g) unidentified flying objects (UFOs), and (h) circular disks (scale bars: 2um).  Image taken 

from Champion et. al. (Ref. 25) 
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morphology on cellular interactions, other than that the contact angle affects cellular uptake rate, 

as it is still an active area of research.   

 

Figure 2. Internalization velocity vs. angle formed by particle curvature line and the membrane normal at the 

point of contact.  Image taken from Sahay et. al. (Ref. 9) 

Nanoparticle surface chemistry is critical in determining how the nanoparticle will 

interact with cells.  A common practice is to alter the surface charge of the nanoparticle.  Slight 

positive or negative charges can be imparted on the nanoparticles by treating them with certain 

chemicals; for example, carboxymethyl chitosan will impart a negative charge and chitosan 

hydrochloride will impart a positive charge on the nanoparticles10.  The nanoparticles must also 

be sterically stabilized so that they do not undergo self-self interactions and coagulate1.  

Imparting charges on the nanoparticles affect how they will act within the body.  The surface of 

cells, especially those that compose the blood vessel endothelium, are negatively charged.  
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Anionic nanoparticles will be diverted from these cells1.  The charge can also determine how 

nanoparticles enter the cell.  Negatively charged particles utilize a caveolae mediated mechanism 

to move into the cell, whereas neutral and positively charged particles enter through non-clathrin 

and non-caveolae mechanisms11.   

The surface chemistry also determines what cells the nanoparticles will target.  Targeting 

ligands can be bound to the surface of the nanoparticle.  These ligands can include peptides and 

antibodies that target the surface receptors of a specific cell type1.  A common target is cancer, 

since many cancers have an increased expression of certain surface receptors.  Conversely, 

ligands can be added to the nanoparticle to conceal it from certain cells and the immune system.  

These are known as stealth ligands.  Stealth ligands allow the nanoparticles to circulate through 

the blood for longer periods of time, as they are less likely to be removed by the immune 

system7,12. 

Cellular Uptake Mechanisms 

Cells consume particles through endocytosis.  Endocytosis can be separated into two 

main categories: phagocytosis and pinocytosis.  Phagocytosis translates to ñcell eatingò and is 

used to take in larger particles, bacteria, or even other cells.  Phagocytosis is only present in 

phagocytic cells.  Pinocytosis translates to ñcell drinkingò and is used to take in fluids and 

solutes; this method of intake is present in all cells.  Nanoparticles are typically consumed via 

pinocytosis.  Pinocytosis can be classified into subcategories based on the proteins involved with 

the entry of the particles (Figure 3)9.  The previously stated nanoparticle characteristics (material, 

morphology, surface chemistry, etc.) can all affect which pathway the nanoparticle is ultimately 
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taken up by.  Most nanoparticles enter the cell through either clathrin mediated endocytosis or 

caveolae mediated endocytosis13ï15. 

 

Figure 3. Methods of endocytosis.  Image taken from Sahay et. al. (Ref. 9) 

 

Clathrin mediated endocytosis (CME) is the most common method of cellular uptake for 

non-phagocytic cells9.  This route is often used for cholesterol or iron uptake, so low density 

lipoprotein receptors and transferrin receptors are used as markers to identify CME14.  CME 

occurs when transmembrane receptors and their ligands gather in clathrin coated pits on the 

plasma membrane.  The pits then deepen and are pinched off by dynamin, a GTPase.  This 

process creates clathrin coated vesicles (CCVs).  The CCVs, which contain the receptors and 

bound ligands, are then uncoated, becoming endosomes, and attached to the actin cytoskeleton 

where they are moved to wherever the cell directs them9,14. 

Some nanoparticles such as poly(ethylene glycol) (PEG), polylactide (PLA), and 

poly(lactic-co-glycolic acid) (PLGA) have been observed to enter cells through CME.  However, 
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the method of cellular intake seems to depend more on cell type than nanoparticle type.  

Polarized Madin-Darby canine kidney (MDCK) epithelial cells took in PEG and PLA 

nanoparticles via CME regardless of nanoparticle surface charge.  In non-polarized HeLa cells, 

positively charged nanoparticles solely utilized CME whereas negatively charged nanoparticles 

were able to utilize both CME and caveolae-mediated endocytosis.  PLGA nanoparticles were 

observed to use CME to enter vascular smooth muscle cells (VSMCs), but used both clathrin-

independent and caveolae-independent endocytosis when introduced to rat corneal epithelial 

cells9. 

Caveolae mediated endocytosis is another popular cellular entry pathway used by 

nanoparticles.  Much like how clathrin mediated endocytosis is defined by the use of the protein 

clathrin, caveolae mediated endocytosis utilizes the membrane proteins caveolin-1, caveolin-2, 

and caveolin-3.  The caveolin protein generates flask-shaped pits, known as caveolae9,14,15.  

Caveolae mediated endocytosis is less selective than clathrin mediated endocytosis; a variety of 

molecules can bind to the caveolae and be taken into the cell.  Additionally, the caveolae 

mediated pathway can avoid lysosomal digestion.  However, because of the lax selectivity and 

lysosome evasion, viruses and bacteria can take advantage of this pathway to infect the cell.  At 

the same time, nanoparticles delivering fragile biological molecules like protein and DNA would 

want to utilize this pathway to avoid lysosomal degradation9.   

Drugs such as DOXIL and Abraxane already exploit caveolae mediated endocytosis to 

deliver drugs to cancer cells.  Studies have shown that poly(ethyleneoxide)-b-poly(methacrylic 

acid) (PEO-b-PMA) core-cross-linked polymeric micelles (cl-micelles) can specifically target 

cancer cells and utilize the caveolae mediated endocytic pathway9.  Current research is trying to 

identify targetable proteins in caveolae.  Aminopeptidase P (APP) was identified as one such 
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target in the caveolae of lung endothelium tumors.  When bound with APP antibodies, gold 

nanoparticles were able to accumulate in the caveolae of cancerous lung endothelial cells9,16.   

There are clathrin and caveolae independent pathways, like Arf6-dependent and Flotillin-

dependent endocytosis, but these pathways are not yet well characterized.  While there are some 

nanoparticles that utilize these pathways, very few have been observed to do so9,14,15,17.  More 

research will have to be done in this area to elucidate how these pathways may affect drug 

delivery. 

Recently, studies in mechanobiology have been done showing that cell surface mechanics 

affect cellular endocytosis18,19.  Substrate stiffness is known to affect cellular membrane tension, 

which affects nanoparticle uptake.  Cells on softer substrates with lower membrane tensions are 

observed to intake more nanoparticles than cells on stiffer substrates with higher membrane 

tensions19.  Within the human body, the extracellular matrix (ECM) on which cells reside can 

vary in stiffness and density.  Cancerous tissues are known to have different ECM properties at 

various stages of development, and have cells in distinct patterns18ï21.  Thus, it is important to 

study how cell morphology can affect nanoparticle uptake; this can be used to aid in the uptake 

of nanoparticles in diseased tissues.  
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Chapter 2  

 
Methods 

Cell Culture 

Cell culture began with obtaining a mouse-derived osteoblast precursor cell line, known 

as MC3T3 cells, from Pouria.  These cells were seeded onto a 145 mm x 20 mm Greiner 

CELLSTAR® dish and fed with 20 ml of alpha-modified minimum essential medium (Ŭ-MEM).  

1% volume/volume penicillin/streptomycin from Lonza and 10% fetal bovine serum (FBS) from 

Atlanta Biologicals is added to the Ŭ-MEM.  The media was changed every two days.  All 

procedures done with live cells were done in a NUAIRE LABGARD ES Class II, Type A2, 

Biological Safety Cabinet.  When cells would reach 80% confluency or greater, they would be 

passaged onto another dish.  Cell dishes were stored in a Nuaire Autoflow IR Direct Heat CO2 

Incubator at 37 °C and 5% CO2. 

Passaging is when the population of cells in a cell culture dish becomes too large so a 

portion of those cells are seeded onto a new dish and the rest are either used in an experiment or 

discarded.  When passaging cells, the media is first aspirated from the dish.  Cells are then 

washed with 5 ml of 1x phosphate-buffered saline (PBS).  1x PBS is made by dissolving 20 g of 

NaCl (VWR), 0.5 g of KCl (Sigma-Aldrich), 6.8 G of Na2HPO4ω7H2O (VWR), and 0.6 g 

KH2PO4 (VWR) in 100 ml of distilled-deionized water (ddH2O).  The pH is adjusted to 7.4 using 

HCl (EMD-Millipore) and a S220 SevenCompactTM pH meter. ddH2O is then added until the 

volume reaches 250 ml.  The resulting solution is 10x PBS, which is then diluted to 1x PBS by 
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adding ddH2O.  Washing the cells with 1x PBS removes the serum from the cells that was in the 

media.  This is done so that the remaining serum will not inactivate the trypsin used in the next 

step.  5 ml of trypsin-EDTA from Mediatech Inc. is added to the dish, which is then incubated 

for five minutes.  Trypsin breaks the cellsô focal adhesions to the plate so that the cells are no 

longer attached to the surface of the plate.  After five minutes, cells were observed under a 

Nikon® Eclipse TE300 microscope.  If the cells are free-floating in the trypsin, 5 mL of Ŭ-MEM is 

added.  If the cells remain attached to the dish, they are placed back into the incubator until they 

are free-floating.  Since trypsin is toxic to cells, the Ŭ-MEM is added to neutralize the trypsin.  

All 10 ml of the cells in trypsin- Ŭ-MEM solution is pipetted into a 15 ml CELLSTAR® tube 

from Greiner Bio One using a Gilson Inc. MACROMANTM pipette.  The tube is then centrifuged 

in a Thermo Scientific Heraeus Multifuge X1 Centrifuge, using another 15 ml CELLSTAR® 

tube filled with 10 ml of water as a counterweight, at 500 RPM for 5 minutes.  After 

centrifugation, the trypsin- Ŭ-MEM solution is aspirated from the CELLSTAR® tube and 10 ml 

of pure Ŭ-MEM is added to the tube.  The Ŭ-MEM is pipetted in and out a few times to break up 

the clump of cells at the bottom of the tube.  Once the cells are even dispersed throughout the 

media, 1/4 - 1/2 of the media is added to a new 145 mm x 20 mm Greiner CELLSTAR® dish.  

The amount of the media added to the dish is dependent upon how soon the cells will be needed; 

using a larger portion of the media will allow the cells to reach confluency sooner.  When a 

portion of the cells and media have been added to the new dish, the remaining cells can be 

aspirated and the tube disposed of.  Ŭ-MEM is then added to the new dish until the total volume 

of Ŭ-MEM in the dish is 20 ml.  The new dish is then placed in the incubator. 
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Cover Slip Preparation 

22 mm x 22 mm glass cover slips were obtained from VWR.  They were sprayed with 

pure ethanol and wiped clean with a KIMTECH Kimwipe.  The cleaned cover slips were then 

coated with a thin layer of 20% poly(methyl methacrylate) (PMMA) (Sigma-Aldrich) in 

nitromethane (Sigma-Aldrich) (weight/volume) by using a Laurrell Technologies spin coater 

(Model Ws-400BZ-6NPP/Lite).  Spin coating is the process of placing a small amount of 

polymer solution on a cover slip and spinning the cover slip at high speeds to spread the polymer 

in an even coat around the cover slip.  100 µl of 20% PMMA in nitromethane was used for each 

slide and the slides were spun for 10 seconds at 5000 RPM.  The PMMA creates a suitable 

environment for cell growth on the cover slips. 

After spin coating, half of the cover slips was designated as "film" and the other half was 

designated as "scratched."  The film cover slips were complete after the spin coating process.  

The scratched cover slips had to be scratched with sandpaper to create grooves in the PMMA for 

cells to adhere to.  This causes the cells to have an elongated morphology.  To scratch the cover 

slips, the cover slips were pressed PMMA-side down onto P2000 grit silicon carbide sandpaper.  

The cover slip was then dragged along the width of the paper once (Figure 4).  Since P2000 grit 

sandpaper utilizes particles with an average diameter of 10.3 µm, the thickness of the scratched 

lines can be assumed to be approximately 10.3 µm. 

Once five film and five scratched cover slips have been made, cells can be seeded onto 

them.  The cover slip seeding protocol follows the cell passage protocol with the exception of a 

few steps.  The cover slips are placed into two Grenier Bio-One CELLSTAR 6-well plates, with 

one cover slip per well and the PMMA side facing up.  All scratched slides are placed on the top 

row of the 6-well plates and the film slides are placed on the row below the scratched slides.  The 
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cover slips and 6-well plates are then placed under UV light for five minutes to kill any possible 

contaminants on them.  This can be done while the cells are being centrifuged.  After the cells 

are centrifuged and are dispersed in the new media, 10 µl of the cells are taken from the tube and 

placed onto a Fisher Scientific hemacytometer where they are counted.  This will give an 

estimate of the concentration of cells in the tube.  Once the concentration is known, 

approximately 15,000 cells are pipetted from the tube and dropped onto a cover slip.  This is 

repeated for each cover slip. 2 ml of Ŭ-MEM is added to each well and then the 6-well plates are 

placed in the incubator.  The rest of the cell passage protocol is then completed with the 

remaining cells. 

 

 

Figure 4. Scratched cover slip (left) vs. film cover slip (right) 

Nanoparticle Uptake 

In order to calculate the rate of nanoparticle uptake, fluorescent polystyrene (PS) 

nanoparticles were introduced to the cells at different time points.  The time points were 24, 12, 

8, 4, and 1 hour before they are fixed for immunostaining.  A nanoparticle-media solution was 
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created.  Nanoparticles were added to Ŭ-MEM at a ratio of 10 Õl of nanoparticles to 1 ml of Ŭ-

MEM.  Each well in a 6-well plate requires 2 ml of media so 200 µl of nanoparticles was mixed 

with 20 ml of Ŭ-MEM in a 50 ml CELLSTAR® tube for the 10 cover slips.  The tube was 

inverted one to two times to evenly disperse the nanoparticles throughout the media.  24 hours 

before the cells are fixed for immunostaining, the Ŭ-MEM in two wells are aspirated (one 

containing a scratched slide and the other containing a film slide).  The aspirated media is 

replaced with 2 ml per well of the nanoparticle-media solution.  The 6-well plate is then placed 

back in the incubator.  This process is repeated at 12, 8, 4, and 1 hour before the cells undergo 

immunostaining. 

Immunofluorescence 

Immunostaining requires fixation buffer (FB) and permeabilization buffer (PB).  25 ml of 

fixation buffer is made by mixing 2.5 ml of 3.7% - 4% paraformaldehyde (VWR) in 22.5 ml of 

1x PBS.  50 ml of permeabilization buffer is made by adding 500 µl of 0.1% Triton X-100 and 

dissolving 1.5 g of 3% bovine serum albumin (BSA) (VWR) in 50 ml of 1x PBS.  Cytoskeletal 

stabilization buffer (CSB) is also used; this is made by dissolving 0.146 g of NaCl, 0.151 g of 

piperazine-N,Nǋ-bis(2-ethanesulfonic acid) (PIPES), 0.012 g of MgCl2, 0.019 g of EGTA, and 5.134 

g of sucrose in 250 µl of 0.5% Triton X100 and 50 ml of DI water.  Protease and phosphatase 

inhibitors are added at 100 µl per 10 ml of solution.  The pH of the solution is then adjusted to 

6.8 using HCl or NaOH.  Following the preparation of FB, PB, and CSB, the nanoparticle-Ŭ-

MEM solution is aspirated from all of the wells and they are all washed with 1x PBS.  After five 

minutes, the 1x PBS is aspirated and 2ml of ice cold CSB is added to each well and left for one 
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minute at room temperature before being aspirated.  2 ml of FB is added to each well and left to 

incubate at room temperature for 15 minutes.  The FB is aspirated and the cover slips are then 

washed again with 1x PBS, but this time they are washed three times for 5 minutes each.  2 ml of 

PB is then added to each well and is left to incubate at room temperature for 45 minutes.  During 

this time, the primary antibody solution can be prepared.  The primary antibody is mixed in a 

1:500 ratio of antibody to PB.  The primary antibody used binds to ɔ-tubulin and is a polyclonal 

antibody derived from rabbits (abcam).  ɔ-tubulin is used as a marker to define the leading edge 

of a cell; when the slides are viewed under a microscope, the leading edge can be defined.  From 

this point in the protocol, only 1 ml of solution will be used per well.  20 µl of primary antibody 

is mixed with 10 ml of PB.  After the 45 minute incubation period, the PB is aspirated from the 

wells and 1 ml of primary antibody solution is added per well.  This is allowed to incubate for 

one hour.  The secondary antibody solution can be prepared during this time.  The secondary 

antibody binds to the primary antibody and is fluorescent; this allows the protein that the primary 

antibody tagged to be seen under a fluorescent microscope.  Goat anti-rabbit IgG (H+L), 

DyLight® 650 conjugated (Thermo Scientific) is used as the secondary antibody and is mixed in 

a 1:1000 ratio of antibody to PB.  10 µl of primary antibody is mixed with 10 ml of PB.  

Following the one hour incubation period for the primary antibody, the PB and primary antibody 

are aspirated from the wells and the cover slips are washed with 1x PBS three times for five 

minutes each time.  Then the secondary antibody solution is added 1 ml to each well.  The 

secondary antibody is incubated for 45 minutes at room temperature in the dark since the 

secondary antibody is light sensitive.  The 6-well plates are wrapped in aluminum foil to prevent 

light from entering.  During the incubation period, a solution of DAPI, phalloidin 488 (Biotium), 

and PB is prepared.  DAPI stains the A-T regions in DNA, whereas phalloidin stains F-actin.  
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This allows us to see the nucleus and cytoskeleton respectively.  Phalloidin and DAPI are added 

to PB at a concentration of 1:1000 and 1:5000 respectively.  For 10 ml of solution, 10 µl of 

phalloidin and 2 µl of DAPI are added to 10 ml of PB.  After the secondary antibody incubation 

period, the PB and secondary antibody are aspirated from the wells and the cover slips are 

washed with 1x PBS three times for five minutes each time.  Then 1 ml of the phalloidin-DAPI-

PB solution is added to the wells.  The cover slips are left to incubate one last time at room 

temperature for 30 minutes in the dark.  After the 30 minute incubation period, the phalloidin-

DAPI-PB solution is aspirated and the cover slips are washed with 1x PBS three times for five 

minutes each time.  The cover slips are then mounted onto VWR 75 mm x 25 mm microscope 

slides.  Approximately 30 µl of Fluoromount-GTM (Electron Microscopy Sciences) mounting 

media  is dropped onto the slide and the cover slip is placed PMMA side down onto the 

mounting media.  Each slide can fit two cover slips.  Label each cover slip and let them rest until 

the mounting media dries at room temperature in the dark.  Once the mounting media has dried, 

clear nail polish is applied to the edges of the cover slides to prevent them from moving when 

under the microscope.  The slides can now be imaged using a Leica® DM5500B. 

Actin/Myosin Inhibition  

Y-27632 can be used to inhibit F-actin polymerization and myosin II.  Specifically, Y-

27632 inhibits rho-associated protein kinase (ROCK) pathways.  This ends up inhibiting F-actin 

and myosin II, which are downstream of the inhibition site.  F-actin and myosin II are essential 

for the formation stress fibers; without stress fibers, there would be no cell migration, cellular 
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contractility, or mechanotransduction.  Thus, this test can indicate whether the difference in 

nanoparticle uptake is dependent on stress fibers or not.   

Y-27632 was obtained from Cytoskeleton Inc.  The inhibitor in each vial was 

reconstituted by adding 100 µl of ddH2O to each vial.  Y-27632 should act within 30 minutes of 

application, but to be safe, it was added 2 hours before the introduction of any nanoparticles (see 

Cover Slip Preparation and Nanoparticle Uptake).  To use the inhibitor, 10 µl of inhibitor 

solution is added to the cover slips for every 1 ml of media.  Two hours after the application of 

the inhibitor, nanoparticles can be added.  However, since the inhibitor is reversible (i.e. the 

effects of the inhibitor are reversed once the inhibitor is removed from the media), the inhibitor-

containing media cannot be aspirated and replaced with nanoparticle-containing media.  Instead 

of creating a nanoparticle-media mixture, nanoparticles are added directly to each well.  1 µl of 

nanoparticle is added per 1 ml of media; thus, 2 µl of nanoparticles are added to each well.  

Following the addition of nanoparticles at the specific time points, the immunostaining protocol 

can be performed. 

Microcontact Printing  

The next step of the experiment is to create a more controllable way for the cells to 

elongate.  This is done through microcontact printing (µCP).  µCP allows users to create a tiny 

area, large enough for a single cell to adhere to, in a specific shape.  To start µCP, a stamp of 

polydimethylsiloxane (PDMS) is made.  In this case, I wanted rectangles with aspect ratios of 1, 

5, and 8.  I obtained a PDMS stamp with the shapes I wanted from Pouria.  A solution of 1% 

pluronic acid F-127 is made by mixing pluronic acid with ddH2O and letting it sit for one hour at 
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room temperature.  Each stamp will get 10 ml of the pluronic solution.  Fibronectin solution 

made by mixing fibronectin and ddH2O in a ratio of 25 µg of fibronectin to 1 ml of ddH2O.  

Once the two solutions are made, the PDMS stamp is cleaned with ethanol spray and dried using 

compressed air.  The cleaned stamp is then coated with O2 plasma, using a Plasma Cleaner PDC-

001 (Harrick Plasma).  The coating process is set for about 45 seconds per stamp.  O2 plasma 

coating causes the surface of the stamp to become very hydrophilic.  This allows the stamp to 

easily absorb any solutions put on it.  Finally, the PDMS stamp is placed under a UV light for 5 

minutes to disinfect it.  Once the PDMS stamp has been disinfected, enough fibronectin is added 

to the stamp to completely cover the stamping face.  The stamp is left to absorb the fibronectin 

for 1.5 hours.  

22 mm x 22 mm glass cover slips are prepared for stamping by being spin-coated with 

100 µl of PDMS.  The PDMS is made beforehand by mixing SYLGARD® 184 Silicone 

Elastomer Base with SYLGARD® 184 Silicone Elastomer Curing Agent (Dow Corning) in a 

10:1 ratio respectively.  They are then coated with O2 plasma for 30 seconds and disinfected 

under UV light for 5 minutes.  After the stamp has absorbed the fibronectin, the remaining 

excess fibronectin is aspirated off.  ddH2O is added and then blown off with compressed air.  The 

stamp is then placed lightly on a glass cover slip.  A tweezer is used to gently press down the 

perimeter of the stamp before lightly pressing in the center of the stamp.  The stamp is left to sit 

on the cover slip for one minute.  It is then carefully removed using tweezers.  Since the stamp 

had previously absorbed fibronectin to its surface, it will leave fibronectin prints of the desired 

shape on the surface of the cover slip.  This process is repeated for each cover slip.  10 ml of 

pluronic is then added onto the cover slips using a filtered syringe and left on the cover slips for 

ten minutes.  Pluronic F-127 now coats the entire surface of the cover slip apart from the few 
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islands of fibronectin.  Pluronic prevents cell focal adhesions from being formed so when cells 

are eventually added to the cover slip, they will be forced to attach to the islands of fibronectin.  

The islands of fibronectin are small enough to allow for just a single cell to attach in a specific 

shape (Figure 5).  After ten minutes, the pluronic can be aspirated off and 10 ml of 1x PBS is 

added onto the cover slips before being aspirated immediately.  1x PBS is added again to the 

cover slips, but this time left for five minutes before being aspirated.  This process is repeated 

two more times, each time aspirating the 1x PBS after five minutes.  To clean the stamps, the 

stamps are placed in a 50 ml tube with ddH2O and sealed with parafilm (Bemis).  A Fisher 

Scientific Ultrasonic Bath sonicator is used to heat the tube at 60 ꜛC for 20 minutes to remove 

any residual fibronectin from the stamp.  This is repeated a second time, but the ddH2O is 

removed and replaced with ethanol.   
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Figure 5. Microcontact printing protocol  

Following this process, the cover slips are ready to be seeded with cells.  To seed cells 

onto the cover slips, the cell passage protocol until after the cells have been centrifuged.  Once 

the cells have been centrifuged and are dispersed in the new media, 10 µl of the cells are taken 

from the tube and placed onto a Fisher Scientific hemacytometer to be counted.  The cover slips 

are placed into a Grenier Bio-One CELLSTAR 6-well plate, with one cover slip per well and the 
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stamped side facing up.  2 ml of the cell-Ŭ-MEM mixture is pipetted onto each cover slip and the 

cover slips are placed in the incubator.  Depending on how high the cell count was, the cover 

slips are checked every 5-10 minutes for cell adhesion (a higher cell count requires less time).  

Once the cells are seen to be attaching to the fibronectin spots, the cell-Ŭ-MEM mixture is 

aspirated to avoid multiple cells adhering to a single fibronectin stamp.  2 ml of Ŭ-MEM is added 

to each well after the cell-Ŭ-MEM mixture is aspirated. 
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Figure 6. Stamped cells of varying aspect ratios. Top left: circle, top right 1:1, middle left 1:1.5, middle right 1:2, 

 bottom left 1:4, bottom right 1:8.  Scale bar in top left image is 50 µm.  All images were taken at 40x 
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Live Cell Imaging 

 Following microcontact printing experiments, live cell imaging of stamped cells was used 

to compare nanoparticle uptake patterns in elongated and non-elongated cells.  A 35mm dish 

with a hole in the bottom first needs to be prepared by heating a cork borer on a hot plate, then 

pressing the hot cork borer through the bottom of the 35mm polystyrene dish.  A razor blade is 

then used to smooth the edges around the hole.  Once the hole is smooth, drops of UV curing 

glue are placed around the rim of the hole.  A 22x22mm glass coverslip is then placed onto the 

glue and rotated to create a clear watertight bond.  The glue is then cured by placing the dish 

with the coverslip under a UV light for at least two minutes.  The custom dish is then sterilized in 

the biological safety hood by putting it under UV light for at least five minutes.  The 

microcontact printing protocol is then performed as previously described, using the glued 

coverslip as the coverslip for printing.   

 One hour prior to starting the timelapse, the 40x objective is heated with the stage heater 

(BioPTECH) to prevent the lens from expanding and losing focus during the timelapse.  The Ŭ-

MEM is removed from the custom dish and replaced with 2 ml of warmed imaging media.  The 

custom dish is then moved to the pre-warmed microscope stage.  The objective is lowered into 

the imaging media and then 2 ml of warmed mineral oil (AMRESCO) is added to prevent 

evaporation.  The mineral oil must be added gently to prevent mixing of the water and oil.  Once 

the selected cell is in focus, the correct exposure is set using the live view on the computer.  The 

time-lapse was set to take a picture in five minute intervals for 145 cycles.  This gave a time-

lapse of approximately 12 hours.  
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Chapter 3  

 
Results and Discussion 

Film vs Line Fluorescent Microscopy 

The immunofluorescence protocol suggests using CSB when immunostaining, but CSB 

may cause nanoparticles to leak out of the cell.  Initially, the step involving CSB was skipped for 

this reason.  However, multiple experiments were done without CSB and in all of those 

experiments, the ɔ-tubulin stain did not show up clearly.  Repeating the experiments with CSB 

revealed that using CSB will clearly show the ɔ-tubulin stain.  All subsequent stains were done 

with CSB and the results only utilize data from experiments with CSB. 

      

Figure 7.  The image on the left shows the ɔ-tubulin stain when no CSB is used, and the image on the right shows the ɔ-

tubulin stain when CSB is used.  The bright magenta dot, which shows ɔ-tubulin , is clearly seen on the right, but not on 

the left.  The scale bar on the left image is 50 µm.  Both images were taken at 40x 

Following immunostaining, the slides were imaged on a Leica® DM5500B microscope.  In 

order to have comparable nanoparticle intensities, the exposure time for the nanoparticles was 

kept at 400 ns for all images.  Since the intensities of the other cellular components (nucleus, 
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actin, and ɔ-tubulin) were not being measured, their exposures were adjusted to create the most 

visible image.  Separate fluorescent images of the nuclei, actin, ɔ-tubulin, and nanoparticles were 

taken.   

     

    

Figure 8. (Top) From left to right, these are images of the nucleus, actin, nanoparticles, and ɔ-tubulin  of a cell on a 24 

hour film substrate. (Bottom) From left to right, these are images of the nucleus, actin, nanoparticles, and ɔ-tubulin  of a 

cell on a 12 hour line substrate.  The scale bar in the top left image is 100 µm.  All images were taken at 40x 

A CellProfiler pipeline was then made to quantify the images taken from the microscope.  

This pipeline consisted of loading the nuclei, actin, and nanoparticle fluorescent images.  All the 

nuclei in the image was first identified and the nuclei area was measured.  Then the actin image 

was used to find the outline of each cell; the cell area was also calculated.  Finally, CellProfiler 

measured the intensity of the nanoparticles in each cell.  Outliers were calculated and removed 

using Grubbsô Test.  Data from the 1, 4, and 8 hour time points were not used since there was no 

detectable trend in these data.  This may be due to cells needing time to sense their surroundings 

and conform to them before any mechanotransduction signaling occurs. 
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Figure 9. Cells on film have a slightly higher overall intensity than cells on a line substrate.  The difference in intensity 

between line and film is not statistically significant for either time point.  N = 20 for the line substrate and N = 14 for the 

film substrate at 12 hours.  N = 10 for both the line and film substrates at 24 hours.  All error bars in this paper show the 

standard error of the mean 

For the 12 and 24 hour time points, there is a general upwards trend, indicating that with 

more time, cells will intake more nanoparticles.  This is to be expected based on previous 

experiments.  The data also shows that the cells on PMMA film have a slightly higher intake 

than the cells on the grooved, or line, PMMA substrate.  This data seems to follow the data in the 

Huang et. al. paper, which found reduced nanoparticle uptake for cells on a nanofiber substrate18.  

While Huang et. al. used a nanofiber substrate, the grooves used in this experiment can be 

thought of as inverted nanofibers.  This is also supported by the idea that cells with a higher 

membrane tension will intake less nanoparticles than cells with a lower membrane tension19,21.  

For the 12 hour time point, the nanoparticle uptake for cells on the grooved substrate is lower by 

about 10%.  For the 24 hour time point, the grooved substrate cellular uptake is still lower than 

that of the film substrate, but only by about 2.6%.  Using an unpaired t-test, the intensity 
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difference between the film and grooved substrate for both the 12 and 24 hour time points were 

deemed to be not statistically significant.  The P values were 0.4018 and 0.8696 respectively.   

Another trend seen in the data is that the intensity of the cells on the grooved substrate 

increased more than that of the cells on the film from 12 to 24 hours.  As previously stated, the 

difference between the grooved and film substrate intensities decreased from 10% to 2.6%.  This 

is most likely due to the cells becoming saturated with nanoparticles.  Previous studies have 

found cells to become saturated anywhere from 7 hours to 25 hours22,23. 

 However, if the intensity is normalized with respect to cell area, a different pattern 

emerges. 

 

Figure 10. Cells on a film substrate have a lower intensity per unit area than cells on a line substrate.  The difference is 

statistically significant at both time points. 

The grooved substrate cells have a higher intensity with respect to area compared to the film 

substrate.  Additionally, the intensity/area value for the film substrate decreases from 12 to 24 
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hours; this is due to the cells spreading and increasing their area as opposed to a decrease in 

nanoparticle intake since we saw an increase in intensity.  Since the cells on the grooved 

substrate are confined in their morphology, they cannot spread and thus have a much smaller 

area than the cells on the flat substrate.  Using an unpaired t-test, the difference in intensity/area 

for both the 12 hour and 24 hour time points is considered to be statistically significant with P 

values of 0.0156 and 0.0003 respectively.   

 Next, the fluorescence intensity of the leading edge was compared to that of the trailing 

edge for cells on film and line substrates.  This was done using ImageJ.  Using the ɔ-tubulin 

images, a line was drawn through the midpoint of the nucleus and the ɔ-tubulin using the straight 

line tool.  This line was then copied to the actin image, where it was extended from one edge of 

the cell to the other.  The resulting line was bisected with a second line, which now separates the 

leading edge from the trailing edge.  The leading edge of the cell was then identified based on 

the ñdirectionò of the ɔ-tubulin and manually outlined using the polygon selection tool.  The 

outlines were then copied and superimposed on the corresponding nanoparticle image.  ImageJ 

then measured the intensity and area of the region within the outlines.  This was done for all cells 

completely within the frame.  The process is repeated for the trailing edge, but outlining the 

trailing edge instead of the leading edge.  All of the intensity values were normalized with 

respect to area since the area of the leading edge did not necessarily equal the area of the trailing 

edge.  Again, outliers were identified and removed using Grubbsô test and only the 12 and 24 

hour time points are used.   
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Figure 11. Cells on a line substrate have more NPs at their leading edge than the trailing edge.  Cells on a film substrate 

have more NPs at their trailing edge than their leading edge.  The difference between the film and line substrates is 

statistically significant at 12 hours but not 24 hours.  N = 7 and N = 14 for 12 hours on film and line respectively.  N = 9 

and N = 7 for 24 hours on film and line respectively 

Doing an unpaired t-test, the difference between film and line for the 12 hour time point is 

extremely statistically significant, with a P value of 0.0005.  However, for the 24 hour time 

point, the difference is not statistically significant, having a P value of 0.1026.  This may be due 

to the cells becoming saturated with nanoparticles, which would cause more nanoparticles to be 

located in a less concentrated region of the cell.  This graph also indicates that cells on a film 

substrate contain more nanoparticles on the trailing edge than on the leading edge and elongated 

cells on the line substrate have more nanoparticles on the leading edge than on the trailing edge.   
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Figure 12. The differences in intensity between the leading edge and trailing edge of cells on both line and film substrates 

are not statistically significant. 

Comparing the leading edge to trailing edge intensities on film and line substrates 

separately, it can be seen that the cells on the line substrate contain a higher concentration of 

nanoparticles than the cells on the film substrate.  A paired t-test comparing the leading edge 

concentration to the trailing edge concentration for each substrate and time point showed that 

there is no statistically significant difference for any time point in either substrate.  The P values 

are 0.1171, 0.2733, 0.0880, 0.4320 for 12 hour film, 12 hour line, 24 hour film, and 24 hour line 

respectively. 

Y-27632 Inhibition 

The data from the Y-27632 inhibition experiments suggests that differences in cell 

tension may not be the only cause of different amounts of nanoparticle intake.  By inhibiting the 

formation of F-actin and myosin II, Y-27632 prevents stress fiber formation.  This will severely 
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dampen any sort of cell contractility and mechanotransduction.  The following images show that 

there is little stress fiber formation in inhibited cells.  Images of cells on a film substrate can be 

seen in Appendix A.  The intensity of cells inhibited by Y-27632 was not compared to that of 

uninhibited cell because this paper is not looking at the effects of drug on nanoparticle uptake. 
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Figure 13. The top image shows MC3T3 cells on a scratched coverslip with no inhibition.  The stress fibers can 

clearly be seen in the cells.  The bottom image shows MC3T3 cells on a scratched coverslip with Y-27632 

inhibition.  Stress fibers cannot be seen 
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Figure 14. Y-27632 inhibition causes the cells on film to have a higher overall intensity than the cells on line substrate.  P 

= 0.002.  N = 52 for line and N = 51 for film 

 Initially, the data shows that cells on the film substrate consumed more nanoparticles than 

cells on the line substrate, which is what was observed in the non-inhibition experiment.  An 

unpaired t-test, with N = 52 for the line substrate and N = 51 for film, shows that the results are 

extremely statistically significant with a P value of 0.002.  This indicates that 

mechanotransduction through the ROCK pathway does not have much influence on the uptake of 

nanoparticles and that there are other factors at play when it comes to nanoparticle uptake in 

cells.  This also indicates that cell tension may not have as much of an impact on nanoparticle 

uptake as previously thought. 
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Figure 15. Cells on the line substrate have a higher intensity per unit area than the cells on the film substrate.  P = 0.0001 

 Normalizing the data with respect to area, the trend seen in the non-inhibition study 

emerges again.  The cells on the line substrate have a slightly higher nanoparticle concentration 

than the cells on the film substrate.  An unpaired t-test yields a P value of 0.0001, showing that 

the difference in nanoparticle uptake between the two substrates is extremely statistically 

significant.   

Microcontact Printing  

Microcontact printing was used to control the aspect ratio of the cells.  Since it has been 

shown that a higher cell surface tension results in less nanoparticle uptake and that elongated 

cells have higher cell surface tension than non-elongated cells, this experiment was intended to 

show that a higher aspect ratio will intake less nanoparticles.  The following images show the 
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fluorescent nanoparticles within cells of varying aspect ratios.  The aspect ratios are increasing 

going from left to right in each row, from top to bottom. 
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Figure 16. Fluorescent nanoparticles in cells of varying aspect ratios.  The scale bar in the top left image is 50 µm.  All 

images were taken at 40x 
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A purely qualitative analysis shows a general decrease in fluorescence intensity as the aspect 

ratio increases.  While this is only a single series of images, these images indicate the expected 

outcome of this experiment. 

For a quantitative approach, the fluorescence intensity of the nanoparticles was measured.  

In the first graph below, there is a weak downwards trend in the data.  The trend becomes more 

apparent if the cells are grouped by aspect ratio (1-2 is group one, 2-4 is group two, 4-6 is group 

three), and the averages are taken of the aspect ratio and intensity/area. 

 

Figure 17. This graph shows a weak downwards correlation between aspect ratio and intensity.  N = 25 
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Figure 18. The group one aspect ratio is the average aspect ratio of all cells between 0 - 2.  Group two is the average 

between 2 - 4.  Group three is the average between 4 - 6.  A larger aspect ratio seems to results in less intensity/area, but 

there is no statistically significant difference between any of the groups.  N = 13 for group one, N = 8 for group two, N = 3 

for group three 

 This trend supports the anticipated outcome of the experiment.  It is important to note that 

it was more difficult to obtain correctly stamped cells at higher aspect ratios than correctly 

stamped cells at lower aspect ratios; there were only three cells in the 4-6 aspect ratio group, 

while there were eight cells in the 2-4 group, and 13 cells in the 1-2 group. 

 Comparing the amount of nanoparticles in the leading edge to that of the trailing edge of 

cells, it was expected that all cells will have more nanoparticles at the leading edge than at the 

trailing edge.  Additionally, an upwards positive trend was expected so cells with a higher aspect 

ratio would have a higher ratio of nanoparticles in the leading edge to nanoparticles in the 

trailing edge. 
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Figure 19. This graph shows no correlation between aspect ratio and leading edge:trailing edge intensity.  However, only 

three cells had more NPs in their trailing edge than their leading edge.  N = 15 

Looking at the graph, there is no discernable trend in the data.  However, it is important to note 

that out of all fifteen cells measured, only three had more nanoparticles in the trailing edge than 

in the leading edge.  This seems to indicate that the majority of MC3T3 cells will have more 

nanoparticles in their leading edge than their trailing edge. 

Live Cell Imaging 

Live cell imaging was done to determine if the nanoparticles are being taken in at the 

leading edge of the cell as opposed to being transported there via intracellular transport 

mechanisms.  However, the Ὓ-tubulin stain used previously in the immunofluorescence 

experiments could not be used for live cell imaging since the stain requires the cells to be fixed.  

Thus, the leading edge of the cells could not be identified for this experiment.  Despite not 

identifying the leading edge of cells, this experiment still showed whether the nanoparticles were 
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being transported within the cell or not.  The cell chosen for the time-lapse had an aspect ratio of 

approximately 3:1. 

ImageJ was used to convert multiple images into a stack, and then each image in the 

stack was assigned a specific color.  The first image in each stack is assigned to red and the 

second image is assigned to green.  Overlapping areas are shown in yellow.  The first image 

shows the cell at the initial time-point and at 15 minutes.  This image indicates that nanoparticle 

movement is occurring within the cell since the image is not entirely yellow.  Transport from the 

top to the bottom of the cell can be seen on the right side of the cell. 

 

Figure 20. Times 0 and 15 minutes of the time-lapse.  The first image is shown in red while the second image is 

shown in green.  Overlapping areas are shown in yellow 
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 The second image shows the nanoparticles at times 15 minutes and 30 minutes.  What 

was green in the first picture is now red in the second picture.  A more definitive example of 

nanoparticle transport from the top to the bottom of the cell can be seen here and in the third 

picture at the left side of the cell. 

 

Figure 21. Images at 15 and 30 minutes into the time-lapse.  The image at 15 minutes is in red and 30 minutes is 

in green 
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The third picture shows a continuation of this nanoparticle transport from 30 minutes to 

45 minutes.  As previously stated, the green image in the second picture is now red in the third 

picture.   

 

Figure 22. Images at 30 and 45 minutes into the time-lapse.  30 minutes is in red and 45 minutes is in green 

These pictures indicate that nanoparticle transport is occurring and the nanoparticles are 

moving from the top of the cell to the bottom of the cell.  However, since the Ὓ-tubulin stain 
































