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Abstract

In this paper we will investigate a model of how banks allocate assets to manage market, credit,
and liquidity risk. Many models consider the role of reserve supply in the bank’s optimization prob-
lem, here we include a shock in reserve supply to implement liquidity risk. The solution is com-
pleted numerically, utilizing value function iteration with Quasi-Monte Carlo to handle stochastic
quantities. The solution method is able to model liquidity risk with a wide range of feasible shocks
to give a more realistic outcome than previous models. The algorithm created is general enough to
allow for easy parallelization to increase computation speed, as well as applications to other high
dimensional stochastic dynamic programming problems.
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Chapter 1

Introduction
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1.1 Motivation
The onset of the global financial crisis in 2007 left about one in nine commercial banks in

failure or at a high risk of failure[1]. The causes of the failures faced during this time period are
complex, however, it is clear that the risk of systemic bank failure was underestimated before the
crisis. Among the causes of this high risk of bank failure were credit and liquidity shocks that
occurred during the crisis[2].

We therefore aim to create a model of the banking firm wherein the probability of bank failure
arises endogenously as a result of the bank’s allocation of assets. Given the significance of credit
and liquidity shocks during the financial crisis, it is clear that these shocks, as well as market
risk, must be incorporated into our model. We base our investigation on the work of Gonzalez-
Hermosillo Li 2008 [3], a model which incorporates all of these elements. This model takes place
in a dynamic programming framework wherein the bank attempts to maximize the utility from
dividends paid out to shareholders. In comparison to the existing model, we will incorporate a
more realistic liquidity shock and make use of quasi-Monte Carlo to more efficiently compute our
solution.

In the next section, we will discuss how the Gonzalez-Hermosillo Li model fits into the current
literature on banking and risk in the banking sector.

1.2 Comparison to Existing Models
The goal of this paper is to investigate a model of how banks manage risk that arises from

several different sources. Namely, we aim to expand on the model utilized in Gonzalez-Hermosillo
Li 2008 [3] to include more complex liquidity risk, and seek a more efficient numerical solution.
In this model, we consider a bank that gains utility from paying out dividends to it’s shareholders
while managing it’s risk. The three risk factors that will be included in our analysis are market,
credit, and liquidity risk. Market risk is regarded as the risk that exists when investing in tradable
securities such as stocks. Credit risk is the risk that is generated when the bank loans money, and
face the possibility that the payer will default on their loan. Banks also face the possibility that
depositors will withdraw their money from the bank, this is called liquidity risk.

There is a rich literature studying separately the risks that banks face. Among these are Merton,
1974[4]. In this paper, Merton studies credit risk and uses his general theory to derive asset pricing
methods for corporate debt with a probability of default. This fits into the wider Black-Scholes-
Merton framework which was developed for use on a wider class of assets.

The seminal paper studying how liquidity shocks arise is that of Diamond and Dybvig, 1983[5].
They study the microeconomic origins of bank runs, namely modeling the scenario as a game of
incomplete information. In their paper, they discuss how banks, and the government, can form
contracts to mitigate these shocks. This paper would be the first in a long line of models studying
bank instability and optimal government intervention[6]. Compared to the work of Diamond and
Dybvig, we take assume the presence of liquidity shocks and instead study how the bank can
optimally respond to this risk and the others it faces. We also study this problem in the context
of a dynamic programming problem from the bank’s point of view, rather than a game-theoretic
scenario.
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The model of Gonzalez-Hermosillo Li that we study is most closely related to the unpublished
work of Buckinsky and Yosha, 1997 [7]. Similar to the model we study, Buckinsky and Yosha
create a dynamic programming problem from the point of view of the bank. They allow for market
and credit shocks and incorporate an endogenous probability of bank survival that effects how
much consumers are willing to deposit in the bank. In comparison, out new model adds a shock to
reserve supply to represent liquidity risk. In addition, the model of Buckinsky and Yosha allows
for a non-zero reserve supply in the event that the bank is sure to fail. Gonzalez-Hermosillo Li
correct for this unrealistic facet of their model.

1.3 Contribution
Among other factors, the amount of money that depositors keep in the bank depends on the

interest rate that the bank provides relative to the risk-free rate, as well as the probability that the
bank will fail, which is itself a function of the allocation of the bank’s capital. Thus the optimal
decision problem the bank faces is how to optimally allocate their capital among tradable assets,
loans, and government bonds, set the interest rate on deposits, as well as pay out dividends in order
to maximize their utility. The probability of failure is an endogenous factor that makes the problem
somewhat more challenging to solve than traditional dynamic programming problems.

In the past model, the shock due to liquidity was a binomial variable. Considering data from
2009 to present on demand deposits, we can see that this shock is somewhat idealized. In the
original paper this was used to make computation easier, but the current framework is general
enough to accommodate a realistic shock. Below is a histogram of the percent change in demand
deposits.
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Figure 1.1: Percent Change In Demand Deposits

We can notice that the shock is bimodal, with a high peak at 0.01, and a low peak at−0.02. The
data suggests that in general a positive shock is more likely, but when a negative shock happens it
is more drastic.

There are several results of this analysis that we are interested in studying. First, we are in-
terested in how the probability of survival changes with the size of the bank. This could have
policy implications as breaking up banks could lead to a lower survival probability for each of the
individual banks. We are also interested in how the interest rate on deposits will change with the
size of the bank, as small banks with a higher probability of failure would most likely have to offer
much higher interest rates to attract depositors.
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Chapter 2

Problem Formulation
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2.1 Problem Formulation
We consider a bank that is infinitely lived and makes decisions in discrete time periods about

their capital allocation and interest rate on deposits. They gain utility from the dividends that they
give to shareholders in each time period, dt. Thus for some concave, continuous utility function u,
the bank would like to maximize the following with respect to some constraints.

Et
∞∑
k=t

βku(dk) (2.1)

Let Mt be the amount of capital available to the bank in time t. There will be three random
variables that represent the, market, credit, and liquidity risk. These will be denoted Za

t+1, Z l
t+1,

Zs
t+1 respectively. Za

t+1 and Z l
t+1 are lognormally distributed and defined as the value in the next

period of one unit of capital invested in the market or loans respectively. St(rt, qt, Zs
t+1) is defined

as the supply of deposits. Taking the interest rate on deposits, rt, the probability the bank survives
until the next period, qt, and a random component Zs

t+1, the depositors decide how much money
they will hold in the bank. The the bank must allocate their capital and the supply of deposits
between loans, lt, tradable securities, at, government bonds bt, and dividends, dt. This idea gives
us the following relation.

bt = Mt + St(rt, qt, Z
s
t+1)− lt − at − dt (2.2)

Realistically, there is regulation on the amount of money that the bank must keep on hand in riskless
liquid assets, bt. This required reserve ratio is denoted λ ∈ (0, 1), and in our model regulation will
necessitate that bt ≥ λSt(rt, qt, Z

s
t+1). We know that the investment bt will grow at a riskless rate

that will be denoted rb. We also know that the money invested in risky assets will generate returns
subject to their random variables, and that the bank must pay out their interest rate on deposits, rt,
on the money deposited in the bank. Thus we have all the necessary pieces to write down the law
of motion for the bank’s capital. In our case, St will be a linear function of the random component,
thus we will say St(rt, qt, Zs

t+1) = Zs
t+1s(rt, qt).

Mt+1 = (Mt + St(rt, qt, Z
s
t+1)− lt − at − dt)rb + atZ

a
t+1 + ltZ

l
t+1 − St(rt, qt, Zs

t+1)rt (2.3)

This is conditional on the fact that the bank actually survives until the next period. We would like
to further analyze how qt is determined as a function of the bank’s investment decisions. Suppose
that in some scenario the bank reaches zero capital, i.e. Mt+1 < 0, then it is still possible for the
bank to short sell it’s tradable assets for some funnds to keep the bank afloat. We will denote this
amount as A(Mt), and it will be an increasing function of the amount of capital available to the
bank in time t. Thus the bank truly fails in time t+ 1 if

Mt+1 − A(Mt) < 0

The probability of survival is then

qt = 1− P (Mt+1 − A(Mt) < 0) (2.4)
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We will introduce a new function F (m; ct, qt), F is the CDF of the random variableMt+1−A(Mt)
as a function of the policy chosen ct = (at, lt, dt, rt) and also depends on the probability of survival
qt. Thus we can see that the above equation (4) can be reformualted as follows.

qt = 1− F (0; ct, qt) (2.5)

The ability to calculate F will be imperative in calculating admissible values of qt. We have
touched on all the critical aspects of the model, from here we will introduce a few more constraints
as we prepare to estimate a solution.

0 ≤ dt ≤Mt − A(Mt) (2.6)

The bank cannot give out dividends that exceed it’s total available capital.

at ≥ −A(Mt) (2.7)

The amount the bank receives from short selling tradable assets cannot exceed the amount that the
bank owns.

at ≥ 0, lt ≥ 0, rb < rt < r̄ (2.8)

The amount invested in risky assets cannot be negative, and the chosen interest rate must lie above
the risk free rate, and below some maximum rate r̄. These constraints, along with the law of motion
for capital, and the reserve requirement, are all the constraints on our optimization problem.
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Chapter 3

Solution
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3.1 Solution
Recall that the bank would like to solve the following maximization problem. In order to

solve this problem, we will utilize policy function iteration. Policy function iteration is a common
technique used to solve many dynamic programming problems. We will begin with a review of
this method and a proof that it applies to this specific optimization problem.

3.1.1 Policy Function Iteration
We’ll begin by considering a generic dynamic programming problem that we would like to

solve. This will provide the framework for our problem. Consider a state xt ∈ R, and a stationary
transition function xt+1(ω) = f(xt, ct) + Zt+1(ω), where ct ∈ φ(xt) ⊆ Rn is a vector of control
variables constrained to some region φ(xt). Let ω ∈ Ω where (Ω,F , µ) is a probability space, and
Zt is measurable in Ω with respect to the sigma algebra F . Let Ft be a filtration adapted to the
stochastic process Zt. At each period t = 0, 1, 2, ..., The decision maker seeks a plan {ck}∞k=t to
maximize the following:

E
[ ∞∑
k=t

βku(ck)
∣∣∣Ft

]
Clearly this maximization is subject to the constraints given and the state, xt, of the system at

that time t. In this case, u is some payoff function and β ∈ (0, 1) is a discount factor. We can now
define the value function as the optimal value of this maximization problem.

V (xt, ω) := max
ct

E
[ ∞∑
k=t

βku(ck)
∣∣∣Ft

]
(ω)

In our case, we will assume that the random variable Zt is i.i.d. for each t. The previous states
give no information about later states and thus the conditional expectation E(·|Ft) is the same as
the unconditional expectation and thus V does not depend on ω(it will therefore be excluded). It
can be shown that a value function for the above problem also solves the Bellman equation shown
below[8].

V (xt) := max
ct∈φ(xt)

{
u(ct) + βE

[
V (f(xt, ct) + Zt+1(ω))

]}
We can view the right hand side of the Bellman equation as a contraction on the Banach space

of continuous functions, (C(R), || · ||∞). Let Λ : C(R) → C(R) denote this mapping, then it is
defined by the following rule:

Λ : V (·) 7→ max
ct

{
u(ct) + βE

[
V (f(xt, ct) + Zt+1(ω))

]}
It is well known that for (which class of functions), that the map Λ is in fact a contraction. Al-

though this result is standard, we will review it here. To begin, we consider Blackwell’s theorem[9]
which gives us sufficient conditions for Λ to be a contraction.

Theorem 1. (Blackwell) Let Ω ⊆ Rk and B(Ω) the space of bounded functions Ω → R. Let
Λ : B(Ω)→ B(Ω) be an operator. Then if the following conditions hold, Λ is a contraction.
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1. For any V1, V2 ∈ B(Ω) such that V1(x) ≤ V2(x) for all x ∈ Ω, we have that Λ(V1)(x) ≤
Λ(V2)(x) for all x in Ω.

2. There exists β ∈ (0, 1) such that Λ(V + a)(x) ≤ Λ(V )(x) + βa, for all V ∈ B(Ω), a ≥ 0,
and x ∈ X .

Corollary 1. Let u be continuous, The Bellman equation given as follows is a contraction.

Λ : V (·) 7→ max
ct

{
u(ct) + βE

[
V (f(xt, ct) + Zt+1(ω))

]}
Proof. We must satisfy the conditions for Blackwell’s theorem given above. First, let V1 and V2 be
two bounded functions on R. Then for any c ∈ R4 and x ∈ R we have that u(c)+βE(V1(f(x, c)+
Z(ω))) ≤ u(c) + βE(V2(f(x, c) + Z(ω))), this implies:

max
c∈φ(x)

{
u(c) + βE

[
V1(f(xt, ct) + Z(ω))

]}
≤ max

c∈φ(x)

{
u(c) + βE

[
V2(f(xt, ct) + Z(ω))

]}
Therefore, Λ(V1)(x) ≤ Λ(V2)(x). Next we must check the second condition. Consider a ≥ 0.

Λ(V + a)(x) = max
c∈φ(x)

{
u(c) + βE

[
V (f(xt, ct) + Z(ω))

]
+ aβ

}
Thus we see that Λ(V + a)(x) = Λ(V )(x) + βa for any given x. By the assumption that

β ∈ (0, 1) we see that the conditions are satisfied.

Using these facts, we can show that policy function iteration converges to a solution of the
Bellman equation. One step of policy function iteration proceeds as follows.

1. Begin with a guess of the derivative of the value function V ′n(x)

2. Optimize to solve for a policy function x ∈ Ω 7→ πn(x) ∈ φ(x).

3. Letting Vn+1 = ΛVn, update, using V ′n+1(x) = ∂
∂x

(ΛVn)(x).

4. Go to (1).

Theorem 2. (Policy Iteration Convergence) Let u be differentiable, f be jointly differentiable,
Ω ⊆ R, and φ(x) be compact. Beginning with an arbitrary differentiable value function V0(x),
policy function iteration converges in the sense where for each x, the sequence of policy candidates
πn(x) has a subsequence which converging to a value π which is optimal for that x. i.e.:

V (x) = u(π) + βE(V (f(x, π) + Z(ω))

Where V is the true value function.

Proof. Fix an arbitrary step n ∈ N. Let πn be the optimal policy for this value function, solved for
using V ′n. We know that (ΛVn)(x) = u(πn(x)) + βE(Vn(f(x, πn(x)) + Z(ω))).

Using the first envelope theorem in [10], we know that Vn+1 is differentiable. Since Λ is
a contraction we know that Vn → V in the topology of uniform convergence on the space of
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bounded functions, Where V is a fixed point of Λ. We claim that V ∈ C(Ω). Since each Vn is
differentiable, we know that they are continuous, although the space of differentiable functions
is not closed under the || · ||∞ norm, the space of continuous functions is. Therefore V must be
continuous. We restrict our attention from B(Ω) to C(Ω), the space of continuous functions on Ω
Let the correspondence H : Ω× C(Ω) � R be defined as follows:

(x, V ) 7→ arg max
c∈φ(x)

(u(c) + βE(V (f(x, c) + Z(ω)))

As a result of the continuity of u and f , it is straightforward to see that the map (x, V, c) 7→
u(c) + βEV (f(x, c) + Z(ω)) is jointly continuous in C(Ω) × φ(x) for each x. Therefore, by the
Berge maximum theorem, we see that the correspondence V 7→ H(x, V ) must be upper hemi-
continuous for each x [11].

As a result, we can begin with an arbitrary guess V0, repeatedly apply the map Λ, and the
resulting sequence of functions (Vn)n∈N will converge with respect to the norm, || · ||∞, to some
unique function V which is a fixed point of the map Λ. This value function solves the Bellman
equation. Furthermore, if our sequence of policy functions πn(x) converges pointwise, we can
ensure that the resulting function π is an optimal policy.

As a result of this procedure, solving the dynamic programming problem is straightforward as
long as we can effectively evaluate the map Λ. This can prove to be difficult, as we are faced with
finding the maximum of the right-hand side of the Bellman equation. We will approach this topic
further in later sections.

3.1.2 First Order Conditions
We now aim to apply our theoretical discussion of policy function iteration to the solution of

our optimization problem. Given the utility function for dividends of the bank, we say can derive
the Bellman equation we aim to solve. We will denote the value function for this maximization
problem starting at a given capital size Mt as V (Mt).

V (Mt) = max
ct∈φ(xt)

[u(dt) + βEtV (Mt+1)] (3.1)

In order to solve the maximization problem for a given candidate value function, we must
utilize the first order conditions of the above value function. There are four first order conditions,
one for each variable. We begin with the first order condition for rt.

−βrbE[Zs
t V
′(Mt+1)]− β(rt − rb)E[Zs

t (
∂St
∂rt

+
∂St
∂qt

∂qt
∂rt

)V ′(Mt)] = 0 (3.2)

The first order condition for dt

u′(dt)− βrbE[Zs
t V
′(Mt+1)]− β(rt − rb)E[Zs

t

∂St
∂qt

∂qt
∂dt

V ′(Mt+1)] = 0 (3.3)

And finally, the first order conditions for at, and lt, which are identical.

βrbE[V ′(Mt+1)]− βE[Za
t V
′(Mt+1)]− β(rt − rb)E[Zs

t

∂St
∂qt

∂qt
∂at

V ′(Mt+1)] = 0 (3.4)
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βrbE[V ′(Mt+1)]− βE[Z l
tV
′(Mt+1)]− β(rt − rb)E[Zs

t

∂St
∂qt

∂qt
∂lt

V ′(Mt+1)] = 0 (3.5)

For simplicity we refer to the vector ct = (rt, dt, at, lt), reducing the problem to finding value(s)
c∗ ∈ R4 That are optimal. Notice that these first order conditions depend only on the derivative
of the value function rather than on the function itself. In order to use policy function iteration,
we need the envelope condition. Simply differentiate the Bellman equation with respect to dt on
both sides, and it can easily be seen that V ′(Mt) = u′(dt). Thus after we find the arguments which
solve the optimization problem, we can use the optimal dt to recover the value function at the next
iteration as detailed in the previous section.

For any given candidate solution, c∗, we need conditions to test that are necessary to guarantee
that c∗ actually is a solution. In the case of a problem like the one we have detailed, we turn to the
Karush-Kuhn-Tucker conditions. These conditions are standard in constrained optimization, so we
refer the interested reader to [12].

Although in an ideal world we could solve these first order conditions at each level of capital
in order to use the policy function iteration used in the last section, instead we only solve on a
discrete grid of possible capital sizes (M (n))Nn=1. We then use a linear approximation to interpolate
the value function beyond this limited set. In addition, notice that all of the first order conditions
involve taking expectations of several random quantities, including endogenous ones. As a result,
we must find ways to efficiently compute these quantities. In the next section we will cover how
this is done in the context of our problem.

3.2 Numerical Solution
There are several intricacies which we will need to tackle in order to provide a numerical

solution to this problem. One is how to compute the derivatives of q with respect to the control
variables.

∂qt
∂rt

,
∂qt
∂dt

,
∂qt
∂at

We have that q = 1 − F (0; ct, q), where x 7→ F (x; ct, q) is the CDF of capital at a given
control vector ct and probability of failure q. Clearly we can compute the partial derivatives for qt
utilizing the implicit function theorem if we can compute the partial derivatives of F , using rt as
an example, we must find a way to compute the following.

∂qt
∂rt

=
∂F/∂rt

−1− ∂F/∂qt
Remember F was defined as follows.

F (0; ct, qt) = P (Mt+1 − A(Mt) < 0) (3.6)

Thus we need only compute a density for Mt+1 − A(Mt) and integrate to find the result. Thus
we need to find integrals with respect to the distribution of:

(Mt + St(rt, qt, Z
s
t+1)− lt − at − dt)rb + atZ

a
t+1 + ltZ

l
t+1 − St(rt, qt, Zs

t+1)rt − A(Mt)
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Zs
t+1 ∼ logN(µs, σ

2
s), Z

a
t+1 ∼ logN(µa, σ

2
a), Z

l
t+1 ∼ logN(µl, σ

2
l )

Let Fs, Fa, Fl denote the cumulative distribution functions of Zs
t+1, Z

a
t+1 and Z l

t+1 respectively.
We note that St is linear in it’s random variable, and we define st(rt, qt)Zs

t+1 = St(rt, qt, Z
s
t+1).

Using the sums of random variables, we can see the following cumulative density function for
Mt+1 − A(Mt) is appropriate.

F (0; ct, qt) =

∫ ∫
R2

Fl(
−rb(Mt − dt − at − lt) + st(rt, qt)zs − aza + A(Mt)

l
)dFs(zs)dFa(za)

(3.7)
Now, we can compute the partial derivatives of F , and using the implicit function theorem

as shown above, compute the partial derivatives. There are many ways to compute integrals of
the above form. For our purposes, we have chosen to utilize quasi-Monte Carlo. See [13] for a
discussion of quasi-Monte Carlo methods and a comparison to traditional Monte Carlo. In our case
we utilize Sobol quasi-random numbers and several transformations to manipulate them such that
they are distributed in the manner that we wish. In our case, we would like out shocks (Zs

t , Z
a
t , Z

l
t)

to be log-normally distributed. Our procedure is as follows:

1. Generate a sequence of Sobol quasi-random numbers Y1, ...., Yn such that Yi ∈ [0, 1]3.

2. Utilize a Box-Muller transform[14] to change these uniform quasi-random numbers into
quasi-normally distributed numbers in R3

3. Shift and scale for the desired mean and variance.

4. Finally, Exponentiate.

Once we have generated quasi-random numbers {(zsi , zai , zli)}ni=1 that are distributed like the
shocks (Zs

t , Z
a
t , Z

l
t), we can use then as we would expect to calculate expectations. For example,

suppose we would like to compute
∫
h(zs, za, zl)dFs(z

s)dFa(z
a)dFl(z

l).∫
h(zs, za, zl)dFs(z

s)dFa(z
a)dFl(z

l) ≈ 1

n

n∑
i=1

h(zsi , z
a
i , z

l
i)

3.2.1 Algorithm
In this section we will summarize the algorithm used to solve the optimization problem. We are

using policy function iteration, so to begin we discretize the capital into {M i}Ni=1. Our goal is to
find an optimal policy ci that solves the Bellman equation at each M i. We now give our algorithm
for policy function iteration.

In the following algorithm, we let φ(M, q) denote the set vectors c ∈ R4 that satisfy the con-
straints. Ω ⊆ R4 is the entire set of possible controls. Therefore φ : R× [0, 1] � Ω.

1. Make two guesses about the optimal cit for i = 1, ..., N , these guesses must be in Ω. Call
these ci,0 and c̄i,0. Compute the resulting qi,0 = Q(ci,0,M i) using Newton’s method. Ensure
ci,0 ∈ φ(M i, qi,0)
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2. Interpolate V ′(M) using {ci,0}Ni=1 and the envelope condition: V ′(M i) := u′(dit)

3. Use these two guesses and the maximization scheme to compute c̄i,1, ci,1, and qi,1 = Q(x̄i,1,M i).
Our method guarantees c̄i,1 ∈ φ(qi,1,M i)

4. ci,0 ← c̄i,1, c̄i,0 ← ci,1, and qi,0 ← qi,1.

5. Return to Step 2

This type of routine is fairly standard. We will now consider the maximization procedure. We
begin with two initial points ci,0, c̄i,0 and qi,0 such that ci,0 ∈ φ(M i, qi,0) and c̄i,0 ∈ Ω. For each
component c̄i,0j do the following.

1. Perturb c̄i,0j , assigning it a value c̄i,0j ← (1 + ξ)c̄i,0j Where ξ is gaussian noise. Ensure it stays
within Ω.

2. Use the secant method with the first order condition in that component to find a step size ∆

(a) Assign c̄i,1j ← ci,0j −∆.

(b) Test if c̄i, ∈ Ω, if not: ∆← α∆ and go to (1)

(c) Compute qi,1 = Q(c̄i,1,M i)

(d) Test if c̄i,1 ∈ φ(qi,1,M i) if not: ∆← α∆ and go to (1)

3. Update ci,1 ← c̄i,0

4. If repeating then update c̄i,0 ← ci,0 and ci,0 ← c̄i,1 return to Step 2.

This above maximization procedure can be considered a quasi-Newton method. These are
common, however in principle this maximization procedure can be replaced by any given method
for constrained maximization. Common methods in Python would be ”fsolve” in the Scipy package
and ”root” in the numpy package along with a penalty term for being outside the feasible region.
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Chapter 4

Results and Conclusions
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4.1 Results
In this section we will estimate the model using the solution methods previously discussed. To

begin we must specify a utility function for dividends, u(d) and a reserve supply function St:

u(x) =
log(1 + x)

1 + log(1 + x)

S(rt, qt) = (rr − rb).5q1.1t
In addition, we let the risk-free interest rate, rb equal 1.02. We let the reserve requirement be

λ = .1. We allow the firm to falter from the reserve requirement with a probability of p = .05.
After computation we end up with a number of functions that map a given capital level to an
optimum for the control variable. We present these graphs below.

Figure 4.1: Dividend payout versus amount of capital available to the firm.

Figure 4.2: Amount of capital invested in risky assets versus amount of capital available to the
firm.
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Figure 4.3: Internal interest rate offered versus amount of capital available to the firm.

As we can see, the responses are as we would expect, with the amount invested in risky assets
and the amount paid out in dividends increasing with the amount of capital that the bank possesses.
Note that the internal interest rate offered by the bank decreased with the amount of capital they
possessed. Intuitively, this makes sense because smaller banks used these higher interest rates to
draw reserves in order to invest in the capital and credit markets. We exclude the graph relating
probability of failure with capital size because it is somewhat uninteresting. Namely, we find that
under the restrictive reserve requirements that the bank has a probability 1 is survival for each
capital level. As mentioned we allowed the bank to falter from the reserve requirement of λ = .1
with a probability p = .05. In the next graph we show how the variation of this parameter, as well
as the reserve requirement λ effects the internal interest rate that the bank offers.

Figure 4.4: Variation of λ and p

As we can see, moving from the original model λ = .1, p = .05, the less stringent constraint to
p = .1 allowed the smaller firms to offer a less competitive interest rate. In addition, we see that
the move to λ = .05, p = .05 prompted a similar, but less severe decline.
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4.2 Conclusion and Future Work
In future work, we aim to provide a more complete model of the interplay between banks

and consumers by formally modeling the consumer’s maximization problem, rather than simply
providing a reserve supply function. Additionally, we find that the constraint that banks satisfy the
reserve requirement almost surely to be very tight, in the future, we aim to incorporate an interbank
market or Fed desk into our model, allowing the banks to borrow at some premium rate in the event
they do not satisfy this requirement.

Our main contributions to the model of Gonzalez-Hermosillo Li is the addition of a Log-normal
liquidity shock which is more representative of what banks face in reality. We also contribute a
novel method of solving this problem, implementing quasi-Monte Carlo to solve the first order
conditions. The solution method that we detail in chapter 3 is not specific to this problem, so it
could be used to help other researchers solve similar stochastic dynamic programming problems.
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