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ABSTRACT 

 

Swirling jets are commonly used in combustion applications to stabilize flames and 

improve emissions.  Thus, their dynamics play an important role in combustor design.  Despite 

the prevalence of swirling flows in industrial applications that involve highly turbulent flow 

fields, the majority of experimental and numerical studies consider only laminar conditions.  In 

this study, the dynamics of the vortex core are investigated in a swirling, turbulent jet at swirl 

numbers in the range of the critical swirl number for vortex breakdown. Vortex breakdown, a 

bifurcation in the structure of a swirling jet, results in the establishment of a stagnation point and 

recirculation region along the centerline of the jet.  To study these dynamics, dynamic mode 

decomposition, an order-reduction technique used to extract coherent structures from flow data, 

is implemented. Investigation of time-averaged velocity fields and profiles leads to the 

identification of three flow regimes: pre-breakdown, near-breakdown, and post-breakdown. 

Velocity fields in these regimes are further analyzed using dynamic mode decomposition, 

Rankine-vortex fitting, and proper orthogonal decomposition to characterize jet dynamics with a 

particular focus on the development of the recirculation region characteristic of vortex 

breakdown. A precessing vortex core is also identified in the post-breakdown regime and its 

behavior is discussed. 
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Chapter 1  
 

Introduction 

1.1 Motivation 

The modern age has been characterized by an ever-increasing demand for energy, in all 

its forms.  Today, gas turbines play an important role in fulfilling this need, providing both 

propulsion for air and sea transport and electric power for homes and industry.  Of late, concerns 

over man-made climate change have spurred innovations in gas turbine technology.  Cutting-

edge designs focus on maximizing efficiency while reducing the production of pollutants such as 

carbon monoxide (CO), nitric oxides (NOx), and unburnt hydrocarbons (UHC).  These gaseous 

products of the combustion process are of particular concern due to their contribution to the 

greenhouse effect and acid rain [1].  With the recent emergence of natural gas as the primary 

source of power in the United States [2], the need for efficiency and cleanliness has only 

increased.  In order for innovation to take place, designers must have access to extensive 

knowledge of the underlying physical phenomena that take place in gas turbine engines.   

In particular, the aerodynamics of gas turbine engines are critical to accomplishing these 

low-emissions, high-efficiency design goals.  The focus of the work in this thesis is flow inside 

the combustor, which is the region of the engine where heat is added through the chemical 

conversion of fuel and air to products and heat.  In gas turbine combustors, swirling flows are 

commonly employed as a means of managing the combustion process.  Importantly, these flows 

provide for improved flame stability and enhanced fluid mixing within the combustor due to 
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strong flow recirculation [1].  Because of the geometry of swirling jets under certain conditions, 

flames become rooted in place at the center of the flow, as seen in the schematic in Figure 1. 

 

Figure 1.  Schematic of a flame stabilized in a swirling flow as found in a gas turbine 

combustor. 

This behavior allows for precise control of flame shape and position, allowing designers to fine-

tune flames for efficiency and lower emissions.  In addition, swirling flows encourage the mixing 

of unburnt fuel and fresh air with hot, volatile combustion products, particularly in turbulent flow 

fields that already provide for enhanced mixing over laminar flows.  This mixing also improves 

combustion efficiency by allowing for more complete combustion, reducing the emissions of 

unburnt hydrocarbons in the process. 

It is clear that swirling flows are a crucial tool for controlling combustion in gas turbines, 

and it is in fact their inherent instability that makes them useful.  Swirling flows undergo drastic 

changes in flow behavior and geometry, or bifurcations, as flow conditions are altered.  One of 

these bifurcations, vortex breakdown, is of particular importance in the context of combustion.  

As the amount of swirl in a jet increases from zero and reaches a critical value, a region of 
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stagnation or reverse flow is formed along its centerline, as seen in the center of Figure 2.  It is 

this phenomenon that provides for the improved flame stability and enhanced mixing that make 

swirling flows so useful. 

 

Figure 2.  Visualization of a swirling jet in water exhibiting flow recirculation along the jet 

centerline characteristic of vortex breakdown [3]. 

While the effects of vortex breakdown are commonly leveraged in modern turbine 

combustor designs, the behavior of the bifurcation at gas-turbine-like conditions is poorly 

understood.  Thus, it is the goal of this work to better understand the transition of a turbulent 

swirling jet to vortex breakdown.  First, the current understanding of swirling jets and vortex 

breakdown is reviewed.  In Chapter 2, the experimental facility and diagnostics used in this work 

are discussed.  Chapter 3 details the theory, application, and validation of dynamic mode 

decomposition, the primary analytical tool used in this study.  In Chapter 4, the flow fields under 

consideration are analyzed from a time-averaged perspective.  Flow dynamics are discussed in 

Chapter 5, with a particular focus on the application of dynamic mode decomposition and the 

analysis of vortex core motion.  Finally, Chapter 6 summarizes the conclusions and suggests 

future work. 
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1.2 Swirl Background 

Swirling jets are generally described by their swirl number, S, a non-dimensional quantity 

that describes the amount of swirl in the flow.  Generally, S is defined as the ratio of the axial 

flux of azimuthal momentum and the axial flux of axial momentum: 

 𝑆 =
∫ 𝜌𝑢𝑥𝑢𝜃𝑟

2𝑑𝑟
𝑅
0

𝑅 ∫ 𝜌𝑢𝑥
2𝑟𝑑𝑟

𝑅
0

 (1.1) 

where 𝑅 is the outer radius of the jet, 𝜌 is the density of the fluid, 𝑢𝑥 is the axial velocity, 𝑢𝜃 is 

the azimuthal velocity, and 𝑟 is the radial distance from the center of the jet [4].  A global value 

for swirl number can be difficult to calculate using this formulation due to its strong dependence 

on the location in the jet at which the calculation is performed.  Thus, in order to describe overall 

jet behavior, geometric swirl number is used.  The geometric swirl number is based purely on the 

geometry of the swirler used to generate the swirling jet, and thus is a more general way to 

quantify swirl.  All values of 𝑆 reported in this work are geometric swirl number based on the 

swirler design described in Chapter 2. 

1.3 General Dynamics of Swirling Flows  

Non-swirling and low-swirl jets prior to the onset of vortex breakdown exhibit a wide 

range of dynamics.  In their laminar study, Liang and Maxworthy [5] found that non-swirling jets 

(𝑆 = 0) are dominated by axisymmetric coherent structures that develop due to an axial Kelvin-

Helmholtz instability.  This instability generates axisymmetric vortex rings that roll up in the 

outer shear layers as they are convected downstream.  As they propagate, these vortices tend to 

pair, leading to increased size and decreased shedding frequency, until the jet eventually decays 
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into fully-developed turbulence and individual coherent structures are unrecognizable.  At low 

levels of swirl (0 < 𝑆 < 0.60), Liang and Maxworthy observed that these axisymmetric vortex 

rings begin to tilt as they convect due to the loss of symmetry.  In addition, the presence of 

azimuthal shear generates azimuthal instabilities that manifest as co-rotating but counter-winding 

vortex tubes.  At low swirl, these azimuthal vortices are dominated by the axisymmetric (or 

eventually tilted) rings, but they become dominant as swirl is increased. 

 

Figure 3.  Visualization of a laminar swirling jet at a) S = 0 and b) S = 0.44 [5]. 

The coherent structures present in swirling jets are largely created by hydrodynamic 

instabilities in the flow.  In their numerical study, Gallaire and Chomaz [6] identified two 

instability mechanisms that contribute to the presence of azimuthal vortices in swirling jets:  

azimuthal Kelvin-Helmholtz and centrifugal.  Both of these instabilities are present in the 

swirling jet due to the presence of azimuthal shear, though their mechanisms differ significantly.  

The Kelvin-Helmholtz instability is driven by a pressure differential across a boundary layer 

between two fluids moving at different velocities.  Disturbances within this boundary layer due 

to turbulence, interactions with the nozzle exit, etc. displace fluid packets towards or away from 
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the jet core.  As fluid is displaced away from the vortex core, the streamlines within the core 

expand, indicating deceleration and higher pressure, while those outside of the core contract, 

indicating acceleration and decreased pressure.  This pressure differential causes the initial 

disturbance to grow and thus it is termed an instability.  This mechanism is identical to the axial 

Kelvin-Helmholtz mechanism that generates the axisymmetric and tilted vortex rings that 

dominate in non-swirling and low-swirl jets. 

Centrifugal instability is also driven by the presence of shear, though it is unique to 

azimuthal shear and does not contribute to axial instability.  Within the swirling jet, the increased 

azimuthal velocity leads to a larger centrifugal force than in the surrounding fluid.  This 

centrifugal force is balanced by a radial pressure gradient, which is also larger inside the jet than 

outside.  Disturbances within the boundary layer between the quickly-rotating jet and the slowly-

rotating surrounding fluid displace fluid towards or away from the jet core.  As fluid packets 

from the core are displaced into the surrounding fluid, they experience a smaller radial pressure 

gradient that is insufficient to balance the centrifugal force they experience and thus are 

accelerated outwards.  Likewise, as fluid packets from the surrounding fluid are displaced 

towards the core, they experience a larger pressure gradient that is not balanced by the 

centrifugal force they experience and are thus accelerated inwards.  Thus, the initial disturbance 

is unstable and grows into a vortex structure. 

1.4 Vortex Breakdown Structure 

The vortex breakdown (VB) phenomenon was first identified and documented by 

Peckham and Atkinson [7] in flow over delta wings.  Generally, the structure of VB was 
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described as if a body had been placed along the axis of the vortex, causing fluid to flow around 

it and creating a wake-like flow pattern along the jet centerline.  This body takes the form of a 

hemispherical bubble of nearly-stagnant or recirculating fluid downstream of a stagnation point.   

Harvey [8] further examined the VB phenomenon in swirling laminar pipe flow, in which 

the hemispherical bubble was found to close completely into an elongated sphere.  In this flow 

geometry, two stagnation points were observed:  one at the upstream edge of the VB bubble and 

one at the downstream edge.  Downstream of this breakdown bubble, the flow returned to a 

similar state as upstream of the VB bubble.   

Extensive studies on VB in a tube conducted by Sarpkaya [9] initially identified three 

unique varieties of VB in laminar flows: spiral breakdown (Figure 4a), helical breakdown 

(Figure 4b), and axisymmetric breakdown (Figure 4c).  In later turbulent studies, Sarpkaya [10] 

identified a fourth type of VB, conical vortex breakdown, which manifested as a turbulent, 

conical, wake-like structure emanating from behind a stagnation point.  This is the type of VB 

that appears in the majority of engineering applications. 

 

Figure 4.  Visualization of a) spiral breakdown, b) helical breakdown, and c) axisymmetric 

breakdown in laminar pipe flow [9]. 
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Billant et al. [3] extensively characterized vortex breakdown in a free swirling jet.  

Vortex breakdown was found to occur at a critical level of swirl, 𝑆𝑐, which depended on nozzle 

geometry and Reynolds number.  As 𝑆 was increased and approached 𝑆𝑐, a stagnation point 

appeared in the turbulent region of the jet and moved upstream until reaching a fixed position.  

Billant et al. identified four distinct forms of VB that developed following the formation of this 

stagnation point: bubble, cone, asymmetric bubble, and asymmetric cone.  The bubble was 

similar in appearance to the asymmetric VB observed by Sarpkaya [10], and the cone can be 

seen in Figure 2.  The asymmetric varieties of these structures consist of a precession of the 

stagnation point about the jet centerline.  Notably, hysteretic behavior was observed: both forms 

of VB were observed at the same flow conditions. 

1.5 Theories of Vortex Breakdown 

Since the first observation of the VB phenomenon, a number of theories have been 

developed to explain the flow bifurcation.  Based on experimental work by Harvey, Benjamin [8, 

11] proposed and later developed a theory of VB that explained the phenomenon as a finite 

transition between supercritical and subcritical states.  When the flow is supercritical, i.e. 

upstream of the VB structure, infinitesimal perturbations cannot propagate upstream and thus the 

flow cannot sustain standing waves.  However, analogous to a hydraulic jump in channel flow, 

the flow can transition to a subcritical state in which infinitesimal perturbations can propagate 

upstream and downstream, allowing standing waves to form and generating VB. 

A competing theory, proposed by studied experimentally by Escudier et al. [12], 

suggested that VB was a result of the hydrodynamic stability of the swirling jet to non-
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axisymmetric disturbances.  Escudier et al. examined confined swirling jets within the context of 

both theories and found merits to both.  When VB was observed, the flow was found to be both 

critical and unstable to non-axisymmetric disturbances, suggesting that VB is explained by a 

more subtle interaction between the theories.  In addition, Escudier et al. observed flows that 

were unstable but did not feature VB, again suggesting that both stability and criticality must be 

considered to understand the phenomenon. 

Theoretical work by Healey [13] sought to reconcile the finite transition and 

hydrodynamic stability theories under the more recent conceptual framework of convective and 

absolute instability.  Convective instabilities, such as the Kelvin-Helmholtz and centrifugal 

instabilities discussed above, develop only downstream as they are convected away.  Absolute 

instabilities, however, grow rapidly enough to develop both upstream and downstream, 

eventually coming to dominate the flow structure.  Within this framework, Healey explained that 

the theories of Benjamin and Ludwieg are essentially describing the same phenomenon in two 

different ways.  Thus, according to Healey, VB can be explained as a transition from convective 

instability to absolute instability. [13] 

1.6 Predicting Vortex Breakdown 

Linear stability analysis is a common tool used to predict the stability of flows to 

perturbations.  The technique has been applied to swirling jets near VB, notably by Loiseleux, 

Chomaz, and Huerre [14].  In this study, a Rankine vortex model was perturbed with 

axisymmetric and non-axisymmetric ansatzes and the growth of these perturbations was 

calculated by solving a dispersion relation derived from the linearized Navier-Stokes equations.  
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This analysis showed that as swirl is increased, swirling jets become absolutely unstable to 

axisymmetric motions first, but this instability is almost immediately overtaken by antisymmetric 

and then by helical motions.  This transition to absolute instability occurred at a swirl number of 

S = 0.43, which agrees generally with experimental results.  Notably, counter-winding motions 

(i.e. helices that wind opposite the direction of net swirl) were found to be always less stable than 

their co-winding counterparts.  In addition, this study was conducted without any turbulence 

model included in the linearized Navier-Stokes equations. 

1.7 Vortex Breakdown in Turbulence 

While VB is most commonly applied in highly turbulent conditions, such as gas turbine 

combustors, relatively little work has been done on VB in turbulent flows.  Aside from 

Sarpkaya’s later work on turbulent VB [10], all of the experiments discussed thus far were 

conducted under laminar flow conditions.  In addition, little work has been done to understand 

the linear stability of swirling jets while incorporating turbulence effects.  Recent work by Rukes 

et al. [15] and Frederick et al. [16] has begun to implement turbulence models into the 

considered Navier-Stokes equations, but few extensive studies exist that focus on the onset of 

VB from a linear stability perspective while considering turbulence.  The lack of both 

experimental and computational studies that treat VB in turbulent conditions calls for additional 

investigation and motivates this work. 
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Chapter 2  
 

Experimental Configuration 

2.1 Combustor Facility 

To study turbulent swirling flows, an experimental facility was constructed previously to 

mimic the design of a gas turbine combustor.  The facility, shown in Figure 5, consists of three 

main sections: a settling chamber, a variable-angle, radial-entry swirler (lower right in Figure 5), 

and an injector nozzle (upper right in Figure 5).  First, incoming air enters the 15.25 cm-diameter 

settling chamber at the base of the facility through a 5.08 cm-diameter hose and passes through 

two perforated plates.  These plates reduce the impact of any large-scale eddies that may form 

upstream of the facility itself.  The settling chamber is fitted with a pair of 100 W sirens (Galls 

Model SK144) that can be used to provide longitudinal acoustic forcing, though they are not 

used for the purposes of this work.   
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Figure 5.  Experimental facility with two-microphone nozzle (upper right) and swirler 

casing (lower right). 

After passing through the settling chamber, air flows upwards to the variable-angle, 

radial-entry swirler.  The swirler consists of eight NACA 0025 airfoil blades mounted around a 

centerbody.  Each airfoil has a height and chord length of 2.54 cm.  The trailing edge of each 

airfoil is secured to the top and bottom of the swirler by a pin about which the airfoil can pivot.  

A pin close to the leading edge of each blade passes through a curved slot in the base of the 

swirler and is held by a separate plate below.  This lower plate is fastened to a shaft that can be 

turned by a stepper motor attached beneath the settling chamber.  By turning this plate, the angle 

of the airfoil blades can be adjusted between 65° and -65° with a resolution of 2.5°.  This angle is 

set by visually inspecting the swirler through holes that are plugged during operation.  A positive 

blade angle results in a jet that swirls counter-clockwise, and a negative angle results in a jet that 

swirls clockwise.  Thus, as per the coordinate system defined in Figure 5, positive angles 

produce positive azimuthal velocity and negative angles produce negative azimuthal velocity. 

A centerbody in the swirler redirects flow upwards into the injector nozzle and tapers to a 

point 8.9 cm upstream of the nozzle exit.  Within the 2.54 cm-diameter nozzle, flow passes two 
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differential pressure transducers (PCB Model 113B28).  These transducers are mounted 6.92 cm 

and 1.84 cm upstream of the nozzle exit, which corresponds to 2.54 cm and 7.62 cm downstream 

of the swirler, respectively.  Flow exits the facility into the ambient air as an unconfined jet.  For 

all cases considered in this work, the volumetric flow rate is maintained at 30 SCFM with a 

maximum deviation of 0.5 SCFM.  This results in a calculated bulk flow velocity of 28 m/s and a 

Reynolds number of 35,000 based on the nozzle diameter.  The volumetric flow rate is 

monitored using a thermal mass flow meter (Thermal Instruments Model 600-9).  Signals from 

the flow meter and pressure transducers are sampled at 20 kHz for 3 seconds using a National 

Instruments CompactRIO system operating as a field-programmable gate array (FPGA). 

Six levels of swirl are examined in this work, corresponding to airfoil blade angles of 0°, 

15°, 30°, 35°, 40° and 45°.  The level of swirl is quantified based on geometric swirl number, 𝑆, 

as defined by Lefebvre [1]; the relationship between angle and swirl number is listed in Table 1. 

Table 1.  Swirler angles of interest and corresponding geometric swirl numbers. 

Swirler Angle (°) Geometric Swirl Number 

0 0.00 

15 0.18 

30 0.38 

35 0.46 

40 0.56 

45 0.66 

2.2 Particle Image Velocimetry Setup 

Stereo particle image velocimetry (PIV) is used to measure three components of the 

velocity field in a plane that bisects the injector nozzle.  In this r-x plane, with coordinate axes as 

shown in Figure 5, radial and axial velocities are in-plane and azimuthal velocity is out-of-plane.  

PIV images are captured by two Photron SA5 CMOS high-speed cameras in double-frame mode.  
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The cameras are arranged in a forward-forward configuration and are equipped with 

Scheimpflug adapters.  Images are taken at 5 kHz with a variable interframe time of 17 – 23 μs 

depending on the swirl number.  A Hawk/Darwin Duo Nd-YAG, 532 nm, 60 W laser is used to 

illuminate the motion of aluminum oxide tracer particles, which are injected into the flow 

upstream of the settling chamber.  These particles have a nominal diameter of 1 – 2 μm and can 

accurately follow flow perturbations up to 4000 Hz. 

Velocity fields are calculated in DaVis 8.3.1 from LaVision.  Multi-pass cross correlation 

is conducted without pre-processing or masking.  A 32x32 pixel interrogation window with 50% 

overlap is used in the first pass and two subsequent passes are made using a 16x16 pixel window, 

also with 50% overlap.  Spurious vectors are identified and rejected using two separate methods 

during post-processing.  First, a vector is removed and replaced via interpolation if its magnitude 

is greater than 3 times the RMS of the surrounding vectors.  Second, DaVis employs universal 

outlier detection to identify and replace outlying vectors. 
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Chapter 3  
 

Dynamic Mode Decomposition 

The study of fundamental fluid dynamics commonly requires the identification of 

organized, large-scale flow features known as coherent structures [17].  A variety of methods 

exist for extracting these structures from experimental PIV data.  Among these methods are a 

variety of decomposition techniques that exploit the recurring, often periodic nature of coherent 

structures to identify distinct motions in the flow, known as modes.  Perhaps the most common 

flow field decomposition technique, proper orthogonal decomposition (POD), is key to this 

work, but much of the analysis relies more heavily on the use of a similar technique, dynamic 

mode decomposition (DMD).  DMD was introduced to the field of fluid mechanics by Schmid   

[18] as an alternative to classical POD, and its unique capabilities have popularized the technique 

as a method of identifying coherent structures.  This chapter discusses the mathematical 

background of DMD, one of the intricacies of implementing it as a data-analysis technique, and 

the process by which the DMD algorithm was validated using synthetic data.  The MATLAB 

codes that were developed for DMD and generating synthetic data are included in Appendix A 

and Appendix B, respectively. 

3.1 Mathematical Background 

As with POD, DMD relies heavily on the principles of linear algebra to decompose a 

given time series of velocity fields into a number of spatial basis functions.  In the case of DMD, 
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these spatial basis functions, 𝝍𝑘, each oscillate at their own distinct complex frequency, 𝜔𝑘.  

That each DMD mode is associated with a single complex frequency, itself containing a real 

frequency and a growth rate, is a key distinction between DMD and POD.  POD modes are 

orthogonal in space; they each contain distinct spatial information but many frequencies.  DMD 

modes are orthogonal in time; they represent dynamics occurring at one single frequency but 

they may not be spatially distinct from each other.  The following algorithm, except where noted, 

is adapted from work by Schmid [18, 19] and Tu et al [20]. 

At its core, DMD relies on the assumption that there exists an operator, 𝑨, that linearly 

maps each sequential state, or “snapshot,” onto the next.  In this case, each of these snapshots is a 

single PIV frame.  Under this assumption, the operator 𝑨, known as the Koopman operator, 

describes all of the dynamics that govern the flow.  For linear systems, the Koopman operator is 

a finite-dimensional operator that can, in theory, be directly calculated.  However, for nonlinear 

systems, 𝑨 is an infinite-dimensional operator that cannot be written explicitly.  The DMD 

algorithm is essentially an optimized least-squares approximation of the eigenmodes of this 

infinite-dimensional Koopman operator.  For the purposes of DMD, the Koopman operator, 𝑨, is 

defined as operating on some snapshot 𝒙𝑡 at time 𝑡 to give the next sequential snapshot, 𝒙𝑡+1, 

such that 

  𝒙𝑡+1 = 𝑨𝒙𝑡. (3.1) 

 These 𝐾 sequential snapshots, each separated by a constant time step Δ𝑡, are arranged as 

columns in a data matrix, 𝑿1
𝐾, where 

  𝑿1
𝐾 = {𝒙1, 𝒙2, 𝒙3, … , 𝒙𝐾}. (3.2) 
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According to the notation 𝑿𝑝
𝑞
 above, 𝑝 is the index of the first snapshot in the sequence and 𝑞 is 

the index of the last snapshot.  Given the definition in Equation 3.2, Equation 3.1 can be 

rewritten thusly: 

  𝑿2
𝐾 = 𝑨𝑿1

𝐾−1. (3.3) 

 Equation 3.3 is the matrix generalization of Equation 3.1.  The operator 𝑨 acts on each 

column of the data matrix 𝑿1
𝐾−1, transforming each respective column into the next in the 

sequence of snapshots.  Thus, Equation 3.3 can be understood as the operator 𝑨 transforming a 

matrix of all snapshots but the last into a matrix of all snapshots but the first.  To approximate 𝑨, 

Schmid assumes that, with enough snapshots, the vectors given by Equation 3.1 will be linearly 

dependent.  Thus, the goal of DMD is to express the final snapshot in the sequence, 𝒙𝐾, as a 

linear combination of the previous vectors up to 𝐾 − 1.  To this end, as per Schmid, Equation 3.3 

can be rewritten in terms of a companion matrix, 𝑺, of the form 

  𝑺 =

(

 
 

0
1 0

𝑎1
𝑎2

⋱ ⋱
1

⋮
0 𝑎𝐾−2
1 𝑎𝐾−1)

 
 

,  (3.4) 

in which the constants 𝑎𝑘 for 𝑘 = 1,… , 𝐾 − 1 are unknown and represent the linear combination 

of the first 𝐾 − 1 snapshots necessary to form the 𝐾th snapshot.  Thus, Equation 3.3 becomes 

  𝑿2
𝐾 = 𝑨𝑿1

𝐾−1 = 𝑿1
𝐾−1𝑺 + 𝒓𝒆𝐾−1

𝑇 , (3.5) 

where 𝒓 is a vector of residuals and 𝒆𝐾−1 is the (𝐾 − 1)th unit vector.  The eigenvalues and 

eigenvectors of 𝑺 approximate those of 𝑨, and can be computed directly at this stage after the 

constants 𝑎𝑘 are calculated using a QR decomposition of the data matrix, 𝑿1
𝐾−1 = 𝑸𝑹: 

  𝒂 = 𝑹−1𝑸∗𝒙𝐾. (3.6) 
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 The application of DMD to experimental data requires additional care due to the presence 

of noise and, in the present study, turbulence.  To achieve a more robust DMD algorithm for the 

purposes of this study, a pre-processing step was used in order to eliminate low-energy flow 

behavior that could obscure any coherent structures that may be extracted via DMD.  To identify 

low-energy behavior, POD was applied to the sequence of PIV snapshots prior to the application 

of DMD.  This technique was derived from the higher-order DMD algorithm of Le Clainche, 

Vega, and coworkers [21, 22].  While these authors do not explicitly refer to their filtering 

method as POD-filtering, the connection between the two is clear in the implementation. 

 Prior to the approximation of 𝑨, POD is applied to the data matrix 𝑿1
𝐾 via the singular 

value decomposition (SVD), such that 𝑿1
𝐾 = 𝑼𝚺𝑽∗.  The matrices 𝑼 and 𝑽 contain the spatial 

and temporal content, respectively, of the original data matrix.  The diagonal matrix 𝚺 contains 

the singular values, 𝜎𝑘, of the data matrix.  The square of these singular values is a measure of 

the fluctuating energy of the corresponding POD mode.  To eliminate modes that contain noise 

and turbulence, the SVD is truncated, retaining 𝑁 modes according to the relation given in 

Equation 3.7: 

  
𝜎𝑁+1
2 +⋯+𝜎𝐾

2

𝜎1
2+⋯𝜎𝐾

2 ≤ 𝜖𝑡, (3.7) 

where 𝜖𝑡 is the fraction of total turbulent kinetic energy that is contained in the removed modes, 

referred to as the “truncation parameter.”  The selection of this truncation parameter is nontrivial 

and is discussed in further detail in the next section of this chapter.  Using the results of the 

truncated SVD, a “reduced” snapshot matrix is calculated as 

   �̂�1
𝐾 = �̂��̂�∗, (3.8) 
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and it is this matrix that is used to compute the DMD modes.  In order to approximate the 

companion matrix 𝑺 in Equation 3.5, new data matrices �̂�1
𝐾−1 and �̂�2

𝐾 are constructed.  Returning 

to the DMD algorithm as initially described by Schmid, SVD is applied to the former data 

matrix, yielding �̂�1
𝐾−1 = 𝑾𝚲𝑻∗.  Thus, �̃�, a dimension-reduced approximation of 𝑨, is be found 

as 

   �̃� = 𝑾∗�̂�2
𝐾𝑻𝚲−1. (3.9) 

The eigenvalues and eigenvectors of 𝑨 are approximated by the eigenvectors, 𝒚𝑚, and 

eigenvalues, 𝜇𝑚, of �̃�, which are found by solving the standard eigenvalue problem 

  �̃�𝒚𝑚 = 𝜇𝑚𝒚𝑚 for 1 ≤ 𝑚 ≤ 𝑀, (3.10) 

where 𝑀 is the total number of modes that result from DMD.  Without any truncation, i.e. with 

𝜖𝑡 = 0, the algorithm always results in 𝑀 = 𝐾 − 1.   

 To construct the DMD modes, 𝝍𝑘, the eigenvectors found above are projected back into 

the space of the original data matrix via Equation 3.11 and the corresponding eigenvalues are 

transformed into complex frequencies, 𝜔𝑘, via Equation 3.12: 

  𝝍𝑘 = 𝑼𝑾𝒚𝑚, (3.11) 

  𝜔𝑘 =
ln(𝜇𝑘)

Δ𝑡
. (3.12)  

The real parts of these complex frequencies are the temporal growth rates of each mode, and the 

imaginary parts are the corresponding frequencies.  The initial amplitudes of each DMD mode, 

contained in the vector 𝒃, can be calculated as 

  𝒃 = 𝚿+𝒙1, (3.13) 
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where 𝚿 is the matrix containing all of the DMD modes, 𝝍𝑘, as columns and the superscript ‘+’ 

denotes the Moore-Penrose pseudoinverse.  Thus, the original time series of PIV snapshots can 

be approximately reconstructed as a linear combination of the resulting DMD modes: 

  𝒙𝐷𝑀𝐷(𝑡) = ∑ 𝑏𝑚𝝍𝑚exp (𝜔𝑚𝑡)
𝑀
1 . (3.14) 

3.2 Truncation 

The truncation parameter, 𝜖𝑡, as introduced in Equation 3.7, must be carefully selected in 

order to maintain the integrity of the final set of modes.  Truncating too much could remove 

relevant physical motions, but truncating too little results in poor performance of the DMD 

algorithm and nonphysical results.  According to Le Clainche and Vega [22], optimal DMD 

performance is achieved when the resulting number of modes, 𝑀, is equal to the dimension of 

the subspace spanned by the modes, 𝑁.  The value of 𝑁 can be calculated simply by finding the 

rank of the matrix containing all of the resulting modes, 𝚿.  The values 𝑀 and 𝑁 are referred to 

as the spectral complexity and spatial complexity, respectively.  Without POD filtering, attempts 

to apply DMD to the raw velocity snapshot data obtained from PIV resulted in a complexity 

mismatch where 𝑁 < 𝑀; this situation also occurs for small values of the truncation parameter 

(𝜖𝑡 < 1%).  Above a truncation threshold of approximately 1%, which varied slightly for each 

swirl number considered, the spectral and spatial complexity of the resulting DMD modes was 

no longer mismatched.  Thus, the lower limit for 𝜖𝑡 was set by the value at which the spectral 

and spatial complexities are approximately matched, i.e., 𝑁 ≈ 𝑀.   

To determine a set threshold for each swirl number considered, a balance was struck 

between practical analytical considerations and energy retention.  Generally, for the same value 
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of 𝜖𝑡, jets with higher swirl number require more modes to capture the same fraction of 

fluctuating energy.  This is due to the increasingly complex dynamics that appear as swirl is 

increased.  Thus, a single threshold could not be selected for all cases.  Instead, a value for the 

truncation parameter was selected for each of the three flow regimes identified during 

preliminary analysis, which is discussed further in Chapter 4.  This ensures that the two cases 

within each regime maintain approximately the same number of modes and that motions that 

may be present in one case are not filtered out completely in another case in the same flow 

regime. The values selected for 𝜖𝑡 are listed in Table 2. 

Table 2.  Swirl numbers and corresponding DMD truncation parameters. 

Geometric Swirl Number Truncation Parameter (%) 

0.00 
3.5 

0.18 

0.38 
6 

0.46 

0.56 
10 

0.66 

3.3 Validation 

To validate and better understand the DMD algorithm, synthetic flow field data were 

generated by simulating the propagation of waves through a fluid.  This was done by simulating 

the inviscid form of Burgers’ equation using MATLAB.  Burgers’ equation is a one-dimensional 

simplification of the Navier-Stokes equations found by assuming that there are no pressure 

gradients in the flow, the flow is incompressible, and gravitational effects are negligible.  These 

assumptions lead to a nonlinear partial differential equation for velocity, 𝑢, as a function of time, 

𝑡, and position, 𝑥 [23]:  
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜇

𝜕2𝑢

𝑑𝑥2
. (3.15) 

For simplicity, the simulated fluid was assumed to be inviscid (𝜇 = 0), leading to the inviscid 

form of Burgers’ equation: 

  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0. (3.16) 

To write the equation in a more familiar form, a substitution can be conducted using  

  𝑓(𝑢) =
1

2
𝑢2 (3.17) 

Which, when substituted into Equation 3.16, yields a form recognizable as a hyperbolic 

conservation law [23]: 

  
𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
= 0. (3.18) 

 This equation was solved numerically using a two-step finite difference method known as 

the MacCormack method.  This two-step finite difference method uses a forward difference 

prediction step and a backward difference correction step, thereby achieving second-order 

accuracy [24].  In the following discussion of the solution scheme, subscripts represent spatial 

nodes and superscripts represent time steps.  First, a prediction of the next time step is calculated 

using a forward difference: 

  𝑢𝑗
∗ = 𝑢𝑗

𝑛 −
Δ𝑡

Δ𝑥
[𝑓(𝑢𝑗+1

𝑛 ) − 𝑓(𝑢𝑗
𝑛)], (3.19) 

where 𝑛 and 𝑗 are the current time step and spatial node, respectively, Δ𝑡 is the time interval 

covered in each step, and Δ𝑥 is the size of each spatial discretization.  This prediction is 

corrected using a backward difference to calculate the actual velocity at the next time step: 

  𝑢𝑗
𝑛+1 =

1

2
(𝑢𝑗
𝑛 + 𝑢𝑗

∗) −
1

2

Δ𝑡

Δ𝑥
[𝑓(𝑢𝑗

∗) − 𝑓(𝑢𝑗−1
∗ )]. (3.20) 
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 To match the experimental data, each simulation was run using 100 streamwise nodes 

and 51 cross-stream nodes.  The time step was specified as Δ𝑡 = 0.2 ms in order to match the 

time between PIV snapshots, and each simulation ran for 5000 timesteps to generate an 

equivalent number of frames as in each set of experimental data.  At the start of each simulation, 

the velocity at each node was set to a value of �̅� = 28 m/s to match the bulk velocity of the actual 

jet.  The spacing between nodes was held constant at a value of Δ𝑥 = �̅�Δ𝑡.  To generate flow 

features that DMD would be able to identify, the flow “inlet” was periodically perturbed with 

sinusoidal disturbances at various frequencies 𝜔𝑖, amplitudes 𝜖𝑖, and growth rates 𝛾𝑖.  

Mathematically, the inlet boundary condition is given as Equation 3.21: 

  𝑢(0, 𝑡) = �̅� + ∑ 𝜖𝑖 exp(𝛾𝑖𝑡) sin (𝜔𝑖𝑡)𝑖 . (3.21) 

 Prior to any specific validation tests, the proper truncation parameter was selected.  

Unlike the truncation of experimental data as discussed above, the proper truncation parameter 

was much more obvious when analyzing the synthetic data.  In all of the synthetic cases, the 

singular values produced by the SVD in the POD-filtering step discussed above suggest a clear 

cutoff point.  In the case of the single wave used to validate the growth rate as discussed below, 

this cutoff was between the 100th singular value, which was on the order of 10-2, and the 101st 

singular value, which was on the order of 10-10.  Clearly, the first 100 POD modes contained the 

vast majority of the fluctuating kinetic energy and the remaining modes were filtered out prior to 

the application of DMD.  This behavior was similar in the multi-wave cases discussed below, 

though the number of modes retained was greater due to the increased complexity of the flow 

field due to the additional disturbances.  

 To validate the performance of the DMD algorithm, a number of test schemes were 

developed.  First, a simulated flow field containing ten waves at frequencies from 100 Hz to 
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1000 Hz in 100 Hz increments was tested.  These disturbances each had growth rates of zero and 

were tested a range of individual amplitudes from 0.001 m/s to 0.03 m/s.  Both with and without 

Gaussian noise applied to the synthetic data, the DMD algorithm was able to identify wavelike 

motion in the flow and produced frequencies accurate to within ±0.1 Hz.  Sample mode shapes 

are shown in Figure 6 for 100 Hz and 300 Hz motions.  While the DMD algorithm accurately 

identified mode shapes and frequencies, the amplitude of each mode was not accurately 

calculated.  This is due to the fact that the algorithm specified above calculates an initial mode 

amplitude at 𝑡 = 0 s.  Under the current simulation conditions, the flow is initially unperturbed, 

resulting in an initial amplitude of zero for each motion.  Notably, while the algorithm did not 

calculate the amplitudes specified as 𝜖𝑖 in Equation 3.21, it did calculate initial amplitudes close 

to zero (on the order of 10-5 m/s for each mode), which still reflects the simulated data.  

Additionally, the growth rates calculated by the algorithm are negligible for each mode (on the 

order of 10-7 m/s2), which accurately reflects the specified growth rates of zero for each 

perturbation. 

 

Figure 6.  Sample mode shapes for a) 100 Hz and b) 300 Hz modes from the first validation 

test without Gaussian noise. 
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These validation cases were also used to understand how to analyze the growth 

rates/frequency pairs produced by the DMD algorithm.  To generate a mode “spectrum,” growth 

rate is plotted against frequency for each mode.  The spectrum for the validation data discussed 

above without Gaussian noise is given in Figure 7.  The dot color in Figure 7 is representative of 

the initial mode amplitude, 𝑏, as calculated in Equation 3.14.  The only mode with a non-

negligible initial amplitude is the mode representing the mean flow, found at a frequency of 0 

Hz.  Generally, modes with the highest growth rates contain the most “important” dynamics, as 

these motions will grow the fastest and come to dominate the flow field.  Thus, it is reasonable 

that the waves generated by the prescribed perturbations all lie on the top of the spectrum, as 

they are the dominant structures in the flow.  Notably, the plot in Figure 7 does not contain the 

full set of modes produced by the algorithm.  Due to the nonlinear nature of Burgers’ equation, 

the spectrum also contains harmonics of the prescribed perturbation frequencies, which could be 

seen if the plot was extended past 1000 Hz.  It is not currently known why the 100 Hz mode 

circled in Figure 7 has a slightly more negative growth rate than the other modes corresponding 

to the prescribed forcing frequencies, though it is possibly due to the smaller number of cycles of 

the 100 Hz motion present in the 5000 frames of validation data.  The modes not corresponding 

to the prescribed wave disturbances contain motions concentrated at the edges of the simulation.  

This suggests that they contain nonlinear edge effects that are artifacts of the solution scheme, 

not physical motions.   
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Figure 7.  DMD spectrum for first validation case without Gaussian noise.  Circles indicate 

modes at the prescribed perturbation frequencies. 

 To understand the behavior of the DMD algorithm when motions are growing or 

decaying, a range of tests were run at various growth rates.  These tests were conducted using a 

single perturbation at 800 Hz with an initial amplitude of 0.03 m/s for cases in which the motion 

grew and 0.3 m/s for cases in which the motion decayed.  In each case, a growth rate of either 1 

m/s2 or -1 m/s2 was specified.  In both the purely growing and purely decaying cases, the 

algorithm was able to capture the growth rates to within ±0.01 m/s2 without any loss in accuracy 

in calculating the frequencies as compared to the neutral perturbations described above.  To 

understand the effects of a motion both growing and decaying, several cases were tested in which 

the 800 Hz perturbation grew and decayed in various combinations throughout the simulated 

dataset.  These tests included: 

 growing for half of the dataset, then decaying, and vice versa, 

 growing for three quarters of the dataset, then decaying, and vice versa, 

 alternating between growth and decay every 100 time steps. 
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 While the mode shape and frequency were both determined to the same level of accuracy 

as in all other tests, the mix of growth and decay significantly affected the ability of the 

algorithm to calculate a growth rate.  In all cases, the growth rates produced by the DMD 

algorithm were negative, even for the case that grew more than it decayed.  In addition, there was 

no clear correlation between the magnitudes of the calculated growth rates and the amount of 

time the perturbation decayed.  For example, even though the half-growing and half-decaying 

case and the alternating case both decayed for an equivalent number of time steps, the algorithm 

produced a growth rate of -0.88 m/s2 for the former and -14 m/s2 for the latter.  As there 

appeared to be no relationship between the growth rates calculated between different cases, it 

was concluded that no quantitative analysis could be conducted on the growth rates themselves.  

Instead, the values were taken as qualitative indicators of modal activity, which will be discussed 

further in Chapter 5.    
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Chapter 4  
 

Time-Averaged Results 

 

The six swirl numbers examined in this work were selected in order to understand the 

behavior of vortex breakdown as it forms and eventually dominates the structure of the swirling 

jet. Generally, the non-swirling jet (S = 0) is used as a baseline with which to compare the 

behavior of the swirling jets. As swirl is added to the jet, vortex breakdown begins to manifest as 

a region of diminished axial velocity in the center of the jet. As can be seen in the time-averaged 

axial flow fields presented in Figure 8, this region grows in size and travels upstream as the level 

of swirl is increased. At intermediate levels of swirl, i.e., S = 0.38 and 0.46, a region of 

stagnation intermittently forms in the flow field. In Figure 8, this appears as a time-averaged 

velocity deficit along the jet centerline that increases with swirl number. At the highest swirl 

number considered in this study, S = 0.66, time-averaged stagnation is visible and vortex 

breakdown fully and consistently dominates the flow field along the centerline. 

 

Figure 8.  Time-averaged axial velocity fiends for each swirl number of interest. 
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The axial velocity deficit that forms with increasing swirl number is better visualized in 

the time-averaged axial velocity profiles in Figure 9. At S = 0, the axial velocity profile is 

relatively flat, peaking at the jet centerline. As the level of swirl increases, the profile becomes 

bimodal, peaking on either side of the centerline. The centerline velocity deficit continues to 

increase as swirl increases. Notably, this deficit increases significantly between S = 0.46 and 

0.56, suggesting the emergence of a strong stagnation region consistent with vortex breakdown. 

At S = 0.66, the average axial velocity along the centerline is near zero, indicating the onset of 

time-averaged stagnation and the consistent presence of vortex breakdown in the jet. 

 

Figure 9.  Average axial velocity profiles for swirl numbers of interest at x/D = 1. 

 

The onset of vortex breakdown can also be visualized in the time-averaged vorticity 

fields presented in Figure 10. Shear layers can be identified in these fields as regions of strongly 

positive or negative vorticity. At S = 0, only a single shear layer is present around the outside of 

the jet. As swirl is increased to S = 0.18 and S = 0.38, the time-averaged fields suggest the 
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development of an inner shear layer along the centerline of the jet. At S = 0.46, small regions of 

increased vorticity appear around x/D = 2.5, around the same location as the time-averaged 

stagnation region appearing at the same swirl number in Figure 8. For higher swirl numbers, S = 

0.56 and S = 0.66, the central shear layer is clear and developed, just as the stagnation region 

visible in Figure 8, with vorticity magnitudes comparable to those in the outer shear layer. 

 

Figure 10.  Time-averaged azimuthal vorticity fields for each swirl number. 

 

Based on the properties of the time-averaged flow, further analysis is broken up into three 

regimes. Jets for which 0 ≤ S < 0.38 are categorized as ‘pre-breakdown,’ as the time-averaged 

effects of vortex breakdown are slight. Jets within the range 0.38 ≤ S < 0.56 are categorized as 

‘near-breakdown.’ For these values of S, the effects of vortex breakdown are readily apparent in 

the time-averaged flow fields and profiles, particularly in the centerline velocity deficit 

illustrated in Figure 9. Finally, jets with S ≥ 0.56 are categorized as ‘post-breakdown’ due to the 

dominance of vortex breakdown in the flow field and the time-averaged presence of stagnated 

flow and a central shear layer.
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Chapter 5  
 

Flow Dynamics 

The temporal growth rates provided by DMD allow for the classification of modes as 

stable or unstable. To characterize the results of DMD, mode spectra such as those found in 

Figure 11 are generated. These spectra allow for the identification of particularly unstable modes 

that may lend further insight into the flow processes taking place. Notably, the growth rates of all 

modes considered are negative. This is likely due to averaging effects, as the timescales of the 

modal dynamics are much shorter than the PIV time series from which the modes are extracted. 

While no quantitative results can be drawn from the resulting growth rates, modes can still be 

identified as more or less stable based on their relative position in the spectrum. Modes that seem 

to be local outliers, especially those with larger growth rates, are of particular interest, as it is 

these modes that dominate the flow field. One such local outlier is the mean flow field, which 

appears in every mode spectrum with a frequency of 0 Hz and a growth rate near zero. Unlike 

with POD, the mean cannot be subtracted from each velocity snapshot prior to applying DMD. 

While the same mode shapes and frequencies will be identified if the mean is removed, all 

corresponding growth rates will be zero and stability information will be lost. 

Another criterion used to evaluate the DMD modes is a measure of coherence calculated 

by projecting each dynamic mode onto the POD basis found during the POD filtering process. 

This coherence value is shown as the coloring of the points plotted in the mode spectra. Modes 

with high coherence (in red) contain large-scale, energetic structures while those with low 

coherence (in blue) contain small-scale structures that are less energetic. As Schmid notes, 
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however, dynamic modes with a small value of the projection onto the POD basis can still 

represent dynamically important motions [18]. 

5.1 Pre-Breakdown Regime 

The mode spectra for the swirl numbers analyzed in the pre-breakdown regime are shown 

in Figure 11. The notable modes identified for S = 0 largely contain axisymmetric behavior 

similar to that shown in Figure 12a, as is characteristic of non-swirling jets [5].  Vortex rings 

formed by the axial Kelvin-Helmholtz instability are found at a wide range of frequencies, 

notably at 734 Hz, as shown in Figure 12b. The pairing of these vortices as they convect away 

from the nozzle results in the larger-scale motions found in modes with lower frequency (not 

shown). This behavior is also seen at S = 0.18 but is complicated by the presence of swirl. As 

swirl is added to the jet, these vortex rings tilt, particularly farther downstream. This can be seen 

in Figure 13. 

 

Figure 11.  DMD mode spectra for a) S = 0 and b) S = 0.18. Dot color is representative of 

mode coherence. Circled modes are shown in Figure 12 and Figure 13. 

 

 

a) b) 
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Figure 12.  Notable axial modes for S = 0 showing a) axisymmetric behavior at 650 Hz and 

b) axial vortex roll-up at 735 Hz. 

 

Figure 13.  792 Hz mode showing the tilting of axial Kelvin-Helmholtz vortices due to 

introduction of swirl at S = 0.18. White lines connect the centers of corresponding vortices. 

5.2 Near-Breakdown Regime 

As swirl is increased into the near-breakdown regime, the jet approaches the onset of 

vortex breakdown. This is characterized by an increase in intermittent behavior. To understand 

the general nature of the fluctuations present in the flow field, outlier events in axial velocity are 

a) b) 
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considered in Figure 14 for S = 0.38. This analysis, and all such fluctuation analysis, was 

conducted by Dr. Jacques Lewalle in coordination with work done for this thesis. Figure 14 

contains x-r-t isosurfaces of fluctuations exceeding a set threshold (65% of bulk velocity in 

Figure 14a, 30% in Figure 14b, and 50% in Figure 14c) projected onto the r-x plane. Multiple 

occurrences at the same location are thus superposed, corresponding to higher color saturation. 

All fluctuations identified in Figure 14 are concentrated in the same regions of high vorticity 

magnitude identified in Figure 10, suggesting that these fluctuations are vortical. The strongest 

fluctuations, plotted in Figure 14a, are found in both the outer shear layer and the developing 

inner shear layer along the jet centerline. The lower-frequency fluctuations in Figure 14b are 

only present in the outer shear layer above approximately x/D = 1.5. These fluctuations are likely 

the result of vortices pairing in the outer shear layer, as this results in vortical motions with a 

characteristic frequency lower than the initial vortices. The higher-frequency fluctuations, likely 

the unpaired vortices, are shown in Figure 14c. These fluctuations are concentrated farther 

upstream and are present both in the outer shear layer and along the centerline. The presence of 

both positive and negative fluctuations in radial and axial velocity along the centerline between 

x/D ≈ 2 and x/D ≈ 3.5 emphasizes the intermittent nature of vortex breakdown in this regime. 

The same analysis for S = 0.46 yields similar trends and thus is not shown. 
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Figure 14.  Axial and radial velocity fluctuations for S = 0.38, normalized by bulk 

velocity: a) unfiltered fluctuations, b) low-pass filtered with 150 Hz cutoff, and c) high-pass 

filtered with 150 Hz cutoff. Blue (black) coloration indicates positive (negative) radial 

fluctuation and red (cyan) coloration indicates positive (negative) axial fluctuation. 

These fluctuations are further characterized in this regime using DMD. The DMD spectra 

for each near-breakdown case are shown in Figure 15. In particular, the emergence of the central 

velocity-deficit region characteristic of vortex breakdown is evidenced by the increased modal 

activity along the jet centerline across a range of frequencies at S = 0.38. Figure 16 illustrates the 

emergence of the central shear layer formed due to vortex breakdown. Upstream of x/D = 3, the 

560 Hz mode features axisymmetric motion similar to that seen in Figure 12b in the pre-

breakdown regime. Downstream of x/D = 3, activity shifts to the centerline of the jet, suggesting 

the presence of a central shear layer in which vortical structures can form. While many modes 

depict asymmetric activity along the centerline similar to that in Figure 16, no modes contain 

clear axisymmetric or antisymmetric motion. This suggests that vortex breakdown has not fully 

set in and that a recirculation zone has not stabilized along the centerline of the flow. At S = 0.46, 

motions along the centerline are clearer and better defined, as in Figure 17, which depicts 

axisymmetric motion along the centerline taking place at a frequency of 265 Hz. To better 

illustrate the distinction between modal activity in the outer shear layer and activity in the inner 
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shear layer, the time-averaged locations of maximum/minimum vorticity are overlaid on the 

mode in Figure 17. These locations correspond to the shear layers, with the leftmost and 

rightmost lines indicating the outer shear layer and the central lines indicating the inner shear 

layer. Both axisymmetric motions, as in Figure 17, and antisymmetric motions (not shown) 

appear along the centerline, suggest the onset of a more stable and consistent recirculation zone 

as compared to S = 0.46. 

 

Figure 15.  DMD modes for a) S = 0.38 and b) S = 0.46. Circled modes shown in Figure 11 

and Figure 10. 

 

Figure 16.  560 Hz mode showing the emergence of central shear layer at S = 0.38. 
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Figure 17.  Coherent axisymmetric response at 265 Hz at S = 0.46. 

Independently of the DMD decomposition, information was extracted from the azimuthal 

and radial velocities related to the dynamics of the vortex core. This core-tracking analysis, like 

the fluctuation analysis, was conducted by Dr. Jacques Lewalle in coordination with the DMD 

work done for this thesis. The starting point is the observation of a significant mean radial 

velocity along the axis of the jet, as seen in Figure 18. These velocities were interpreted as being 

the result of the vortex core being outside the plane of the PIV measurements. This hypothesis 

leads to the azimuthal component (swirl) appearing along the y-direction in the PIV plane. 

 

Figure 18.  Examples of mean radial velocity distributions: a) S = 0.46, b) S = 0.66. 
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This hypothesis was used to identify a vortex core location. A vortex with its axis parallel 

to the plane of measurements will have two components at any given point: along the r axis 

(“radial”) and along the z axis (“azimuthal”).  For an ideal steady line vortex, the velocity would 

be tangential around the vortex axis, with magnitude varying with distance from the axis. Using 

a Rankine vortex model, i.e., a rigid-body vortex core surrounded by inviscid induced motion, 

two velocity vectors identify the vortex axis location at the intersection of the lines normal to the 

velocity. Because of measurement uncertainties and ambient turbulence, a best fit was calculated 

for core location using two coordinates, r and z, and rotation speed based on vectors at small |r|. 

In a first attempt, the fit was calculated based on the seven points straddling the r = 0 line; an 

improved algorithm, keeping the best fit from a set of sliding four-point-windows near r = 0, 

yielded the results described below. Vortex core reconstruction was calculated at each x/D < 3 

for successive frames. The r-x-z-t location of the vortex core was calculated, as well as the vortex 

strength using a rigid body model. Two representative views, at a particular instant, are shown in 

Figure 19 and Figure 20.  The top view in Figure 19, with the axial location color-coded from 

blue to red, shows that the vortex core wobbles in a region centered at about z/D = .05, r/D = 0, 

i.e., just in front of the PIV axis.  In the 3D projection view shown in Figure 20, the vortex 

strength is color-coded from green (high rotation rate) to blue (low rotation rate); good 

consistency of the vortex strength along the core seems to validate the algorithm, the model, and 

the convergence. 
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Figure 19.  Top view of a snapshot of the vortex core location, blue to red denotes 

increasing x/D from 0 to 3. 

 

Figure 20.  Perspective view of the vortex core location as for Figure 19, green to blue 

denotes decreasing vortex intensity. 

Large excursions from the vortex center are observed mostly near the nozzle and at x/D > 

2; these appear physically realistic, but the quality of the algorithm is likely to be less accurate at 

large distances from the centerline. Lack of convergence at isolated x/D levels, resulting in very 

large excursions from the frame of view, was skipped in the plots. It is unclear if the vortex 

wobble is due to buffeting by the turbulence, by vortex instability, by incomplete convergence, 

or a combination of such effects. Convergence of the optimization procedure at each x/D is 
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excellent for S = 0.38 and 0.46 and deteriorates significantly at larger swirl numbers. Poor 

convergence was diagnosed as large values of the penalty function and outlier excursions from 

the geometric center of the jet, and the corresponding level (x/D) was deleted from the vortex 

geometry. Fewer than three such points were noted for S = 0.38 and S = 0.46. 

Probability distributions (pdfs) of the vortex core location were calculated for x/D < 2.5 

over all 5000 data frames. Two representative pdfs are shown in Figure 21 for S = 0.38; results 

for S = 0.46 are not very different. The core location is slightly off the PIV plane, and drifts by a 

few millimeters at successive axial locations. The width of the distribution increases as x/D 

increases.  This observation was made quantitative by calculating the first and second moments 

of the pdf, with the results shown in Figure 22.  The first moments determine the mean r and z 

coordinates of the vortex core at each level x/D, whereas the second moment quantifies the 

spread of the distribution around the central point.  Except for the immediate vicinity of the 

nozzle, the trends are very smooth. Furthermore, the trends for S = 0.46 and S = 0.56 are very 

similar, which gives confidence in the statistical reliability of the approach. 

 

Figure 21.  PDFs of vortex core locations at two axial locations: a) x/D = 0.122, b) x/D = 

2.316 
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Figure 22.  Mean location (r/D, z/D) and size of the vortex core (R/D) as function of axial 

distance (x/D): a) S = 0.38, and b) S = 0.46. 

To validate the physical relevance of this vortex wobble, a point was selected on the 

vortex near x/D = 0.4 and its z-coordinate was calculated as a function of time using the Rankine 

vortex model. This signal was then cross-correlated with the radial velocity in the entire field via 

a process termed space-time cross-correlation. Figure 23 shows a sequence of snapshots of the 

space-time cross-correlation. The reference signal was taken as the zc coordinate (out of the PIV 

plane) of the vortex core location close to the dump plane. The radial component of velocity is 

cross-correlated with zc at every (r,x) point. The color scale is common to all lags. The sequence 

shows the propagation of fluctuations in two ways. Most obvious is the region of saturated color 

along the centerline near x/D = 0, indicating that the radial velocity is very strongly correlated 

with out-of-plane core location for short negative and positive lags, establishing the consistency 

of our analysis. It can be observed that the vortex core is slanted relative to the axis r = 0. There 

are also see weakly-correlated but slowly and consistently propagating red and grey regions 

along |r/D| ≈ 1 and x/D ≈ 3 with a sign reversal at x/D ≈ 5 along the direction of the vortex core.  

This indicates an effect of vortex core motion on the entire velocity field downstream of the 
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reference point. A random pattern of correlations on the order of 5% measures the incomplete 

statistical convergence for the 5000 samples. 

 

Figure 23.  Cross-correlation sequence of the radial velocity field with the z-coordinate of 

the vortex core (reference signal) at the location marked by the red marker for S = 0.38. 

Lag increases from upper left to lower right. 

5.3 Post-Breakdown Regime 

As swirl is increased into the post-breakdown regime, the velocity fluctuation 

distributions illustrate a significant structural change. These distributions are shown in Figure 24 

and use the same magnitude thresholds as those for S = 0.38 shown in Figure 14. The emergence 

of a stable central shear layer, as visualized in Figure 10, is evident in the appearance of strong 

axial fluctuations along the centerline in Figure 24a. However, the central shear layer has little 
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impact on the spatial distribution of low-frequency fluctuations, seen in Figure 24b. These 

fluctuations remain concentrated in the outer shear layer, though this shear layer does exhibit 

additional vortex spreading as compared to Figure 14b. Most notably, the jet contains 

significantly more high-frequency activity, shown in Figure 24b. This activity is concentrated 

farther upstream than at lower swirl, extending all the way to the nozzle. In addition, radial 

velocity fluctuations are more present than at lower swirl, suggesting a general increase in flow 

field fluctuation. Similar trends were found for S = 0.66. 

 

 

Figure 24.  Axial and radial velocity fluctuations for S = 0.56, normalized by bulk velocity: 

a) unfiltered fluctuations, b) low-pass filtered with 150 Hz cutoff, and c) high-pass filtered 

with 150 Hz cutoff. Blue (black) coloration indicates positive (negative) radial fluctuation 

and red (cyan) coloration indicates positive (negative) axial fluctuation. 

 

 At S = 0.56, both antisymmetric and axisymmetric motions appear in both shear layers. 

Notably, a highly damped, antisymmetric, short length-scale motion appears at a frequency of 

884 Hz. This mode manifests as a local outlier in the frequency spectrum in Figure 25a and is 

shown in Figure 26. A similarly-structured mode appears at a frequency just below it, at 842 Hz 
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(not shown). This motion is characteristic of a precessing vortex core (PVC), as has been shown 

in other works [16, 25]. The highly damped nature of these modes suggests that the PVC, which 

is a global instability, has not fully developed in the flow. At S = 0.66, a clearer and more 

coherent PVC is present in the flow at a frequency of 858 Hz. This mode is a clear local outlier 

in the mode spectrum in Figure 25b and is shown in Figure 27. Unlike the highly damped motion 

seen at S = 0.56, the corresponding PVC mode at S = 0.66 is significantly more unstable than the 

modes around it. Just above the dominant PVC frequency, two modes with decreasing growth 

rate but similar mode shape are observed. These motions are likely due to the weak nature of the 

PVC at this swirl number. While strong, stable PVCs manifest as limit-cycle oscillators with a 

single frequency, it is possible that weaker PVCs are more susceptible to fluctuating 

phenomenon such as turbulence. These fluctuations affect parameters such as local swirl number, 

which could impact the frequency of the PVC and lead to a frequency that varies in time and thus 

appears as multiple modes. 

 

Figure 25.  DMD mode spectra for a) S = 0.56 and b) S = 0.66. Circled modes are shown in 

Figure 26 and Figure 27. 

 

 

 

a) b) 
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Figure 26.  Emergence of highly damped PVC-like dynamics in 884 Hz mode at S = 0.56; a) 

radial mode, b) axial mode, c) azimuthal mode. 

 

 

Figure 27.  Clearer PVC present in 858Hz mode at S = 0.66; a) radial mode, b) axial mode, 

c) azimuthal mode. 

 

While DMD suggests that a weak PVC exists in the flow at S = 0.66, conclusions about 

the energy content of the PVC cannot be drawn directly from DMD. Instead, POD is used to 

quantify the fluctuating energy contained in the PVC motion to verify its relative strength in the 

flow field. As POD modes are energy-ordered, low-numbered modes are dominant in the flow 

field. POD modes 1 through 6 each contain between 1.3% and 2.2% of the total fluctuating 

a) b) c) 

a) b) c) 
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energy and capture broadband, low-frequency activity related to vortex roll-up in the shear 

layers. Modes 7 through 10, which each contain around 1% of the total turbulent kinetic energy, 

are illustrated in Figure 28 and show signs of the PVC identified using DMD in both their 

frequency spectra and mode shapes, which can be compared to Figure 26a and Figure 27a. The 

spectra of modes 7 through 10 contain wide peaks around 850 Hz, which is in general agreement 

with the frequency of 858 Hz identified by DMD. In addition, the mode shapes roughly 

correspond to those identified using DMD, suggesting that both methods have identified the 

same motion. The relative energy content of the PVC modes produced by POD confirms the 

assertion that the PVC present at S = 0.66 is relatively weak. Though a PVC is present at this 

swirl number, the flow field continues to be dominated by the vortical structures contained in 

POD modes 1 through 6 produced due to axial and azimuthal Kelvin-Helmholtz instability and 

the inertial instability caused by the rotating core.

 

Figure 28.  Radial POD modes 7-10 for S = 0.66. 
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Previous work has shown that at high swirl numbers, i.e., S > 1.05, stronger PVCs exist 

than those presented in this study [16]. Strong PVCs are characterized by high amplitude, narrow 

band peaks in POD frequency spectra. This contrasts the broadband response of developing 

PVCs, as shown in Figure 28. From an energy standpoint, strong PVCs are always contained in 

the highest energy modes of the flow field, typically just modes one and two, which have 

significantly higher energy than any following modes. In previous studies using the same 

experimental configuration, the in-nozzle pressure transducers have been used to identify the 

presence of a PVC [16, 26]. At high levels of swirl, PVCs appear as narrow-band peaks in the 

measured pressure spectra, as indicated by the arrow in Figure 29. For S = 0.66, shown in red in 

Figure 29, no such peak can be identified despite the indication of DMD and POD that a PVC is 

indeed present. The small peak present in both spectra at around 1050 Hz is a system frequency 

present at all swirl numbers and is not indicative of a vortical motion in the flow field. 

 

Figure 29.  Pressure spectra for S = 1.05 case where a strong PVC is present (black) and S 

= 0.66 case featuring weak PVC (red). 
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Chapter 6  
 

Conclusions and Future Work  

 

This work has examined the dynamics of a turbulent swirling jet at a range of swirl 

numbers from S = 0 to S = 0.66. Three flow regimes were identified based on the presence of VB 

in the jet: pre-breakdown, near-breakdown, and post-breakdown. The dynamics of the jet in each 

regime were examined using DMD, which revealed the development of motions along the jet 

centerline as vortex breakdown set in in the near-breakdown regime. The dynamics identified by 

DMD in this turbulent study closely followed those identified in laminar studies of vortex 

breakdown: axisymmetric motions preceded tilting vortices, which were ultimately followed by 

the appearance of both axisymmetric and antisymmetric motions in a recirculation zone along 

the jet centerline. The location of these motions is apparent in overall analysis of strong velocity 

fluctuations. High-frequency fluctuations were shown to be present closer to the nozzle, while 

low-frequency fluctuations appear farther downstream. An apparent wobbling of the jet was also 

identified in the near-breakdown regime and was characterized by fitting a Rankine vortex model 

to the velocity fields. This wobble is not frequently discussed in swirling jet studies, and its 

effects could warrant further study as its presence coincides with the onset of vortex breakdown. 

PVC-like motions were found at a swirl number of S = 0.56, and a weak PVC was identified by 

DMD in the post-breakdown regime at a swirl number of S = 0.66. Its energy content was 

analyzed using POD. 
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Notably, the PVC identified by DMD was found at a significantly lower swirl number 

than PVCs previously identified in the same flow field. PVC-like motions were identified at a 

swirl number as low as S = 0.56, far below the point at which PVCs were observed using nozzle 

pressure measurements in previous studies. This suggests that in-nozzle pressure measurements 

are not sufficient means with which to identify weak PVCs, and that further analysis of the 

velocity fields is needed to confirm or deny the presence of a PVC. In particular, the DMD 

algorithm developed for this study is a convenient tool for this analysis due to its ability to 

identify single-frequency motions like PVCs. Future work will employ an improved DMD 

algorithm at higher swirl numbers to study the dynamics of stronger PVCs.  Implementation of 

the higher-order DMD method used by Le Clainche and coworkers [21] could lead to the 

identification of additional dynamics and, generally, a more robust DMD algorithm.  

Additionally, future work will seek to make the growth rates produced by the current algorithm 

more quantitative in nature, allowing direct comparisons of mode stability between cases.  

Experimentally, additional tests involving dynamic bifurcation traversal could be conducted.  In 

these dynamic cases, DMD could offer unique insight into the development of coherent 

structures during the onset of VB, not simply at various stages leading up to VB and following 

VB.  
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Appendix A 

 

Dynamic Mode Decomposition Code 

% Author: Sean Clees 

% Last Edit: March 25, 2018 

% This code runs DMD using POD preprocessing on 3-component 

stereo PIV data 

  

testcases = {'150727x'}; % list of testcase names 

thresholds = [6]; % list of truncation thresholds [%] 

  

for p = 1:length(testcases) 

    for q = 1:length(thresholds) 

  

        close all 

  

        % load testcase 

        testcase = char(testcases(p)); 

        load(strcat('D:\Sean\Adjusted Mat Files\170331_good\', 

testcase, '_VectorsAdj.mat')); % for external HDD use 

  

        % change the range to perform DMD on a subset of the 

data in question, useful for testing 

        jump = 1; % time steps between frames 

        time_range = 1:jump:5000; % select part of time series 

        x_range = 1:100; % select subregion in x 

        r_range = 1:51; % select subregion in r 

         

        % reshape input matrices based on parameters above 

        vr = vr(x_range, r_range, time_range); 

        vx = vx(x_range, r_range, time_range); 

        vtheta = vtheta(x_range, r_range, time_range); 

        x = x(x_range); 

        r = r(r_range); 

  

        %% CREATE DATA MATRICES %% 

        x_size = length(x); 

        r_size = length(r); 

        n = r_size * x_size; % number of points of every 

velocity component per snapshot 



 

        N = n .* 3; % total number of points per snapshot (* 3 

because of 3 velocity components) 

        M = size(vx, 3); % number of snapshots 

        dt = 1 ./ 5000; % time between snapshots 

        thresh = thresholds(q); % the truncation parameter for 

the current case 

  

        % reshape velocity fields s.t. each frame becomes a 

column [n x M] 

        vr_re = reshape(vr, [n, M]); 

        vx_re = reshape(vx, [n, M]); 

        vtheta_re = reshape(vtheta, [n, M]); 

  

        % construct data matrix X [N x M] 

        X = zeros(N, M); 

        X(1:n, :) = vr_re; 

        X(n + 1:n * 2, :) = vx_re; 

        X(n * 2 + 1:N, :) = vtheta_re; 

  

        % memory management 

        %clear vr vx vtheta vr_re vx_re vtheta_re 

         

        % initial order reduction step  

        [tempU, tempE, tempV] = svd(X, 'econ'); 

        tol = max(size(X)) * eps(max(tempE)); % mostly 

unnecessary tolerance step - economy SVD should take care of 

small SVs 

        R = sum(diag(tempE) > tol'); % count the valid SVs 

  

        singulars = diag(tempE); 

        tke = singulars .^ 2; 

  

        % calculate the percent tke remaining for each number of 

modes retained 

        tke_left = zeros(length(tke) - 1, 1); 

        for i = 1:R - 1 

            tke_left(i) = sum(tke(i+1:end)); 

        end 

        tke_percent_left = 100 .* tke_left ./ sum(tke); 

  

        tokeep = sum(tke_percent_left > thresh) - 1; 

  

        % construct reduced matrices 

        E = diag(singulars(1:tokeep)); 

        U = tempU(:, 1:tokeep); 

        V = tempV(:, 1:tokeep); 



 

  

        X_reduced = E * V'; 

  

        % create data matrix X1, which is just columns 1 through 

M-1 of X  

        % [N x M - 1] and data matrix X2, which is columns 2 

through M of X 

        % [N x M - 1] 

        X1 = X_reduced(:, 1:M-1); 

        X2 = X_reduced(:, 2:M); 

  

        % memory management 

        %clear tempU tempE tempV singulars tke 

         

        %% DMD ALGORITHM %% 

        % tic 

        [W, A, T] = svd(X1, 'econ'); % s.t. X_1 = W * A * T', 

economy-sized SVD used to produce square A, eliminating the 0s  

                                     % that would appear on the 

diagonal of A if full SVD was used 

  

        S_ = W' * X2 * T / A; % this is S-tilde in Kutz' 

notation, / is used instead of * inv() due to computational 

speed 

  

        % compute e-vecs and e-vals of S_ 

        [Y, MU] = eig(S_); % Y is a matrix of the e-vecs of S_, 

MU is a diagonal matrix of the e-vals 

                           % e-vals describe the dynamics of the 

Koopman operator, e-vecs are related  

                           % to the e-vecs of S via a simple 

transformation 

        MUlist = diag(MU); 

  

        % transform e-vecs of S_ into e-vecs of S (according to 

Tu's definitions, 

        % this is "projected" DMD, not "exact") 

        dmodes = U * W * Y; 

  

        % rewrite e-vals for convenience & caclulate frequencies 

        evals = diag(MU); 

        w = log(evals) ./ dt; % this is the useful form that 

gives us meaningful information 

        frequencies = imag(w) ./ (2 .* pi); 

  



 

        % calculate initial mode amplitudes, only necessary for 

reconstruction 

        b_0 = dmodes \ X(:,1); 

  

        % toc 

         

        % memory management 

        clear E U V W A T Y MU S_ V E X1 X2 X_reduced 

  

        %% PLOT E-VALS %% 

        %mkdir(strcat('E:\Sean\DMD\Swirl Timeline 

Analysis\',testcase,'_',num2str(thresholds),'_',num2str(time_ran

ge(end)))); 

        %cd(strcat('E:\Sean\DMD\Swirl Timeline 

Analysis\',testcase,'_',num2str(thresholds),'_',num2str(time_ran

ge(end))));%,'\Mean Subtracted')); 

  

        % Plot the unmapped e-vals in the complex plane 

        figure; 

        plot(real(evals), imag(evals), '.'); % in a completely 

ideal case, this will look like the unit circle 

        xlabel('Re(eval)'); 

        ylabel('Im(eval)'); 

        axis equal; 

  

        %saveas(gcf,strcat(testcase,'_DMD_evals_raw.png'),'png')

; 

        %saveas(gcf,strcat(testcase,'_DMD_evals_raw.fig'),'fig')

; 

  

        % Plot the mapped e-vals in the complex plane 

        figure; 

        plot(imag(w), real(w), '.'); 

        xlabel('Im(eval) Logarithmically Mapped'); 

        ylabel('Re(eval) Logarithmically Mapped'); 

  

        %saveas(gcf,strcat(testcase,'_DMD_evals_ln.png'),'png'); 

        %saveas(gcf,strcat(testcase,'_DMD_evals_ln.fig'),'fig'); 

  

        % Plot the mapped growth rates against frequency 

        figure; 

        plot(frequencies, real(w), '.'); 

        xlabel('Im(eval) Logarithmically Mapped'); 

        ylabel('Re(eval) Logarithmically Mapped'); 

  

        %saveas(gcf,strcat(testcase,'_DMD_freqs_ln.png'),'png'); 



 

        %saveas(gcf,strcat(testcase,'_DMD_freqs_ln.fig'),'fig'); 

  

        % Make a fancy growth rate plot against frequency 

        figure; 

        scatter(frequencies, real(w), abs(b_0), abs(b_0), 

'filled'); 

        xlabel('Frequency [Hz]'); 

        ylabel('Growth Rate'); 

        colorbar; 

        colormap('jet'); 

        axis([min(frequencies) - 1, max(frequencies) + 1, 

min(real(w)), max(real(w)) + 100]); 

  

        %saveas(gcf,strcat(testcase,'_DMD_freqs_fancy.png'),'png

'); 

        %saveas(gcf,strcat(testcase,'_DMD_freqs_fancy.fig'),'fig

'); 

  

        %% DYNAMIC SPATIAL MODES %% 

        % extract the mode shapes for each velocity component 

        dmodes_vr = dmodes(1:n,:); 

        dmodes_vx = dmodes(n + 1:n * 2,:); 

        dmodes_vtheta = dmodes(n * 2 + 1:end,:); 

  

        % reshape the modes for plotting - (mode #, x position, 

r position) 

        plot_vr = reshape(dmodes_vr', [size(dmodes_vr, 2), 

x_size, r_size]); 

        plot_vx = reshape(dmodes_vx', [size(dmodes_vx, 2), 

x_size, r_size]); 

        plot_vtheta = reshape(dmodes_vtheta', 

[size(dmodes_vtheta, 2), x_size, r_size]); 

  

        if size(plot_vr, 1) > 2 

            %% SORT & PLOT MODES %% 

  

            positives = find(frequencies >= 0); % identify modes 

with positive, physical frequencies 

            zero_freqs = find(imag(w(positives)) == 0); % 

identify modes with positive frequencies and zero growth rates 

  

            [freq_sort, freq_sort_ind] = 

sort(frequencies(positives), 'ascend'); % sort by frequency 

            [amp_sort, amp_sort_ind] = 

sort(real(b_0(positives)), 'descend'); % sort by initial 

amplitude 



 

             

            % if there are a ton of modes, plot only the 50 most 

'active', 

            % otherwise save everything in order of frequency 

            if size(dmodes, 2) > 50 

                sorting = 'Highest Growth Rates'; 

                num_plot = 100; 

            else 

                sorting = 'Frequency Sorted'; 

                num_plot = size(positives(freq_sort_ind)); 

            end 

  

            % sort override 

            % sorting = '0 Frequencies' 

             

            % set toplot based on selected sorting method 

            switch sorting 

                case 'Highest Growth Rates' 

                    [unstable, unstable_ind] = 

sort(real(w(positives)), 'descend'); % sort by stability 

                    toplot = positives(unstable_ind); % most 

unstable modes w/ positive frequencies 

                case 'Lowest Growth Rates' 

                    [damped, damped_ind] = 

sort(real(w(positives)), 'ascend'); 

                    toplot = positives(damped_ind); % most 

damped modes w/ positive frequencies 

                case '0 Frequencies' 

                    toplot = positives(zero_freqs); % modes with 

0 growth rate and positive frequency 

                case 'Positive Frequencies' 

                    toplot = positives; % all modes w/ positive 

frequencies 

                case 'Frequency Sorted' 

                    toplot = positives(freq_sort_ind); % plot 

from low frequency to high frequency 

                case 'Highest Amplitudes' 

                    toplot = positives(amp_sort_ind); 

                otherwise 

                    toplot = 

positives(freq_sort_ind([320:350])); % specific mode numbers 

            end 

  

            % set(0, 'DefaultFigureVisible', 'off'); 

   



 

            %mkdir(strcat('E:\Sean\DMD\Swirl Timeline 

Analysis\',testcase,'_',num2str(thresholds),'_',num2str(time_ran

ge(end)),'\',sorting)); 

            %cd(strcat('E:\Sean\DMD\Swirl Timeline 

Analysis\',testcase,'_',num2str(thresholds),'_',num2str(time_ran

ge(end)),'\',sorting)); 

  

            upperbound = 6; % streamwise limit for mode shape 

plots 

            for i = 1:length(toplot)     

                title2 = ['Freq: ' 

num2str(frequencies(toplot(i))) ', Growth Rate: ' 

num2str(real(w(toplot(i)))) ', Amp: ' 

num2str(abs(b_0(toplot(i))))]; 

  

                %% REAL %%     

  

                % vr shape 

                figure; 

                contourf(r, x, 

squeeze(real(plot_vr(toplot(i),:,:)))); 

                colormap('jet'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Real Radial Mode Shape', 10, title2, 

10]); 

                axis([-1.5 1.5 0 upperbound]); 

                colorbar; 

  

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_rea

l_vr_contour.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_rea

l_vr_contour.fig'),'fig'); 

  

                % vx shape 

                figure; 

                contourf(r, x, 

squeeze(real(plot_vx(toplot(i),:,:)))); 

                colormap('jet'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Real Axial Mode Shape', 10, title2, 

10]); 

                axis([-1.5 1.5 0 upperbound]); 



 

                colorbar; 

  

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_rea

l_vx_contour.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_rea

l_vx_contour.fig'),'fig'); 

  

                close all; 

  

                % vtheta shape 

                figure; 

                contourf(r, x, 

squeeze(real(plot_vtheta(toplot(i),:,:)))); 

                colormap('jet'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Real Azimuthal Mode Shape', 10, title2, 

10]); 

                axis([-1.5 1.5 0 upperbound]); 

                colorbar; 

  

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_rea

l_vtheta_contour.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_rea

l_vtheta_contour.fig'),'fig'); 

  

                %% IMAG %% 

                 

                %mkdir('./Imag'); 

                %cd('./Imag'); 

                 

                % vr shape 

                figure; 

                contourf(r, x, 

squeeze(imag(plot_vr(toplot(i),:,:)))); 

                colormap('jet'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Imaginary Radial Mode Shape', 10, 

title2, 10]); 

                axis([-1.5 1.5 0 upperbound]); 

                colorbar; 

  



 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_ima

g_vr_contour.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_ima

g_vr_contour.fig'),'fig'); 

  

                % vx shape 

                figure; 

                contourf(r, x, 

squeeze(imag(plot_vx(toplot(i),:,:)))); 

                colormap('jet'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Imaginary Axial Mode Shape', 10, title2, 

10]); 

                axis([-1.5 1.5 0 upperbound]); 

                colorbar; 

  

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_ima

g_vx_contour.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_ima

g_vx_contour.fig'),'fig'); 

  

                close all; 

  

                % vtheta shape 

                figure; 

                contourf(r, x, 

squeeze(imag(plot_vtheta(toplot(i),:,:)))); 

                colormap('jet'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Imaginary Azimuthal Mode Shape', 10, 

title2, 10]); 

                axis([-1.5 1.5 0 upperbound]); 

                colorbar; 

  

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_ima

g_vtheta_contour.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_ima

g_vtheta_contour.fig'),'fig'); 

                 

                %cd('../'); 

                 

            %% PHASE %% 



 

                %mkdir('./Phase'); 

                %cd('./Phase'); 

  

                % vr phase 

                figure; 

                contourf(r, x, 

squeeze(angle(plot_vr(toplot(i),:,:)))); 

                colormap('gray'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Radial Mode Phase', 10, title2, 10]); 

                colorbar; 

                axis([-1.5 1.5 0 upperbound]); 

  

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_vr_

phase.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_vr_

phase.fig'),'fig'); 

  

                % vx phase 

                figure; 

                contourf(r, x, 

squeeze(angle(plot_vx(toplot(i),:,:)))); 

                colormap('gray'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Axial Mode Phase', 10, title2, 10]); 

                colorbar; 

                axis([-1.5 1.5 0 upperbound]); 

  

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_vx_

phase.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_vx_

phase.fig'),'fig'); 

  

                % vtheta phase 

                figure; 

                contourf(r, x, 

squeeze(angle(plot_vtheta(toplot(i),:,:)))); 

                colormap('gray'); 

                xlabel('r/D'); 

                ylabel('x/D'); 

                axis equal; 

                title(['Azimuthal Mode Phase', 10, title2, 10]); 



 

                colorbar; 

                axis([-1.5 1.5 0 upperbound]); 

  

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_vth

eta_phase.png'),'png'); 

                %saveas(gcf,strcat(num2str(i),'_',testcase,'_vth

eta_phase.fig'),'fig'); 

  

                close all; 

  

                %cd('..\'); 

            end 

        end 

         

        % memory management 

        %clear dmodes dmodes_vr dmodes_vx plot_vr plot_vx 

plot_vtheta dmodes_vtheta evals w frequencies b_0 positives 

zero_freqs freq_sort freq_sort_ind amp_sort amp_sort_ind 

POD_sort POD_sort_ind coherence coherence_data num_plot sorting 

unstable unstable_ind damped damped_ind 

    end 

end 

 

 

  



 

 

Appendix B 

 

Synthetic Data Code 

% Author: Sean Clees 

% Last Edit: March 28, 2018 

% This code generates simulated velocity field snapshots of a 

simple 2D 

% flow field for DMD validation 

  

%% CONSTANTS %% 

frames = 5000;      % [], the number of snapshots to generate 

x_dim = 100;        % [], number of streamwise nodes 

r_dim = 51;         % [], number of cross-stream nodes 

ubar = 28;          % [m/s], average and initial velocity 

dt = 1 ./ 5000;     % [s], time step 

dx = ubar .* dt;    % [m], streamwise discretization, also 

spacing between cross-stream nodes 

  

%% PERTURBATION INFO %% 

freqs = [800];      % [Hz], perturbation frequencies 

amps = [0.03];      % [m/s], perturbation amplitudes 

rates = [0];        % [m/s^2], perturbation growth rates 

  

%% INITIALIZE FIELD %% 

vx = zeros(x_dim, r_dim, frames); 

newvx = vx(:,1); 

oldvx = newvx; 

vx(:,:,:) = ubar; 

  

%% SIMULATE %% 

for t = 2:frames 

    oldvx = vx(:,1,t-1); 

    newvx(1) = ubar + sum(exp(rates * (t - 1) .* dt) .* amps .* 

sin(2 * pi * freqs * (t-1) * dt));% + normrnd(0, 0.01); % 

uncomment normrnd part for gaussian noise 

     

    % MacCormack O(2) 

    tempvx = oldvx(1:end-1) - dt./dx .* (0.5 .* 

(oldvx(2:end)) .^ 2 - 0.5 .* (oldvx(1:end-1)) .^ 2); 



 

    newvx(2:end-1)= 0.5.*(oldvx(2:end-1) + tempvx(2:end)) - 

0.5.*dt./dx.* (0.5 .* (tempvx(2:end)) .^ 2 - 0.5 .* 

(tempvx(1:end-1)) .^ 2); 

  

    % Outlet BC 

    newvx(end) = 0.5 .* (oldvx(end) + newvx(end - 1)); 

     

    % copy 1D simulation across to make 2D field 

    for j = 1:r_dim 

        vx(:,j,t) = newvx; 

    end 

end 

  

%% 

% construct spatial coordinate vectors 

x = dx .* (0:x_dim - 1); 

r = dx .* (0:r_dim - 1); 

  

save('validationdata1', 'r', 'x', 'vx'); 

  

% plot waves 

set(0, 'DefaultFigureVisible', 'on'); 

  

for t = frames - 100:frames 

    surf(r, x, squeeze(vx(:,:,t))); 

    title(num2str(t)); 

    view([90 0]); 

    colorbar; 

    caxis([(ubar - sum(amps) - 0.3), (ubar + sum(amps) + 0.3)]); 

    zlim([27, 29]); 

    drawnow 

end 
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