
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

OPTIMIZATION OF ENERGY-AWARE PATH-PLANNING IN GROUND ROBOTICS

VERONICA GRUNING
SPRING 2018

A thesis
submitted in partial fulfillment

of the requirements
for baccalaureate degrees

in Mechanical Engineering
with honors in Mechanical Engineering

Reviewed and approved* by the following:

Dr. Sean Brennan
Professor of Mechanical Engineering

Thesis Supervisor

Dr. Jacqueline O’Connor
Assistant Professor of Mechanical Engineering

Honors Adviser

*Signatures are on file in the Schreyer Honors College.

i

Abstract

This thesis presents an optimized approach to planning energy-aware paths for skid-steer ve-

hicles. Specifically, this work expands upon previous models in three ways: (1) this work uses

the instantaneous centers of rotation (ICRs) to predict the kinematics and power consumption of a

robot’s movement; (2) the power model accounts for the changes in ground surface friction; and

(3) the power model includes the effect of elevation changes on the energy usage of the robot.

The total power needed to travel to a goal location is then combined with the kinematic model

to plan energy-aware paths using a Sampling Based Model Predictive Optimization (SBMPO) al-

gorithm. This method is demonstrated using simulated environments that are sampled to create a

wide range of testing scenarios representative of real-world usages. The results show situations

where a more energy efficient path for skid-steer robots on mixed terrain may occur by increasing

the path distance. The results of this project are intended to inform energy consumption models

for robotics.

ii

Table of Contents

List of Figures iv

List of Tables vi

Acknowledgements vii

1 Introduction 1

2 Literature Review 4
2.1 Research on Skid-Steer Robot Kinematics . 4
2.2 Research on Filtering . 7
2.3 Research on Path Planning . 10

3 Methodology 15
3.1 Notation . 15
3.2 Coordinate Definitions . 18
3.3 Equations of Robot Kinematics . 21
3.4 Code to Predict Kinematics . 26

4 Friction-and Kinematics-Based Path Planning 31
4.1 Equations for Power Estimation . 31
4.2 Equations for Path Planning . 36
4.3 Code for Power Estimation . 38
4.4 Code for Path Planning . 40

5 Friction-, Elevation-, and Kinematics-Based Path Planning 46
5.1 Equations for Power Estimation of Elevation Changes 46
5.2 Optimization of Previous Algorithms . 49

5.2.1 Code for Planner with Vertical Component 49
5.2.2 Code for Open Array with Vertical Component 52
5.2.3 Code for Expansion Array with Vertical Component 53

5.3 User Process of Optimized Algorithm . 58

6 Results and Analysis 63
6.1 Frictionless Path Planning with Simulated Hill . 63
6.2 Path Planner Considering All Energy Components 66

iii

6.3 The Effects of Increasing the Slope on Planner Results 68

7 Conclusion and Future Work 72
7.1 Conclusion . 72
7.2 Future Work . 73

Bibliography 74

Appendix A 76

Appendix B 80

Appendix C 93

iv

List of Figures

2.1 Skid-steer motion with variety of track combinations (a) Linear forward motion
(b) Nonlinear forward motion with magnitude variance (c) Left turn with left track
at rest (d) Left turn with revered velocities. [6] . 5

2.2 ICR locations for a virtual tracked vehicle in planar motion. [6] 7
2.3 Estimation of power model coefficient G as vehicle travels a mixed surface path.

[10] . 9
2.4 Resulting power map from applying k-means segmentation and 9x9 median filter.

[10] . 10
2.5 Planned path tree from SBMPO to calculate nodes from start to goal. [6] 11
2.6 Planning strategy expected path in a dynamic environment. [12] 13

3.1 Heading angle in relation to the vehicular coordinate system and the rigid north by
east coordinate system. [10] . 19

3.2 Diagram of ICR locations on a skid-steer robot. [7] 19
3.3 Tankbot bogie used to gather experimental data. [7] 20
3.4 Dimensions of Tankbot bogie wheels relative to frame geometric center. Dimen-

sions in meters and Tankbot is symmetrical about the X and Y axes. [7] 21

4.1 Diagram of right side track on skid-steer vehicle showing differential element of
track contact area relative to ICR location. [7] . 33

4.2 Estimated locations of normal forces acting on Tankbot bogie. Modified from [7] . 34
4.3 A child and parent node with pseudo-grid dimensions. [7] 37
4.4 Sample satellite imaging of a location in State College, PA. [7] 38
4.5 Power map image after k-means segmentation. The color variation represents the

traversability of the area. [7] . 38

5.1 Free body diagram of a Tankbot bogie on an incline. 47
5.2 Mesh plot of a man made and simulated hill within a image coordinate system of

row and column. 51
5.3 Contour plot of a man made and simulated hill within a image coordinate system

of row and column. 51
5.4 Initial user interface for path-planner. 59
5.5 User interface of path-planner after selecting the Start and Goal node. 59
5.6 Enlarged area of the path-planning options showing the optimizer densitiy of choices. 60
5.7 Results from using a Distance based optimizer. 61

v

5.8 Results from using an Energy based optimizer. 62

6.1 Solution path for distance-based optimizer. 64
6.2 Solution path for energy based optimizer. 65
6.3 Solution path for distance-based optimizer with friction. 67
6.4 Solution path for energy-based optimizer with friction. 68
6.5 Adjusted simulated hill in mesh (left) and contour (right) plots. 69
6.6 Distance-based optimizer path result with original (left) vs heightened (right) slope. 69
6.7 Energy-based optimizer path result with original (left) vs heightened (right) slope. . 70

vi

List of Tables

4.1 Mean values for the resistance coefficient and coefficient of dynamic friction for
asphalt and grass . 33

6.1 Mean value and standard deviation of the change rate from distance- to energy-
based optimizers at original slope . 66

6.2 Mean value and standard deviation of the change rate from distance- to energy-
based optimizer at original slope with friction . 66

6.3 The energy cost for simulated run number six using the energy and distance opti-
mizer for an original hill and one with an increased slope gradient. 70

6.4 The energy cost for simulated run number six using the energy- and distance-based
optimizer for an original hill and one with an increased slope gradient. 71

A.1 Starting node locations for ten simulated runs . 76
A.2 Target node locations for ten simulated runs. 77
A.3 The distance and energy cost for ten simulated runs using the energy and distance

optimizer without friction. 77
A.4 The difference between distance and energy cost and the rate of change between

energy and distance optimizer results for ten simulated runs without friction. 78
A.5 The distance and energy cost for ten simulated runs using the energy and distance

optimizer. 78
A.6 The difference between distance and energy cost and the rate of change between

energy and distance optimizer results for ten simulated runs. 79

vii

Acknowledgements

I would like to thank my advisors, Dr. Sean Brennan and Dr. Jacqueline OConnor, first.

Without your guidance, encouragement, and persistence I do not believe I would be the same

engineer or person that I have become. Your investment in my success pushed me to do better, and

the advice I have received along the way through my career has been invaluable.

To my supervisors at the Applied Research Laboratory, Dr. Karl Reichard and Dr. Jesse

Pentzer, your previous work laid the foundation of my thesis, and your continual mentorship

throughout my thesis and internship helped me to get across this finish line. I look forward to

the work we may do together in my graduate career.

Thank you to my parents, Stephanie, Vic, and Joyce. My moms may not have given me a

singing voice, but they taught me the importance of kindness and honesty. Dad, you pushed me

harder than anyone else in this world ever has. This push got me to places I never imagined I would

be. You always knew I could be doing better, and so I did.

I thank all the friends I have made along the way from classes, research, and clubs. You put up

with the struggles and breakthroughs, and for that, I am grateful.

Finally, to my partner in crime Matt, I look forward to what the future has in store for us.

Whatever our path may be and however it may be shaped I am sure it will be optimal.

1

Chapter 1

Introduction

The work on unmanned ground vehicles (UGV) is done primarily for farming, mining, disaster

relief, and military purposes. In these applications, UGVs are often used for inspecting an area,

to determine what might be out of place, for carrying loads, and even replacing a human to avoid

dangerous situations. All of these applications demand a UGV that can autonomously, efficiently,

and safely move. The motivation for this research is that the three demands have yet to be met.

Starting with safety, a robot must know when it is reaching its limits. Limitations for rigid

bodies lie in a stability problem. Previous work has developed an algorithm to determine the

location of the instantaneous centers of rotation of a maneuvering robot; however, it has yet to be

applied to finding the current roll, pitch, and yaw stability of the vehicle. This thesis determines

the associations between the changes in the Euler angles and the changes in the instantaneous

centers of rotation (ICRs). Through this relationship, the UGV can assess its stability in any given

situation, particularly those that may result in rollovers. In order to efficiently drive a UGV, the

2

power estimation algorithm should accurately calculate the energy used in past maneuvers and

predict how much energy will be used in potential paths. Currently, algorithms exist that can

use the coefficient of friction of a surface to determine how much power is required to travel

between locations, but the research explained in the following chapters optimizes this algorithm

by including the effects the changes in Euler angles and thus allowing examining of how terrain

geometry changes power consumption. These adjustments were made through experimental and

simulated procedures.

The simulation of a hill with various coefficients of frictions was created in MATLAB based

on the data taken from a hill with mixed terrain types: asphalt, grass, and gravel. By utilizing a

lawnmower pattern and taking the accelerometer data, a virtual representation of the terrain can be

made. While data acquisition is occurring, the power usage is recorded using power loggers. The

power demand is associated with the location in space at that given time, in order to visualize the

magnitude of the effect changes in terrain have on power consumption.

Dependent autonomy in robotics requires a reliable path, such that the operator can feel con-

fident in leaving the UGV to perform a given task. Since, the current mode of estimating power

lacks consideration for the roll, pitch, and yaw, so does the path planner. By avoiding rougher ter-

rains, the goal is to produce a guidance strategy that minimizes the time that the robot is traveling

on high-power-demand paths.

The research in this thesis elaborates on this model and includes the additional changes in

terrain when traveling on a slope. In addition to a better representation of power consumption when

traveling given path, this updated algorithm allows the operator to turn the time and power dials.

This adjustability assigns the robot to either a more time efficient or energy efficient path. The

validity of this newer algorithm is confirmed by comparing the results to those from the previous

3

versions of the algorithm and the experimental data from prior testing.

The remainder of this thesis is organized as follows. Chapter 2 provides a review of relevant

research previously done in this field of ground vehicles. Chapter 3 provides the ground work for

how to problem is approached, including notation and the basic motion of the vehicle. Chapter

4 outlines the methodology for the original estimation of energy consumed by skid steer robot

based on ICR kinematics and surface friction. Chapter 5 introduces the process developed in order

to include changes in elevation into the estimator. Chapter 6 presents the results from iterative

simulations, and Chapter 7 provides conclusions of this work and future directions are examined.

4

Chapter 2

Literature Review

This chapter presents the relevant work done by others in the field of robotics as it relates to

path planning for unmanned ground vehicles. The primary ground vehicle used in this thesis is a

skid-steered robot. The kinematics required to model the vehicles behavior and the method used to

find these equations of motion is presented. The model allows variable environments to be used in

order to observe the effects changes in terrain have on power consumption. Finally, path- planning

techniques that minimize surveillance time and energy are then described.

2.1 Research on Skid-Steer Robot Kinematics

The work of Martinez et al. [4], provides the kinematic background for tracked mobile robots,

specifically skid-steered ground vehicles. Skid-steering robots are controlled by individually ad-

justing the velocities of the tracks, such that the vehicle heads left when the right track is moving

faster. The effect of this slipping contact between the surface and track has on the vehicles motion

5

and the drivers ability to steer is shown in Figure 2.1 .

Figure 2.1: Skid-steer motion with variety of track combinations (a) Linear forward motion (b)
Nonlinear forward motion with magnitude variance (c) Left turn with left track at rest (d) Left turn
with revered velocities. [6]

The work done for this thesis to optimize energy-aware path-planning utilizes these types of

robots since they are mechanically simpler and respond faster to user input [14]. However, this

variation in wheel velocities creates challenges in describing the motion of the tracks, because

standard methods applied to wheeled robots such as assuming slip-free contact do not accurately

predict the behavior of tracked robots [4]. Although Martinez et al. performed their research on

a planar uniform hard terrain type, and the trials were done a variety of surface coefficients and

pitch orientations, the geometric relationships developed can be applied to model the motion of the

robot. They considered the vehicle and tracks to be separate rigid bodies. About the instantaneous

center of rotation (ICR) there is no translational motion, only rotational. Therefore, the combined

motion of the two rigid bodies was calculated to find the velocity at a location on the track. This

6

model and the algorithms implemented in the authors work is possible under the assumption of

Kennedys ICR theorem [11].

The ICR is defined as the position on a rigid body in planar motion, where the relative instan-

taneous velocity is zero. Knowledge of the ICR location thereby explains how all other locations

on the body are moving: they are considered to be strictly rotationally motion around the ICR

[13]. Within the context of skid-steer kinematics, the two ICRs of greater significance are those

associated with the left and right tracks. These ICRs are situated in between the terrain the vehicle

moves across and the tracks or wheels of the robot. The method for calculating wheeled vehicles

is applied to tracked robotics and is believed to have the same confidence level [9]. After finding

the ICR of one track, the other point is mirrored on a parallel line to vehicles x- axis as illustrated

in Figure 2.2 [11]. This assumption comes from Kennedys theorem, also known as the law of

three centers, which states that all instantaneous centers of rotation shared by multiple rigid bod-

ies, regardless of whether they are connected to each other, in relative planar motion to another

must be located on the same line [9]. In order to use the locations of instantaneous centers as a

kinematic model, the track velocities, heading, and orientation must be measurable, and only then

can a mapping of the vehicles forward and angular speed be produced [12].

7

Figure 2.2: ICR locations for a virtual tracked vehicle in planar motion. [6]

2.2 Research on Filtering

The method implemented to identify ICR locations is the kinematic Extended Kalman Filter

(EKF) developed by Pentzer, Brennan, and Reichard [8]. This technique begins with the kinematic

equations of the vehicle, which are based on the Kennedys theorem and include the angular velocity

and linear velocities in the x- and y-direction as functions of the ICRs x- and y-coordinates and the

left and right track speeds. These three velocities determine the direction of the robot in a north by

east mapping coordinate frame. The heading angle is the angular distance from the x-coordinate

of the vehicle with respect to true north. Thus the velocities of the vehicle within the north by east

plane are functions of the linear x- and y-velocities and the heading angle [12].

It is assumed in the model that the ICR locations stay the same with some small perturbations,

much like the small angle approximation. The work by Martinez et al. [4] has proven this a

reasonable statement, so long as the robot is moving at a low velocity on a hard surface with

8

minimal changes in elevation. The ICR locations, under the conditions described, are bound to

the same point in the vehicular system notwithstanding the steering style as well [12]. Using the

ICR coordinates, north by east coordinates, and heading angle of the state that was propagated

and updated in the time step before, as well as the inputs controlling the velocity of each track in

the same previous time step, the EKF discretizes the transmitted state for the current moment in

time. This new state then becomes the propagated and updated state of the time step before, and

the process is iterated until the traversal has concluded. In order for the EKF ICR to converge to

the one derived from the mapped path, correction values called the Kalman gain and measurement

innovation are used on the updated state. The Kalman gain is the relative coefficient given to the

measurements and current state and is altered depending on how much updating needs to occur

to achieve a desired performance rate. The measurement innovation is the difference between the

measured north-east coordinates and angle heading and estimated locations. This extended filter

does not permit the estimated ICR location to change when the robot is not moving, meaning the

updated states ICR is held in the memory of the vehicle even when stationary [12].

Pentzer, Reichard, and Brennan [10] utilized ICR estimation when operating skid steered robots

on various terrains to find the unknown variables, which are the necessary parameters required to

make energy-based cost estimations [6]. The coefficient of friction, learned scaling factor, and

coefficient of internal and rolling resistance, which is called the power model coefficient, are the

constants found based on the ICR locations using the least-squares method developed by the same

research team [9]. The power model coefficient, which is assigned as variable G, can be visual-

ized in Figure 2.3, such that the value changes pigmentation as the vehicle changes the terrain it

is traversing, and the results found that the color of the aerial image was highly correlated to the

power model coefficient. As seen in Figure 2.4, the power model coefficient was found to increase

9

as the power map images coloring darkened. The change in pigmentation is due to noise reduction

of the map and applying a k-means segmentation. Through segmenting the image, similar pixels

are grouped together, which in the work being done generally leads to terrain with similar coeffi-

cients of friction being the same shade of grey.The correlation between the filtered map coloring

and change in power model coefficient revealed for the skid-steer robot that the most energy is

used when traversing the grass. But upon further investigation, another condition consumed an

even larger amount of energy but only for short bursts of time: when the skid-steer vehicle was

attempting to make a sharp turn. Chuy and Morales [1, 6] have also done work corroborating the

observation that skid-steer vehicles making turns use the largest amount of power on a constant

surface friction coefficient [5, 9].

Figure 2.3: Estimation of power model coefficient G as vehicle travels a mixed surface path. [10]

10

Figure 2.4: Resulting power map from applying k-means segmentation and 9x9 median filter. [10]

2.3 Research on Path Planning

The method Pentzer, Reichard, and Brennan used to plan an energy-aware path was Sampling

Based Model Predictive Optimization (SBMPO) algorithm, a model that predicts power usage

while running on an A-star search algorithm. Path planning such as A*, D*, and potential field

are extensions of Dijkstras algorithm from 1959 [2], and they are based in creating a grid over a

map and estimating the cost of traveling from one cell to another [8, 10]. One difference from A*

that is optimized using SBMPO is a grid where similarly positioned and orientations of nodes are

consolidated to one node, and locations that surpass an energy cost are discarded from the possible

nodes. The process of SBMPO path planning can be visualized in Figure 2.5, where each new node

tree is made up of distinctively different new possible positions, and the node that most efficiently

11

moves from the start location to goal is taken as the new path. The cost of each node is estimated

using the distance traveled from one node to another and the remaining distance the new node is

from the goal.

Figure 2.5: Planned path tree from SBMPO to calculate nodes from start to goal. [10]

The energy used to move from one cell to another is found to be a minimum when the vehicle

takes the most linear path from the starting cell to the goal location, but obstacle cells are consid-

ered to have infinite energy costs associated with them. Hence, in an A* path, a vehicle would

simply avoid the obstacle cells by traveling through the adjacent ones, but with skid-steer robots

this movement is not always the most energy-efficient method of avoiding obstacles because of

the previously discussed excess energy used in making turns. The flaw in this energy cost esti-

mation results in the use of an SBMPO scheme, such that making small adjustments in the path

distance conserves energy used in achieving a goal location. The work offered in [6] considers the

obstacles not as unconquerable pillars, but costly terrains and are not calculated to be infinite but

variable based on the power model coefficient. Changing the cost estimation resulted in paths that

12

avoided areas with higher coefficients of friction, such as grass, while still trying to maintain the

direct aerial path from start to end. This research was done under the assumption that all possible

coefficients of friction that may be encountered by the robot are known when planning the path,

but with natural and man-made surfaces changing frequently from weather and wear, it is unlikely

that a predetermined coefficient would accurately measure the power used at any given time. Their

work also lacked the pitch of the robot, which can be of great importance when traversing more

organic areas, because pitch mapping has not been prioritized in the research community. This

absence of attitude maps is due to the difficulty in establishing them, since most deviations are too

small for an aerial vehicle to measure and changes in terrain, such as grass height, are so dynamic

[6]. The research conducted by the author is a means of meeting the conditions of variable pitch

and coefficients of friction.

Highly dynamic environments are those where either obstacles or the land being traversed

changes in time. Even with highly accurate maps describing the elevation gradient and coefficient

of friction, the naturally-occurring changes in an outdoors environment happen too rapidly for

any surveillance system to keep up with. Also, in time-sensitive situations, such as disaster zones

and matters of national security, there may not be the luxury of having current version of a map.

In these cases, the vehicle must have a plan in place that allows it to travel unknown terrains

without collisions or getting trapped while meeting the goal of the mission. One such method

was developed by Tack, Burke, and Sinha [12] and named the planning strategy, which can be

seen in Figure 2.6. This tactic outperformed the two other methods previously used in robotics,

collision avoidance, where the robot would simply change paths when it encountered an obstacle,

and random wandering, where the vehicle moves strategically aimlessly through an environment.

The results of their experiments showed that the planning strategy had the best distribution of

13

position, which was calculated based on the magnitude of entropy experienced in a simulation.

Another caliber of excellence was how long it took each method to travel 70% of the environment,

and the planning strategy took almost seventeen times less time to achieve this task than collision

avoidance. Random wandering failed to reach 70% of the simulation area before the six hours

were over.

Figure 2.6: Planning strategy expected path in a dynamic environment. [12]

The time to explore the area in its entirety was minimized with the application of the planning

strategy, in part due to the fact that it did not spend excess time in hot spots of the simulation.

Since there was no map known to the robot or a universal location, the performance of the planning

strategy is outstanding. Another contribution to the methods excellence is the algorithms ability

to avoid traps and local minima resulting from obstacles. However, this strategy had its issues, the

main concern being that there were still cases, like tight corners, which as previously discussed are

difficult for skid steer robots to maneuver, that the vehicle could be trapped indefinitely. This same

logic can be applied to the work discussed in this thesis, where a slope or coefficient of friction

are paired in such a way that it is impossible for a robot to escape or find an alternative path. The

14

pitfalls and achievements of other researchers in the robotics field discussed in this sections have

driven the method of optimization to be discussed in following chapters.

15

Chapter 3

Methodology

This chapter describes how the robot’s kinematic behavior is modeled for the rest of the thesis.

The majority of the nomenclature and information on skid steer vehicle motion is found in [7,

8, 9, 10]. The chapter sections are organized as follows: (a) notation required to understand the

equations used; (b) the coordinate system used to describe the kinematics and direction of the

vehicle; (c) the equations that dictate the robot’s movements; and (d) the MATLAB code that

predicts those movements.

3.1 Notation
For the remainder of the thesis, the following notation is employed:

a = the vector from the geometric center of the UGV to a differential area.

Cnode = the cost of a node given in m.

child = the node that is chosen to move to next from the parent node out of all the

16

potential children given from the path tree.

dnode1,node2 = the Euclidean distance between two nodes given in m.

Dnode,goal = the Euclidean distance between a given node and the goal location given

in m.

�d = the set threshold that dictates if the change in location is far enough in

distance for a node to qualify as a child node. This value is given in m.

E = the required energy for a given trajectory given in J .

E1 = the parent East or x value given in m.

E2 = the child East or x value given in m.

g = the acceleration due to gravity in m

s2
.

G = the resistance coefficient given in N .

JG = the constant required to scale the power effects from the power gain

model input given in m

s
.

Jµ = the constant required to scale the power effects from frictional input given

in W

J✓ = the constant required to scale the power effects from the pitch input given

in W .

m = the mass of the UGV in kg.

N1 = the parent North or y value given in m.

N2 = the child North or y value given in m.

nodes = a point in space where the UGV exists or could potentially exist. Node

coordinates include [N, E, U, H].

17

parent = the starting node of a potential path tree.

Px = the power loss due to x reasoning is given in W .

�t = the time step in s.

U1 = the parent Up or z value given in m.

U2 = the child Up or z value given in m.

UGV = an Unmanned Ground Vehicle.

Vl = the velocity of the UGV’s left track in m

s
.

Vr = the velocity of the UGV’s right track in m

s
.

vx = the vehicle velocity along the X axis given in m

s
.

Vx = the forward velocity of the UGV in m

s
.

V
l

x
= the velocity of the left track relative to the body of the robot.

V
r

x
= the velocity of the right track relative to the body of the robot.

vy = the lateral vehicle velocity along the Y axis given in m

s
.

Vy = the sideways velocity of the UGV in m

s
.

xICRv = the X coordinate of the ICR location between the robot chassis and the

ground given in m.

y
ICRl

= the Y coordinate of the ICR location between the left track and the ground

given in m.

yICRr = the Y coordinate of the ICR location between the right track and the

ground given in m.

yICRv = the Y coordinate of the ICR location between the robot chassis and the

ground given in m.

18

�d = the Euclidean distance between the child and parent node in m.

µ = the coefficient of friction: the dimensionless value of the force of friction

between a UGV and the surface of the terrain it traverses. For the purposes

of this thesis, the surface types investigated include asphalt and grass,

which are low and high friction respectively.

 1 = the parent Heading value given in degrees. In some locations it may be

written as H1.

 2 = the child Heading value given in degrees. In some locations it may be

written as H2.

 d = the heading metric is calculated by the difference in headings between two

nodes, given in degrees.

� = the set threshold that dictates if the change in heading is enough for a node

to qualify as a child node. This value is given in degrees.

✓ = the pitch angle of the terrain between two nodes is given in degrees.

!z = the angular velocity of the UGV given in rad

s
.

3.2 Coordinate Definitions

This section presents the coordinate system used to define the kinematics and direction of the

UGV’s motion. A body-fixed reference frame is used to describe the X and Y axes of the UGV’s

chassis. The global coordinate system is given as North, East, and Up, called NEU coordinates.

Both systems can be seen in Figure 3.1, where the difference between true North and the X-axis

19

describes , the heading angle, of the vehicle.

Figure 3.1: Heading angle in relation to the vehicular coordinate system and the rigid north by east
coordinate system. [8]

The velocities associated with each body-fixed position are described in Figure 3.2 with the

vectors V l

x
, V r

x
, and !z. The figure also includes qualitative locations for the ICR locations. The

left and right xICR values are equal and opposite from the X-axis, and the yICR’s are dependent

upon the center of gravity. Therefore, the yICR runs parallel to the Y-axis, but must not be collinear.

Figure 3.2: Diagram of ICR locations on a skid-steer robot. [7]

20

For the path planner used in this thesis, the geometrical parameters of the vehicle are modeled

after the Tankbot bogie found in Figure 3.3; however, these values could be easily altered within

the program in accordance to the geometry of the vehicle being used. The exact measurements are

dimensionalized in Figure 3.4. The width and length of the vehicle are .52m and .496m respec-

tively. The ICR location of the left track is -0.5m from the X axis, and the right track’s ICR is

0.5m. The X coordinate of the ICR locations is closer to the nose of the vehicle at 0.1m.

Figure 3.3: Tankbot bogie used to gather experimental data. [7]

21

Figure 3.4: Dimensions of Tankbot bogie wheels relative to frame geometric center. Dimensions
in meters and Tankbot is symmetrical about the X and Y axes. [7]

In addition to the NEU and body-fixed coordinate systems previously described, an additional

coordinate system is used later in the thesis for image processing steps. This coordinate system is

generally described using a a row-column format, with the coordinate (1,1) located in the top left

of the image, and the x-coordinate indicating rows and y-coordinate indicating columns.

3.3 Equations of Robot Kinematics

This section elaborates on the equations used to describe and predict a skid-steer vehicle’s

movements. See Section 3.1 and 3.2 for clarifications on terminology. Many of the ICR skid-steer

kinematics equations presented in this section have been published by Martinez [4].

Beginning with the forward velocity of the vehicle being equivalent to the product of the an-

gular velocity and the magnitude of the vector from the center of gravity to yICRv . This equation

is derived from the principle that all points on a vehicle are in rotation about an ICR [13]. In the

22

circumstances encountered in this thesis, the velocity is known at all times, so (3.1) can provide

the yICRv , which is unknown.

vx = yICRv ⇥ !z (3.1)

yICRv =
vx

!z

(3.2)

For a skid-steer vehicle though, the left and right track velocities are rarely equal and the variation

in speed must be accounted for. (3.3) and (3.4) calculate the left and right ICR Y-coordinates by

using the velocity of the robot chassis with respect to the track velocity.

y
ICRl

=
vx � V

l

x

!z

(3.3)

yICRr =
vx � V

r

x

!z

(3.4)

Similar to (3.1), the xICRv is found in (3.5) with the lateral velocity relative to the ground and

angular velocity with a �1 constant. This constant follows through in (3.6) and (3.7) which are the

X-coordinate parallel equations to (3.3) and (3.4).

xICRv = � vy

!z

. (3.5)

x
ICRl

= �
vy � V

l

y

!z

. (3.6)

xICRr = �
vy � V

r

y

!z

. (3.7)

However, the tracks on skid-steer vehicles move parallel to the X-axis, therefore it can be assumed

23

that there is no lateral velocity. Thus, V l

x
= V

r

x
= 0m

s
and:

xICRr = x
ICRl

= xICRv = � vy

!z

. (3.8)

resulting in the all ICR locations lying on a line that is parallel to the Y-axis, as seen in 3.2.

Equations (3.3)-(3.5) are manipulated to become (3.9)-(3.11) in order to express the outputs:

longitudinal, lateral, and angular velocities of the robot chassis as a function of the track velocities

and ICR coordinates.

vx =
V

r

x
y
ICRl

� V
l

x
yICRr

y
ICRl

� yICRr

(3.9)

vy =
(V l

x
� V

r

x
)xICRv

y
ICRl

� yICRr

(3.10)

wz = � V
l

x
� V

r

x

y
ICRl

� yICRr

(3.11)

Since the yICRr is left of the X-axis for a stable UGV, absolute value bars must be used to calculate

the correct direction and sign of the velocities, resulting in (3.12)-(3.14).

vx =
V

r

x
y
ICRl

� V
l

x
yICRr

� |y
ICRl

� yICRr |
(3.12)

vy =
(V l

x
� V

r

x
)xICRv

� |y
ICRl

� yICRr |
(3.13)

wz = � V
l

x
� V

r

x

� |y
ICRl

� yICRr |
(3.14)

24

Due to the symmetry about the X-axis, y
ICRl

= �yICRr . When substituted into (3.12)-(3.14)

vx =
V

r

x
y
ICRl

� V
l

x
(�y

ICRl
)

� |y
ICRl

� (�y
ICRl

)| (3.15)

vy =
(V l

x
� V

r

x
)xICRv

� |y
ICRl

� (�y
ICRl

)| (3.16)

wz = � V
l

x
� V

r

x

� |y
ICRl

� (�y
ICRl

)| (3.17)

and simplified, yields

vx =
V

r

x
+ V

l

x

2
(3.18)

vy =
(V l

x
� V

r

x
)xICRv

2y
ICRl

(3.19)

wz = �V
l

x
� V

r

x

2y
ICRl

. (3.20)

because, by keeping the velocities in terms of y
ICRl

exclusively, the absolute values and negative

signs are removed.

The velocities of the robot with respect to the global coordinates, North and East, are a function

of vx, vy, and . For a visual explanation of this transformation, see Figure 3.1.

Ṅ = vx cos � vy sin (3.21)

Ė = vx sin + vy cos (3.22)

25

The equations of motion to describe the UGV are

2

6666666666666666664

Ṅ

Ė

!z

ẏICRr

ẏICRl

ẋICRv

3

7777777777777777775

=

2

6666666666666666664

vx cos � vy sin + wN

vx sin + vy cos + wE

� V
l
x�V

r
x

yICRl�yICRr
+ w!

wr

wl

wx

3

7777777777777777775

(3.23)

such that wN �wx are additive zero-mean Gaussian process noises. In order to predict the location

of the vehicle, the Euler method is applied and the kinematic model is discretized over a time step

of size �t. 2

6666666666666666664

Nk

Ek

 k

yICRrk

yICRlk

xICRvk

3

7777777777777777775

=

2

6666666666666666664

Nk�1 +�tVNk�1
+�twN

Ek�1 +�tVEk�1
+�twE

 k�1 +�t!zk�1
+�tw!

yICRrk�1
+�twr

yICRlk�1
+�twl

xICRvk�1
+�twx

3

7777777777777777775

(3.24)

All the equations provided in this section are used to simulate the movement of a skid-steer

UGV traversing variable terrain.

26

3.4 Code to Predict Kinematics

The MATLAB code presented in this section is based on the equations derived in Section 3.3

in order predict the kinematics of a skid-steer vehicle undergoing a path that can be easily adapted

for a real life scenario.

The first block of code offered below consists of all the essential, measurable constants of a

vehicle, which are necessary for all further calculations. The properties listed in lines 4 - 51 are

indicative of the Tankbot bogie’s geometry and physical characteristics. Whereas lines 54 - 59 and

72 - 78 are set by the user to dictate the grid size for the A-star style grid, maximum velocity for

each track, and the parameters for each tmax seconds.,

1 %% Properties of vehicle. Approximately equal to Tankbot values.
2

3 % ICR Locations (m)
4 y_r = 0.5; % right track ICR
5 y_l = -0.5; % left track ICR
6 x_v = 0.1; % ICR on the y-axis
7

8 % Vehicle Mass
9 Mass = 80.2858495; % kg

10 Weight = Mass*9.81; % Weight of the vehicle (N)
11

12 % Width between tracks (m)
13 W = 0.5207;
14

15 % Pressure at each wheel (N)
16 P = Weight/8.0;
17

18 % Distance from geometric center to track center along Y axis
19 Ty = 0.26033;
20 % Vectors from vehicle center to left bogie wheel locations
21 Vl1 = [0.2476, -Ty];
22 Vl2 = [0.0755, -Ty];
23 Vl3 = [-0.0826, -Ty];
24 Vl4 = [-0.2477, -Ty];
25

26 % Vectors from vehicle center to right bogie wheel locations
27 Vr1 = [0.2476, Ty];
28 Vr2 = [0.0755, Ty];
29 Vr3 = [-0.0826, Ty];

27

30 Vr4 = [-0.2477, Ty];
31

32 % Pre-Compute sums for power model.
33 A_l1 = Vl1 - [x_v, y_l];
34 A_l2 = Vl2 - [x_v, y_l];
35 A_l3 = Vl3 - [x_v, y_l];
36 A_l4 = Vl4 - [x_v, y_l];
37

38 A_r1 = Vr1 - [x_v, y_r];
39 A_r2 = Vr2 - [x_v, y_r];
40 A_r3 = Vr3 - [x_v, y_r];
41 A_r4 = Vr4 - [x_v, y_r];
42 Sum1 = P*norm(A_l1);
43 Sum2 = P*norm(A_l2);
44 Sum3 = P*norm(A_l3);
45 Sum4 = P*norm(A_l4);
46

47 Sum5 = P*norm(A_r1);
48 Sum6 = P*norm(A_r2);
49 Sum7 = P*norm(A_r3);
50 Sum8 = P*norm(A_r4);
51 Sum = Sum1+Sum2+Sum3+Sum4+Sum5+Sum6+Sum7+Sum8;
52

53 %% Set parameters for each node for the psuedo-grid implementation, ...
define the minimum distance3D and heading change allowed between two ...
nodes.

54 Grid_D = 0.5; %(m)
55 Grid_H = 20*pi/180; %(rad)
56

57 % Maximum track speeds (m/s)
58 Max_Vl = 1.0; % left track max speed
59 Max_Vr = 1.0; % right track max speed
60

61 % Determine a set of movements for the vehicle. These will be ...
transformed to expand array points during the path planning stage

62

63 %Get a set of inputs sampled from the control space.
64 V_l = func_halton_set(2,40)*Max_Vl;
65 V_r = func_halton_set(3,40)*Max_Vr;
66

67 %Add control commands allowing the vehicle to drive straight
68 V_l = [0.5; V_l;];
69 V_r = [0.5; V_r;];
70

71 %Simulate each command for tmax seconds
72 Dist = 0;
73 Psi = 0;
74 Movement = zeros(length(V_l),6);
75 q = [0; 0; 0; y_r; y_l; x_v];
76 t = 0;
77 dt = 0.01;
78 tmax = 8;

28

The function func_halton_set is called upon in order to calculate the initial velocities of

each track, which are then scaled by the maximum velocity set in lines 58 and 59. A Halton

sequence is a purposefully random set of points, which creates a first set of possible child nodes.

The MATLAB code below follows the basic algorithm of a Halton sequence [3].

1 function [S] = func_halton_set(Base, Num_Points)
2 %This function computes a Halton sequence with a given base and length
3 %
4 %Inputs: Base: The base number for the Halton set
5 % Num_Points: The length of the returned sequence
6 %
7 %Outputs: S: Computed Halton sequence
8

9 S = zeros(Num_Points,1);
10

11 for k = 1:Num_Points
12

13 pp = Base;
14 kp = k;
15 phi = 0;
16

17 while kp > 0
18 a = mod(kp,Base);
19 phi = phi + a/pp;
20 kp = floor(kp/Base);
21 pp = pp*Base;
22 end
23

24 S(k) = phi;
25 end

The next large section of code that describes the kinematics of the UGV is given below.

From this block, the user is able to plot the movement trajectories used to expand each row if

Plot_Movements is set to true. Lines 6 and 7 are pulled directly from equations (3.11) and (3.9)

to calculate !z and vx respectively.

1 %% Simulate the movement of the vehicle using ICR kinematics. In this ...
simulation assume that the ICRs remain constant so this calculation ...
is only done once at the beginning.

2 for count = 1:length(V_l)

29

3

4 % ICR Kinematics to determine speed and angular rate
5 U = [V_r(count), V_l(count)];
6 omega = -(V_l(count) - V_r(count))/(y_l-y_r);
7 Vx = (V_l(count)*y_l - V_r(count)*y_r)/(y_l-y_r);
8

9 % Simulate movement until the max time is reached
10 while(1)
11 [qk] = func_Kinematics(q,U,dt);
12 Dist = sqrt(qk(1)ˆ2 + qk(2)ˆ2);
13 Psi = qk(3);
14 t = t + dt;
15 if t � tmax
16

17 % The max time has elapsed. Store the state AND power model ...
terms.

18 Movement(count,:) = [qk(1:3)', abs(omega)*Sum, ...
(abs(U(1))+abs(U(2))), t];

19 break;
20 end
21

22 q = qk;
23

24 % Plot the movement, if desired.
25 if Plot_Movements
26 plot3(q(2),q(1),q(3)*180/pi,'b.');
27 end
28

29 end
30

31 q = [0; 0; 0; y_r; y_l; x_v];
32 t = 0;
33 end
34

35 % Add labels to the movement plot.
36 if Plot_Movements
37 xlabel('East');
38 ylabel('North');
39 zlabel('Heading');
40 grid on;
41 end

func_Kinematics is required to calculate qk, which describes the position of the UGV for

each time step. After the �t is reached, the state vector becomes a potential parent node for the

next child qk. The function currently has the forward velocity and yICR’s as non time varying, but

is available for variation. Lines 24 - 26 create a new position for the robot to travel to and is stored

in the array, Movement(count,:), which is later parsed through, and the energy optimal position

30

sequence is selected.

1 function [qk] = func_Kinematics(q,U,dt)
2 %This function takes in the current state estimate and control input and
3 %integrates the ICR kinematics for one time step
4 %
5 %Inputs: q: State vector
6 % U: Control vector
7 %
8 %Outputs: qk: State vector after time step
9

10 %Extract values from state vector so kinematic equations are more readable
11 N = q(1);
12 E = q(2);
13 theta = q(3);
14 yr = q(4);
15 yl = q(5);
16 xv = q(6);
17

18 %Extract values from control vector so kinematic equations are more
19 %readable
20 Vr = U(1);
21 Vl = U(2);
22

23 %Integrate the kinematic equations using first order Euler integration
24 qk(1,1) = N + dt*(cos(theta)*(Vr*yl - Vl*yr)/(yl-yr) - sin(theta)*(Vl ...

-Vr)*xv/(yl - yr));
25 qk(2,1) = E + dt*(sin(theta)*(Vr*yl - Vl*yr)/(yl-yr) + cos(theta)*(Vl ...

-Vr)*xv/(yl - yr));
26 qk(3,1) = theta + dt*((Vr - Vl)/(yl - yr));
27 qk(4,1) = q(4);
28 qk(5,1) = q(5);
29 qk(6,1) = q(6);

31

Chapter 4

Friction-and Kinematics-Based Path
Planning

Previous work into developing an energy aware path planner was developed by Pentzer [7, 8,

9, 10], followed by the algorithms used to model the equations previously discussed. The code

provided in this chapter was the starting point for this thesis and is the basis for what is discussed

in Chapter 5.

4.1 Equations for Power Estimation

This section discusses the equations used by Pentzer et al. [9] to describe and predict the

power consumption of a UGV traveling on mixed terrain. The three main components that account

for energy use are internal resistances, friction of the surface, and the changes in elevation. The

amount of friction within the drive train is linearly dependent upon the velocities of the tracks and

32

a resistance coefficient that was found experimentally [9].

PI = G (|Vr|+ |Vl|) (4.1)

G was found to be dependent on the type of surface on which the vehicle travels. The next power

loss component is based on the surface friction of the terrain the UGV is traveling upon: asphalt

or grass. The power loss due to surface friction, PS , is modeled in equation 4.2, where A
l,r is the

area of the left and right tractive surfaces, the velocity is relative between the A
l,r and the point of

interest, and ~F is the force of friction that is resisting slip at any given point. All relevant vectors

can be found in Figure 4.1.

P
l,r

S
=

Z

Al,r

~F (a) · ~v(a)dA (4.2)

The force of friction at a point of interest is given by:

~Fa = �µp(a)
~va

k~vak
(4.3)

after the application of a Coulomb friction model. The dynamic friction of the surface, µ, pressure

at point a, p(a), and the corrective factor that directs the force in the opposite direction of the

velocity, ~va
k~vak , all correlate with the force of friction. Similar to how G was experimentally found,

the dynamic friction of asphalt and grass were found. The average values for G and µ are

33

Table 4.1: Mean values for the resistance coefficient and coefficient of dynamic friction for asphalt
and grass

Terrain Type G µ

Asphalt 94.26 0.59
Grass 134.17 1.92

Figure 4.1: Diagram of right side track on skid-steer vehicle showing differential element of track
contact area relative to ICR location. [7]

In order to calculate the relative velocity between a differential area and a specified location in

space, ~v(a) is found to be the cross product of the UGV’s angular velocity and the distance between

the track’s ICR location and dA. The vector ~a� ~Cr,l is with respect to the geometric center of the

UGV.

~v(a) = ~!z ⇥ (~a� ~Cr,l) (4.4)

34

When equations 4.3 and 4.4 are substituted into 4.2, equations 4.5 - 4.7 are acquired, such that µ

is assumed to remain constant over the tractive surface at the point of interest.

P
l,r

S
=

Z

Al,r

�µp(a)
~va

k~vak
~vadA (4.5)

=

Z

Al,r

µp(a)k~vakdA (4.6)

= µ|!z|
Z

Al,r

p(a)k~a� ~Cr,lkdA (4.7)

For the purpose of this thesis, the ground pressure is modeled after the Tankbot bogie. Due to

the skids of the Tankbot, there are eight wheels, four on either side, that remain in contact with the

ground. Therefore the weight of the vehicle is distributed amongst the eight wheels and

p =
mg

N
(4.8)

where N is the number of contact points of the vehicle. This dissemination of weight can be see

in Figure 4.2. As a result, the pressure is considered constant along the body, so PS is constant

on either side, assuming both tracks are on the same terrain type and equation 4.7 simplifies to

equation 4.9.

Figure 4.2: Estimated locations of normal forces acting on Tankbot bogie. Modified from [7]

35

PS = µ|!|p
NX

n=1

k~a� ~Cr,lk (4.9)

The third and final factor in estimating the power loss is the power required to overcome the

pitch changes. Equations 4.10 - 4.13 were derived in by Pentzer and are pulled directly from

[7] and [10]. They were used to calculate the power and energy consumed in order to traverse a

specific path. Chapter 5 elaborates on how these equations were fully accounted for, including the

scaling factor � that Pentzer used to compensate for the changes in elevation.

PP = �mgVx sin ✓ (4.10)

P = µJmu +GJG + �J� (4.11)

P = µ|!|p
NX

n=1

k~a� ~Cr,lk+G (|Vr|+ |Vl|) + �mgVx sin ✓. (4.12)

E = �t(µJµ +GJG + �J�) (4.13)

The total power loss, found most directly through 4.12 is the summation of 4.1, 4.9, and 4.10.

The total energy required to achieve a path is the time it takes to travel a course multiplied by

P . However, when Pentzer created code to simulate these traversals, he did not account for the

changes in elevation; therefore, the UGV was only penalized for the terrain type it traversed. So,

36

the equations used in MATLAB are

P = µJmu +GJG (4.14)

P = µ|!|p
NX

n=1

k~a� ~Cr,lk+G (|Vr|+ |Vl|) (4.15)

E = �t(µJµ +GJG) (4.16)

4.2 Equations for Path Planning

For the purposes of planning the UGV’s path an SMBPO method is used. As a result of

specifying the Planning_Mode to Energy, it is necessary to calculate the energy potentially

required to arrive at the child node of each i
th branch. The �t found in equation 4.17 is the time it

would take to arrive at each node, which can be estimated as �d
Vx

.

Ei = �t(µJmu,i +GJG,i) (4.17)

In a two dimensional approach to the path planner the distance between the child and parent nodes

would be calculated as:

�d =
p

(E1 � E2)2 + (N1 �N2)2 (4.18)

and is seen in Figure 4.3 as the Euclidean distance between the coordinate points, [E1, N1] and

[E2, N2].

37

Figure 4.3: A child and parent node with pseudo-grid dimensions. [7]

Another coordinate used for path planning is the heading, �, such that the change is found in

4.19.

 d = | 1 � 2|. (4.19)

The power and energy equations derived in the previous section do not impact the path planner

if the Planning_Mode is set to Distance. If this is the case, then the cost of moving from one

node to the other would be calculated as:

CC = dA,C +DC,GOAL (4.20)

where the theoretical cost is how far the UGV has to move to arrive at the next node and then the

distance from the new node to the goal. In application, this results in a linear two dimensional path

between the start and target locations.

38

4.3 Code for Power Estimation

Prior to any power calculations or path predictions, image mapping programs must run to

filter satellite, colored images into categorical images that describe low energy, high energy, and

inaccessible areas. Figure 4.5 is the filtered version of Figure 4.4 such that the low energy, asphalt

is light gray, the high energy grass is dark gray, and the infinite obstacles are black.

Figure 4.4: Sample satellite imaging of a location in State College, PA. [7]

Figure 4.5: Power map image after k-means segmentation. The color variation represents the
traversability of the area. [7]

39

The MATLAB file found below, calculates the µ and G for the UGV at the location [East,

North] and the minimum µ and G for the entire map, based on POW_Map.Image, where the East

and North values correspond to a pixel in an image with a respective column and row. From that

pixel, the algorithm determines the coloring indicating surface type.

1 function [in_flag, mu, G, min_mu, min_G] = func_Power_Gain(East, North)
2

3 %This function takes in a position set and outputs the proper power model
4 %parameters for that position from the power map.
5 %
6 %Inputs: East: East position (m)
7 % North: North position (m)
8 %
9 %Outputs: in_flag: True if position lies within power map, false if not

10 % mu: Mu power model parameter for input position
11 % G: G power model parameter for input position
12 % min_mu: Minimum mu power model parameter within the map.
13 % min_G: Minimum G power model parameter within the map.
14

15 global POW_Map;
16

17 %Determine if the point lies within the positions covered by the power map
18 if East > POW_Map.ImProp.E_min_max(1) + 2 && East < ...

POW_Map.ImProp.E_min_max(2) - 2 && North > ...
POW_Map.ImProp.N_min_max(1) + 2 && North < ...
POW_Map.ImProp.N_min_max(2) - 2

19

20 %Calculate the row/col in the image equivalent to the N/E position
21 [row, col] = func_NE_to_image(North, East, POW_Map.ImProp);
22

23 %Get the pixel color for the current position
24 Pixel = POW_Map.Image(row, col);
25

26 %Find which row in the colors array corresponds to this pixel color
27 Index = find(POW_Map.Colors(:,1) == Pixel);
28

29 %Extract the power model parameters from the colors array
30 mu = POW_Map.Colors(Index,2);
31 G = POW_Map.Colors(Index,3);
32

33 %Determine the minimum mu and G values within the power map
34 min_mu = min(POW_Map.Colors(:,2));
35 min_G = min(POW_Map.Colors(:,3));
36

37 %Set the bounds flag
38 in_flag = 1;
39

40

40 else %Position lies outside of area covered by map. Set variables ...
accordingly

41 in_flag = 0;
42 mu = 0;
43 G = 0;
44 min_mu = 0;
45 min_G = 0;
46 end

The final component of this code allows the planner to attempt locations beyond the size of

POW_Map.Image, by simply setting the coefficients of friction and resistance to zero. The issue

with this assumption is that it makes locations outside of the known map zero energy nodes, which

would make them desirable paths. Instead, this program was altered such that locations outside of

the boundaries are energy obstacles and thereby undesirable as children nodes.

4.4 Code for Path Planning

The following file creates an exp_array when the expand_array function is called. The

output array is in the format of [s_N, s_E, s_H, hn, gn, fn, Energy], such that s_N, s_E, and s_H

are the coordinates of a new node state. The value of hn becomes the previous cost of traveling

from the start to current position added to the cost of traveling from the current node to the new

node state.

To ensure that the new node is far enough away or different enough in direction, lines 53 - 67

checks that the distance between the nodes is greater than the prescribed grid size. If the distance

is farther than the grid size, the potential node is passed along to find its cost efficiency. However,

when a potential child is within the grid, it passes through another set of logic, which verifies that

the next position would have the vehicle facing a significantly different heading than before. Lines

57 - 62 constrain possible headings to a range of [-⇡, ⇡]. If the heading is greater than the set

41

heading differential, the potential child is evaluated. If the node fails to fulfill either parameter it is

assigned a flag equal to zero and is no longer considered.

Line 73 calls the func_Power_Gain function described in the previous section, in order to

calculate the energy it would require for the vehicle to travel to a new node, regardless of the

planning mode. The energy consumption is found in lines 84 and 85 and evaluates the lower cost

nodes to the expanded child nodes. The result of which is stored in exp_array(:,7), so total

energy used in Joules is stored as a variable which allows comparisons between paths.

1 function exp_array=expand_array(node_N,node_E,node_h,hn,NTarget, ...
ETarget,CLOSED,Movement,Grid_D,Grid_H,Planning_Mode)

2 %Function to return an expanded array.
3 %
4 %This function takes a node and returns the expanded list of ...

successors,with the
5 %calculated fn values. The criteria being none of the successors ...

are on the CLOSED list.
6 %
7 %Inputs: node_N: North position (m) of lowest cost node
8 % node_E: East position (m) of lowest cost node
9 % node_h: Heading (rad) of lowest cost node

10 % hn: Cost to reach current node from start position
11 % NTarget: Target north coordinate (m)
12 % ETarget: Target east coordinate (m)
13 % CLOSED: List of point coordinates that have been expanded
14 % Movement: An array of movement trajectories for the ...

expansion
15 % Grid_D: Minimum distance (m) between expanded nodes
16 % Grid_H: Minimum heading difference (rad) between nodes
17 % Planning_Mode: String choice between "Energy" and ...

"Distance"
18 %
19 %Outputs: exp_array: array of nodes expanded from current lowest ...

cost position
20

21 %Expand current node position with movement trajectories.
22 %Trajectories are rotated using current node heading.
23 New_Positions = zeros(size(Movement,1),3);
24 for count = 1:size(Movement,1)
25 R = [cos(node_h), -sin(node_h); sin(node_h), cos(node_h)];
26 New_Positions(count,1:2) = (R*Movement(count,1:2)')' + [node_N, ...

node_E];
27 New_Head = node_h + Movement(count,3);
28

42

29 %Constrain heading value to lie between -pi and +pi
30 while New_Head > pi
31 New_Head = New_Head - 2*pi;
32 end
33 while New_Head < -pi
34 New_Head = New_Head + 2*pi;
35 end
36 New_Positions(count,3) = New_Head;
37 end
38

39 %Create expanded array. Each new point is compared with previous
40 %nodes to ensure that it does not violate the pseudo-grid rules.
41 exp_array=[];
42 exp_count=1;
43 c2=size(CLOSED,1);%Number of elements in CLOSED including the zeros
44

45 for count = 1:length(New_Positions)
46 %Get a new node state
47 s_N = New_Positions(count,1);
48 s_E = New_Positions(count,2);
49 s_H = New_Positions(count,3);
50 flag=1;
51

52 %Make sure this expanded node isn't too close to a closed node
53 for c1=1:c2
54 Dist = distance(s_N,s_E,CLOSED(c1,1),CLOSED(c1,2));
55 if(Dist < Grid_D)
56 Head_Diff = s_H - CLOSED(c1,3);
57 while Head_Diff > pi
58 Head_Diff = Head_Diff - 2*pi;
59 end
60 while Head_Diff < -pi
61 Head_Diff = Head_Diff + 2*pi;
62 end
63 if abs(Head_Diff) < Grid_H
64 flag=0;
65 end
66 end;
67 end;%End of for loop to check if a successor is on closed list.
68

69 %If the node is alright, calculate the costs and add it to the ...
array

70 if (flag == 1)
71

72 %Calculate the power model coefficients from the power map
73 [in_flag, mu, G, min_mu, min_G] = func_Power_Gain(node_E, ...

node_N);
74

75 %If in_flag is true, then the point lies within the power map
76 if in_flag
77

78 %Add position
79 exp_array(exp_count,1) = s_N;
80 exp_array(exp_count,2) = s_E;

43

81 exp_array(exp_count,3) = s_H;
82

83 %Calculate the energy cost or the distance cost to move ...
from the current low-cost node to this expanded child

84 Energy = Movement(count,4:5)*[mu; G];
85 Energy = Energy*Movement(count,6);
86 if strcmp(Planning_Mode, 'Energy')
87 New_hn = Energy;
88 elseif strcmp(Planning_Mode, 'Distance')
89 New_hn = distance(node_N,node_E,s_N,s_E);
90 end
91 exp_array(exp_count,4) = hn+New_hn;%cost of travelling ...

to node
92

93 %Calculate the energy cost or the distance cost to move ...
from

94 %the current low-cost node to the target point.
95 Dist_Goal = distance(NTarget,ETarget,s_N,s_E);
96 if strcmp(Planning_Mode, 'Energy')
97 Head_Goal = atan2(ETarget-s_E,NTarget-s_N);
98 Head_Diff = Head_Goal - s_H;
99 while Head_Diff > pi

100 Head_Diff = Head_Diff - 2*pi;
101 end
102 while Head_Diff < -pi
103 Head_Diff = Head_Diff + 2*pi;
104 end
105 Time_Turn = Head_Diff/0.1745;
106 Ener_Turn = 0.1745*min_mu*Time_Turn;
107 Time_Goal = Dist_Goal/0.5;
108 Ener_Goal = 1.0*min_G*Time_Goal;
109 New_gn = Ener_Goal+Ener_Turn;
110 elseif strcmp(Planning_Mode, 'Distance')
111 New_gn = Dist_Goal;
112 end
113

114 %Finish adding information to expanded array
115 exp_array(exp_count,5) = New_gn;%distance or energy ...

cost between node and goal
116 exp_array(exp_count,6) = ...

exp_array(exp_count,4)+exp_array(exp_count,5);%fn
117 exp_array(exp_count,7) = Energy;
118 exp_count=exp_count+1;
119 end
120 end
121 end

On line 89, the cost of traveling to the new node is based on a distance optimizer and directly

comes from equation 4.20 where New_hn = dA,C , such that the only cost of a node is dictated by

how far it puts the UGV from the target node. Depending on the which optimizer is being utilized,

44

exp_array(:,4) or hn, the cost of the node, is either energy or distance dependent. The term

cost describes what is lost when traveling to one node over another.

The next major section of the algorithm is looking towards what distance is left between the

expanded child node and the target node. The gn or exp_array(:,5) depends on the planning

mode, but stores either the distance or energy cost of traveling from the current node to the target

node. In the case of using a distance optimizer, line 111 calls back to equation 4.20 such that

New_gn = DC,GOAL. For the energy optimizer, the New_gn is equal to the energy needed to get

from the current node to the target in addition to the energy it would take to turn the UGV towards

goal node.

Once exp_array(:,4) and exp_array(:,5) are found, fn is merely the sum of the two

columns and is saved as exp_array(:,6). The value of fn is equivalent to CC from equation

4.20 for the distance optimizer, but would be equivalent to

CC = EA,C + EC,GOAL (4.21)

where EA,C is the energy required for the UGV to travel from the start node to the current node

and EC,GOAL is the energy estimated to be used to arrive at the goal.

In another function, the minimum fn value is found from the entire OPEN array of possible

paths. This acquisition of the min fn node is done through the use of the min function in MATLAB.

Once, the optimal node is found, all previous options in OPEN go to the CLOSED array and are

discarded from being considered again. Then, if the most current expansion is still not close

enough to the target node, the algorithm above is repeated. All nodes corresponding to the min fn

values are then considered a node along the optimal path, which guides the UGV from the start to

45

the final node.

46

Chapter 5

Friction-, Elevation-, and Kinematics-Based
Path Planning

As stated in Section 4.1, the previous models of path planning did not account for changes

in elevation when calculating the energy consumed or creating an optimal path. This chapter

presents and explains the equations necessary for estimating the energy consumed, the adjustments

made to previous models, and what a user might experience as expected outputs when running the

algorithm.

5.1 Equations for Power Estimation of Elevation Changes

The following equation combines and reiterates the power component specific to pitch from

equations 4.10 and 4.11, where � was a constant Pentzer used to compensate the amount of power

47

consumed in order to overcome elevation changes.

PP = �J� = �mgVx sin ✓ (5.1)

Beginning with the force induced on a stationary UGV due to gravity, the weight force is equivalent

to

FP = mg sin ✓ (5.2)

if ✓ is equal to the angle demonstrated in Figure 5.1.

Figure 5.1: Free body diagram of a Tankbot bogie on an incline.

In order to predict the power required to travel from one node to another, the gravity force of

the vehicle must be multiplied by the velocity of the UGV with respect to the surface, yielding

equation 5.3.

PP = mgVx sin ✓ (5.3)

The above equation predicts power, yet the optimizer is energy-based, so PP must be multiplied

48

by a time step. Therefore, the energy between two nodes that would take a delta time step to travel

is given by:

EP = PP�t = mgVx sin ✓�t (5.4)

where �t is equivalent to:

�t =
�d

Vx

(5.5)

such that �d is transformed from equation 4.18 to include changes in the vertical direction to be-

come:

�d =
p

(E1 � E2)2 + (N1 �N2)2 + (U1 � U2)2 (5.6)

After substituting equation 5.5 into the energy lost to changes in elevation equation, the term EP

simplifies to:

EP = mgVx sin ✓
�d

Vx

= mg sin ✓�d (5.7)

Since mass and gravity are constant, the energy consumed based on elevation changes is solely a

function of the slope of the hill and the Euclidean distance traveled from one point to the other.

To simplify the application of these equations for algorithm implementation, the slope is as-

sumed to to be linear between any two nodes. Therefore,

✓ = tan-1 U2 � U1p
(E1 � E2)2 + (N1 �N2)2

(5.8)

49

5.2 Optimization of Previous Algorithms

To implement the changes given by the equations above, the code implementations of the path-

planning algorithm written by Pentzer were adjusted in multiple locations and across a variety

of functions in order to accommodate adding the additional dimension of elevation. This section

describes these changes specifically and is organized by the key implementation changes for the

path planner and the code segments where the energy use calculations were needed.

5.2.1 Code for Planner with Vertical Component

First, to create data representing a vertical change in elevation, a simulated hill is created using

peaks function from MATLAB. To implement this, the following section of code is used from the

overall path planning algorithm; it creates a virtual hill for the planner to simulate the UGV envi-

ronment. When this work is applied to real-life scenarios, the hill information would be comprised

of the vertical GPS data. For the purpose of this thesis though, all results are from this simulated

hill equation.

The hill definition within the algorithm is stored within a mesh data structure that uses an

image-like format. Additionally, the image format used for planning has more columns than rows

in pixels. There are two steps to creating the hill. Lines 6 - 11 establish the left side of the image

format with a dynamic incline that fills all of the rows. The variables r and p are arrays that range

from -1 to 1 in intervals of 0.00562, so that the mesh grid created in line 72 fills the size of all rows

of the image and the columns 1 through the number of rows. However, this method leaves some

columns left empty, so lines 80 - 88 fill the rest of the columns by slowly decreasing the height by

50

.01 meter such that the hill extends to the end of the array.

1 %% Adjust the POW map with the hill and altitude changes
2 % Create a struct to save the power map results for use in other ...

algorithms.
3 % Create a sub struct that is a hill created by RPQ for [0:356, 0:356] this
4 % is an entirely simulated hill, and with measured elevations, this
5 % component would be removed
6 r = -1:0.00562:1; % .00562 = (1-(-1))/size(POW_Map.Image(:,1))
7 p = -1:0.00562:1; % .00562 = (1-(-1))/size(POW_Map.Image(:,1))
8 [R,P] = meshgrid(r,p);
9 Q = 3*(1-R).ˆ2.*exp(-(R.ˆ2) - (P+1).ˆ2) ...

10 + 10*exp(-R.ˆ2-P.ˆ2)-1.3533528; % creates the desired hill
11 POW_Map.Altitude = Q;
12

13 %Create a sub struct that decreasing the rest of the hill down to zero
14 %altitude for [357:609, 0:356], because the Q can only create a square
15 %matrix of data
16 for k = 357:609
17 for i = 1:356
18 if POW_Map.Altitude(i,k-1)  .1
19 POW_Map.Altitude(i,k) = 0;
20 else
21 POW_Map.Altitude(i,k) = POW_Map.Altitude(i,k-1) - .01;
22 end
23 end
24 end

The results of these data structures are saved to a file that contains the altitude for every pixel,

POW_Map.Altitude, which is the same size as POW_Map.Image, a data structure which contains

the friction information of the area in question. Visually, the hill that is investigated in this thesis

can be seen in Figures 5.2 and 5.3 in three and two dimensional plots.

51

Figure 5.2: Mesh plot of a man made and simulated hill within a image coordinate system of row
and column.

Contour of hill

1

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

5

6

6

6

6

7

77

7

8

8

8

9

9

1
0

100 200 300 400 500 600

Column

50

100

150

200

250

300

350

R
o
w

Figure 5.3: Contour plot of a man made and simulated hill within a image coordinate system of
row and column.

52

After creating the hill, the rows are inverted about the center row using the flipud or flip

up-down function. This new array is then saved as POW_Map.AltitudeInteractive, named

as such because the only purpose for this structure is for visualization purposes; this inversion of

rows and colums allows an image such that, when superimposed with the image data, the hill is in

the anticipated location.

1 % Create a sub struct that has a converted pixels to the same ...
orientation as POW_MAP.Image

2 for ii = 1:length(POW_Map.Altitude)
3 POW_Map.AltitudeInteractive(:,ii) = flipud(POW_Map.Altitude(:,ii));
4 end
5

6 save('POW_Map_Hill.mat','POW_Map');

5.2.2 Code for Open Array with Vertical Component

The final subsection elaborates on how the expansion process accounts for changes in pitch

when path planning and energy calculations. To do this, a variable representing the OPEN list is

used throughout the algorithm. This OPEN list is an array of all possible expansion nodes from

the current node, i.e. possible path locations that the robot can visit from its current location.

This OPEN list is then filtered through to determine viable paths from the current location, and

the rejected nodes are sent to the CLOSED list. In order to include the Up values, two additional

columns are added as zval which is column of potential Up values, and the parent_zval repre-

sents the parent Up value for each tree. Due to this extension of the OPEN list, many indeces are

shifted by one or two columns from the original path planning algorithm developed by Pentzer.

1 function new_row = insert_open_NEU(xval,yval,zval,hval,parent_xval, ...
parent_yval,parent_zval,parent_hval,hn,gn,fn,energy)

53

2 %Function to Populate the OPEN LIST
3 %OPEN LIST FORMAT
4 %--
5 %IS ON LIST 1/0 |N val |E val |U val|Heading |Parent N val |Parent E ...

val |Parent U val |Parent Heading |h(n) |g(n)|f(n)|
6 %---
7 %
8 % Copyright 2009-2010 The MathWorks, Inc.
9 % Adjustments made by Veronica Gruning in March 2018

10 new_row=[1,13];
11 new_row(1,1)=1;
12 new_row(1,2)=xval;
13 new_row(1,3)=yval;
14 new_row(1,4)=zval;
15 new_row(1,5)=hval;
16 new_row(1,6)=parent_xval;
17 new_row(1,7)=parent_yval;
18 new_row(1,8)=parent_zval;
19 new_row(1,9)=parent_hval;
20 new_row(1,10)=hn;
21 new_row(1,11)=gn;
22 new_row(1,12)=fn;
23 new_row(1,13)=energy;
24 end

5.2.3 Code for Expansion Array with Vertical Component

In searching out new paths, one has to ensure that the robot does not leave the map. To im-

plement this, Lines 27 - 32 and 45 are used to keep the potential expansion nodes within the

boundaries of the number of rows and columns that are the dimensions of POW_Map.Altitude.

If the new node computed in lines 25 and 26 lies beyond the size of POW_Map.Altitude in either

direction it is categorized as not a number. Line 45 removes any nodes that are non numbers from

the OPEN list.

In order to account for the energy lost due to the slope of the terrain, lines 56, 66, 103, 143

merely add the z-component to a vector describing the location of the UGV. Another change made

to the previous compilation of programs is that the distance function is now called distance3D_squared,

because finding the square root of the three dimensional distance between two nodes becomes com-

54

putationally exhaustive. Hence lines 58 - 59, 73, 110, 157 differ from the code found in Section

4.4, such that the square root to calculate the Dist_Goal_Vector is only taken once per instance

that expand_array_NEU function is called.

1 function exp_array = expand_array_NEU(node_N, node_E, node_U, node_h, ...
hn, NTarget, ETarget, UTarget, CLOSED, Movement, Grid_D_Squared, ...
Grid_H, Planning_Mode, ImProp, Altitude, w, v)

2 %Function to return an expanded array.
3 %
4 %This function takes a node and returns the expanded list of ...

successors,with the
5 %calculated fn values. The criteria being none of the successors are on ...

the CLOSED list.
6 %
7 %Inputs: node_N: North position (m) of lowest cost node
8 % node_E: East position (m) of lowest cost node
9 % node_h: Heading (rad) of lowest cost node

10 % hn: Cost to reach current node from start position
11 % NTarget: Target north coordinate (m)
12 % ETarget: Target east coordinate (m)
13 % CLOSED: List of point coordinates that have been expanded
14 % Movement: An array of movement trajectories for the expansion
15 % Grid_D: Minimum distance (m) between expanded nodes
16 % Grid_H: Minimum heading difference (rad) between nodes
17 % Planning_Mode: String choice between "Energy" and "Distance"
18 %
19 %Outputs: exp_array: array of nodes expanded from current lowest cost ...

position
20

21 %Expand current node position with movement trajectories.
22 %Trajectories are rotated using current node heading.
23 New_Positions = zeros(size(Movement,1),4);
24 R = [cos(node_h), -sin(node_h); sin(node_h), cos(node_h)];
25 for count = 1:size(Movement,1)
26 New_Positions(count,1:2) = (R*Movement(count,1:2)')' + [node_N, ...

node_E];
27 [row,col] = func_NE_to_image(New_Positions(count,1), ...

New_Positions(count,2),ImProp);
28 if isreal((length(Altitude(:,1)) - round(row) + 1)) && ...

(length(Altitude(:,1)) - round(row) + 1) > 0 && isreal(col) && ...
col  size(Altitude,2)

29 New_Positions(count,3) = Altitude(length(Altitude(:,1)) - ...
round(row) + 1,round(col));

30 else
31 New_Positions(count,3) = NaN;
32 end
33 New_Head = node_h + Movement(count,4);
34

35 %Constrain heading value to lie between -pi and +pi

55

36 while New_Head > pi
37 New_Head = New_Head - 2*pi;
38 end
39 while New_Head < -pi
40 New_Head = New_Head + 2*pi;
41 end
42 New_Positions(count,4) = New_Head;
43 end
44

45 New_Positions(isnan(New_Positions(:,3)),:) = [];
46

47

48 %Create expanded array. Each new point is compared with previous
49 %nodes to ensure that it does not violate the pseudo-grid rules.
50 exp_array=[];
51 exp_count=1;
52 c2=size(CLOSED,1);%Number of elements in CLOSED including the zeros
53

54 s_N_vector = New_Positions(:,1);
55 s_E_vector = New_Positions(:,2);
56 s_U_vector = New_Positions(:,3);
57 s_H_vector = New_Positions(:,4);
58 Dist_Goal_Squared_Vector = distance3D_squared(NTarget,ETarget,UTarget, ...

s_N_vector,s_E_vector,s_U_vector);
59 Dist_Goal_Vector = Dist_Goal_Squared_Vector.ˆ0.5;
60 Dist_Goal2D_Vector = distance(NTarget,ETarget,s_N_vector,s_E_vector);
61

62 for count = 1:length(New_Positions)
63 %Get a new node state
64 s_N = New_Positions(count,1);
65 s_E = New_Positions(count,2);
66 s_U = New_Positions(count,3);
67 s_H = New_Positions(count,4);
68 flag=1;
69

70 %Make sure this expanded node isn't too close to a closed node
71 Dist_squared = ...

distance3D_squared(s_N,s_E,s_U,CLOSED(:,1),CLOSED(:,2),CLOSED(:,3));
72 for c1=1:c2
73 if(Dist_squared(c1,1) < Grid_D_Squared)
74 Head_Diff = s_H - CLOSED(c1,4);
75 while Head_Diff > pi
76 Head_Diff = Head_Diff - 2*pi;
77 end
78 while Head_Diff < -pi
79 Head_Diff = Head_Diff + 2*pi;
80 end
81 if abs(Head_Diff) < Grid_H
82 flag=0;
83 end
84 end
85 end %End of for loop to check if a successor is on closed list.
86

87 %If the node is alright, calculate the costs and add it to the array

56

88 if (flag == 1)
89

90 %Calculate the power model coefficients from the power map
91 [in_flag, mu, G, min_mu, min_G, ¬] = func_Power_Gain(node_E, ...

node_N);
92

93 %See if the expanded node is not in an obstacle
94 [not_obs, ¬, ¬, ¬, ¬, ¬] = func_Power_Gain(s_E, s_N);
95

96 %If in_flag is true, then the point lies within the power map
97 %and is not in an obstacle
98 if in_flag && not_obs
99

100 %Add position
101 exp_array(exp_count,1) = s_N;
102 exp_array(exp_count,2) = s_E;
103 exp_array(exp_count,3) = s_U;
104 exp_array(exp_count,4) = s_H;
105

106 %Calculate the energy cost or the distance cost to move from
107 %The current low-cost node to this expanded child
108 Thetaseg = atan((s_U - node_U))/distance(node_E,...
109 node_N, s_E, s_N);
110 dist = ...

sqrt(distance3D_squared(node_N,node_E,node_U,s_N,s_E,s_U));
111 Ener_Thet = w*dist*sin(Thetaseg);
112 if Ener_Thet  0
113 Ener_Theta = 0;
114 else
115 Ener_Theta = Ener_Thet;
116 end
117 Power = Movement(count,4:5)*[mu; G];
118 Energy = Power*Movement(count,6)+Ener_Theta; ...

%Movement(count,6) is the time to complete the motion ...
trajectory

119 if strcmp(Planning_Mode, 'Energy')
120 New_hn = Energy;
121 elseif strcmp(Planning_Mode, 'Distance')
122 New_hn = distance(node_N,node_E,s_N,s_E); %2-D distance ...

planning
123 end
124 exp_array(exp_count,5) = hn+New_hn;%cost of traveling to node
125

126 %Calculate the energy cost or the distance cost to move ...
from the current low-cost node to the target point.

127 Dist_Goal = Dist_Goal_Vector(count,1);
128 Dist_Goal2D = Dist_Goal2D_Vector(count,1);
129 if strcmp(Planning_Mode, 'Energy')
130 Head_Goal = atan2(ETarget-s_E,NTarget-s_N);
131 Head_Diff = Head_Goal - s_H;
132 while Head_Diff > pi
133 Head_Diff = Head_Diff - 2*pi;
134 end
135 while Head_Diff < -pi

57

136 Head_Diff = Head_Diff + 2*pi;
137 end
138 Time_Turn = Head_Diff/0.1745; %Estimate of turn rate ...

for Tankbot to align with goal heading in rad/s
139 Ener_Turn = abs(0.1745*min_mu*Time_Turn);
140

141 NTrack = linspace(s_N, NTarget, floor(Dist_Goal));
142 ETrack = linspace(s_E, ETarget, floor(Dist_Goal));
143 UTrack = linspace(s_U, UTarget, floor(Dist_Goal));
144 SegLength = Dist_Goal/(floor(Dist_Goal));
145 SegTime = SegLength/0.5; %0.5 is speed of robot driving ...

straight to goal
146 Ener_Goal = 0;
147 for SegNum = 2:length(NTrack)
148 [obs_flag, ¬, G, ¬, ¬, maxG] = ...

func_Power_Gain(ETrack(SegNum), NTrack(SegNum));
149 Gseg = G;
150 Thetaseg = atan((UTrack(SegNum) - UTrack(SegNum - ...

1)))/distance(ETrack(SegNum - 1),...
151 NTrack(SegNum - 1), ETrack(SegNum), ...

NTrack(SegNum));
152

153 if obs_flag == 0
154 Gseg = maxG;
155 end
156

157 dist = sqrt(distance3D_squared(NTrack(SegNum-1), ...
ETrack(SegNum-1), UTrack(SegNum-1), ...
NTrack(SegNum), ETrack(SegNum), UTrack(SegNum)));

158 Ener_Thet = w*dist*sin(Thetaseg);
159 if Ener_Thet < 0
160 Ener_Theta = 0;
161 else
162 Ener_Theta = Ener_Thet;
163 end
164 Ener_Seg = 1.0*Gseg*SegTime; %Equation is ...

|Vr|+|Vl|. Track velocities are 0.5, so add to 1.
165 Ener_Goal = Ener_Goal + Ener_Seg + Ener_Theta;
166 end
167 New_gn = Ener_Goal+Ener_Turn;
168 elseif strcmp(Planning_Mode, 'Distance')
169 New_gn = Dist_Goal2D;
170 end
171

172 %Finish adding information to expanded array
173 exp_array(exp_count,6) = New_gn;%distance between node and goal
174 exp_array(exp_count,7) = ...

exp_array(exp_count,5)+exp_array(exp_count,6);%fn
175 exp_array(exp_count,8) = Energy;
176 exp_count=exp_count+1;
177 end
178 end%Populate the exp_array list
179 end%End of if node is not its own successor loop

58

In the above code, the specific alterations made in regard to the energy lost due to slope are

in lines 108 - 116, 118, 150, 158 - 163, 165. Lines 108 and 150 calculate the angle between two

nodes. Lines 111 and 158 find the energy lost due to the angle calculated in the previous line. The

logic found in lines 112 - 116 and 159 - 163 determines if the energy consumed by approaching

a slope is negative or positive. If negative, the Ener_Theta is set to zero, because it would be

inaccurate to calculate that the UGV gains energy by going down a hill, as the robot is incapable

of regenerating energy. If Ener_Thet is positive, then the values is passed through as the energy

it would take to overcome a change in global height.

5.3 User Process of Optimized Algorithm

When running the path planner program, the user has the option to hard code the start and

end points, or to manually select these locations from an overhead view of the map. This section

explains the steps to select the nodes manually and shows examples of the resulting figures. See

Appendix B on lines 250 - 320 on how the user interface was programed.

Immediately after running the code, the user is presented with a pop-up window showing an

image similar to that of Figure 5.4, which contains a contour plot and variation in color to signify

friction. The user then clicks on the point of the map they wish to be the goal, and then clicks

another time to assign a location to the start node. After this initial input of information, the rest of

the algorithm runs until there is an optimized path solution.

59

1

1

1

1

1
2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

7

7

7

7

7

8

8

8

8

9

9

9

1
0

Please Select the Target using the Left Mouse button

Figure 5.4: Initial user interface for path-planner.
1

1

1

1

1
2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

7

7

7

7

7

8

8

8

8

9

9

9

1
0

Goal

Start

Please Select the Start using the Left Mouse button

Figure 5.5: User interface of path-planner after selecting the Start and Goal node.

Depending on the planning mode selected, whether it is based on distance or energy, the final

results look like Figures 5.7 or 5.8 respectively. In the upper subplot the starting point is given

a black circle and the end point is designated with a star. In the lower subplot the start and end

points are the red circle and red diamond respectively. The green dots in both plots are the nodes

selected for the optimal path, and the surrounding “haze” represents potential paths that came

60

from the exp_array but were not selected as the optimal expansion. By enclarging an area within

this haze, found in Figure 5.6, the blue empty circles show the nodes that are now stored in the

CLOSED list, and the red lines are the branches that would have connected the path nodes if they

had been chosen for the final path solution.

Figure 5.6: Enlarged area of the path-planning options showing the optimizer densitiy of choices.

61

Figure 5.7: Results from using a Distance based optimizer.

The distance-optimized path is based on a birds-eye view approach, so the nodes of the optimal

path create a straight line between the start and target as seen in Figure 5.7. Although the distance

and time the simulated UGV takes to arrive at the goal point is only NUMm, the energy required

is NUMJ. In contrast, the energy-based optimizer can be found in 5.8, where the optimal path not

only stays within the low-friction zone but also skirts around the hill in order to maintain the same

elevation as the goal. As a result, the energy cost is NUMJ with a distance of NUMm.

62

Figure 5.8: Results from using an Energy based optimizer.

63

Chapter 6

Results and Analysis

This chapter reports and explains the results of repeated simulation runs using the algorithm

in consideration of vertical terrain geometry. Ten start and end nodes are used throughout this

chapter, in order to compare the effects of using an energy based optimizer over traveling purely

the Euclidean distance. Tables A.1 and A.2 describe the start and end nodes for the ten runs in

Appendix A.

6.1 Frictionless Path Planning with Simulated Hill

First, the algorithm is run without considering variable surface friction types. Therefore, the

components that are attributed to energy consumed while traversing an area are only the internal

resistances and the changes in elevation. This method answers the question of how the the vertical

component affects planning based on energy estimations.

64

Figure 6.1: Solution path for distance-based optimizer.

Figures 6.1 and 6.2 exhibit the path solution for both the distance- and energy-based optimizer

respectively. This particular run resulted in a reduction of energy consumed by 1921.68J, which

represents a 9.01% decrease from the distance optimizer. However, the tradeoff is that the UGV

would have to travel an additional 93.69m to achieve the goal node. This 149% increase in distance

may require additional time, which may not be acceptable in occasions of crisis. But for routine

transportation of nonperishable supplies, the sacrifice in timeliness may be worth the energy sav-

65

ings.

Figure 6.2: Solution path for energy based optimizer.

Between the ten simulations, the average decrease in energy used was 10.113%, and the average

increase in distance was 97.817%. The standard deviations are listed in Table 6.1, and the data used

to solve for the values below are given in Tables A.3 and A.4.

66

Table 6.1: Mean value and standard deviation of the change rate from distance to energy optimizer
at original slope

Mean (%) Standard Deviation (%)
Distance (m) 97.817 83.048

Energy (J) -10.113 4.962

6.2 Path Planner Considering All Energy Components

This section contains the results of running the planner for ten node sets for energy- and

distance-based optimization now including all factors: the friction, slope, and internal resistances

considered together. By including all three factors, this thesis marries the novel work with that

of Pentzer [7]. After running ten simulated runs over the same map displayed in Figure 5.8, the

average rate of change in distance and energy and one standard deviation from those values were

calculated and are listed in Table 6.2. Tables 6.3 and A.6 contain a comprehensive list of results

from the simulations.

Table 6.2: Mean value and standard deviation of the change rate from distance- to energy-based
optimizer at original slope with friction

Mean (%) Standard Deviation (%)
Distance (m) 26.744 37.453

Energy (J) -17.352 18.932

The real-world scenario this simulated map is mimicking is of a hill with a road leading from

one side to the other and the corner of the road occurs at the crux of the hill. An example of how

the added friction and elevation affects the path planner is seen in Figures 6.3 and 6.4. In Figure

6.3 the distance-based optimizer is utilized and results in a path that runs through the high friction

67

zone in the dark gray and directly up the hill. The cost of the path is 3.51kJ and takes 106.04m to

arrive at the target node. But by adding an additional 5.13m, an energy-optimized path would have

saved 2.40kJ. The optimal path found in Figure 6.4 avoids the majority of the high friction zone

and does not directly climb the hill. These small changes are what make the major difference in

energy savings.

Figure 6.3: Solution path for distance-based optimizer with friction.

68

Figure 6.4: Solution path for energy-based optimizer with friction.

6.3 The Effects of Increasing the Slope on Planner Results

The prior discussions investigated how a particular hill affects optimal path created by the

algorithm, but the slope of that prior terrain is not particularly steep. This section delves into the

results of making the slope of an area steeper. On the right side of Figures 6.6 and 6.7, there is an

69

example of the resulting path after increasing the angle of the hill to become Figure 6.5.

Figure 6.5: Adjusted simulated hill in mesh (left) and contour (right) plots.

Figure 6.6: Distance-based optimizer path result with original (left) vs heightened (right) slope.

70

Figure 6.7: Energy-based optimizer path result with original (left) vs heightened (right) slope.

From the comparisons shown in these figures, the energy-optimized paths for both hills are

similar in shape. This similarity is due largely in part to the fact that the Up coordinate of the

Target node is only .375m higher for the original hill and .142m higher for the altered hill than the

Up coordinate of the Start node. Since the vertical components are close to equal in both cases, the

UGV seeks to avoid energy-intensive hill-climbing and descents, and instead follows a path along

the contour line rather than run up and back down the hill in a Euclidean path. As the pitch map is

increased, the effectiveness of the energy optimizer increases, as seen in Tables 6.3 and 6.2.

Table 6.3: The energy cost for simulated run number six using the energy and distance optimizer
for an original hill and one with an increased slope gradient.

Slope Type EnergyCostEnergy (J) EnergyCostDist (J)
Original 10193.90 12105.46
Altered 10557.48 12666.69

71

Table 6.4: The energy cost for simulated run number six using the energy and distance optimizer
for an original hill and one with an increased slope gradient.

Slope Type �EnerCost (J) ChangeRateEnergy (%)
Original -1911.564 -15.791
Altered -2109.214 -16.652

These results agree with intuition that, if a robot has to arrive on the other side of a mountain,

it would be more energy effective to increase the energy consumed due to internal resistances by

driving around the base of the mountain than to climb to the peak and back down to the base,

thereby raising the energy necessary to fulfill the pitch-induced power. The energy optimizer

continually weighs the cost benefit of avoiding an energy inefficient zone over heading straight

towards the target, so applied the algorithm never excludes the distance based path. Figure 6.4 is

an ideal example of when avoiding a high energy area no longer saves the overall energy consumed,

which results in the UGV traveling through the high friction patch. Prior to that point though, the

vehicle skirted around the edge of the road.

72

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presents the modifications made to an established energy-aware path-planning

method, modeling the distance, surface-friction, and gravitational energy needed for UGV’s to

travel from a given start node to a goal location. Beginning with a brief history of path-planning

approaches, the body of this work focuses on the modivications necessary for energy-based imple-

mention of an SMBPO model. The first component of calculating energy usage requires methods

to describe robot vehicle kinematics and the significance in ICR locations for skid-steer vehicle

behavior. The next layer added to the environment is a friction map. The thesis results illustrate

how overlaying a pitch map might impact the amount of energy consumed.

The results show that the vertical component of terrain has an important effect on the energy re-

quired to travel, and this thesis demonstrates that although, computationally expensive, the energy

cost allows more effective paths to be determined in complex terrain than a simple straight-line

73

motion. The research has yielded an algorithm which could be applied to a variety of robotic

platforms and establish a more energy-efficient path in their use.

7.2 Future Work

The next steps to this research would be to investigate potential topics encountered in the

research, including:

• Improving the Algorithm Run Time: Currently, the energy-based optimizer can take up to

several hours to solve for an optimal path. There are time inefficient operations that could

be manipulated into more effective functions.

• Experimental Data: After collecting data of a traversable area for G, µ, and pitch maps, it

would be insightful to validate the algorithm with experimental data. The algorithm would

have to be run first with the experimental maps and thereby dictate the start and end locations,

and the speed of the vehicle. The UGV would be given the optimal path and drive at a

constant speed across it. Power loggers would gather the energy consumption of the vehicle

over the given path, so it could then be compared to the estimated energy cost from the

algorithm.

74

Bibliography

[1] CHUY JR., O., COLLINS JR., E., YU, W., AND ORDONEZ, C. Power modeling of a skid
steered wheeled robotic ground vehicle. In Proceedings of the 2009 IEEE International
Conference on Robotics and Automation (May 2009), pp. 4118–4123.

[2] DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numerische Mathe-
matik 1 (1959), 269–271.

[3] HALTON, J. H. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik 2 (1960), 84–90.

[4] MARTÍNEZ, J. L., MANDOW, A., MORALES, J., PEDRAZA, S., AND GARCÍA-CEREZO,
A. J. Approximating kinematics for tracked mobile robots. The International Journal of
Robotics Research 24, 10 (Oct. 2005), 867–878.

[5] MATA, A. S., TORRAS, A. B., CARRILLO, J. A. C., JUANCO, F. E., FERNÁNDEZ, A.
J. G., MARTÍNEZ, F. N., AND FERNÁNDEZ, A. O. Fundamentals of machine theory and
mechanisms, vol. 40. Springer, 2016.

[6] MORALES, J., MARTÍNEZ, J. L., MANDOW, A., GARCÍA-CEREZO, A. J., AND PEDRAZA,
S. Power consumption modeling of skid-steer tracked mobile robots on rigid terrain. IEEE
Transactions on Robotics 25, 5 (2009), 1098–1108.

[7] PENTZER, J. Utilization of ICR Kinematics in Estimation, Control, and Energy-Aware Mis-
sion Planning for Skid-Steer Vehicles. PhD thesis, The Pennsylvania State University, 2014.

[8] PENTZER, J., BRENNAN, S., AND REICHARD, K. Model-based prediction of skid-steer
robot kinematics using on-line estimation of track instantaneous centers of rotation. Journal
of Field Robotics 31, 3 (2014), 455–476.

[9] PENTZER, J., BRENNAN, S., AND REICHARD, K. On-line estimation of vehicle motion and
power model parameters for skid-steer robot energy use prediction. In Proceedings of the
American Control Conference (2014).

[10] PENTZER, J., REICHARD, K., AND BRENNAN, S. Energy-based path planning for skid-
steer vehicles operating in areas with mixed surface types. In American Control Conference
(ACC), 2016 (2016), IEEE, pp. 2110–2115.

[11] SHIGLEY, J., AND UICKER, J. Theory of machines and mechanisms, 1980.

75

[12] TACK, S., BURKE, M., AND SINHA, S. Local exploration strategies for a mobile robot in
a highly dynamic environment. In Robotics and Mechatronics Conference of South Africa
(ROBOMECH), 2012 5th (2012), IEEE, pp. 1–6.

[13] UICKER, JR, J. J., PENNOCK, G. R., AND SHIGLEY, J. E. Theory of Machines and Mech-
anisms, third ed. Oxford University Press, New York, 2003.

[14] WONG, J. Theory of Ground Vehicles, 4 ed. John Wiley and Sons, 2008.

76

Appendix A

This appendix includes the results of ten simulations on a sloped terrain without changes in

friction and ten simulations, using the same start and end nodes, on a sloped terrain with changes

in friction. Table A.1 lists the starting North, East, and Up values in meters for each run and Table

A.2 provides the target node coordinates in a mirrored column format. The rest of this chapter is

divided into a section that focuses on the results of frictionless terrain and another on the results

when all components of energy consumption are considered and equally important.

Table A.1: Starting node locations for ten simulated runs

Run North Start (m) East Start (m) Up Start (m)
1 54.6393 14.8580 2.1965
2 70.1260 15.7522 1.6588
3 54.3415 14.8580 2.2065
4 86.2082 7.7043 1.2054
5 99.9079 -1.2379 0.6442
6 -1.0529 32.4442 7.0236
7 63.5739 8.5985 1.9640
8 -8.4984 -2.4302 10.0906
9 45.1091 17.5407 3.2778

10 124.0313 -20.0164 0

77

Table A.2: Target node locations for ten simulated runs.

Run North Target (m) East Target (m) Up Target (m)
1 -21.3047 -28.3624 8.5436
2 -15.3483 -32.5354 8.1449
3 -21.0069 -28.9585 8.5005
4 -18.0287 -39.6891 7.3985
5 -7.0093 -0.9398 10.0896
6 23.0705 2.0409 7.1332
7 0.1383 -0.0456 9.8601
8 126.1161 13.9638 0
9 -2.8399 -35.2181 7.0072
10 33.1963 8.8966 5.4386

Results from Frictionless and Elevated Image

Data Recorded from MATLAB

Table A.3: The distance and energy cost for ten simulated runs using the energy and distance
optimizer without friction.

Run DistEnergy (m) EnergyCostEnergy (J) DistDist (m) EnergyCostDist (J)
1 158.5297195 22577.59934 86.01865751 25033.0781
2 157.5050779 24593.17693 96.3162292 26236.50016
3 158.2703995 22523.26751 86.01865751 24978.74626
4 157.4296688 27363.71851 114.0536575 29956.47061
5 152.1347355 29235.86515 106.0436575 30985.06982
6 153.8522602 8323.711232 37.95865751 10826.64955
7 156.5434165 19397.0581 62.85783503 21318.73955
8 155.5107148 25516.10984 134.0786575 27729.9672
9 157.9797406 17055.58393 69.99865751 19511.06268
10 158.735216 22983.8888 94.02865751 25043.80999

78

Calculations Made from MATLAB Data

Table A.4: The difference between distance and energy cost and the rate of change between energy
and distance optimizer results for ten simulated runs without friction.

Run �EnerCost (J) �Dist (m) ChangeRateEnergy (%) ChangeRateDist (%)
1 -2455.478756 72.51106196 -9.808936584 84.29690029
2 -1643.323228 61.1888487 -6.263500156 63.52911571
3 -2455.478756 72.25174201 -9.830272223 83.99543087
4 -2592.752102 43.37601131 -8.655065332 38.03123219
5 -1749.204671 46.09107798 -5.645314602 43.46424771
6 -2502.938322 115.8936027 -23.11830922 305.3153359
7 -1921.681454 93.68558151 -9.014048179 149.0436021
8 -2213.857362 21.43205724 -7.983627771 15.98468961
9 -2455.478756 87.9810831 -12.58505903 125.6896721

10 -2059.921192 64.70655853 -8.225270807 68.81578472

Results from Friction and Elevated Image

Data Recorded from MATLAB

Table A.5: The distance and energy cost for ten simulated runs using the energy and distance
optimizer.

Run DistEnergy (m) EnergyCostEnergy (J) DistDist (m) EnergyCostDist (J)
1 109.687142 24977.15652 86.01865751 26631.5912
2 96.68559824 28223.22786 96.3162292 29753.22898
3 89.24381402 24695.37498 86.01865751 26577.25937
4 113.20248302 33272.89380 114.0536575 35711.11778
5 111.17049564 11117.04956 106.0436575 35141.20388
6 84.33354761 10193.89641 37.95865751 12105.46004
7 91.973617 21633.41687 62.85783503 23556.6579
8 154.7728588 28055.04355 134.0786575 34503.35856
9 98.11883939 18148.96241 69.99865751 21109.57578
10 101.1743911 27127.71185 94.02865751 35333.93018

79

Calculations Made from MATLAB Data

Table A.6: The difference between distance and energy cost and the rate of change between energy
and distance optimizer results for ten simulated runs.

Run �EnerCost (J) �Dist (m) ChangeRateEnergy (%) ChangeRateDist (%)
1 -1654.434684 23.66848445 -6.21230129 27.51552411
2 -1,530.0011249 0.3693690467 -5.1423028 0.3834961665
3 -1881.884386 3.225156507 -7.080806789 3.749368568
4 -2438.2239795 -0.8511745 -6.8276328 -0.7462930
5 -24024.1543207 5.1268381 -68.3646309 4.8346485
6 -1911.563626 46.37489009 -15.79092096 122.1721028
7 -1923.24103 29.11578197 -8.164320417 46.32005215
8 -6448.315013 20.69420126 -18.68894879 15.43437385
9 -2960.613375 28.12018188 -14.02497807 40.17245884

10 -8206.218325 7.145733569 -23.22475389 7.599527376

80

Appendix B

This chapter contains the main file required to run the optimizer. It is broken into multiple

sections that tell a story with a beginning, middle, and end. The program starts by flags for plots,

loading initial data files and constants, simulating initial kinematics, selecting start and end points,

and initializing the list needed to run the algorithm. The meat of the code starts the algorithm and

finds the optimal path. The file finishes by plotting the resulting path and saving data results. In

the beginning commented section, the other files needed to use this program are listed and can be

found in Appendix C.

1 %This is the main script in the kinematically constrained A* type path
2 %planning algorithm for skid-steer robots. This algorithm is based on the
3 %SBMPO papers cited in Pentzer's and Gruning theses. This program ...

allows you to select
4 %a start and end point on a Power Map and then plans a path between the two
5 %points. The user can choose to use either a distance or energy-based cost
6 %function. This planner includes the slope and friction of the terrain to
7 %predict how it affects the energy costwalker
8 %
9 % Inputs: Start and End Points, ICR locations of vehicle

10 %
11 % Outputs: Energy or Distance optimal path
12 %
13 % Other m-files required: func_Kinematics, func_image_to_NEU, distance3D,
14 % expand_array_NEU, func_NE_to_image, func_Power_Gain, insert_open_NEU,
15 % min_fn, node_index, func_halton_set
16 %
17 % Author: Jesse Pentzer & Veronica Gruning
18 % email: vag5076@psu.edu
19 % May, 2018
20

21 close all;
22 %clear all;

81

23 clc;
24

25 global POW_Map;
26

27 %Set flag to 1 to plot figures 1 & 2 showing hills
28 flag_plot_hills = 1;
29

30 %Set true to plot progress of planning algorithm. Useful for debugging, but
31 %very slow.
32 Plot_During_Planning = true;
33

34 %Set true to plot the movement trajectories used to expand each row.
35 Plot_Movements = false;
36

37 %Choose one planning mode, either Energy or distance3D by uncommenting ...
a line.

38 Planning_Mode = 'Energy';
39 % Planning_Mode = 'Distance';
40

41 % PLOT_LIMIT is the number of iterations before plotting
42 PLOT_LIMIT = 200;
43

44 %This function is used to convert (N,E) position into pixel coordinates so
45 %the proper power model parameters can be looked up.
46

47 %Load a power map of the operational area. Load a junk variable with
48 %something that should be there in the workspace. If that load fails,
49 %reload the workspace.
50 try
51 temp = POW_Map.AltitudeInteractive(1,1);
52 catch
53 load('POW_Map_Test.mat');
54

55 %The power map is a structure with the following fields.
56 % Image: A grayscale image of the test area. There should be as many
57 % gray levels as there are unique surfaces in the map.
58 % Colors: An array that relates the gray levels to power model ...

parameters.
59 % Format: [Gray Level, Alpha, G, Beta]
60 % CornersLL: An array containing the [Latitude, Longitude] of the ...

four corners
61 % of the image. They are listed by row in order of ...

Northwest, Northeast,
62 % Southeast, and Southwest.
63 % ImProp: Another structure with information about the image.
64 % Altitude: The height at any point in the image
65 % AltitudeInteractive: The flipud(Altitude) for an accurate visual
66 % representation of the hill
67 %% Properties of vehicle. Approximately equal to Tankbot values.
68

69 % ICR Locations (m)
70 y_r = 0.5; % right track ICR
71 y_l = -0.5; % left track ICR
72 x_v = 0.1; % ICR on the y-axis

82

73

74 % Vehicle Mass
75 Mass = 100; %80.2858495 mass of tankbot kg
76 Weight = Mass*9.81; % Weight of the vehicle (N)
77

78 % Width between tracks (m)
79 W = 0.5207;
80

81 % Pressure at each wheel (N)
82 P = Weight/8.0;
83

84 % Distance from geometric center to track center along Y axis
85 Ty = 0.26033;
86

87 % Vectors from vehicle center to left bogie wheel locations
88 Vl1 = [0.2476, -Ty];
89 Vl2 = [0.0755, -Ty];
90 Vl3 = [-0.0826, -Ty];
91 Vl4 = [-0.2477, -Ty];
92

93 % Vectors from vehicle center to right bogie wheel locations
94 Vr1 = [0.2476, Ty];
95 Vr2 = [0.0755, Ty];
96 Vr3 = [-0.0826, Ty];
97 Vr4 = [-0.2477, Ty];
98

99 % Pre-Compute sums for power model.
100 A_l1 = Vl1 - [x_v, y_l];
101 A_l2 = Vl2 - [x_v, y_l];
102 A_l3 = Vl3 - [x_v, y_l];
103 A_l4 = Vl4 - [x_v, y_l];
104

105 A_r1 = Vr1 - [x_v, y_r];
106 A_r2 = Vr2 - [x_v, y_r];
107 A_r3 = Vr3 - [x_v, y_r];
108 A_r4 = Vr4 - [x_v, y_r];
109 Sum1 = P*norm(A_l1);
110 Sum2 = P*norm(A_l2);
111 Sum3 = P*norm(A_l3);
112 Sum4 = P*norm(A_l4);
113

114 Sum5 = P*norm(A_r1);
115 Sum6 = P*norm(A_r2);
116 Sum7 = P*norm(A_r3);
117 Sum8 = P*norm(A_r4);
118 Sum = Sum1+Sum2+Sum3+Sum4+Sum5+Sum6+Sum7+Sum8;
119

120 %% Set parameters for each node for the psuedo-grid implementation, ...
define the minimum distance3D and heading change allowed between ...
two nodes.

121 Grid_D = .5; %(m)
122 Grid_D_Squared = Grid_Dˆ2;
123 Grid_H = 20*pi/180; %(rad)
124

83

125 % Maximum track speeds (m/s)
126 Max_Vl = 1.0; % left track max speed
127 Max_Vr = 1.0; % right track max speed
128

129 % Determine a set of movements for the vehicle. These will be ...
transformed to expand array points during the path planning stage

130

131 %Get a set of inputs sampled from the control space.
132 V_l = func_halton_set(2,40)*Max_Vl;
133 V_r = func_halton_set(3,40)*Max_Vr;
134

135 %Add control commands allowing the vehicle to drive straight
136 V_l = [0.5; V_l;];
137 V_r = [0.5; V_r;];
138

139 %Simulate each command for tmax seconds
140 Dist = 0;
141 Psi = 0;
142 Movement = zeros(length(V_l),6);
143 q = [0; 0; 0; y_r; y_l; x_v];
144 t = 0;
145 dt = 0.01;
146 tmax = 8;
147

148 %% Adjust the POW map with the hill and altitude changes
149 % Create a struct to save the power map results for use in other ...

algorithms.
150 % POW_Map.Image(1:356,1:609) = 127; %same low friction for all ...

terrain area
151

152 % Create a sub struct that is a hill created by RPQ for [0:356, ...
0:356] this

153 % is an entirely simulated hill, and with measured elevations, this
154 % component would be removed
155 r = -1:.00563:1;
156 p = -1:.00563:1;
157 [R,P] = meshgrid(r,p);
158 Q = 3*(1-R).ˆ2.*exp(-(R.ˆ2) - (P+1).ˆ2) + ...

15*exp(-R.ˆ2-P.ˆ2)-1.3533528; %function that creates the desired ...
hill

159 POW_Map.Altitude = Q;
160

161 %Create a sub struct that decreasing the rest of the hill down to zero
162 %altitude for [357:609, 0:356], because the Q can only create a square
163 %matrix of data
164 for k = 357:609
165 for i = 1:356
166 if POW_Map.Altitude(i,k-1)  .1
167 POW_Map.Altitude(i,k) = 0;
168 else
169 POW_Map.Altitude(i,k) = POW_Map.Altitude(i,k-1) - .01;
170 end
171 end
172 end

84

173

174 %Create a sub struct that has a converted pixel to NEU altitude
175 for ii = 1:length(POW_Map.Altitude)
176 POW_Map.AltitudeInteractive(:,ii) = flipud(POW_Map.Altitude(:,ii));
177 end
178

179 %Save the Altitude and AltitudeInteractive sub structs in addition ...
to the sub structs already existent in POW_Map_Test.mat

180 save('POW_Map_Hill.mat','POW_Map');
181 end % Ends try/catch statement to see if the stuff is loaded yet
182

183 % graphs that more explicitly show the terrain's slope and friction
184 if 1==flag_plot_hills
185 % plot of the hill
186 subplot(1,2,1);
187 mesh(POW_Map.Altitude);
188 % colormap(gray);
189 xlabel('Column','Color','black');
190 ylabel('Row','Color','black');
191 zlabel('Height','Color','black');
192 title('Image of hill');
193 view(25,25)
194 set(gca,'fontname','times')
195 set(gca,'fontsize', 12)
196

197 % contour plot of the hill
198 subplot(1,2,2);
199 %hold on
200 [C,h] = contour(POW_Map.Altitude);
201 %colormap(gray);
202 xlabel('Column','Color','black');
203 ylabel('Row','Color','black');
204 title('Contour of hill');
205 clabel(C,h,'FontSize','default')
206 set(gca,'fontname','times')
207 set(gca,'fontsize', 12)
208 hold off
209 end
210

211 %% Simulate the movement of the vehicle using ICR kinematics. In this
212 %simulation I assume that the ICRs remain constant so I can do this
213 %once at the beginning. It could be easily adapted to re-calculate these
214 %trajectories if the ICRs vary.
215

216 for count = 1:length(V_l)
217 %ICR Kinematics to determine speed and angular rate
218 U = [V_r(count), V_l(count)];
219 omega = -(V_l(count) - V_r(count))/(y_l-y_r);
220 Vx = (V_l(count)*y_l - V_r(count)*y_r)/(y_l-y_r);
221 %Simulate movement until the max time is reached
222 while(1)
223 [qk] = func_Kinematics(q,U,dt);
224 Dist = sqrt(qk(1)ˆ2 + qk(2)ˆ2);
225 Psi = qk(3);

85

226 t = t + dt;
227 if t � tmax
228 %The max time has elapsed. Store the state AND power model ...

terms.
229 Movement(count,:) = [qk(1:3)', abs(omega)*Sum, ...

(abs(U(1))+abs(U(2))), t];
230 break;
231 end
232 q = qk;
233 %Plot the movement, if desired.
234 if Plot_Movements
235 plot3(q(2),q(1),q(3)*180/pi,'b.');
236 end
237 end
238 q = [0; 0; 0; y_r; y_l; x_v];
239 t = 0;
240 end
241

242 %Add labels to the movement plot.
243 if Plot_Movements
244 xlabel('East');
245 ylabel('North');
246 zlabel('Heading');
247 grid on;
248 end
249

250 %% Start an interactive session to choose the start and end points from ...
the power map image.

251 % Show a figure for the user to see
252 imshow(POW_Map.Image);
253 hold on
254 [C,h] = contour(POW_Map.AltitudeInteractive);
255 clabel(C,h,'FontSize','default')
256 xlabel('Please Select the Target using the Left Mouse ...

button','Color','black');
257 %hold off
258

259 % Wait for the user to click
260 but=0;
261 while (but 6= 1) %Repeat until the Left button is not clicked
262 [xval,yval,but]=ginput(1);
263 end
264

265 % Show where the point hit on the map
266 plot(xval,yval,'xr');
267 text(xval,yval,'Goal');
268

269 %Round the value to the nearest pixel
270 % Now flip the y-pixel because image is shown in flipped-y coordinates
271 row = round(size(POW_Map.Image,1) - yval);
272 col = round(xval);
273

274 %convert from image coordinates to global
275 [N_user, E_user, U_user] = func_image_to_NEU(row, col, POW_Map.ImProp, ...

86

POW_Map.Altitude);
276 ETarget = E_user;%X Coordinate of the Target
277 NTarget = N_user;%Y Coordinate of the Target
278 UTarget = U_user; %Z Coordinate of the Target
279

280

281 % Ask the user to select the start point
282 xlabel('Please Select the Start using the Left Mouse ...

button','Color','black');
283 but=0;
284 while (but 6= 1) %Repeat until the Left button is not clicked
285 [xval,yval,but]=ginput(1);
286 end
287

288 % Show where the point hit on the map
289 plot(xval,yval,'xb');
290 text(xval,yval,'Start');
291

292 % Force the image to front, and wait 3 seconds for human to see!
293 figure(3); pause(3);
294

295 %Round the value to the nearest pixel
296 % Now flip the y-pixel because image is shown in flipped-y coordinates
297 row = round(size(POW_Map.Image,1) - yval);
298 col = round(xval);
299

300 %convert from image coordinates to global
301 [N_user, E_user, U_user] = func_image_to_NEU(row, col, POW_Map.ImProp, ...

POW_Map.Altitude);
302 EStart=E_user;%Starting Position
303 NStart=N_user;%Starting Position
304 UStart = U_user; %Z Coordinate of the Target
305

306 %If desired, the start and end points can be hard coded in here and the ...
graphical inputs are

307 %ignored.
308 kk=1; %dictates the row of data saved at the end of code
309 points = [23.0705 2.0409 -1.0529 32.4442];
310 ETarget = points(1,1);
311 NTarget = points(1,2);
312 [row,col] = func_NE_to_image(NTarget,ETarget,POW_Map.ImProp);
313 UTarget = POW_Map.Altitude(row,col);
314 EStart = points(1,3);
315 NStart = points(1,4);
316 [row,col] = func_NE_to_image(NStart,EStart,POW_Map.ImProp);
317 UStart = POW_Map.Altitude(length(POW_Map.Altitude(:,1)) - row + 1,col);
318

319 temp = [ETarget, NTarget, UTarget, EStart, NStart, UStart];
320

321 %% %%%
322 %LISTS USED FOR ALGORITHM
323 %%
324 %OPEN LIST STRUCTURE
325 %--

87

326 %IS ON LIST 1/0 |N val |E val |U val |Heading |Parent N val |Parent E ...
val |Parent U val |Parent

327 %Heading |h(n) |g(n) |f(n) | Energy
328 %--
329 OPEN=zeros(5000,11);
330 OPEN(:,1) = -1;
331

332 %CLOSED LIST STRUCTURE
333 %----------------------------------
334 %N val | E val | U val | Heading
335 %----------------------------------
336 CLOSED=[];
337 CLOSED_COUNT=size(CLOSED,1);
338

339 %set the starting node as the first node
340 ENode = EStart;
341 NNode = NStart;
342 UNode = UStart;
343 HNode = atan2(ETarget-ENode,NTarget-NNode);
344

345 %Initialize counter
346 OPEN_COUNT=1;
347

348 %First node, no cost to arrive here
349 path_cost=0;
350

351 %Keep track of how much energy we have used. Needed to add this to track
352 %energy during distance3D planning.
353 ener_cost = 0;
354

355 %Calculate the euclidean distance3D to the goal
356 goal_distance=distance3D(NNode,ENode,UNode,NTarget,ETarget,UTarget);
357

358 %Insert this node into the open list.
359 OPEN(OPEN_COUNT,1:13)=insert_open_NEU(NNode,ENode,UNode,HNode,NNode, ...

ENode,UNode,HNode,path_cost,goal_distance,goal_distance,ener_cost);
360

361 %Close this node because we will expand it first thing
362 OPEN(OPEN_COUNT,1)=0;
363 CLOSED_COUNT=CLOSED_COUNT+1;
364 CLOSED(CLOSED_COUNT,1)=NNode;
365 CLOSED(CLOSED_COUNT,2)=ENode;
366 CLOSED(CLOSED_COUNT,3)=UNode;
367 CLOSED(CLOSED_COUNT,4)=HNode;
368 NoPath=1;
369 Goal_Dist_Squared = 100;
370

371 %% %%%
372 % START ALGORITHM
373 %%
374 if(Plot_During_Planning) % Open and label a figure
375 h_fig = figure(345667);
376 set(h_fig,'Name','Progress');
377 hold on;

88

378 plot(EStart,NStart,'bx');
379 text(EStart,NStart,'Start')
380 axis equal;
381 xlabel('East');
382 ylabel('North');
383 end
384 plot_count = 0;
385 exp_count = 0;
386 while((Goal_Dist_Squared > 4.0) && NoPath == 1)
387 fprintf(1,'Plot count: %d \t OPEN_COUNT: %d \t exp_count %d \t ...

\n',plot_count,OPEN_COUNT, exp_count);
388

389 %Expand the node that currently has the lowest cost.
390 exp_array=expand_array_NEU(NNode,ENode,UNode,HNode,path_cost, ...

NTarget,ETarget,UTarget,CLOSED,Movement,Grid_D_Squared,Grid_H, ...
Planning_Mode,POW_Map.ImProp, POW_Map.Altitude,Weight);

391 exp_count=size(exp_array,1);
392

393 %UPDATE LIST OPEN WITH THE SUCCESSOR NODES
394 %OPEN LIST FORMAT
395 %--
396 %IS ON LIST 1/0 |N val |E val |Heading |Parent N val |Parent E val ...

|Parent
397 %Heading |h(n) |g(n) |f(n) | Energy
398 %--
399 %EXPANDED ARRAY FORMAT
400 %--------------------------------
401 %|X val |Y val |Z val |h(n) |g(n)|f(n)| Energy
402 %--------------------------------
403 %Verify that the new nodes are not too similar to nodes already ...

within the
404 %open list
405 for i=1:exp_count
406 flag=0;
407 for j=1:OPEN_COUNT
408 Dist = distance3D(exp_array(i,1),exp_array(i,2), ...

exp_array(i,3),OPEN(j,2),OPEN(j,3),OPEN(j,4));
409 if(Dist < Grid_D_Squared)
410 Head_Diff = exp_array(i,4) - OPEN(j,5);
411 while Head_Diff > pi
412 Head_Diff = Head_Diff - 2*pi;
413 end
414 while Head_Diff < -pi
415 Head_Diff = Head_Diff + 2*pi;
416 end
417 if abs(Head_Diff) < Grid_H
418 flag=1;
419 end
420 end
421 end %End of j for
422 if flag == 0
423 OPEN_COUNT = OPEN_COUNT+1;
424 OPEN(OPEN_COUNT,:)=insert_open_NEU(exp_array(i,1), ...

exp_array(i,2),exp_array(i,3),exp_array(i,4),NNode,ENode, ...

89

UNode,HNode,exp_array(i,5),exp_array(i,6),exp_array(i,7), ...
exp_array(i,8)+ener_cost);

425 end %End of insert new element into the OPEN list
426 end %End of i for
427

428 %% Find the cost minimal point
429

430 %Find out the node with the smallest fn
431 index_min_node = min_fn(OPEN,OPEN_COUNT,ETarget,NTarget,UTarget);
432 if (index_min_node 6= -1)
433 %Set ENode and NNode to the node with minimum fn
434 NNode=OPEN(index_min_node,2);
435 ENode=OPEN(index_min_node,3);
436 UNode=OPEN(index_min_node,4);
437 HNode=OPEN(index_min_node,5);
438 path_cost=OPEN(index_min_node,10);%Update the cost of reaching ...

the parent node
439 ener_cost = OPEN(index_min_node,13);
440 %Move the Node to list CLOSED
441 CLOSED_COUNT=CLOSED_COUNT+1;
442 CLOSED(CLOSED_COUNT,1)=NNode;
443 CLOSED(CLOSED_COUNT,2)=ENode;
444 CLOSED(CLOSED_COUNT,3)=UNode;
445 CLOSED(CLOSED_COUNT,4)=HNode;
446

447 OPEN(index_min_node,1)=0;
448 else
449 %No path exists to the Target!!
450 NoPath=0;%Exits the loop!
451 end %End of index_min_node check
452

453 %If desired, plot the progress of the planning algorithm every 50
454 %iterations
455 plot_count = plot_count + 1;
456 if(Plot_During_Planning)
457 if plot_count == PLOT_LIMIT
458 figure(345667)
459 Index = find(OPEN(:,1)==1);
460 plot(OPEN(Index,3),OPEN(Index,2),'ro');
461 hold on;
462 plot(CLOSED(:,2),CLOSED(:,1),'go');
463 plot(ETarget,NTarget,'kd');
464 plot(EStart,NStart,'bo');
465 hold off;
466 drawnow;
467 plot_count = 0;
468 end
469 end
470

471 %Calculate the goal distance3D to determine if goal is reached
472 Goal_Dist_Squared = (ENode - ETarget)ˆ2 + (NNode - NTarget)ˆ2 + ...

(UNode - UTarget)ˆ2;
473

474 end %End of While Loop

90

475

476 %% Once algorithm has run The optimal path is generated by starting of ...
at the

477 %last node(if it is the target node) and then identifying its parent node
478 %until it reaches the start node. This is the optimal path
479

480 %Traverse OPEN and determine the parent nodes
481 parent_E = ENode;
482 parent_N = NNode;
483 parent_U = UNode;
484 parent_H = HNode;
485 Optimal_path = [];
486 i = 1;
487 while(parent_E 6= EStart || parent_N 6= NStart || parent_U 6= UStart)
488 Optimal_path(i,1) = parent_N;
489 Optimal_path(i,2) = parent_E;
490 Optimal_path(i,3) = parent_U;
491 Optimal_path(i,4) = parent_H;
492

493 %Get the grandparents:-)
494 inode=node_index(OPEN,parent_N,parent_E,parent_U,parent_H);
495 parent_N=OPEN(inode,6);%node_index returns the index of the node
496 parent_E=OPEN(inode,7);
497 parent_U=OPEN(inode,8);
498 parent_H=OPEN(inode,9);
499 i=i+1;
500 end
501

502 %% Plot the optimal path on top of the power model coefficient map
503 subplot(2,1,1);
504

505 N = linspace(POW_Map.ImProp.N_min_max(1,1), ...
POW_Map.ImProp.N_min_max(1,2),size(POW_Map.Altitude,1));

506 E = linspace(POW_Map.ImProp.E_min_max(1,1), ...
POW_Map.ImProp.E_min_max(1,2),size(POW_Map.Altitude,2));

507 imagesc([POW_Map.ImProp.E_min_max(1) ...
POW_Map.ImProp.E_min_max(2)],[POW_Map.ImProp.N_min_max(1) ...
POW_Map.ImProp.N_min_max(2)],flipud(POW_Map.Image));

508 cmap = [0, 0, 0
509 0.7 0.7 0.7 %//light gray
510 0.4 0.4 0.4]; %//white
511 colormap(cmap);
512 hold on;
513 contour(E,N,POW_Map.Altitude);
514 for count = 2:OPEN_COUNT
515 if OPEN(count,1) 6=-1
516 plot([OPEN(count,3), OPEN(count,7)],[OPEN(count,2), ...

OPEN(count,6)],'r-');
517 plot(OPEN(count,3),OPEN(count,2),'b-o');
518 end
519 end
520 plot(EStart,NStart,'ko','MarkerSize',8,'MarkerFaceColor','k');
521 plot(ENode,NNode,'kp','MarkerSize',15,'MarkerFaceColor','k');
522 xlabel('East');

91

523 ylabel('North');
524 set(gca,'ydir','normal');
525 for count = 2:size(Optimal_path,1)
526 plot([Optimal_path(count,2), ...

Optimal_path(count-1,2)],[Optimal_path(count,1), ...
Optimal_path(count-1,1)],'g-');

527 plot(Optimal_path(count,2),Optimal_path(count,1),'g-o', ...
'MarkerFaceColor','g');

528 end
529 set(gca,'fontname','times')
530 set(gca,'fontsize', 12)
531 hold off
532

533 % Make a figure of the optimal path, in 3D
534 subplot(2,1,2);
535

536 imagesc([POW_Map.ImProp.E_min_max(1) POW_Map.ImProp.E_min_max(2)], ...
[POW_Map.ImProp.N_min_max(1) POW_Map.ImProp.N_min_max(2)], ...
flipud(POW_Map.Image));

537 cmap = [0, 0, 0
538 0.7 0.7 0.7
539 0.4 0.4 0.4];
540 colormap(cmap);
541 hold on;
542

543 xlabel('East');
544 ylabel('North');
545 zlabel('Up');
546 view(15,25)
547 set(gca,'ydir','normal');
548

549 scatter3(Optimal_path(:,2),Optimal_path(:,1),Optimal_path(:,3),'ko', ...
'MarkerFaceColor','g');

550 scatter3(EStart,NStart,UStart,'ko','MarkerFaceColor','r');
551 scatter3(ENode,NNode,UNode,'kd','MarkerFaceColor','r');
552 [m,n] = size(POW_Map.Image);
553 contour(E,N,POW_Map.Altitude);
554 set(gca,'fontname','times')
555 set(gca,'fontsize', 12)
556 hold off
557

558 %% calculate the total distance along the optimal path
559 for ii = 2:length(Optimal_path)
560 tot_dist(ii-1,1) = ...

sqrt(distance3D(Optimal_path(ii-1,2),Optimal_path(ii-1,1), ...
Optimal_path(ii-1,3),Optimal_path(ii,2),Optimal_path(ii,1), ...
Optimal_path(ii,3)));

561 end
562 total_distance = sum(tot_dist);
563

564 % save the energy cost and distance depending on kk and planning mode
565 if strcmp(Planning_Mode, 'Energy')
566 thesisdata(kk,1) = total_distance;
567 thesisdata(kk,2)= ener_cost;

92

568 elseif strcmp(Planning_Mode, 'Distance')
569 thesisdata(kk,3) = path_cost;
570 thesisdata(kk,4)= ener_cost;
571 end
572 save('thesis_data.mat','thesisdata');

93

Appendix C

This Appendix includes all of the .m files needed to supplement the program found in order

of how they appear in Appendix B. Many of these files come directly from Pentzer [7] and any

adjustments made were explained in Section 5.2.

func_Kinematics

1 function [qk] = func_Kinematics(q,U,dt)
2 %This function takes in the current state estimate and control input and
3 %integrates the ICR kinematics for one time step
4 %
5 %Inputs: q: State vector
6 % U: Control vector
7 %
8 %Outputs: qk: State vector after time step
9

10 %Extract values from state vector so kinematic equations are more readable
11 N = q(1);
12 E = q(2);
13 theta = q(3);
14 yr = q(4);
15 yl = q(5);
16 xv = q(6);
17

18 %Extract values from control vector so kinematic equations are more
19 %readable
20 Vr = U(1);
21 Vl = U(2);
22

23 %Integrate the kinematic equations using first order Euler integration
24 qk(1,1) = N + ...

dt*(cos(theta)*(Vr*yl-Vl*yr)/(yl-yr)-sin(theta)*(Vl-Vr)*xv/(yl-yr));
25 qk(2,1) = E + ...

dt*(sin(theta)*(Vr*yl-Vl*yr)/(yl-yr)+cos(theta)*(Vl-Vr)*xv/(yl-yr));

94

26 qk(3,1) = theta + dt*((Vr-Vl)/(yl-yr));
27 qk(4,1) = q(4);
28 qk(5,1) = q(5);
29 qk(6,1) = q(6);

func_image_to_NEU

1 %func_image_to_NEU - A function to convert from row/pixel coordinates ...
in the

2 %overhead image to North/East in the local coordinate system.
3 %
4 % Syntax: [N, E, U] = func_image_to_NEU(row, col, ImProp, Altitude)
5 %
6 % Inputs:
7 % row - Pixel row position
8 % col - Pixel col position
9 % ImProp - The image properties structure

10 %
11 % Outputs:
12 % N - Pixel north position in meters
13 % E - Pixel east position in meters
14 %
15 % Author: Veronica Gruning
16 % email: vag5076@psu.edu
17 % February, 2018
18

19 function [N, E, U] = func_image_to_NEU(row, col, ImProp, Altitude)
20

21 %Determine the distance from the pixel to the image center
22 N_Local = (row - ImProp.row_center)*ImProp.N_p_Pixel;
23 E_Local = (col - ImProp.col_center)*ImProp.E_p_Pixel;
24 U_Local = Altitude(row, col);
25

26 %Add the position of the image center to get the position with respect
27 %to the local coordinate frame origin.
28 N = N_Local + ImProp.N_Center;
29 E = E_Local + ImProp.E_Center;
30 U = U_Local;

distance3D

1 function dist = distance3D(x1,y1,z1,x2,y2,z2)
2 %This function calculates the distance between any two cartesian
3 %coordinates.
4 % Copyright 2009-2010 The MathWorks, Inc.
5 dist=(x1-x2).*(x1-x2) + (y1-y2).*(y1-y2) + (z1-z2).*(z1-z2);

95

expand_array_NEU

1 function exp_array=expand_array_NEU(node_N,node_E,node_U,node_h,hn, ...
NTarget,ETarget,UTarget,CLOSED,Movement,Grid_D_Squared,Grid_H, ...
Planning_Mode,ImProp, Altitude,w)

2 %Function to return an expanded array.
3 %
4 %This function takes a node and returns the expanded list of ...

successors,with the
5 %calculated fn values. The criteria being none of the successors are on ...

the CLOSED list.
6 %
7 %Inputs: node_N: North position (m) of lowest cost node
8 % node_E: East position (m) of lowest cost node
9 % node_h: Heading (rad) of lowest cost node

10 % hn: Cost to reach current node from start position
11 % NTarget: Target north coordinate (m)
12 % ETarget: Target east coordinate (m)
13 % CLOSED: List of point coordinates that have been expanded
14 % Movement: An array of movement trajectories for the expansion
15 % Grid_D: Minimum distance (m) between expanded nodes
16 % Grid_H: Minimum heading difference (rad) between nodes
17 % Planning_Mode: String choice between "Energy" and "Distance"
18 % ImProp: Another structure with information about the image.
19 % Altitude: The height at any point in the image
20 % w: weight of the vehicle (N)
21 %
22 %Outputs: exp_array: array of nodes expanded from current lowest cost ...

position
23

24 %Expand current node position with movement trajectories.
25 %Trajectories are rotated using current node heading.
26 New_Positions = zeros(size(Movement,1),4);
27 R = [cos(node_h), -sin(node_h); sin(node_h), cos(node_h)];
28 for count = 1:size(Movement,1)
29 New_Positions(count,1:2) = (R*Movement(count,1:2)')' + [node_N, ...

node_E];
30 [row,col] = func_NE_to_image(New_Positions(count,1), ...

New_Positions(count,2),ImProp);
31 if isreal((length(Altitude(:,1)) - round(row) + 1)) && ...

(length(Altitude(:,1)) - round(row) + 1) > 0 && isreal(col) && ...
col  size(Altitude,2)

32 New_Positions(count,3) = Altitude(length(Altitude(:,1)) - ...
round(row) + 1,round(col));

33 else
34 New_Positions(count,3) = NaN;
35 end
36 New_Head = node_h + Movement(count,4);
37

38 %Constrain heading value to lie between -pi and +pi
39 while New_Head > pi
40 New_Head = New_Head - 2*pi;

96

41 end
42 while New_Head < -pi
43 New_Head = New_Head + 2*pi;
44 end
45 New_Positions(count,4) = New_Head;
46 end
47

48 New_Positions(isnan(New_Positions(:,3)),:) = [];
49

50 %Create expanded array. Each new point is compared with previous
51 %nodes to ensure that it does not violate the pseudo-grid rules.
52 exp_array=[];
53 exp_count=1;
54 c2=size(CLOSED,1);%Number of elements in CLOSED including the zeros
55

56 s_N_vector = New_Positions(:,1);
57 s_E_vector = New_Positions(:,2);
58 s_U_vector = New_Positions(:,3);
59 s_H_vector = New_Positions(:,4);
60 Dist_Goal_Squared_Vector = ...

distance3D(NTarget,ETarget,UTarget,s_N_vector,s_E_vector,s_U_vector);
61 Dist_Goal_Vector = Dist_Goal_Squared_Vector.ˆ0.5;
62 Dist_Goal2D_Vector = distance(NTarget,ETarget,s_N_vector,s_E_vector);
63

64 for count = 1:length(New_Positions)
65 %Get a new node state
66 s_N = New_Positions(count,1);
67 s_E = New_Positions(count,2);
68 s_U = New_Positions(count,3);
69 s_H = New_Positions(count,4);
70 flag=1;
71

72 %Make sure this expanded node isn't too close to a closed node
73 Dist_squared = ...

distance3D(s_N,s_E,s_U,CLOSED(:,1),CLOSED(:,2),CLOSED(:,3));
74 for c1=1:c2
75 if(Dist_squared(c1,1) < Grid_D_Squared)
76 Head_Diff = s_H - CLOSED(c1,4);
77 while Head_Diff > pi
78 Head_Diff = Head_Diff - 2*pi;
79 end
80 while Head_Diff < -pi
81 Head_Diff = Head_Diff + 2*pi;
82 end
83 if abs(Head_Diff) < Grid_H
84 flag=0;
85 end
86 end
87 end %End of for loop to check if a successor is on closed list.
88

89 %If the node is alright, calculate the costs and add it to the array
90 if (flag == 1)
91

92 %Calculate the power model coefficients from the power map

97

93 [in_flag, mu, G, min_mu, min_G, ¬] = func_Power_Gain(node_E, ...
node_N);

94

95 %See if the expanded node is not in an obstacle
96 [not_obs, ¬, ¬, ¬, ¬, ¬] = func_Power_Gain(s_E, s_N);
97

98 %If in_flag is true, then the point lies within the power map
99 %and is not in an obstacle

100 if in_flag && not_obs
101

102 %Add position
103 exp_array(exp_count,1) = s_N;
104 exp_array(exp_count,2) = s_E;
105 exp_array(exp_count,3) = s_U;
106 exp_array(exp_count,4) = s_H;
107

108 %Calculate the energy cost or the distance cost to move from
109 %The current low-cost node to this expanded child
110 Thetaseg = atan((s_U - node_U))/distance(node_E,node_N, ...

s_E, s_N);
111 dist = sqrt(distance3D(node_N,node_E,node_U,s_N,s_E,s_U));
112 Ener_Thet = w*dist*sin(Thetaseg);
113 if Ener_Thet  0
114 Ener_Theta = 0;
115 else
116 Ener_Theta = Ener_Thet;
117 end
118 Power = Movement(count,4:5)*[mu; G];
119 Energy = Power*Movement(count,6)+Ener_Theta; ...

%Movement(count,6) is the time to complete the motion ...
trajectory

120 if strcmp(Planning_Mode, 'Energy')
121 New_hn = Energy;
122 elseif strcmp(Planning_Mode, 'Distance')
123 New_hn = distance(node_N,node_E,s_N,s_E); %2-D distance ...

planning
124 end
125 exp_array(exp_count,5) = hn+New_hn;%cost of travelling to node
126

127 %Calculate the energy cost or the distance cost to move from
128 %the current low-cost node to the target point.
129 Dist_Goal = Dist_Goal_Vector(count,1);
130 Dist_Goal2D = Dist_Goal2D_Vector(count,1);
131 if strcmp(Planning_Mode, 'Energy')
132 Head_Goal = atan2(ETarget-s_E,NTarget-s_N);
133 Head_Diff = Head_Goal - s_H;
134 while Head_Diff > pi
135 Head_Diff = Head_Diff - 2*pi;
136 end
137 while Head_Diff < -pi
138 Head_Diff = Head_Diff + 2*pi;
139 end
140 Time_Turn = Head_Diff/0.1745; %Estimate of turn rate ...

for Tankbot to align with goal heading in rad/s

98

141 Ener_Turn = abs(0.1745*min_mu*Time_Turn);
142

143 NTrack = linspace(s_N, NTarget, floor(Dist_Goal));
144 ETrack = linspace(s_E, ETarget, floor(Dist_Goal));
145 UTrack = linspace(s_U, UTarget, floor(Dist_Goal));
146 SegLength = Dist_Goal/(floor(Dist_Goal));
147 SegTime = SegLength/0.5; %0.5 is speed of robot driving ...

straight to goal
148 Ener_Goal = 0;
149 for SegNum = 2:length(NTrack)
150 [obs_flag, ¬, G, ¬, ¬, maxG] = ...

func_Power_Gain(ETrack(SegNum), NTrack(SegNum));
151 Gseg = G;
152 Thetaseg = atan((UTrack(SegNum) - UTrack(SegNum - ...

1)))/distance(ETrack(SegNum - 1),...
153 NTrack(SegNum - 1), ETrack(SegNum), ...

NTrack(SegNum));
154

155 if obs_flag == 0
156 Gseg = maxG;
157 end
158

159 dist = sqrt(distance3D(NTrack(SegNum-1), ...
ETrack(SegNum-1),UTrack(SegNum-1),NTrack(SegNum), ...
ETrack(SegNum),UTrack(SegNum)));

160 Ener_Thet = w*dist*sin(Thetaseg);
161 if Ener_Thet < 0
162 Ener_Theta = 0;
163 else
164 Ener_Theta = Ener_Thet;
165 end
166 Ener_Seg = 1.0*Gseg*SegTime; %Equation is ...

|Vr|+|Vl|. Track velocities are 0.5, so add to 1.
167 Ener_Goal = Ener_Goal + Ener_Seg + Ener_Theta;
168 end
169 New_gn = Ener_Goal+Ener_Turn;
170 elseif strcmp(Planning_Mode, 'Distance')
171 New_gn = Dist_Goal2D;
172 end
173

174 %Finish adding information to expanded array
175 exp_array(exp_count,6) = New_gn;%distance between node and goal
176 exp_array(exp_count,7) = ...

exp_array(exp_count,5)+exp_array(exp_count,6);%fn
177 exp_array(exp_count,8) = Energy;
178 exp_count=exp_count+1;
179 end
180 end %Populate the exp_array list!!!
181 end %End of if node is not its own successor loop

99

func_NE_to_image

1 %func_NE_to_image - A function to convert from North/East position in the
2 %local frame to pixel position in the image
3 %
4 % Syntax: [row, col] = func_NE_to_image(N, E, ImProp)
5 %
6 % Inputs:
7 % N - The north position of interest in meters
8 % E - The east position of interest in meters
9 % ImProp - The image properties structure

10 %
11 % Outputs:
12 % row - Row position of pixel
13 % col - Column position of pixel
14 %
15 % Author: Jesse Pentzer
16 % email: jlp5573@psu.edu
17 % September, 2014
18 function [row, col] = func_NE_to_image(N, E, ImProp)
19

20 %Subtract the location of the image center
21 N_Local = N - ImProp.N_Center;
22 E_Local = E - ImProp.E_Center;
23

24 %Convert from meters to image coordinates
25 row = round(-N_Local*ImProp.Pixel_p_N) + ImProp.row_center;
26 col = round(E_Local*ImProp.Pixel_p_E) + ImProp.col_center;

func_Power_Gain

1 function [in_flag, mu, G, min_mu, min_G, max_G] = func_Power_Gain(East, ...
North)

2

3 %This function takes in a position set and outputs the proper power model
4 %parameters for that position from the power map.
5 %
6 %Inputs: East: East position (m)
7 % North: North position (m)
8 %
9 %Outputs: in_flag: True if position lies within power map, false if not

10 % mu: Mu power model parameter for input position
11 % G: G power model parameter for input position
12 % min_mu: Minimum mu power model parameter within the map.
13 % min_G: Minimum G power model parameter within the map.
14

15

16 global POW_Map;

100

17

18 %Determine if the point lies within the positions covered by the power map
19 if East > POW_Map.ImProp.E_min_max(1)+2 && East < ...

POW_Map.ImProp.E_min_max(2)-2 ...
20 && North > POW_Map.ImProp.N_min_max(1)+2 && North < ...

POW_Map.ImProp.N_min_max(2)-2
21

22 %Calculate the row/col in the image equivalent to the N/E position
23 [row, col] = func_NE_to_image(North, East, POW_Map.ImProp);
24

25 %Get the pixel color for the current position
26 Pixel = POW_Map.Image(row, col);
27

28 %Handle Obstacles
29 if Pixel == 0
30 in_flag = 0;
31 mu = 0;
32 G = 0;
33 min_mu = min(POW_Map.Colors(:,2));
34 min_G = min(POW_Map.Colors(:,3));
35 max_G = max(POW_Map.Colors(:,3));
36 return;
37 end
38

39 %Find which row in the colors array corresponds to this pixel color
40 Index = find(POW_Map.Colors(:,1) == Pixel);
41

42 %Extract the power model parameters from the colors array
43 mu = POW_Map.Colors(Index,2);
44 G = POW_Map.Colors(Index,3);
45

46 %Determine the minimum mu and G values within the power map
47 min_mu = min(POW_Map.Colors(:,2));
48 min_G = min(POW_Map.Colors(:,3));
49 max_G = max(POW_Map.Colors(:,3));
50

51 %Set the bounds flag
52 in_flag = 1;
53

54 else %Position lies outside of area covered by map. Set variables ...
accordingly

55 in_flag = 0;
56 mu = 0;
57 G = 0;
58 min_mu = 0;
59 min_G = 0;
60 max_G = 0;
61 end

insert_open_NEU

101

1 function new_row = insert_open_NEU(xval,yval,zval,hval,parent_xval, ...
parent_yval,parent_zval,parent_hval,hn,gn,fn,energy)

2 %Function to Populate the OPEN LIST
3 %OPEN LIST FORMAT
4 %--
5 %IS ON LIST 1/0 |N val |E val |U val|Heading |Parent N val |Parent E ...

val |Parent U val |Parent Heading |h(n) |g(n)|f(n)|
6 %---
7 %
8 % Copyright 2009-2010 The MathWorks, Inc.
9 new_row=[1,13];

10 new_row(1,1)=1;
11 new_row(1,2)=xval;
12 new_row(1,3)=yval;
13 new_row(1,4)=zval;
14 new_row(1,5)=hval;
15 new_row(1,6)=parent_xval;
16 new_row(1,7)=parent_yval;
17 new_row(1,8)=parent_zval;
18 new_row(1,9)=parent_hval;
19 new_row(1,10)=hn;
20 new_row(1,11)=gn;
21 new_row(1,12)=fn;
22 new_row(1,13)=energy;
23 end

min_fn

1 function i_min = min_fn(OPEN,OPEN_COUNT,xTarget,yTarget,zTarget)
2 % Function to return the Node with minimum fn
3 % This function takes the list OPEN as its input and returns the index ...

of the
4 % node that has the least cost
5 %
6 % Copyright 2009-2010 The MathWorks, Inc.
7

8 temp_array=[];
9 k=1;

10 for j=1:OPEN_COUNT
11 if (OPEN(j,1)==1)
12 temp_array(k,:)=[OPEN(j,:) j]; %#ok<*AGROW>
13 k=k+1;
14 end
15 end %Get all nodes that are on the list open
16

17 %Send the index of the smallest node
18 if size(temp_array 6= 0)
19 [min_fn,temp_min]=min(temp_array(:,12));%Index of the smallest node ...

in temp array

102

20 i_min=temp_array(temp_min,14);%Index of the smallest node in the OPEN ...
array

21 else
22 i_min=-1;%The temp_array is empty i.e No more paths are available.
23 end

node_index

1 function n_index = node_index(OPEN,Nval,Eval,Uval,Hval)
2 %This function returns the index of the location of a node in the list
3 %OPEN
4 %
5 % Copyright 2009-2010 The MathWorks, Inc.
6 i=1;
7 while(OPEN(i,2) 6= Nval || OPEN(i,3) 6= Eval ||OPEN(i,4) 6= Uval || ...

OPEN(i,5) 6= Hval)
8 i=i+1;
9 end

10 n_index=i;
11 end

func_halton_set

1 function [S] = func_halton_set(Base, Num_Points)
2 %This function computes a Halton sequence with a given base and length
3 %
4 %Inputs: Base: The base number for the Halton set
5 % Num_Points: The length of the returned sequence
6 %
7 %Outputs: S: Computed Halton sequence
8

9 S = zeros(Num_Points,1);
10

11 for k = 1:Num_Points
12

13 pp = Base;
14 kp = k;
15 phi = 0;
16

17 while kp > 0
18 a = mod(kp,Base);
19 phi = phi + a/pp;
20 kp = floor(kp/Base);
21 pp = pp*Base;
22 end
23 S(k) = phi;

103

24 end

ACADEMIC VITA

VERONICA GRUNING

532 White Oak Dr ⇧ Virginia Beach, VA, 23462

757 635 7355 ⇧ veronicagruning@gmail.com

EDUCATION

The Pennsylvania State University Aug 2014 - May 2018

Schreyer Honors College
Bachelor of Science in Mechanical Engineering

HONORS

Deans List (6 semesters)
Student Engagement Network, Grant Recipient (2017)
Research Experience for Undergraduates at Oregon State University Funded by the National Science
Foundation, Grant Recipient (2016)
Research Experience for Undergraduates at Penn State Funded by the National Science Foundation,
Grant Recipient (2015)
Wiedhahn Academic Excellence Scholarship (8 semesters)
University Park Provost Scholarship (8 semesters)
Alumni Memorial Scholarship (8 semesters)
Jason & Martha Lee Stone Scholarship (6 semesters)
A & W Colliflower Scholarship (4 semesters)
Corey A. Wincek-Charotte Newcombe Scholarship (2 semesters)
Pre-Eminence in Honors Education Scholarship (2 semesters)
Morreale Family Scholarship (2 semesters)

WORK EXPERIENCE

Applied Research Lab at Penn State May 2017 Present
Undergraduate Research State College, PA

· Wrote a program that identified the type of terrain a robot was traversing across based on the magnitude
of change in the roll, pitch, and yaw angles.

· Studied how a robots center of mass relates to the locations of the instantaneous centers of rotation.

· Tested an unmanned ground vehicle to find its mechanical and electrical limits on an obstacle coarse
approved by National Institute of Standards and Technology.

· Upgraded and repaired an unmanned ground vehicle that sat in a state of disuse for nearly three years.

East Halls at Penn State Aug 2016 - May 2018
Resident Assistant University Park, PA

· Directly supervised forty residents and co-supervised 400 residents through their first year transition
and advised them on academic decisions for their following semesters.

· Organized educational and social events to establish a sense of community on a coed floor.

· Performed administrative duties including inspection of safety equipment and budget management.

Robotic Decision Making Lab at Oregon State Jun 2016 - Aug 2016
Research Assistant Corvallis, OR

· Analyzed data structures and identified relevant variables in order to reconstruct 2D SONAR images
into a 3D map of underwater environments.

· Applied learned mathematical concepts of mechatronics, including number theory and data theory, to
write algorithms that aided in the extraction of pertinent variables from large data pools.

· Facilitated the testing of an unmanned underwater vehicle in a prescribed swimming pool setup.

Intelligent Vehicles and Systems Group at Penn State Jan 2015 - May 2017
Research Assistant University Park, PA

· Designed a wiring schematic that removed ground fault loops from a mapping vehicle.

· Completed all aspects of the wiring diagram, including measuring necessary wire lengths, soldering,
and fabrication of laser cut acrylic mounts.

· Collected visual mapping data to quantitatively support graduate theses on horizon feature detection.

Women in Engineering Program at Penn State Aug 2015 - May 2016
Academic Facilitator University Park, PA

· Mentored students in WEP to increase the retention of female students.

· Planned and facilitated weekly sessions reviewing the topics of calculus II and di↵erential equations.

· Developed strong teaching abilities by clarifying material from class to ensure student understanding.

SOFTWARE & SKILLS

ROS Python Simulink Arduino LATEX MATLAB Spanish (proficient)
SolidWorks Linux Soldering Machining Microsoft Excel C++

LEADERSHIP

Out in Science, Technology, Engineering, and Mathematics Aug 2015 - Present
Treasurer

· Acquired a sponsorship and a mentorship program from Ford Motor Company and Leidos

· Gained insight into the process of how academia receives external funding for research and professional
development.

· Provided a safe space for people of the LGBTQA community, and saw at the national conference that
many major companies celebrate the marketable trait of being diverse

Prism Benefitting THON Dec 2016 - April 2018
Founder and President

· Created a philanthropic group that actively includes Penn State students of the LGBTQA community
to feel welcomed.

· Formulated an independent thought into fruition in terms of an end goal, demonstrating drive when
starting a new venture.

American Institute of Aeronautics and Astronautics Jan 2017 - May 2018
Member

· Explored a new field of study that is not covered in the standard curriculum, to learn topics about an
area that is not within comfort level.

· Exhibited initiative to obtain knowledge and insight into a field necessary to achieving an end goal.

Penn State Crew Team Aug 2014 - Jan 2017
Varsity Player

· Scheduled out a semester in advance knowing that twenty hours per week would be dedicated to rowing
practice and five weekends per semester would be away from Penn State at regattas, while maintaining
coursework and managing a research timeline.

· Developed the skills to delegate time to specific tasks in order to accomplish the objectives of all
projects.

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Literature Review
	Research on Skid-Steer Robot Kinematics
	Research on Filtering
	Research on Path Planning

	Methodology
	Notation
	Coordinate Definitions
	Equations of Robot Kinematics
	Code to Predict Kinematics

	Friction-and Kinematics-Based Path Planning
	Equations for Power Estimation
	Equations for Path Planning
	Code for Power Estimation
	Code for Path Planning

	Friction-, Elevation-, and Kinematics-Based Path Planning
	Equations for Power Estimation of Elevation Changes
	Optimization of Previous Algorithms
	Code for Planner with Vertical Component
	Code for Open Array with Vertical Component
	Code for Expansion Array with Vertical Component

	User Process of Optimized Algorithm

	Results and Analysis
	Frictionless Path Planning with Simulated Hill
	Path Planner Considering All Energy Components
	The Effects of Increasing the Slope on Planner Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix A
	Appendix B
	Appendix C

