
THE PENNSYLVANIA STATE UNIVERSITY  
SCHREYER HONORS COLLEGE  

 
 
 

DEPARTMENT OF CHEMICAL ENGINEERING  
 
 
 

CHEMICAL GAME THEORY: ENTROPY IN STRATEGIC DECISION-MAKING 
 

 
NATALIE MORRISSEY 

SPRING 2018 
 
 
 

A thesis  
submitted in partial fulfillment  

of the requirements  
for a baccalaureate degree  
in Chemical Engineering 

with honors in Chemical Engineering 
 
 
 

Reviewed and approved* by the following:  
 

Darrell Velegol 
Distinguished Professor of Chemical Engineering 

Thesis Supervisor  
 

Wayne Curtis 
Professor of Chemical Engineering 

Honors Adviser  
 

* Signatures are on file in the Schreyer Honors College.



i 
 

ABSTRACT 
 

The purpose of this thesis is to describe a framework for representing and solving strategic 

decision-making problems. Strategic decision-making is frequently analyzed using game theory, 

but the classical game theory model has several shortcomings. This thesis proposes an alternative 

method for solving games, in which players’ strategies are treated as reactant molecules and 

equilibrium decisions are evaluated using Gibbsian thermodynamics. This alternative method, 

called “Chemical Game Theory,” removes some of the key shortcomings of classical game theory 

by including the chemical concept of entropy in the game solution and incorporating player biases, 

outside enforcer agents, and cardinal payoff magnitudes. This thesis will quantify the relative 

effects of entropy, perspective, and pre-bias in final equilibrium decisions and discuss how players 

can adjust their strategies to alter the total welfare and fairness of the outcomes. 
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Chapter 1  
 

Introduction 

The objective of this thesis is to provide a new way to represent and solve strategic game 

theory problems1. Strategic decisions are those in which players can choose from among two or 

more possibilities, and the outcome depends upon the collective choices from all players. Strategic 

decisions are often represented using game theory (here called “classical game theory”), which 

mathematically models conflict and cooperation between rational individuals.2 In classical game 

theory, each player considers the decision-making strategy of their opponents to decide which 

choice will benefit them most. 

 
Chemical game theory is an alternative representation of strategic decisions, which models 

these decisions differently and produces different results. Unlike classical game theory, which is a 

normative theory that addresses what rational players should do, chemical game theory is a 

descriptive theory that attempts to predict what real players will do. It integrates concepts from 

chemistry and chemical engineering to model strategic decisions via a series of decision reactions, 

with each player’s choices represented as metaphorical molecules.3 

 

The thesis will introduce classical game theory, focusing particularly on the Prisoner’s 

Dilemma game, and illustrate the shortcomings of the classical game theory model and relevant 

literature to address these shortcomings. Then, chemical game theory (CGT) will be introduced as 

                                                      
1 Parts of this thesis are adapted from Velegol, D., Suhey, P, Connolly, J., Morrissey, N. Cook, L. “Chemical Game 
Theory,” submitted for publication in Industrial and Engineering Chemistry Research, Dec 2017. 
2 Meyerson, R. B. Game Theory: Analysis of Conflict, Harvard University Press, 1997 
3 Velegol, Darrell. Physics of Community Course Notes for Fall 2015. 
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an alternative to classical game theory. This thesis will detail the CGT framework, solution 

methods, and outcomes. It will then analyze the relative effects of payoffs, pre-bias, perspectives, 

and entropic choices in the decision-making process. Finally, this thesis will analyze how these 

factors can help determine the best strategy for each player and impact the fairness and total 

welfare of equilibrium decisions. 
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Chapter 2  
 

Classical Game Theory 

2.1 Representation and Solutions 

Classical game theory was developed by John von Neumann and Oskar Morgenstern in 

their seminal work, Theory of Games and Economic Behavior4, which described the mathematical 

models upon which modern game theory is based. This later led to the development of the 

Prisoner’s Dilemma game5, which today is the most well-studied classical game. This thesis will 

focus on the Prisoner’s Dilemma (PD) game, although the methods and solutions of CGT can be 

applied to other games, including Battle of the Sexes, the Chicken Game, and Tragedy of the 

Commons6. 

 
The PD game unfolds as follows. Two players, A and B, decide to rob a bank, but are 

apprehended immediately before the act. Players A and B are taken to the police station and placed 

in two different rooms, without the ability to communicate. The district attorney, player D, tells 

each of them that they have two options: 1) They can remain quiet, not revealing that their partner 

intended to commit the crime. In classical game theory, this strategy is called “cooperating.” 2) 

They can tell the district attorney that their partner intended to commit the crime. In classical game 

theory, this is called “defecting.” 

 
                                                      

4 Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior. Princeton: Princeton University 
Press, 2007.   
5 The PD game was originally framed in 1950 by Merrill Flood and Melvin Dresher working at RAND Corporation. 
Albert Tucker formalized the game and named it "prisoner's dilemma." This history is described in: Poundstone, 
William. “Prisoner’s Dilemma.” Anchor Books, New York 1992. 
6 Gintis, H. “Game Theory Evolving.” Princeton University Press, 2000. 

https://en.wikipedia.org/wiki/Merrill_Flood
https://en.wikipedia.org/wiki/Melvin_Dresher
https://en.wikipedia.org/wiki/RAND_Corporation
https://en.wikipedia.org/wiki/Albert_W._Tucker
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Each of these decisions has an associated payoff, and the final outcome depends on the 

decisions of both players. If both players A and B remain quiet (i.e. do not implicate their partner), 

they will each only receive one year in prison on a misdemeanor charge. If both players A and B 

tell (i.e. implicate their partner), they both will receive two years in prison for attempted burglary. 

However, if player A tells on her partner and player B remains quiet, player A will serve no time, 

and player B will serve three years. This also occurs vice-versa, if B tells and A is quiet. 

 
Classical game theory often represents scenarios like the PD game in normal form, also 

known as a payoff matrix, shown in Table 1. Normal form includes a number of aspects: 1) Players. 

This game has two players, A and B. 2) Strategies. Here, Player A’s two strategies (quiet and tell) 

are shown in the left column. Player B’s two strategies (quiet and tell) are shown in the top row. 

3) Payoffs. These are represented within each box (ex. a1 = quiet, b1=quiet results in +1, +1: a 

year in prison for each player). Player A’s payoff is listed first in each box, followed by Player 

B’s. 

Table 1. Prisoner's Dilemma Game Matrix.  
Player A can choose possibility a1 or a2, while B can choose possibility b1 or b2. In each of the four payoff blocks, 
the value on the left belongs to A, and the value on the right belongs to B.  For instance, if A tells and B remains 
quiet (i.e., a2, b1), then A receives 0 years of prison, while B receives 3.   
       

b1 = quiet b2 = tell 
a1 = quiet +1, +1 +3, 0 
a2 = tell 0, +3 +2, +2 

 
 

Finding the outcome of the Prisoner’s Dilemma game can be done by inspection. This is 

not always the case, as other common games (such as Battle of the Sexes) require a more detailed 

calculation. But here, one can solve the PD game by considering each player’s options, given 

another player’s strategy. If Player B decides to play quiet, Player A can either remain quiet, and 

receive one year in prison, or tell, and receive no years in prison. Thus, Player A, a rational player 
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who wants to receive less prison time, should tell. Next, if Player B decides to tell, Player A can 

either remain quiet, and receive three years in prison, or tell, and receive two years in prison. 

Again, Player A should tell. Thus, regardless of Player B’s strategy, Player A does better if she 

decides to tell.  

 
Player B faces the same game, so also does best by telling. Thus, a Nash Equilibrium exists 

at {tell, tell}, or {a2, b2}, meaning that, if both players are “rational”, they will tell on their partner 

100% of the time. A Nash equilibrium, developed by mathematician John Nash7, is a solution 

where neither player can improve their payoff by playing another strategy. For example, if Player 

A instead decides to tell only 99% of the time, she has deviated from the Nash Equilibrium, and 

will receive a worse outcome.  

 
The Nash Equilibrium, {tell, tell}, is the outcome where both players receive two years in 

prison. However, there is another outcome where they both would have received only one year in 

prison: {quiet, quiet}, and thus would have both been better off. And this is the dilemma: by trying 

to choose the best decision for themselves individually, they get the worst collectively. The 

solution is not Pareto optimal8 (in fact, it is the only one of the three blocks that is not), and players 

end up with a combined total of jail time that is greater than any of the other three options. The PD 

game is one of the most well-studied games, and has been used to study choices in climate change9, 

fisheries10, and many other tragedy of the commons scenarios11. 

                                                      
7 Nash, J. Non-cooperative Games. Annals of Mathematics 1951, 54 (2), 286-295. 
8 Pareto, V. Manual of Political Economy. London: Macmillan, 1971. 
9 Lange, A.; Vogt, C. Cooperation in international environmental negotiations due to a preference for equity. J. 
Public Econ. 2003, 87, 2049-2067. 
10 Ostrum, E. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge: Cambridge 
University Press, 1990. 
11 Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243-1248. 
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2.2 Shortcomings of Classical Game Theory 

There are several problems with the classical solution of game theory problems. This thesis 

will list four. First is 1) The 100% problem. The Nash equilibrium of the PD game is {tell, tell}, 

which means that this solution should occur 100% of the time, if players are rational. Yet when 

people are placed in PD game scenarios, players do not tell 100% of the time, or sometimes even 

the majority of the time. In fact, in experimental PD games, players usually tell only about half of 

the time12. Classical game theory has not yet been able to offer a conclusive answer on why 

cooperation is so prevalent in experimental scenarios. 

 
2) The Epsilon (ε) problem. In the original PD game, the 0-1-2-3 PD game, all payoffs 

differ by a value of 1. If instead, the payoffs differed by only ε = 0.01, the game would look like 

that in Table 2. Classical game theory says the outcome is still exactly the same as the original PD 

game: The players should play the strategy {a2, b2}, {tell, tell}, in 100% of the instances - it is the 

only rational solution.  This is because for the PD game, classical game theory compares only the 

ordinal values of each payoff, and not their cardinal values. For the game in Table 2, however, one 

might expect each of the four blocks to be played almost equally. 

 
Table 2. PD Game Illustrating the ε Problem 
When pains differ only by ε = 0.01, rather than 1, classical game theory concludes that the Nash equilibrium will 
still be {tell, tell}. 
  

b1 = quiet b2 = tell 
a1 = quiet 1.99, 1,99 2.01, 1.98 
a2 = tell 1.98, 2.01 2.00, 2.00 

  

                                                      
12 Sally, D. Conversation and Cooperation in Social Dilemmas: A Meta-Analysis of Experiments from 1958 to 1992. 
Ration. and Soc. 1995, 7, 58-92. 
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3) The Rationality problem. Classical game theory assumes that players are “rational”: they 

always act in a way that maximizes their own utility. However, if instead the PD game were played 

not between two strangers, but two trusting friends, or a father and daughter, one may expect the 

outcome to be very different. It is reasonable to expect that relationships and trust between players, 

the perspective of each player (whether they are selfish, altruistic, or vengeful), and any bias they 

may have before the decision would alter the outcome, perhaps causing them to choose “quiet” 

more than 0% of the time. Yet classical game theory struggles to incorporate these factors into the 

game solution.  

 
4) The Decider problem. Classical game theory incorporates only the decisions of the two 

players A and B in the PD game. However, the PD game is described with a district attorney that 

asks players A and B whether they will confess or tell. The district attorney is usually assumed to 

be neutral, but what if the district attorney harshly interrogated Player A, and not Player B, because 

he wants Player B to take the fall? Again, the impact of these outside agents is not incorporated in 

the classical solution. 

2.3 Relevant Literature to Address Shortcomings 

Before describing Chemical Game Theory, this thesis will address some developments in 

classical game theory over the past half-decade that have attempted to address some of the 

shortcomings described above. Many of them address the most common problem: that 

experimental players do not always choose “rationally” (i.e. tell) 100% of the time. The first work 
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that attempts to address this is Quantal Response Equilibrium (QRE)13. QRE postulates that even 

rational players make “errors” in choosing, meaning they do not always choose the Nash 

Equilibrium. The probability of making errors is based on payoff magnitudes and is described by 

a Boltzmann distribution. However, QRE says that if a game is played several times, the average 

outcome still reverts to that of classical game theory. As will be shown with CGT, the inclusion of 

entropy will make the average outcome different than that of classical game theory. 

 

Additionally, classical game theory can incorporate the idea of Bounded Rationality,14 

which postulates that due to cognitive limitations, players a) have an incomplete knowledge of the 

world, and b) have a finite capacity to process the information they do have.  Thus, players make 

decisions that are “good enough” given the information and time that they have.  That is, they 

“satisfice”, rather than “optimize”. CGT incorporates players’ finite processing capabilities by 

restricting the amount of choices (reactants), rather than including every possible choice, and 

recognizing that some choices will not be made because they are slow to compute (kinetically 

unfavorable). However, CGT acknowledges that decisions that deviate from rationality are not 

errors or non-optimal solutions, but deliberate player choices given the unique biases, history, and 

perspectives that each player brings to the game.  

 

Chemical Game Theory readily allows for the incorporation of player and payoff attributes 

that explain these deviations from the classical model of rationality. The following section will 

detail the CGT representation of games. 

                                                      
13 McKelvey, Richard; Palfrey, Thomas (1995). “Quantal Response Equilibria for Normal Form Games.”  Games 
Econ Behavior, 1995, 10, 6-38. 
14 Simon, H. A.; “Models of Bounded Rationality.” MIT Press, 1997 
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Chapter 3  
 

Chemical Game Theory  

3.1 CGT Representation 

Unlike classical game theory, a normative approach of what rational players should do, 

chemical game theory seeks to explain what actual players will do. CGT incorporates concepts 

from chemistry and chemical engineering in a rigorous model which is hypothesized to explain 

and predict human decision-making. CGT is not a generalization of classical game theory; rather, 

it represents contested decision problems differently than classical game theory, and generates 

different solutions.  

 
Chemical game theory is concerned with decision reactions: the chemical reactions 

between the metaphorical chemical molecules representing the players and their choices to form 

decisions. It can first be described using a molecular view of the decisions that occur in each 

player’s brain. In the Prisoner’s Dilemma game, each player has two choices: quiet or tell, 

represented for player A as a1 and a2, respectively. Player A also has some anticipation of how 

Player B will respond, quiet or tell, represented as b1 and b2, respectively. The results of CGT 

depend on molecules a1, a2, b1, and b2 reacting to form decisions in both Player A’s and Player 

B’s brains. As shown in Figure 1, molecules a1, a2, b1, and b2 can react with solid molecule A, 

which represents Player A’s personality, and incorporates their experiences, history, and 

knowledge. The example in Figure 1 shows molecules a2 and b1 reacting with molecule A under 

the aid of a catalyst to form A21, which is the contribution that A brings to the {tell, quiet} 

decision.  
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Figure 1. Molecular View of a Decision Reaction.  
Choice molecules a2 and b1 react with molecule A to form A21, Player A’s contribution to the {tell, quiet} decision. 
The reaction occurs under the aid of a catalyst (the black item with red and blue pockets). 

 

These decision reactions can also be understood at a systems level, detailing the inputs and 

outputs, shown in Figure 2. The choice inputs a1, a2, b1, and b2 are fed into A’s brain, represented 

as Reactor A. These inputs react with molecule A to form A’s four possible decisions in the PD 

game: A11, A12, A21, and A22. Player A also anticipates what Player B will do when faced with 

the same inputs, and these reactions occur in reactor B. Here, it is assumed that there is no 

information asymmetry or deception between the players, although this could be readily included. 

Thus, each player understands the game completely and accurately, and Player B’s diagram will 

look the same as that for player A. 

 
Here, the Gibbs free energy change (Δg𝛼𝛼ij) values of each reaction, represented in Figure 2 

in brackets, are taken directly from the classical PD normal form matrix. These values are 

nondimensionalized by the thermal energy term RT, so that g𝛼𝛼ij = Δg𝛼𝛼ij / RT.  For example, if A is 

quiet and B tells (i.e. a1, b2, and A react to form A12), then player A will receive 3 years in prison, 

and thus the gA11= +3. A higher prison time increases the g𝛼𝛼ij value for a reaction, making it less 

thermodynamically favorable. Though in classical game theory, the values in the matrix represent 
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positive payoffs, this thesis will frame the game in terms of pains (the heat of reaction Δh𝛼𝛼ij), so 

that a smaller value is more favorable for each player. This thesis will simplify calculations by 

assuming that g𝛼𝛼ij = h𝛼𝛼ij, where h𝛼𝛼ij is also nondimensionalized by Δh𝛼𝛼ij / RT. Thus, the pain for 

player A associated with the decision A12 is gA11 = hA11 = +3.  

 

 

Figure 2. Systems View of Decision Reactions 
Block flow diagram for PD game, from A’s perspective.  It is assumed that B has exactly the same perspective, so 
that there is no information asymmetry. After species exit each Reactor A, B, and D, a separation step removes 
unreacted reactants.  For example, going into Reactor D, there is no a1, a2, b1, b2, A, or B. Separators are not shown 
for space considerations. 
 
 

After reactions occur in Player A and B’s brains, the products of each are fed to Reactor 

D. Before species enter this reactor, a separation step occurs, so that the initial reactants are 

separated from the mixture and only the products of reactors A and B enter the final reactor D. 

Player A then must consider how the Decider (Reactor D) will take the inputs from Reactors A 

and B to make the final decision. In the PD game, Player D is the district attorney, who asks both 

players whether they will stay quiet or confess. In the game represented in Figure 2, the district 

attorney is assumed to favor all decisions equally: He feels a pain of gDij = -1 for all decisions. 
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The products of the D reactor: D11, D12, D21, and D22 represent the concentrations of 

each of the final four decisions: D11 = {quiet, quiet}, D12 = {quiet, tell}, D21 = {tell, quiet}, and 

D22 = {tell, tell}. These concentrations are often small, so they are usually normalized with mole 

fractions (y𝛼𝛼ij). For example, yD12 represents the fraction of the time that Players A and B end up 

the in {quiet, tell} block, where Player A gets 3 years in prison, and Player B gets 0 years. Since 

evaluating the final concentrations involves solving for the extents of 12 reactions simultaneously, 

equilibrium decision concentrations are usually solved numerically, using Excel or GAMS. 

Solutions to chemical games will be detailed in the next section, and the Appendix. 

3.2 CGT Solution Methods 

The outcomes of each of the twelve reactions shown can be calculated either 

thermodynamically or kinetically. Using a thermodynamic approach, one can begin with Equation 

1:   

(1)           𝑑𝑑𝑑𝑑 =  −𝑆𝑆𝑑𝑑𝑆𝑆 + 𝑉𝑉𝑑𝑑𝑉𝑉 + �µ𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖 

Where G is the Gibbs free energy, S is the entropy, T is the temperature, P is the pressure, 

V is the volume, μi is the chemical potential of species i, and ni is the moles of species i. Using the 

derivation shown in the Appendix, the criteria for equilibrium is: 

(2)           ∆𝑔𝑔0 =  −𝑅𝑅𝑆𝑆 ln �
𝑝𝑝
𝑝𝑝0
��𝑣𝑣𝑖𝑖 − 𝑅𝑅𝑆𝑆�𝑣𝑣𝑖𝑖 ln𝑦𝑦𝑖𝑖 

Where R is the ideal gas constant, p0 is standard pressure, υi is the stoichiometric coefficient 

of each species, and yi is the mole fraction of species i. All calculations in this thesis assume room 

temperature and p/p0 = 1, though future work will focus on the effects of temperature and pressure 

on decision outcomes. The second term on the right-hand side is the entropy of mixing component 
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of chemical reactions, an essential piece of decision reaction equilibrium. The thermodynamic 

approach then involves for an extent of reaction that satisfies Equation 2. In Excel, this is done 

with Solver, minimizing the difference between the right-hand side and each of the g𝛼𝛼ij values taken 

from the pain matrix.  

 

Alternatively, this equation is more simply written as an equilibrium constant (K). In CGT, 

an equilibrium constant can be written for all twelve reactions. For instance, for the reaction that 

produces A12 (i.e., a1 and b2 reacting to form A’s quiet-tell decision), the equilibrium constant is: 

(3)           𝐾𝐾𝐴𝐴21 =  
𝑦𝑦𝐴𝐴12
𝑦𝑦𝑎𝑎2𝑦𝑦𝑏𝑏1

= 𝑒𝑒−𝑔𝑔𝐴𝐴21 

 
Where gA21 is the nondimensionalized molar Gibbs free energy of reaction, given in the 

payoff matrix as the pain for player A in the a1-b2 block as +3, and y𝛼𝛼ij is the mole fraction of each 

species. The next step is to solve for the 12 mole fractions using a stoichiometric table. The 

stoichiometric table lists the species, initial concentrations, change in concentrations, end 

concentrations, and final y𝛼𝛼ij mole fractions. Initial concentrations in the CGT model represent the 

player’s pre-biases. In this example, players are assumed to be “unbiased” (i.e. do not favor either 

decision before the game begins), with all initial reactant concentrations set to c0a1 = c0b1 = 0.5. A 

table for Player A is shown. Player B’s table would look similar, but produce four different 

decisions (B11, B12, B21, and B22).   
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Table 3. Stoichiometric Table for Player A.  
The stoichiometric table shows the initial, change, and final concentrations, as well as the mole fraction of each 
species. In this example, player A is unbiased since the amount of a1 and a2 are the same. Additionally, the solid 
species representing player A does not appear in this table, as solids are often approximated as having a chemical 
activity of 1. The extents (ε1 – ε4) are written for the four reactions that occur in Reactor A. 

 

species initial change end y mole fraction 

a1 
a2 
b1 
b2 

0.50 
0.50 
0.50 
0.50 

- (ε1 + ε2) 
- (ε3 + ε4) 
- (ε1 + ε3) 
- (ε2 + ε4) 

0.50 - (ε1 + ε2) 
0.50 - (ε3 + ε4) 
0.50 - (ε1 + ε3) 
0.50 - (ε2 + ε4) 

[0.50 - (ε1 + ε2)] / ∑ 
[0.50 - (ε3 + ε4)] / ∑ 
[0.50 - (ε1 + ε3)] / ∑ 
[0.50 - (ε2 + ε4)] / ∑ 

A11 
A12 
A21 
A22 

0 
0 
0 
0 

+ε1  
+ε2  
+ε3  
+ε4  

ε1  
ε2  
ε3  
ε4  

ε1 / ∑ 
ε2 / ∑ 
ε3 / ∑ 
ε4 / ∑ 

total ∑0 = 2.00  - (ε1 + ε2 + ε3 +ε4) ∑ = 2.00 - (ε1 + ε2 + ε3 +ε4) 1.00 

 

Reactor D can be similarly represented with a stoichiometric table (Table 4).  The reactants for D 

are the 8 products from Reactors A and B, which each react to create final decisions D11, D12, 

D21, D22. The mole fractions of each of these four final decisions give the proportion of the time 

that a particular result, for example D11 = {quiet, quiet}, would occur for these players with given 

pre-biases. 
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Table 4. Stoichiometric Table for Player D 
The Gibbs free energy changes for the four reactions of the Decider are gDij = -1, unless otherwise specified. 
 

species initial change end y mole fraction 

A11 
A12 
A21 
A22 
B11 
B12 
B21 
B22 

ε1  
ε2  
ε3  
ε4  
ε5  
ε6  
ε7  
ε8  

-ε9  
-ε10  
-ε11  
-ε12  
-ε9  
-ε10  
-ε11  
-ε12  

ε1 - ε9  
ε2 - ε10  
ε3 - ε11  
ε4 - ε12  
ε5 - ε9  
ε6 - ε10  
ε7 - ε11  
ε8 - ε12  

(ε1 - ε9) / ∑ 
(ε2 - ε10) / ∑ 
(ε3 - ε11) / ∑ 
(ε4 - ε12) / ∑ 
(ε5 - ε9) / ∑ 
(ε6 - ε10) / ∑ 
(ε7 - ε11) / ∑ 
(ε8 - ε12) / ∑ 

D11 
D12 
D21 
D22 

0 
0 
0 
0 

ε9  
ε10  
ε11  
ε12  

ε9  
ε10  
ε11  
ε12  

ε9   / ∑ 
ε10   / ∑ 
ε11   / ∑ 
ε12   / ∑ 

total ∑0  Δ ∑ = ∑0 + Δ 1.00 

 

It is now possible to solve for the 12 extents of reaction (εi), which will give the final 

mole fractions from the D reactor, representing the decision outcome. For a PD game with two 

players, each with two choices, this system can be solved with Excel Solver. For larger systems, 

Mathematica or GAMS can be used. The next section will detail the results of these calculations. 
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Chapter 4  
 

Chemical Game Theory Solutions 

In classical game theory, the Prisoner’s Dilemma game has one Nash Equilibria: both 

players tell on their opponent and receive 2 years in prison. This is a pure strategy Nash Equilibria, 

so the result occurs 100% of the time. Using the notation in CGT, this means that the mole fraction 

yD22 = 1.00. In classical game theory, players do not consider information about their opponent, 

but instead look at their own pains and conclude that, no matter what their partner does, their own 

pain is minimized by choosing tell. However, in CGT, players consider the energetics of their 

options and include the choice concentrations of their opponent to produce different solutions. 

 
For two unbiased players playing a 0-1-2-3 PD game, the CGT solution, using the methods 

described in the previous section, is yD11 = 0.523, yD12 = yD21 = 0.183, and yD22 = 0.111.  That is, 

the {quiet, quiet} decision occurs 52.3% of the time, rather than 0% of the time, and the {tell, tell} 

decision occurs 11.1% of the time, rather than 100% of the time. This result illustrates a few 

important features of chemical game theory. First, it illustrates the role of “entropic choices.” In a 

chemical reaction, entropy ensures that there is never a 100% extent of reaction. In chemical game 

theory, entropy ensures that a decision never occurs 100% of the time. Having finite probabilities 

for both quiet and tell for this PD game is not due to shortcomings of the player, errors, or 

irrationality, but rather due to the effect of entropy in the choices. 

 
Another important feature of this CGT solution is that players incorporate information 

about the game and their opponent to yield an equilibrium decision that is primarily cooperation. 

The D11 outcome is preferred by unbiased players in CGT, and is played 52.3% of the time. This 

outcome has the lowest combined total pain (or in the PD game, the least jail time): 1 year for each 
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player, and 2 years in total. All other blocks have a combined total of 3 or 4 years. But unlike 

classical game theory, which seeks to minimize a player’s worst outcome, in CGT players consider 

their opponents and their choices, and decide to cooperate the majority of the time. There is no 

“dilemma” in the CGT solution of the PD game, since the actions of each player primarily yield 

the result that most benefits both themselves and the collective group. 

 
This solution and analysis holds for two unbiased players (c0a1 = c0b1 = 0.5), concerned for 

only their own pain (consider their own g𝛼𝛼ij values), and an unbiased decider (all gDij = -1). It also 

used the cardinal payoffs in the original PD game (0-1-2-3). However, all of these factors could 

be changed to analyze the impact that each has on the CGT solution. The rest of Section 4 will 

detail the results when these parameters are changed. 

4.1 Cardinal Payoff Values: The Epsilon Problem  

This thesis has discussed how CGT addresses 1) The 100% solution problem, by indicating 

the probabilities of each of the four outcomes occurring. CGT also addresses 2) The Epsilon (ε) 

problem, the PD game with pains that differ by only a very small amount, by incorporating the 

numerical pain of each decision into the thermodynamic calculation via the g𝛼𝛼ij values. As ε 

become small, the calculated pains become closer together (Table 5). The classical solution 

indicates that {tell, tell} will be the only outcome 100% of the time, even if ε = 0.01.  CGT shows 

that decisions do in fact become less differentiated as pain values become closer together, until 

they are almost all equally likely. When ε = 0, all pains are equal, and thus all decisions occur with 

equal probabilities. When ε = 1, the solution is that of the 0-1-2-3 PD game detailed in the previous 

section. This figure reveals the importance of entropic choices, where entropy aims to distribute 
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the outcomes fairly when the pains between different outcomes are not greatly impacted by 

energetics. 

 
Table 5. PD Game Matrix in Terms of ε  
This table is used to construct Figure 3. ε values were changed from 1 (original PD game) to 0 (all pains = 2). At ε = 
0.01, pain values are equal those in Table 2, shown prior (i.e. gA11 = 1.99, gA12 = 2.01, gA21 = 1.98, gA22 = 2.00). 
  

b1 = quiet b2 = tell 
a1 = quiet 2-ε, 2-ε 2+ε, 2-2ε 
a2 = tell 2-2ε, 2+ε 2, 2 

 

 
Figure 3. Classical and CGT Solutions for Changing Epsilons 
Dij values for two unbiased players for the game in Table 8. As ε values decrease, the final decisions become equally 
likely. Classical game theory predicts that in the range of 0 < ε < 1, the overall solution does not change, and the Nash 
Equilibrium remains at 100% D22 (i.e.,= tell, tell). No classical NE is given for when ε=0 (all pains the same). In 
CGT, Dij values change as the relative pains change, as expected from human behavior.   

4.2 The Role of the Decider 

Chemical game theory, unlike classical, can incorporate outside agents who may impact 

the game, in addition to the two players themselves. This addresses 3) The Decider Problem, 

discussed in Section 2.2. In the PD game, Player D is the district attorney, who asks both players 

whether they will stay quiet or confess. In some situations, Player D might actually be Player A or 
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Player B, an electronic or regulatory mechanism, or something else that takes the inputs from A 

and B to make a decision. In the solution method shown earlier, the gDij values for the Decider are 

assumed to be -1 for all cases, so that the decider equally favors any decision being made.  

 
However, the decider could instead be biased towards a favorable decision for players (gD11 

is more negative), show a bias against A or B (gD12 or gD21 are more negative, respectively), or 

want them both to take the fall (gD22 is more negative). The figure below illustrates the result when 

gD22 is changed and all others are held constant. The decision D11 {quiet, quiet} still dominates 

when the decider is neutral or biased against the D22 {tell, tell} decision, but a decider that very 

strongly favors D22, and would for example harshly interrogate the players until they confess, can 

cause the D22 decision to dominate when gD22 < -4.  

  

Figure 4. Impact of Decider g22 Values 
When decider pains for {tell, tell} are changed, while the pains for the other three decisions are held constant, the 
{tell, tell} decision can either dominate (at low gD22 values) or approach 0 frequency (at high gD22 values). 
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4.3 Incorporating Bias  

The next two sections of this work address the final shortcoming of classical game theory: 

4) The Rationality problem. In classical game theory, rational players are assumed to have no 

preference for either choice prior to the game. In CGT, each player enters the game with a certain 

“pre-bias”: their ideas about their possible strategies and their view of their potential payoffs. In 

CGT, pre-bias is represented as initial concentrations of a1, a2, b1, and b2, where c0a1 + c0a2 = 1.0 

and c0b1 + c0b2 = 1.0. In the example solution, all initial concentrations were assumed to be equal 

at 0.5, so the players were unbiased. However, real players may not choose to behave this way. 

For example, if a player is an economics major and has heard before about the PD game and its 

Nash Equilibria, perhaps they know before the game is played that they will choose “tell” more 

often than they will choose “quiet” (larger c0a2)15. This result has in fact been observed 

experimentally16. Conversely, if a player decides before playing the game that they would prefer 

to choose “quiet”, they would have a larger value of c0a1. 

 

As shown in Figure 6, different pre-biases can result in significantly different equilibrium  

outcomes. In Figure 6a, the initial concentrations of Players 1 and 2 are equal and varied together, 

from 0.02 to 0.98.  On the left side of plot a, where c0a1 and c0b1 are small, the primary outcome is 

D22. This is expected, since players are biased towards tell. However, once c0a1 > 0.4, D11 is the 

primary outcome. In going from 3b to 3d, there is an increase in the fraction of D11 {quiet, quiet} 

played at the right side of the plots.  Thus, while unbiased players prefer D11 52.3% of the time, 

                                                      
15 Laura Cook in her SHC thesis is able to predict quantitatively the pre-biases in a study of economics and non-
economics majors playing an experimental PD game. 
16 Frank, R.; Gilovich, T.; Regan, D. “Does Studying Economics Inhibit Cooperation?”  J. Econ. Perspect. 1993, 7, 
159-171 
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players biased towards quiet can cause D11 to dominate even greater than 99% of the time. 

Conversely, players that are initially biased towards tell (high c0a2 or c0b2) move the decision 

toward less cooperation (sometimes choosing D11 even less than 1% of the time), indicating that 

the initial bias of information can dominate final decisions. 

 

Figure 5a-d. Impact of Pre-Bias on Equilibrium Decisions 
Final outcomes yDij (mole fractions) for players in a PD 0-1-2-3 game. a) c0a1 = cb01. b) cb01 = 0.1 (B is biased to stay 
quiet).  c) cb01 = 0.5 (un-biased). d) cb01 = 0.9 (B is biased to tell).  At the left side of plot (a), where c0a1 and cb01 are 
small, the primary outcome is D22 as expected. Once c0a1 = cb01 > 0.4, D11 is the primary outcome.  In going from (b) 
to (d), there is an increase of D11 (quiet-quiet) at the right side of the plots.  
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The three factors analyzed thus far that influence how each player plays are: 1) The initial 

choice concentrations, which represent pre-bias. Without significant initial concentrations of a 

species, it is not possible for certain decisions to dominate. 2) Pains, or g𝛼𝛼ij values, which bias the 

results towards one choice or another. As the difference between pain values increases, the 

frequency with which decisions are chosen moves further apart.  3) Entropy, which aims to 

distribute the outcomes fairly, and ensures that no solution will occur 100% of the time, no matter 

how extreme the pre-bias or pain values. 

4.4 Incorporating Perspective 

The last aspect of players that the CGT model can incorporate is perspective. Perspective 

allows for the inclusion of a player’s attitude toward others, not as permanent personality traits, 

but as moods that can depend on who the player’s opponent is.  For example, a father playing 

against his daughter in a Prisoner’s Dilemma game might be more willing to sacrifice himself than 

he would be for a casual acquaintance or an enemy. Thus, perspective differs from a player’s pre-

bias because it changes the way players view the pains in a game - a father may actually receive 

more pain if his daughter goes to jail than he would receive if he goes to jail. 

 
Perspective is modeled by altering the g𝛼𝛼ij values that are represented in the pain matrix. In 

classical game theory, players are always assumed to be selfish: They seek solely to minimize their 

own pain, without regard to their opponent’s outcome. However, in the above example, a father 

may care nothing for his own pain, and care only about minimizing his daughter’s pain. Thus, his 

g𝛼𝛼ij value would be equal to that of his daughter’s. This perspective is known as altruistic. 
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The impact of perspective can be modeled by calculating a new g𝛼𝛼ij value for a player for 

each of the four decisions. For each decision, the new g𝛼𝛼ij value is the sum of a player’s own pain 

(here defined as 𝑔𝑔αij0 ), times the fraction each person cares about their own pains (C1), and their 

opponent’s pain, 𝑔𝑔βij
0

, times the fraction they care about their opponent’s pains (C2)17. This is 

represented with Equation 4: 

(4)            𝑔𝑔αij = 𝐶𝐶1𝑔𝑔αij0 + 𝐶𝐶2𝑔𝑔βij
0  

Where the sum of the absolute values of C1 and C2 is equal to 1. Table 6 shows examples 

of common perspectives that players can adopt in CGT. For example, if two trusting friends played 

a PD game, they may both choose to play overall: They care equally about minimizing their own 

pain and their opponent’s pain, and thus their g𝛼𝛼ij value is the average of the two pains in each 

block. The new pain matrix for the overall case is shown in Table 7, and the remainder of the 

games are shown in the Appendix. 

Table 6. C1 and C2 Values for Varying Perspectives 
These values can range from -1 to 1 for each player, and determine that amount that players care about their 
opponent’s outcome (either favorably or unfavorably). 
 

Perspective C1 C2 
Selfish 1 0 

Altruistic 0 1 
Overall 0.5 0.5 
Rival 0.5 -0.5 

Vengeful 0 -1 
 

Table 7. Pain Matrix if Player B is Overall 
Player A has the same perspective as in the original game (selfish), but now player B considers his outcomes by 
incorporating both his and his partner’s pains. 
  

b1 = quiet b2 = tell 
a1 = quiet 1, 1 3, 1.5 
a2 = tell 0, 1.5 2, 2 

                                                      
17  John Connolly, Altruistic to Vengeful Perspectives in Gibbsian Game Theory, Spring 2016 SHC Thesis. 
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Two final perspectives considered in this thesis are rival and vengeful, shown in Table 6. 

This could occur if the players in the PD game are enemies, or even acquaintances who primarily 

want their opponent to take the fall. Rivalrous opponents care equally about minimizing their own 

pain and maximizing their opponent’s pain, and thus multiply their own pain (g𝛼𝛼ij) by 0.5, and their 

opponent’s pain (gβij) by -0.5. Thus, higher pains for an opponent are more favorable for a rivalrous 

player. Vengeful opponents care nothing for themselves, and only for maximizing their opponent’s 

pain, and thus multiply their opponent’s pain by -1. 

 
The effects of varying perspective, like those of varying pre-bias, can be analyzed to 

determine the impact of perspective on equilibrium decisions. The results of changing perspective 

are not as extreme as those of changing pre-bias. This is because perspective alters pain values, 

making a particular decision more or less favorable, while pre-bias can significantly reduce the 

initial concentration of certain species, resulting in a minimal extent of reaction for particular 

decisions. In Figure 7, A plays with an unbiased, selfish perspective, as in the initial example. 

Player B is unbiased but consecutively exhibits perspectives of altruistic, overall, rivalrous, and 

vengeful in plots a-d. 

 
In Figure 7a, where player A is selfish and player B altruistic, player A does very well, 

since both players are concerned with minimizing player A’s pain. Decision D21 (where player A 

gets 0 years in prison, and player B gets 3) dominates D11 at pre-bias levels of up to c0a1 < 0.65, 

where for two selfish players it only dominated D11 up to c0a1 < 0.35. Moving from b to d, the 

D21 fractions decrease on the left side of the plots, as player B considers player A’s pain less and 

then begins to view it negatively. Moreover, as player B takes on a less favorable perspective to 

player A, it is more likely that both will end up in the D22 = {tell, tell} block, the classical solution 
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where both players get two years in prison. It is worth noting, however, that if player A plays with 

a high pre-bias towards quiet (c0a1 > 0.65), the D11 = {quiet, quiet} decision will dominate 

regardless of player B’s perspective. 

 

Figure 6a-d. Impact of Perspective on Equilibrium Decisions 
Final outcomes yDij (mole fraction) for players in a PD 0-1-2-3 game, with varying perspective of B. a) Altruistic b) 
Overall c) Vengeful d) Rival. This illustrates that the consideration of an opponent’s pain can cause otherwise less 
favorable decisions to dominate (here, D21), but also that perspective is not as impactful as pre-bias on altering 
equilibrium outcomes. 
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The results of these four sections detail the relative impacts of changing pain magnitudes, 

decider biases, player pre-bias levels, and player perspectives. The differences between pain 

magnitudes change how frequently each decision will be played, and how much a particular 

decision will dominate. Incorporating the role of the decider allows the district attorney to favor 

one decision over another and influence the final outcome. Pre-bias changes the initial 

concentrations of choice species a1, a2, b1, and b2. And finally, perspective aims to account for 

how a player feels about their opponent’s outcome by incorporating their opponent’s g𝛼𝛼ij value.  

 
Studying these game characteristics makes it possible to answer a question posed in the 

final section of this thesis: “Given my opponent’s strategy, including their perspective and pre-

bias, how should I play”? With CGT, it is possible to integrate various game and player attributes 

to produce an answer. 
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Chapter 5  
 

Analysis of Fairness, Welfare, and Best Responses 

The idea of a “best response” is an important concept in classical game theory. In the 

classical model, finding a best response can be accomplished most simply by determining which 

strategy results in the highest utility for a player, given a fixed strategy of their opponent. If a 

player knows their opponent’s beliefs (the probability their opponent will play each strategy) then 

a player can calculate the fraction of the time they should play each of their own available strategies 

in order to maximize their payoffs. This is known as a Bayesian game18, where players analyze 

games with incomplete information, but can incorporate their knowledge of their opponents and 

their reputations to pick the most rational solution. 

 
However, CGT does not assign a “rational” designation; instead, players can learn in an 

evolutionary way that some decisions benefit them more than others. Additionally, players can 

alter not only their strategies, but also their pre-bias and perspective, to result in an equilibrium 

decision that is more favorable to them. Players can do this by considering their expected pain per 

decision, or 𝛥𝛥hα values. This is analogous to the concept of expected payoff in classical game 

theory. A player’s expected payoff is calculated by multiplying a player’s pain for each outcome 

by the fraction of their decisions in each outcome. In CGT, the role of other players and the Decider 

is considered, and so 𝛥𝛥hα is calculated by multiplying a player’s pain for each outcome by the 

concentrations of the final decisions. For the PD game, this is described for players A and B in 

equations 5 and 6, respectively. 

                                                      
18 Harsanyi, J. C.; “Games with Incomplete Information Played by “Bayesian” Players” J. Manag. Sci. 1967, 159-
182. 
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(5)         ∆ℎ𝐴𝐴 =
𝜀𝜀𝐷𝐷11ℎ𝐴𝐴11 + 𝜀𝜀𝐷𝐷12ℎ𝐴𝐴12 + 𝜀𝜀𝐷𝐷21ℎ𝐴𝐴21 + 𝜀𝜀𝐷𝐷22ℎ𝐴𝐴22

𝜀𝜀𝐷𝐷11 + 𝜀𝜀𝐷𝐷12 + 𝜀𝜀𝐷𝐷21 + 𝜀𝜀𝐷𝐷22
 

(6)        ∆ℎ𝐵𝐵 =
𝜀𝜀𝐷𝐷11ℎ𝐵𝐵11 + 𝜀𝜀𝐷𝐷12ℎ𝐵𝐵12 + 𝜀𝜀𝐷𝐷21ℎ𝐵𝐵21 + 𝜀𝜀𝐷𝐷22ℎ𝐵𝐵22

𝜀𝜀𝐷𝐷11 + 𝜀𝜀𝐷𝐷12 + 𝜀𝜀𝐷𝐷21 + 𝜀𝜀𝐷𝐷22
 

 
Where h𝛼𝛼ij is taken from the pain matrix (equal to g𝛼𝛼ij) and εDij is the extent of each of the 

four decisions in the D reactor. Since there is a 1:1 stoichiometric ratio of the reactants and 

products, the extents of reaction for each of the four decision reactions are equal to their final 

concentrations.   

 
A player can consider their range of expected pain (𝛥𝛥hα) values given their pre-bias levels 

to determine how they will play. For example, Player A may want to minimize his own total pain 

(ΔhA), the difference between his and his opponent’s pain (ΔhA-ΔhB), or the sum of his and his 

opponent’s pain (ΔhA+ΔhB).  As shown in Figure 7, given that Player B is selfish and playing with 

c0b1 = 0.5, Player A would minimize his or her own pain by showing a bias towards tell (i.e. c0a1 = 

0), earning the lowest years of prison time. If A would rather minimize their combined pain, then 

A should show a bias towards quiet (i.e. c0a1 = 1.0). However, if A instead wishes to make the 

game most fair, by minimizing the difference between their pains, then A should play with a bias 

of c0a1 = 0.5. At this level of bias, both players receive the exact same pain. This analysis hints at 

an important moral question related to the dilemma between maximizing fairness and minimizing 

expected pain, as the overall welfare-maximizing outcome may not result in the most fair 

solution19. 

                                                      
19 Kaplow, L., Shavell, S. Fairness Versus Welfare. Harvard University Press. 2006. 
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Figure 7. Expected Pain Values if Player B is Selfish and Unbiased 
Expected Pains for Players A and B (𝛥𝛥hA, 𝛥𝛥hB), sum of pains (𝛥𝛥hA+𝛥𝛥hB), and difference of pains (𝛥𝛥hA-𝛥𝛥hB).   c0b1 is 
held constant at 0.5. For the difference of pains curve, there is a differentiable minimum at c0a1 = 0.50. Two unbiased 
players (c0a1 = c0b1 = 0.5) give the most equal outcome (minimum 𝛥𝛥hA-𝛥𝛥hB), but a Player A biased towards tell yields 
the lowest total pain (minimum 𝛥𝛥hA+𝛥𝛥hB).  

 

However, as another example, if B is still unbiased but playing with an overall perspective, 

Player A would consider his strategy differently. As shown in Figure 8, if A wants a fair outcome, 

he can play with c0a1 = 0.8. Again, the two players receive the exact same pain here. If A wants to 

minimize his own pain, he can play with c0a1 = 0. Notice that player B receives a very high pain 

on this end of the graph - higher than he would have received if he played selfishly. This is the risk 

of playing overall: If Player A takes advantage of Player B’s strategy, Player B has a possibility 

of incurring a very high pain. And finally, if A wants to minimize the total pain of both players, 

he can play with c0a1 = 1. Notice that the combined pain here is less than that in Figure 8a. This is 

the benefit of playing overall: If Player B plays overall and Player A also attempts to minimize 

their combined total pain, both players do better than they would have playing selfishly. 
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Figure 8. Expected Pain Values if Player B plays Overall and Unbiased 
If both players adopt a strategy that focuses on maximizing the welfare of the group, they do better than playing 
selfishly. 
 

As a final example, A can consider how he will play if he knows B is selfish but biased 

either towards tell (c0a1 = 0.1) or towards quiet (c0a1 = 0.9). Figure 9a details the results if Player 

B is biased towards tell. In this case, if A wants to ensure a fair outcome, he can - like Player B - 

play with a bias of c0a1 = 0.1 (also biased towards tell). Player A’s pain is minimized on this end 

of the graph, where c0a1 is close to 0. However, if A wants to minimize their combined pain, he 

does best playing with a bias of c0a1 = 1. Thus, when a player knows their opponent will pick tell, 

their best strategy for themselves is to pick tell as well. This is very similar to solving for the Nash 

equilibria in classical game theory: Classical players know their opponent will pick tell if they are 

“rational,” and thus they should pick tell themselves. Here, a player’s disposition towards tell is 

explained by their pre-bias, rather than rationality.  
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Figure 9. Expected Pain Values if Player B is Selfish and Biased. 
Figure 9a (left) shows the outcomes for a player with bias of c0a1 = 0.1 (biased towards tell). Figure 9b (right) shows 
the outcomes for a player with bias of c0a1 = 0.9 (biased towards quiet). In both cases, Player A does best for himself 
by adopting his opponent’s level of bias. In all four graphs, there is a differentiable minimum where 𝛥𝛥hA-𝛥𝛥hB =0. 
 

Figure 9b details the results if Player B is biased towards quiet. In this case, if A wants to 

ensure a fair outcome, he can - like Player B - play with a bias of c0a1 = 0.9 (also biased towards 

quiet). If Player A wants to minimize his own pain, he should play with a bias of c0a1 = 0. The 

difference between the pains on this end of the graph is particularly large because Player B has a 

possibility of incurring a very high pain if player A takes advantage of them and picks tell. Like 

playing overall, playing with a high pre-bias towards quiet is a risk. However, if A wants to 

minimize their combined pain, he does best playing with a bias of c0a1 = 1. The lowest possible 

combined pain of Figures 7-9 occurs here, if Player A also plays with this bias towards quiet. This 

graph helps illustrate the concept of trust: Players likely play with a bias towards quiet because 

they trust that their opponent seeks to help them as well. If their opponent does help them, they get 

the best outcome possible, where their pain is minimized. And if their opponent does not, they 

learn through the experience to change their pre-bias and perspective to lower their total pain. 
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This exercise could be done for a number of scenarios, but these examples illustrate how 

players can maximize their own welfare, total welfare, and fairness, given the pre-bias and 

perspective of their partner. This approach is more complicated than finding best responses by 

inspection of a pain matrix. By considering their opponent’s strategy and their goals for the 

outcome, players can determine how they wish to play. 
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Chapter 6  
 

Conclusion 

Earlier, this thesis listed four critical shortcomings of classical game theory, and showed 

in each section of Chapter 4 how CGT addresses them.  To summarize: 

 
1) The 100% problem. Classical game theory proposes that the {tell, tell} solution occurs 

100% of the time, since players consider only their best response, and no information about the 

other player. However, this outcome almost never occurs experimentally. In CGT, there are never 

100% solutions due to entropy, and the solution to games yield equilibrium mole fractions that 

represent how often each of the four decisions are expected to occur. 

 
2) The Epsilon problem. If a PD game were played with pains that differed from each other 

by only a very small amount (ε=0.01), classical game theory predicts that players would still 

choose the {tell, tell} solution 100% of the time.  However, for small differences, it was postulated 

that the solution would be more equally spread among the possible outcomes.  This is the case for 

CGT solutions, as shown in Figure 3. 

  
3) The Rationality problem. Classical game theory has not been able to explain 

experimental deviations from “rationality,” those instances where players do not always act in way 

that maximizes their own utility. CGT readily allows for the incorporation of bias, trust, and 

perspective to account for these deviations. Furthermore, CGT acknowledges that deviations from 

rationality are not mistakes, but rather a result of the different personalities, information, and 

experiences that each player brings to the game. 
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4) The Decider problem. Chemical game theory allows readily for decider attributes 

through the D reactor. Figure 4 shows how the decider’s perspective can change the equilibrium 

outcome of the game. For other common classical game theory models, such as Tragedy of the 

Commons, a decider could represent a type of enforcement mechanism. It is important to consider 

these outside agents and systems to determine how real games will be played. 

 
CGT allows for analysis of the relative effects of the game’s components - pain 

magnitudes, decider biases, player pre-biases, and player perspectives - on equilibrium outcomes. 

When pain magnitudes are moved closer together, players choose the four decisions with similar 

frequency, whereas in classical game theory, a 100% solution would still be attained. When all 

four pains are equal, the choice is totally entropic, and entropy aims to distribute the pains equally. 

CGT also incorporates the attributes of a decider, by allowing the district attorney to favor one 

decision over another. A decider that is significantly biased can have an important impact on the 

outcome, allowing any of the four decisions to dominate.  

 
CGT also introduces pre-bias, which changes the initial concentrations of choice species 

a1, a2, b1, and b2. Pre-bias is one of the most impactful game attributes because, for example, 

when c0a1 = c0b1 ≈ 0, it is not possible for D11 to dominate, no matter how favorable the choice is 

energetically. The idea of entropic choices is also important here, as the D22 decision will still 

never be a 100% solution, and D11 will still occur some small fraction of the time. And finally, 

CGT introduces perspective, which aims to account for how a player feels about their opponent’s 

outcome by incorporating their opponent’s g𝛼𝛼ij value, either favorably or unfavorably. 
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Real players who know their opponent’s strategy can decide how they wish to play the 

game, depending on whether they want to minimize total pain, minimize their own pain, or 

maximize fairness of the outcome. The role of trust is important here because a player incurs a 

high pain if their trust is taken advantage of, but two trusting players can achieve the lowest total 

pain outcome, by playing overall and with a bias towards quiet. 

 

Future work in CGT can focus on the effects of temperature and pressure on the outcomes 

of decision reactions. This thesis assumed standard temperature and pressure, an assumption which 

is easy to change mathematically, but it is more difficult to define what these terms mean 

behaviorally. Another important area of future work is solving networks of chemical reactions 

kinetically, instead of as equilibrium reactions, as the dynamic effects (such as the time required 

to process each decision) may be important in understanding outcomes. Additionally, this thesis 

focused only on two-player games. However, it is not uncommon to have classical games with 

three or more players, each with three or more choices. It is important to repeat this analysis for 

larger sets of players and choices and compare the results to a wider variety of experimental data 

in order to test the validity of CGT results. 

 

The approaches of CGT admit the possibility of using concepts from chemistry and 

chemical engineering to predict outcomes of decision-making in social systems. Classical game 

theory is normative and indicates what a rational player should do. But science does not tell us 

what should happen; rather, it tells us what will happen. Grounded in scientific principles, CGT 

seeks to be descriptive and predict how real players will behave. Understanding this behavior can 

allow us to engineer our environments, whether altering the energetics of certain choices, 
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strengthening enforcement mechanisms, or biasing players towards particular decisions, to 

generate outcomes that offer greater benefits for all. 
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Appendix A 
 

Thermodynamic Derivation 

This derivation follows Denbigh20, and begins with the thermodynamic equation: 

𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑑𝑑𝑆𝑆 + 𝑉𝑉𝑑𝑑𝑉𝑉 + �µ𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖 

Where G is the Gibbs free energy, S is the entropy, T is the temperature, p is the pressure, V is the 

volume, μi is the chemical potential of species i, and ni is the moles of species i. If the reaction 

occurs at constant T and p, so that dT = 0 and dp = 0, this simplifies to: 

𝑑𝑑𝑑𝑑 = �µ𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖 

The reaction coefficients (𝜈𝜈i) are set by the stoichiometry. The change in moles for each species 

can be expressed in terms of an extent of reaction (ε), as  

𝑑𝑑𝑑𝑑𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑑𝑑𝜀𝜀 

Using a general expression for chemical potential, with units of J/mol: µ𝑖𝑖 = µ𝑖𝑖0 + 𝑅𝑅𝑆𝑆𝑅𝑅𝑑𝑑𝑎𝑎𝑖𝑖, the Gibbs 

free energy can be expressed as: 

𝑑𝑑𝑑𝑑 = �(µ𝑖𝑖0 + 𝑅𝑅𝑆𝑆𝑅𝑅𝑑𝑑𝑎𝑎𝑖𝑖) 𝑣𝑣𝑖𝑖𝑑𝑑𝜀𝜀 

The activity of a gas phase molecule is ai = yi ϕi (p/p0), at a pressure p and standard pressure p0, 

where yi is the mole fraction of species i, including all inert species.  If the pressure is not too high, 

the gas will be approximately ideal, so that the fugacity coefficients ϕi ≈ 1.  The Gibbs free energy 

varies with the extent of reaction (ε), and to find the equilibrium extent, one can minimize the 

Gibbs free energy by setting the derivative with respect to ε equal to 0. 

By definition the standard state Gibbs energy change of reaction is: 

                                                      
20 Denbigh, Kenneth.  The Principles of Chemical Equilibrium, 4th ed, Cambridge University Press (1981).   
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∆𝑔𝑔0 = �µ𝑖𝑖0 𝑣𝑣𝑖𝑖 

Which gives the expression shown in Equation 4: 

∆𝑔𝑔0 =  −𝑅𝑅𝑆𝑆 ln �
𝑝𝑝
𝑝𝑝0
��𝑣𝑣𝑖𝑖 − 𝑅𝑅𝑆𝑆�𝑣𝑣𝑖𝑖 ln 𝑦𝑦𝑖𝑖 
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Appendix B 
 

Excel Solver Example 
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Appendix C 
 

Perspective Game Matrices 

Player B is rivalrous: 
 

b1 = quiet b2 = tell 
a1 = quiet 1, 0 3, -1.5 
a2 = tell 0, 1.5 2, 0 

  

Player B is altruistic: 
 

b1 = quiet b2 = tell 
a1 = quiet 1, 1 3, 3 
a2 = tell 0, 0 2, 2 

  

  Player B is vengeful: 
 

b1 = quiet b2 = tell 
a1 = quiet 1, -1 3, -3 
a2 = tell 0, 0 2, -2 
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