
 THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

INVENTORY MANAGEMENT FOR CHRISTMAS TREES USING UNMANNED

AIRCRAFT

JUAN MARTIN MUNOZ VALDEZ

SPRING 2018

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Mechanical Engineering

with honors in Mechanical Engineering

Reviewed and approved* by the following:

H.J. Sommer III

Professor of Mechanical Engineering

Thesis Supervisor

Daniel H. Cortes

Assistant Professor of Mechanical Engineering

Honors Adviser

* Signatures are on file in the Schreyer Honors College.

i

ABSTRACT

Agriculture is essential for our survival, and that is why it should be made as efficient as

possible. In this thesis, an algorithm capable of recognizing Christmas trees in aerial images will

be developed. The objective is to reduce the amount of work farmers need to do to count the

trees and make their inventory management much more informative and efficient. The farmers

will use drones to acquire aerial images of the farm. These will then be fed to a prototype

program that finds the geographical location of each tree and stores their information. Two

different methods were tested, first deep learning and then and a more deterministic approach.

The machine learning method was not successful because of many reasons, like the lack of a big

data set. On the other hand, the deterministic approach proved to be accurate. It uses thresholding

and pattern matching as its main components. The results of this method were then tested using

different parameters so that the most efficient configurations could be defined. Once the position

of the trees is found in pixels, then the information has to be extracted out from a DEM GeoTIFF

image and stored in a CSV file. Finally, the prototype program was developed and specified to fit

user needs.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Introduction ... 1

Background ... 1

Thesis Structure .. 3

Chapter 2 Literature Review .. 5

History overview .. 5

Past and similar work .. 6

Difference and importance ... 7

Chapter 3 Deep Learning ... 9

Evolution of object detection .. 9

TensorFlow introduction .. 14

The image dataset ... 15

Training the model .. 19

Results... 20

Chapter 4 Deterministic Method .. 21

GIMP Maximum RGB algorithm ... 21

Main Algorithm .. 23

Color detection in HSV Color Space ... 23

Morphological Transformations .. 27

Blob detection .. 30

iii

Adjusting parameters .. 33

Visualizing the algorithm ... 33

Chapter 5 Evaluation of Deterministic Approach .. 35

Defining the trees real positions ... 35

Expected outcomes and cost function determination. .. 36

Best parameter configuration .. 40

Chapter 6 Data extraction and storage ... 49

TIFF format and use ... 49

Extracting and fixing the tree properties .. 52

Importing information to csv file .. 54

Chapter 7 Final Program Design.. 55

Uploading the images and additional files .. 56

Block Selection ... 57

Sample trees selection ... 58

Raw results and editing ... 59

Review window .. 61

Chapter 8 Further Research and Closing Remarks .. 62

Conclusion .. 62

Future work ... 63

Appendix A TensorFlow Installation Instructions .. 64

BIBLIOGRAPHY .. 65

ACADEMIC VITA .. 68

iv

LIST OF FIGURES

Figure 2-1. Apple orchids with a lens distortion.. 7

Figure 3-1: The representation and matching of pictorial structures, Fischler and

Elschlager, 1973 ... 9

Figure 3-2: Example of edge detection .. 10

Figure 3-3: Examples of original zip codes (left) and normalized digits from the test set

(right), Lecun et al., 1989. .. 11

Figure 3-4: The structure of the neural network developed by Lecon et at. In 1989. .. 11

Figure 3-5: Comparison between object classification and object detection 12

Figure 3-6: Example of Histograms of Oriented Gradients (HOG). 13

Figure 3-7: R-CNN object detection system overview .. 14

Figure 3-8: Image of the entire farm, with 31178 by 17723 pixels. 16

Figure 3-9: Ten sample images obtained from the main farm image. These are the type of

images used to train the model. .. 16

Figure 3-10: Screenshot of labelImg and how its user interface looks. Each one of the

trees already has a define bounding box and a category assigned. 17

Figure 3-11: Sample TotalLoss graph represents how good it performs. The horizontal

axis is the number of steps needed. .. 19

Figure 4-1: A sample of the farm picture (left) and the result once the Maximum RGB

filter was applied (right). .. 22

Figure 4-2: The three-dimensional representation of the RGB (left), CIELAB (center),

and HSV (right) color spaces. ... 25

Figure 4-3: The cropped image obtained from the main farm picture that will be used for

testing and designing the deterministic approach. .. 26

Figure 4-4: The resulting mask obtained by applying a thresholding operation to the HSV

image using the manually determined limits. ... 27

Figure 4-5: Erosion applied twice to the mask (figure 4-4) with a kernel of size 5x5. 28

Figure 4-6: Dilation applied twice to the eroded image (figure 4-4) with a kernel of size

5x5. ... 29

v

Figure 4-7: Distance transform of figure 4-6. It has been magnified and cropped for

displaying purposes. ... 30

Figure 4-8: Template sample (left). It is defined by the radius and gap values. Distance

transform of template sample (right). Both images have been overly magnified for

displaying purposes. ... 31

Figure 4-9: Temple matching result (top). Maxima resulting from threshold filter

(bottom). Both images have been cropped and magnified for display purposes. . 32

Figure 4-10: The resulting image obtained by using the deterministic method being

described. The image has been cropped. .. 34

Figure 5-1: Sample image of manual tree selection program. Each blue circle represents

the center of a tree. The rectangle represents the last selected tree and what its

defined boundaries are. ... 36

Figure 5-2: Visual and quantitative results from the evaluation of the deterministic

method. The true positives are shown as the blue circles, the false positives appear in

red, the false negative as green dots and the circles that have more than one tree are

in yellow. .. 39

Figure 5-3: Histogram of the radii values obtained from the manually selected trees. 40

Figure 5-4: Three-dimensional plot of the radius, gap, and evaluation score. 41

Figure 5-5: Plot of score vs gap when the radius is equal to the real average radius. . 42

Figure 5-6: Three-dimensional plot of the radius, gap, and true positive score. 43

Figure 5-7: Plot of true positive score vs gap when the radius is equal to the real average

radius. .. 43

Figure 5-8: Three-dimensional plot of the erosion, dilation, and evaluation score. 45

Figure 6-1: A standard color ramp to represent the elevation of the entire farm area. 51

Figure 6-2: Contour lines from a raster elevation data. It is zoomed into a closer section

of the farm so that the lines are visible. .. 51

Figure 7-1: Diagram of the program screens flow. It shows the process the user has to go

through and what the different options are. .. 55

Figure 7-2: Flowchart of the process needed to obtain the images that will be used by the

program. .. 56

Figure 7-3: Upload window with the option to ñstart a new analysisò selected. 57

vi

Figure 7-4: Upload window with the option to ñreview an already processed imageò

selected. .. 57

Figure 7-5: Block selection window. Notice that all the blocks were defined but only 1

and 5 are being analyzed. .. 58

Figure 7-6: Tree selection window. ... 59

Figure 7-7: Editing window. The raw results are presented, and fixes can be done in this

section of the program. ... 60

Figure 7-8: Advanced thresholding window. This is not a very user-friendly method since

it requires understanding color space and how thresholding works. 60

Figure 7-9: Review window... 61

vii

LIST OF TABLES

Table 5-1: Simple representation of the grouping of the three categories that will be

considered for the creation of the cost function. ... 37

viii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Dr. H.J. Sommer III for all his help and

guidance throughout the entire research and writing process. I want to give a special thanks to

Dr. Tom Warms for introducing me to the amazing world of computer science and teaching me

that there is always more to learn. Thank you to Prof. Janice Margle P.E., Dr. Mikhail Kagan,

and Dr. Marcus Besser for being so influential for me and my studies over the past years. Thank

you to my family for all their support and love, especially my mother for being my role model

and source of inspiration every day of my life. I want to thank the Government of Ecuador for its

support. Finally, thank you to all the wonderful people I have had the pleasure of meeting during

my Penn State experience.

1

Chapter 1

Introduction

Background

Agriculture is essential to our everyday life. Although it is often forgotten and not given

the importance it deserves, it has been a center of attention since the beginning of humanity.

There have been uncountable changes in the way food is grown and harvested throughout

history, but surprisingly, many of the most revolutionary improvements occurred in the past last

century. These advances are all thanks to the development of new research areas and the

exponential growth of computational power.

The list begins in the 1960s with an initiative known as the ñGreen Revolution.ò Its

primary objective was for the United States to share their agricultural technology with as many

developing countries as possible. Some of the techniques passed to these nations included

pesticides, fertilizers, and mechanization; but unarguably, the most influential was the

introduction of many high-yielding varieties of crops. Although it had its fair share of criticism

and by itself already represented a big geographical challenge, it was attributed to saving about

one billion people from starvation.

The next significant discovery occurred in 1974 and was a new type of herbicide that

uses Glyphosate. It was used mainly for selective weed control, making it possible to save

thousands of crops and therefore increase the total global crop yield. It is still being used today

but is debatable what potential health risks it could have for farmers and consumers.

2

In the 1960ôs the first rotary combines were introduced and would make the entire

harvest process faster and more efficient. One of the most impacting and controversial

discoveries came in 1982 when the first genetically modified crop plant was made. It was a

tobacco plant with antibiotic-resistant properties. Scientists were now able to alter genes inside

the plants giving them many resistant properties. There is a public debate about the effects on the

humans and how dangerous they can be, but in reality, there is already a vast scientific consensus

(by many respected leading health organizations) that it poses no more significant risk to human

health than conventional food.

The main advances in the last two decades are related to the use of GPS and earth

mapping technologies capable of giving farmers an overhead look of their current or future

planting location. Information became much more accessible and sharing it became easier than

ever, allowing farmers to be alert for plant diseases and weather conditions.

All these changes exponentially improved the amount of food humans are capable of

growing, but they also created an increasing concern regarding the risk to the agriculture

workforce. With the widespread use of herbicides and pesticides, it became clearer that they had

a strong correlation with the health of the farmers. Now the focus has shifted to finding

innovative and efficient methods that protect these workers from unnecessary physical effort and

exposure to dangerous environments.

The most recent technological advances in computation and accessibility to unmanned

aircraft, such as drones, create an extraordinary opportunity to keep pushing agriculture to new

limits. Currently, there are many fast and efficient ways of harvesting crops; the problem is that

there is no outstanding method to keep an accurate inventory before harvesting. Managing the

number of trees or plants on a farm becomes even more complicated as the farm increases in

3

size. The best method used by most workers is to go through every row inside a cultivated field

block and count every single tree with a hand-held clicker. This task can take hours or even days

and end up being an overall highly exhaustive physical activity. The clicker will give an estimate

of the number of trees in a field, but it will not include information such as the location, height,

type, or health insights of each tree. To that end, inventory management through the use of

unmanned aircraft is the focus of this research.

Thesis Structure

Two different methods were used as approaches to the tree recognition objective, a

machine learning method, and a deterministic approach. The thesis structure will begin with a

historical overview of the past attempts for similar problems. The thesis will be highlighted, and

its contribution will be explained. The next chapters are mainly divided into the two different

methods. The way both methods work will be explained in depth. It begins with deep learning.

A quick overview of the evolution of deep learning is given, and then TensorFlow is introduced.

The next sections introduce the way the model was developed and how it was trained. Finally,

the results and their analysis are presented. This approach did not give any promising results and

the explanation for why this could be explained in the chapter too. Because of these results, only

one chapter was dedicated to this method.

The next chapters are all focused on the deterministic method. Chapter 4 explains how it

came to be and exactly how it works. Every step of the deterministic algorithm is highlighted and

explained with some quick background information. Then chapter 5 focuses mainly on how to

evaluate the algorithm. This chapter is very important because here is where it is tested, and

4

many beneficial changes are implemented. With the algorithm already revised and working as

expected, chapter 6 will review the method used to extract the information out of the images

based on the results of the deterministic algorithm. The main objective is to develop a prototype

program that can be used by farmers, and that is what chapter 7 covers. The design of the

program is laid out, and each feature that is expected in it is explained. Finally, chapter 8 closes

the thesis with the conclusions and what work still needs to be done in the future. The code

developed in this thesis can be obtained by request.

5

Chapter 2

Literature Review

History overview

 Inventory management in agriculture is an area that has needs to be improved and

updated to the current technological standards. This research will focus solely on Christmas

trees. Their shape is more uniform and will provide a model that can be practically embedded in

a simple user interface.

 The study of object detection has been in development for the last two decades. The first

efficient detector was used to identify faces and was made in 2001 by Paul Viola and Michael

Jones. They coded features and relations which would then be fed it into a classifier. Recently

deep learning has had an explosion, and that is due to the incredible amount of data that is

recorded on a daily basis, but also to the improvement in computing power. Even though this is

the case, it is still complicated to use and as mentioned before, requires large sets of data. This

method will be explored as well as a deterministic approach for a more manageable scale.

 By using the application procedures done by Brian Thorne (2009) in his study, different

computer vision open-source libraries for Python will be reviewed. He describes some of the

capabilities these libraries have. It is an excellent introduction into how the software analyses

objects in an image. It also includes insight into best practices to make the code faster and more

efficient. Python will be used because it is one of the most common programming languages and

is not hard for another programmer to interpret the code since it avoids the use of a lot of

6

definitions. OpenCV is the library that will be used, and as stated by Thorne, it is written in C

which ensures fast and portable code. It is also essential to understand how to apply these tools to

trees since it is a much more complex problem.

Past and similar work

 Richard Pollock (1996) implemented computer vision to analyze cool temperature

forests. They trained the machine to differentiate individual trees. This approach yielded

different types of problems which they address and described in detail. The relationship between

the various neighboring trees and the position of the sun at the time of taking the picture are just

some of the presented issues. To tackle this problem, they created various synthetic tree crown

images based on a small sample of the trees in the picture. Not only does this allow the computer

to create a training set to work with but also reduces the amount of manual work since the

programmer no longer must delineate individual tree crowns. They discovered that by keeping a

reasonable recognition probability of fifty percent, they could still get a considerably useful

training sample. Their code implements various contrasting techniques that create visible

boundaries between the tree crown region and the surrounding image region. Most of the trees

that were analyzed were coniferous trees meaning they have a much symmetrical shape and are

thus easier to recognize. They concluded that their software was indeed capable of finding some

of the trees in the pictures but had problems mainly because of the image quality. Image quality

can be improved by using a drone that can come extremely close to the ground and take very

detailed photos of the trees.

7

 Connor Disco (2016) conducted an in-depth study on the different ways infrared light can

be used to determine plant health and how this technology can be applied. One of the places he

obtained his test was from the Russel E. Larson Agricultural Research Center located southwest

of Penn State University. He specified some of the issues when taking images because of the

distortion involved as can be seen in figure 2-1.

Figure 2-1. Apple orchids with a lens distortion.

Difference and importance

 The suggestions given by Thorne (2009) will be used as a base guide to the general

problem. It gives insight into what the best approaches are and how to create different

background subtraction and image recognition techniques. Suggestions provided by Pollock

(1996) will be used to devise constraints based on the physical properties of individual tree

crowns.

 An unmanned aircraft will be used, specifically a DJI Phantom 4 drone. It will

collect high-quality aerial pictures by following a predefined GPS path. These pictures will then

be processed using two different image analysis methods. First, TensorFlow will be used to train

8

and test an object detection model. The second option will be to use a deterministic approach

using computer vision libraries such as OpenCV. Once the trees are detected, they will be

counted, and their location together with other relevant information will be saved inside a

database. This research is relevant because it aims at detecting tress using newly available tools

and methods. It will also create a final prototype product that includes an easy to use interface

and that is accessible to farmers and other workers in agriculture.

9

Chapter 3

Deep Learning

Evolution of object detection

Computer vision started around 1966 when Marvin Minsky, a computer science professor

at the Massachusetts Institute of Technology, asked one of his students to connect a camera to a

computer and then get it to describe what it sees. The project failed, but it succeeded by pushing

the development in this area. Many of the current computer vision algorithms being used now

where structured then. The challenge at the time was to find a way that the machine could

distinguish if a face was present or not in a given image. In 1973, Fischler and Elschlager created

a representation of the relations between the different features of a human face and called it a

constellation model (figure 3-1). Their results were useful, but they were not good enough to say

that the challenge had been solved.

Figure 3-1: The representation and matching of pictorial structures, Fischler and

Elschlager, 1973

10

During the 1980ôs, the AI community became pessimist about the whole area. Many

promising projects of the 1970ôs failed or were abandoned. The overly exaggerated expectations

and hype around artificial intelligence begin to tumble. These events create what is now known

as AI Winter, a time where people threw out past ideas and started building back from scratch.

This change included computer vision since it is a branch of artificial intelligence. Researchers

decided to leave the face recognition concept on standby and go back to the basics. Edges

become the center of interest in this new direction. It began with David Lowe researching the

mathematical properties and organization of edges in 1984. Two years later, John Canny

developed a computational approach to edge detection similar to the one seen in figure 3-2.

Figure 3-2: Example of edge detection

The first working method for image classification occurred in 1989 when Yann Lecun

and his co-authors designed an algorithm to classify handwritten digits. The first step was

ñConvolutionò because it would involve applying a convolution filter in order to simplify the

image. Filters are useful because they are operations that can be done across the entire image.

The second step is called ñPooling,ò its primary task is to take the response from the last step and

shrink it. Then these two steps would keep repeating which would end up creating an entirely

11

working neural network. This method turned to be surprisingly efficient at classifying digits as

seen in figure 3-3 and 3-4 respectively.

Figure 3-3: Examples of original zip codes (left) and normalized digits from the test set

(right), Lecun et al., 1989.

Figure 3-4: The structure of the neural network developed by Lecon et at. In 1989.

 At this point, a new branch of computer vision was created to delineate the difference

between object classification versus object detection. The task of classifying images consists of

deciding if an object is present in an image and then defining its category. On the other hand,

object detection goes much further than that. It not only decides if the specified object is in the

image, but it also shows exactly what its position is inside it. Bounding boxes are usually used as

an output defining the limits of the object in question. A visual representation of their main

differences can be seen in figure 3-5.

12

Figure 3-5: Comparison between object classification and object detection

In 2001 Paul Viola and Michael Jones created an efficient face detection algorithm. It

was fast enough to be used in real time with a webcam stream. It went back to the idea of using

face features and their inner relationships. It assumed that there were zones in a face that are

brighter than others because light usually comes from above. Although this was a valuable

method for determining the position of faces, as soon as those faces would be at an angle

different to the one they were trained, they would no longer continue to be recognized.

A more efficient method was invented by Navneet Dalal and Bill Triggs in 2005. They

called it Histograms of Oriented Gradients (HOG). The algorithm would look at its surrounding

pixels and draw an arrow, or a ñgradient,ò in the direction in which the image got darker. This

step is repeated for every single pixel in the image until there was a representation of the flow

from light to dark throughout all the picture. The image would then be broken into squares of

16x16 pixels each, and their gradients would be added up, the result was a simplified image with

its main features highlighted similar to the example in figure 3-6. These gradients would then be

compared to a HOG face pattern generated from a training set.

13

Figure 3-6: Example of Histograms of Oriented Gradients (HOG).

Through the next decade, the focus shifted to creating enormous image datasets that

could be used for training. Some of the prominent include PASCAL VOC (2007), Caltech

Pedestrian (2009), and ImageNet (2009). The next breakthrough occurred in 2012 and was so big

that it almost rendered the past two decades of research obsolete. It was done by Alex

Krizhevsky and his team for the ImageNet Large-Scale Visual Recognition Challenge. He used a

Convolutional Neural Networks (CNN), which had already been used in the 1980ôs to identify

digits. When they tried to use CNNs back in 1989, they would only work well for digits but not

for anything else. To everyoneôs surprise, the main difference was that now there were many

growing image datasets and also an incredible amount of computational power was available.

Thanks to this discovery, CNN became the new standard for image classification.

The problem was that it could only classify images but would not work for object

detection. The first approach was to take the classifier and make it analyze a smaller image

created by a sliding box around the entire picture. The classifier would return the objects and a

certainty for each smaller image. At the end, you would only keep the boxes that it was most

14

certain about. This theoretically works but is actually very slow, even with current computational

capability.

Two years later a much better technique was invented by Ross Girshick and his team, it

was called Regions with CNN features (R-CNN). It would use a process known as Selective

Search to look at an image through randomly placed windows (initial region selected). It would

then try to group adjacent pixels by size, texture, color or intensity. Once the region proposals

are defined, then a pre-trained AlexNet and a support vector machine are used to identify the

object in the box. It then would run the box through a linear regression model that would tighten

its coordinates to only contain the object. A summary of this process is represented in figure 3-7.

Currently, this approach is in a constant evolution process where new and faster models are

created every year, and that is why many other types of CNN will not be mentioned here.

Figure 3-7: R-CNN object detection system overview

TensorFlow introduction

There are many ways image recognition can be implemented. Writing the code from

scratch could take considerable time and is simply not worthy considering that there are many

other tools available. TensorFlow is the new open-source framework created by Google. It is

15

used to design, create and train machine learning models. As its name suggests, it uses tensors or

multidimensional data arrays to do many numerical calculations. By itself, TensorFlow has an

incredible amount of potential and can be used for almost anything. Recently an object

recognition API (Application programming interface) was developed, and even with this great

section, it is still only one of the many different applications it can have. The API was trained

using the Common Objects in Context (COCO) dataset. There are many different models, and

each one has a working speed that decreases as its accuracy increases. The models can detect

multiple objects in the image and then place a bounding box around each one. This API has been

praised for its combability with many devices and in general how well designed it is. For this

reason, this method was chosen to begin developing a model that can recognize trees.

The image dataset

Because of the amount of training data that is required, the recommended approach for

obtaining a large dataset is to look for images that contain the object online. The problem is that

there are not a lot of aerial pictures of Christmas tree or even pine trees, and if there are, the

camera is not pointed at a downward angle as expected. For this reason, all the training data used

will come from cropped pictures of a farm located close to State College in Pennsylvania. The

images of the entire farm are about 31178 by 17723 pixels, one of them can be seen in figure 3-

8. These images cannot be used for training, but as mentioned before, they can be cropped down

into many smaller pictures. The first approach to this subdivision was to create rectangles of

about 500 by 300 pixels. The problem with this method is that many of the trees can be cut off in

the middle and be harder to label. It is also recommended to avoid all images from having the

16

same size. For this reason, the best way to separate them was to manually select different areas

of the farm and make sure that they did not overlap. A sample of ten of these areas can be seen

together in figure 3-9. There were 160 images once this separation was done.

Figure 3-8: Image of the entire farm, with 31178 by 17723 pixels.

Figure 3-9: Ten sample images obtained from the main farm image. These are the type of

images used to train the model.

17

Once all the images were ready, it was necessary to label the trees in each image. This

could be done manually, but as always, it is faster to use a standardized tool. In this case,

LabelImg was used. It is a graphical image annotation tool that makes it faster and more

organized to label object bounding boxes in images. It is written in Python and uses Qt for its

graphical interface. The installation instructions can be found in the corresponding GitHub

project. Once the program is installed and running, the folder with all the images was selected.

The pictures were loaded into the program and one by one the tree selection was made. By

clicking and dragging the mouse the bounding box was created. The first time this was done, the

name of the category was asked. The object was called ñpine.ò as seen in figure 3-10. Once all

the images were labeled, then the annotations were saved as XML files in PASCAL VOC

format, the format used by ImageNet.

Figure 3-10: Screenshot of labelImg and how its user interface looks. Each one of the trees

already has a define bounding box and a category assigned.

18

With all the images already labeled, they can be divided into two main folders: test and

train. About 90% should go to the train folder and the rest to test. In this case, 20 random images

(image file and also its label XML) were selected and placed into the test folder; the rest stayed

in train. The next step was to use the xml_to_csv.py script made by Dat Tran (2017). He

developed a model that would recognize raccoons, and for that, he created this useful tool which

is used to convert the XML files into one single CSV. The path to the train and test files should

be changed inside the script. A second script made by him was also be used, it is called

generate_tfrecord.py which basically takes care of creating the TFRecords for the train and test

set. The costume label (ñpineò) should be included in the script so that the label map is correct.

All these steps are mainly used to convert the defined labels into TFRecords that can actually be

used for the object detection API.

At this point, there are two main options for creating the costume object detector. First,

train a new model detection algorithm from scratch. Second, add to a pre-trained model and use

the modelôs weights as a head start on training a new model. For this case, a pre-trained model

was used and then transfer learning to learn the new object. The reason why transfer learning is

much better is that it requires fewer data and can even be faster than training a model from zero.

Each model has a configuration file. The faster_rcnn_inception_v2_coco model was selected. It

is not as fast as other models, but it does not matter because it only analyzes the main image once

and not a live feedback. It has acceptable evaluation results. The reason why a more accurate

model was not used was because of the computational power requirements. Once the

configuration file for this model has been obtained, it does not necessarily need to be changed

but could be tuned later one. Only some paths had to be adjusted like for the model and the label

19

map path. Then the images, the model, the training directory and the configuration file were

moved to the object detection directory.

Training the model

Using the command window, the training was started. A loss value is then shown, and it

keeps updating. This average loss started at a high value and then went down to about 2. Usually,

a good value is around 1. Getting down to that value took about 4 hours of training. Using a user

interface called Tensorboard, it possible to visualize (figure 3-11) the changes in the total loss

and how it varies until it goes down to a limiting value.

Figure 3-11: Sample TotalLoss graph represents how good it performs. The horizontal axis

is the number of steps needed.

To be able to test how accurate the pine tree detection model is, the inference graph needs

to be exported. A script inside TensorFlow takes care of this operation. This created a frozen

20

inference graph which can directly be implemented into the initial tutorial. The model needs to

be changed and also the test images.

Results

Not surprisingly the algorithm was not accurate. It would select grass and mark it as a

tree. There are many reasons for why this could have happened. The first is the size of the dataset

used; only 140 images were in the training set. This is not close to how much is needed to get

good results. The second reason is that trees are extremely complex objects and their shapes are

not constant. The color might have affected the way the algorithm was trained. It would get

confused between the grass on the ground and the tree. The final reason is that although the

project was always under control, there was still a lot of assumption about the values in the

configuration file. In the end, the mixture of all these issues caused the machine learning

approach not to be useful. Other variables were changed, and the experiment repeated, but the

results did not improve in any noticeable percentage. The next chapter will move to the

deterministic approach.

21

Chapter 4

Deterministic Method

Because the results obtained using a deep learning approach were not encouraging, a

deterministic method was pursued. The objective was to be able to recognize the position of the

trees by using explicit filters and thresholds. This is not an innovative approach, but if done

correctly it can produce accurate results. It also requires a lot less computing power than a neural

network which means that it could be easier to implement.

GIMP Maximum RGB algorithm

OpenCV was used to test each technique and learn how they specifically change the

image. The problem was that there were many filters and seeing the results of their combination

quickly became very inefficient. This is because changing a filter as well as displaying the image

takes time and it slows down the experimenting process. For this reason, the GNU Image

Manipulation Program (GIMP), is a very useful image editor. It allowed experimenting with

different filters and to instantly see what seemed to work and what did not. The goal was to find

a set of steps that would highlight the trees from the rest of the picture so that they would

become easier to find. One of their image filters called Maximum RGB provided good initial

results. Surprisingly, it instantly highlighted only the trees. The algorithm works by going

through every pixel, then checks the intensity of the RGB color channels and finds the one with

the maximum value. This channel keeps its value, but the other two are set to zero. If two

22

channels have the same maximum value, then both are held, and the third is set to zero. The

resulting image after applying the filter to the farm picture can be seen in figure 4-1.

Figure 4-1: A sample of the farm picture (left) and the result once the Maximum RGB filter

was applied (right).

This is the python implementation of the filter:

def maximum_rgb(image):
 # divide the image into its BGR color channels
 (B, G, R) = cv2.split(image)

 # find the maximum pixel intensity values for each pixel
 # then set the values less than max_intensity to zero
 max_intensity = np.maximum(np.maximum(R, G), B)
 R[R < 500] = 0
 G[G < max_intensity] = 0
 B[B < 500] = 0

 # merge the channels back together
 return cv2.merge([B, G, R])

