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ABSTRACT 

 

Agriculture is essential for our survival, and that is why it should be made as efficient as 

possible. In this thesis, an algorithm capable of recognizing Christmas trees in aerial images will 

be developed. The objective is to reduce the amount of work farmers need to do to count the 

trees and make their inventory management much more informative and efficient. The farmers 

will use drones to acquire aerial images of the farm. These will then be fed to a prototype 

program that finds the geographical location of each tree and stores their information. Two 

different methods were tested, first deep learning and then and a more deterministic approach. 

The machine learning method was not successful because of many reasons, like the lack of a big 

data set. On the other hand, the deterministic approach proved to be accurate. It uses thresholding 

and pattern matching as its main components. The results of this method were then tested using 

different parameters so that the most efficient configurations could be defined. Once the position 

of the trees is found in pixels, then the information has to be extracted out from a DEM GeoTIFF 

image and stored in a CSV file. Finally, the prototype program was developed and specified to fit 

user needs.  
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Chapter 1  
 

Introduction  

Background 

Agriculture is essential to our everyday life. Although it is often forgotten and not given 

the importance it deserves, it has been a center of attention since the beginning of humanity. 

There have been uncountable changes in the way food is grown and harvested throughout 

history, but surprisingly, many of the most revolutionary improvements occurred in the past last 

century. These advances are all thanks to the development of new research areas and the 

exponential growth of computational power.   

The list begins in the 1960s with an initiative known as the ñGreen Revolution.ò Its 

primary objective was for the United States to share their agricultural technology with as many 

developing countries as possible. Some of the techniques passed to these nations included 

pesticides, fertilizers, and mechanization; but unarguably, the most influential was the 

introduction of many high-yielding varieties of crops. Although it had its fair share of criticism 

and by itself already represented a big geographical challenge, it was attributed to saving about 

one billion people from starvation.  

The next significant discovery occurred in 1974 and was a new type of herbicide that 

uses Glyphosate. It was used mainly for selective weed control, making it possible to save 

thousands of crops and therefore increase the total global crop yield. It is still being used today 

but is debatable what potential health risks it could have for farmers and consumers.  
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In the 1960ôs the first rotary combines were introduced and would make the entire 

harvest process faster and more efficient. One of the most impacting and controversial 

discoveries came in 1982 when the first genetically modified crop plant was made. It was a 

tobacco plant with antibiotic-resistant properties. Scientists were now able to alter genes inside 

the plants giving them many resistant properties. There is a public debate about the effects on the 

humans and how dangerous they can be, but in reality, there is already a vast scientific consensus 

(by many respected leading health organizations) that it poses no more significant risk to human 

health than conventional food.  

The main advances in the last two decades are related to the use of GPS and earth 

mapping technologies capable of giving farmers an overhead look of their current or future 

planting location. Information became much more accessible and sharing it became easier than 

ever, allowing farmers to be alert for plant diseases and weather conditions.  

All these changes exponentially improved the amount of food humans are capable of 

growing, but they also created an increasing concern regarding the risk to the agriculture 

workforce. With the widespread use of herbicides and pesticides, it became clearer that they had 

a strong correlation with the health of the farmers. Now the focus has shifted to finding 

innovative and efficient methods that protect these workers from unnecessary physical effort and 

exposure to dangerous environments.  

The most recent technological advances in computation and accessibility to unmanned 

aircraft, such as drones, create an extraordinary opportunity to keep pushing agriculture to new 

limits.  Currently, there are many fast and efficient ways of harvesting crops; the problem is that 

there is no outstanding method to keep an accurate inventory before harvesting. Managing the 

number of trees or plants on a farm becomes even more complicated as the farm increases in 
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size. The best method used by most workers is to go through every row inside a cultivated field 

block and count every single tree with a hand-held clicker. This task can take hours or even days 

and end up being an overall highly exhaustive physical activity. The clicker will give an estimate 

of the number of trees in a field, but it will not include information such as the location, height, 

type, or health insights of each tree. To that end, inventory management through the use of 

unmanned aircraft is the focus of this research. 

Thesis Structure 

Two different methods were used as approaches to the tree recognition objective, a 

machine learning method, and a deterministic approach. The thesis structure will begin with a 

historical overview of the past attempts for similar problems. The thesis will be highlighted, and 

its contribution will be explained. The next chapters are mainly divided into the two different 

methods. The way both methods work will be explained in depth.  It begins with deep learning. 

A quick overview of the evolution of deep learning is given, and then TensorFlow is introduced. 

The next sections introduce the way the model was developed and how it was trained. Finally, 

the results and their analysis are presented. This approach did not give any promising results and 

the explanation for why this could be explained in the chapter too. Because of these results, only 

one chapter was dedicated to this method.  

The next chapters are all focused on the deterministic method. Chapter 4 explains how it 

came to be and exactly how it works. Every step of the deterministic algorithm is highlighted and 

explained with some quick background information. Then chapter 5 focuses mainly on how to 

evaluate the algorithm. This chapter is very important because here is where it is tested, and 
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many beneficial changes are implemented. With the algorithm already revised and working as 

expected, chapter 6 will review the method used to extract the information out of the images 

based on the results of the deterministic algorithm.  The main objective is to develop a prototype 

program that can be used by farmers, and that is what chapter 7 covers. The design of the 

program is laid out, and each feature that is expected in it is explained. Finally, chapter 8 closes 

the thesis with the conclusions and what work still needs to be done in the future. The code 

developed in this thesis can be obtained by request.
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Chapter 2  
 

Literature Review 

History overview

 Inventory management in agriculture is an area that has needs to be improved and 

updated to the current technological standards. This research will focus solely on Christmas 

trees. Their shape is more uniform and will provide a model that can be practically embedded in 

a simple user interface.  

 The study of object detection has been in development for the last two decades. The first 

efficient detector was used to identify faces and was made in 2001 by Paul Viola and Michael 

Jones. They coded features and relations which would then be fed it into a classifier. Recently 

deep learning has had an explosion, and that is due to the incredible amount of data that is 

recorded on a daily basis, but also to the improvement in computing power. Even though this is 

the case, it is still complicated to use and as mentioned before, requires large sets of data. This 

method will be explored as well as a deterministic approach for a more manageable scale.  

 By using the application procedures done by Brian Thorne (2009) in his study, different 

computer vision open-source libraries for Python will be reviewed. He describes some of the 

capabilities these libraries have. It is an excellent introduction into how the software analyses 

objects in an image. It also includes insight into best practices to make the code faster and more 

efficient. Python will be used because it is one of the most common programming languages and 

is not hard for another programmer to interpret the code since it avoids the use of a lot of 
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definitions. OpenCV is the library that will be used, and as stated by Thorne, it is written in C 

which ensures fast and portable code. It is also essential to understand how to apply these tools to 

trees since it is a much more complex problem. 

Past and similar work 

 Richard Pollock (1996) implemented computer vision to analyze cool temperature 

forests. They trained the machine to differentiate individual trees. This approach yielded 

different types of problems which they address and described in detail. The relationship between 

the various neighboring trees and the position of the sun at the time of taking the picture are just 

some of the presented issues. To tackle this problem, they created various synthetic tree crown 

images based on a small sample of the trees in the picture. Not only does this allow the computer 

to create a training set to work with but also reduces the amount of manual work since the 

programmer no longer must delineate individual tree crowns. They discovered that by keeping a 

reasonable recognition probability of fifty percent, they could still get a considerably useful 

training sample. Their code implements various contrasting techniques that create visible 

boundaries between the tree crown region and the surrounding image region. Most of the trees 

that were analyzed were coniferous trees meaning they have a much symmetrical shape and are 

thus easier to recognize. They concluded that their software was indeed capable of finding some 

of the trees in the pictures but had problems mainly because of the image quality. Image quality 

can be improved by using a drone that can come extremely close to the ground and take very 

detailed photos of the trees.  
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 Connor Disco (2016) conducted an in-depth study on the different ways infrared light can 

be used to determine plant health and how this technology can be applied. One of the places he 

obtained his test was from the Russel E. Larson Agricultural Research Center located southwest 

of Penn State University. He specified some of the issues when taking images because of the 

distortion involved as can be seen in figure 2-1.  

 

 

Figure 2-1. Apple orchids with a lens distortion. 

Difference and importance 

 The suggestions given by Thorne (2009) will be used as a base guide to the general 

problem. It gives insight into what the best approaches are and how to create different 

background subtraction and image recognition techniques. Suggestions provided by Pollock 

(1996) will be used to devise constraints based on the physical properties of individual tree 

crowns.   

 An unmanned aircraft will be used, specifically a DJI Phantom 4 drone. It will 

collect high-quality aerial pictures by following a predefined GPS path. These pictures will then 

be processed using two different image analysis methods. First, TensorFlow will be used to train 
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and test an object detection model. The second option will be to use a deterministic approach 

using computer vision libraries such as OpenCV. Once the trees are detected, they will be 

counted, and their location together with other relevant information will be saved inside a 

database. This research is relevant because it aims at detecting tress using newly available tools 

and methods. It will  also create a final prototype product that includes an easy to use interface 

and that is accessible to farmers and other workers in agriculture.  
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Chapter 3  
 

Deep Learning 

Evolution of object detection 

Computer vision started around 1966 when Marvin Minsky, a computer science professor 

at the Massachusetts Institute of Technology, asked one of his students to connect a camera to a 

computer and then get it to describe what it sees. The project failed, but it succeeded by pushing 

the development in this area. Many of the current computer vision algorithms being used now 

where structured then. The challenge at the time was to find a way that the machine could 

distinguish if a face was present or not in a given image. In 1973, Fischler and Elschlager created 

a representation of the relations between the different features of a human face and called it a 

constellation model (figure 3-1). Their results were useful, but they were not good enough to say 

that the challenge had been solved.  

 

Figure 3-1: The representation and matching of pictorial structures, Fischler and 

Elschlager, 1973 
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During the 1980ôs, the AI community became pessimist about the whole area. Many 

promising projects of the 1970ôs failed or were abandoned. The overly exaggerated expectations 

and hype around artificial intelligence begin to tumble. These events create what is now known 

as AI Winter, a time where people threw out past ideas and started building back from scratch. 

This change included computer vision since it is a branch of artificial intelligence.  Researchers 

decided to leave the face recognition concept on standby and go back to the basics. Edges 

become the center of interest in this new direction. It began with David Lowe researching the 

mathematical properties and organization of edges in 1984. Two years later, John Canny 

developed a computational approach to edge detection similar to the one seen in figure 3-2.  

 

Figure 3-2: Example of edge detection  

The first working method for image classification occurred in 1989 when Yann Lecun 

and his co-authors designed an algorithm to classify handwritten digits. The first step was 

ñConvolutionò because it would involve applying a convolution filter in order to simplify the 

image. Filters are useful because they are operations that can be done across the entire image. 

The second step is called ñPooling,ò its primary task is to take the response from the last step and 

shrink it. Then these two steps would keep repeating which would end up creating an entirely 
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working neural network. This method turned to be surprisingly efficient at classifying digits as 

seen in figure 3-3 and 3-4 respectively.   

 

Figure 3-3: Examples of original zip codes (left) and normalized digits from the test set 

(right), Lecun et al., 1989. 

 

Figure 3-4: The structure of the neural network developed by Lecon et at. In 1989. 

 At this point, a new branch of computer vision was created to delineate the difference 

between object classification versus object detection. The task of classifying images consists of 

deciding if an object is present in an image and then defining its category. On the other hand, 

object detection goes much further than that. It not only decides if the specified object is in the 

image, but it also shows exactly what its position is inside it. Bounding boxes are usually used as 

an output defining the limits of the object in question. A visual representation of their main 

differences can be seen in figure 3-5.  
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Figure 3-5: Comparison between object classification and object detection 

In 2001 Paul Viola and Michael Jones created an efficient face detection algorithm. It 

was fast enough to be used in real time with a webcam stream. It went back to the idea of using 

face features and their inner relationships. It assumed that there were zones in a face that are 

brighter than others because light usually comes from above. Although this was a valuable 

method for determining the position of faces, as soon as those faces would be at an angle 

different to the one they were trained, they would no longer continue to be recognized.  

A more efficient method was invented by Navneet Dalal and Bill Triggs in 2005. They 

called it Histograms of Oriented Gradients (HOG). The algorithm would look at its surrounding 

pixels and draw an arrow, or a ñgradient,ò in the direction in which the image got darker. This 

step is repeated for every single pixel in the image until there was a representation of the flow 

from light to dark throughout all the picture. The image would then be broken into squares of 

16x16 pixels each, and their gradients would be added up, the result was a simplified image with 

its main features highlighted similar to the example in figure 3-6. These gradients would then be 

compared to a HOG face pattern generated from a training set.   
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Figure 3-6: Example of Histograms of Oriented Gradients (HOG). 

Through the next decade, the focus shifted to creating enormous image datasets that 

could be used for training. Some of the prominent include PASCAL VOC (2007), Caltech 

Pedestrian (2009), and ImageNet (2009). The next breakthrough occurred in 2012 and was so big 

that it almost rendered the past two decades of research obsolete. It was done by Alex 

Krizhevsky and his team for the ImageNet Large-Scale Visual Recognition Challenge. He used a 

Convolutional Neural Networks (CNN), which had already been used in the 1980ôs to identify 

digits. When they tried to use CNNs back in 1989, they would only work well for digits but not 

for anything else.  To everyoneôs surprise, the main difference was that now there were many 

growing image datasets and also an incredible amount of computational power was available. 

Thanks to this discovery, CNN became the new standard for image classification.  

The problem was that it could only classify images but would not work for object 

detection. The first approach was to take the classifier and make it analyze a smaller image 

created by a sliding box around the entire picture. The classifier would return the objects and a 

certainty for each smaller image. At the end, you would only keep the boxes that it was most 
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certain about. This theoretically works but is actually very slow, even with current computational 

capability.  

Two years later a much better technique was invented by Ross Girshick and his team, it 

was called Regions with CNN features (R-CNN). It would use a process known as Selective 

Search to look at an image through randomly placed windows (initial region selected). It would 

then try to group adjacent pixels by size, texture, color or intensity. Once the region proposals 

are defined, then a pre-trained AlexNet and a support vector machine are used to identify the 

object in the box. It then would run the box through a linear regression model that would tighten 

its coordinates to only contain the object. A summary of this process is represented in figure 3-7. 

Currently, this approach is in a constant evolution process where new and faster models are 

created every year, and that is why many other types of CNN will not be mentioned here.   

 

Figure 3-7: R-CNN object detection system overview 

TensorFlow introduction  

There are many ways image recognition can be implemented. Writing the code from 

scratch could take considerable time and is simply not worthy considering that there are many 

other tools available. TensorFlow is the new open-source framework created by Google. It is 
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used to design, create and train machine learning models. As its name suggests, it uses tensors or 

multidimensional data arrays to do many numerical calculations. By itself, TensorFlow has an 

incredible amount of potential and can be used for almost anything. Recently an object 

recognition API (Application programming interface) was developed, and even with this great 

section, it is still only one of the many different applications it can have. The API was trained 

using the Common Objects in Context (COCO) dataset. There are many different models, and 

each one has a working speed that decreases as its accuracy increases. The models can detect 

multiple objects in the image and then place a bounding box around each one. This API has been 

praised for its combability with many devices and in general how well designed it is. For this 

reason, this method was chosen to begin developing a model that can recognize trees.  

The image dataset 

Because of the amount of training data that is required, the recommended approach for 

obtaining a large dataset is to look for images that contain the object online. The problem is that 

there are not a lot of aerial pictures of Christmas tree or even pine trees, and if there are, the 

camera is not pointed at a downward angle as expected. For this reason, all the training data used 

will come from cropped pictures of a farm located close to State College in Pennsylvania. The 

images of the entire farm are about 31178 by 17723 pixels, one of them can be seen in figure 3-

8. These images cannot be used for training, but as mentioned before, they can be cropped down 

into many smaller pictures. The first approach to this subdivision was to create rectangles of 

about 500 by 300 pixels. The problem with this method is that many of the trees can be cut off in 

the middle and be harder to label. It is also recommended to avoid all images from having the 
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same size. For this reason, the best way to separate them was to manually select different areas 

of the farm and make sure that they did not overlap. A sample of ten of these areas can be seen 

together in figure 3-9. There were 160 images once this separation was done. 

  

 

Figure 3-8: Image of the entire farm, with 31178 by 17723 pixels. 

 

Figure 3-9: Ten sample images obtained from the main farm image. These are the type of 

images used to train the model. 
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Once all the images were ready, it was necessary to label the trees in each image. This 

could be done manually, but as always, it is faster to use a standardized tool. In this case, 

LabelImg was used. It is a graphical image annotation tool that makes it faster and more 

organized to label object bounding boxes in images. It is written in Python and uses Qt for its 

graphical interface. The installation instructions can be found in the corresponding GitHub 

project. Once the program is installed and running, the folder with all the images was selected. 

The pictures were loaded into the program and one by one the tree selection was made. By 

clicking and dragging the mouse the bounding box was created. The first time this was done, the 

name of the category was asked. The object was called ñpine.ò as seen in figure 3-10. Once all 

the images were labeled, then the annotations were saved as XML files in PASCAL VOC 

format, the format used by ImageNet. 

 

Figure 3-10: Screenshot of labelImg and how its user interface looks. Each one of the trees 

already has a define bounding box and a category assigned. 
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With all the images already labeled, they can be divided into two main folders: test and 

train. About 90% should go to the train folder and the rest to test. In this case, 20 random images 

(image file and also its label XML) were selected and placed into the test folder; the rest stayed 

in train. The next step was to use the xml_to_csv.py script made by Dat Tran (2017). He 

developed a model that would recognize raccoons, and for that, he created this useful tool which 

is used to convert the XML files into one single CSV. The path to the train and test files should 

be changed inside the script. A second script made by him was also be used, it is called 

generate_tfrecord.py which basically takes care of creating the TFRecords for the train and test 

set. The costume label (ñpineò) should be included in the script so that the label map is correct. 

All these steps are mainly used to convert the defined labels into TFRecords that can actually be 

used for the object detection API.  

At this point, there are two main options for creating the costume object detector. First, 

train a new model detection algorithm from scratch. Second, add to a pre-trained model and use 

the modelôs weights as a head start on training a new model. For this case, a pre-trained model 

was used and then transfer learning to learn the new object. The reason why transfer learning is 

much better is that it requires fewer data and can even be faster than training a model from zero. 

Each model has a configuration file. The faster_rcnn_inception_v2_coco model was selected. It 

is not as fast as other models, but it does not matter because it only analyzes the main image once 

and not a live feedback. It has acceptable evaluation results. The reason why a more accurate 

model was not used was because of the computational power requirements. Once the 

configuration file for this model has been obtained, it does not necessarily need to be changed 

but could be tuned later one. Only some paths had to be adjusted like for the model and the label 
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map path. Then the images, the model, the training directory and the configuration file were 

moved to the object detection directory.  

Training the model 

Using the command window, the training was started. A loss value is then shown, and it 

keeps updating. This average loss started at a high value and then went down to about 2. Usually, 

a good value is around 1. Getting down to that value took about 4 hours of training. Using a user 

interface called Tensorboard, it possible to visualize (figure 3-11) the changes in the total loss 

and how it varies until it goes down to a limiting value.  

 

Figure 3-11: Sample TotalLoss graph represents how good it performs. The horizontal axis 

is the number of steps needed. 

To be able to test how accurate the pine tree detection model is, the inference graph needs 

to be exported. A script inside TensorFlow takes care of this operation. This created a frozen 
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inference graph which can directly be implemented into the initial tutorial. The model needs to 

be changed and also the test images.  

Results 

Not surprisingly the algorithm was not accurate. It would select grass and mark it as a 

tree. There are many reasons for why this could have happened. The first is the size of the dataset 

used; only 140 images were in the training set. This is not close to how much is needed to get 

good results. The second reason is that trees are extremely complex objects and their shapes are 

not constant. The color might have affected the way the algorithm was trained. It would get 

confused between the grass on the ground and the tree. The final reason is that although the 

project was always under control, there was still a lot of assumption about the values in the 

configuration file. In the end, the mixture of all these issues caused the machine learning 

approach not to be useful. Other variables were changed, and the experiment repeated, but the 

results did not improve in any noticeable percentage. The next chapter will move to the 

deterministic approach. 
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Chapter 4  
 

Deterministic Method 

Because the results obtained using a deep learning approach were not encouraging, a 

deterministic method was pursued. The objective was to be able to recognize the position of the 

trees by using explicit filters and thresholds. This is not an innovative approach, but if done 

correctly it can produce accurate results. It also requires a lot less computing power than a neural 

network which means that it could be easier to implement. 

GIMP Maximum RGB algorithm  

OpenCV was used to test each technique and learn how they specifically change the 

image. The problem was that there were many filters and seeing the results of their combination 

quickly became very inefficient. This is because changing a filter as well as displaying the image 

takes time and it slows down the experimenting process. For this reason, the GNU Image 

Manipulation Program (GIMP), is a very useful image editor. It allowed experimenting with 

different filters and to instantly see what seemed to work and what did not. The goal was to find 

a set of steps that would highlight the trees from the rest of the picture so that they would 

become easier to find. One of their image filters called Maximum RGB provided good initial 

results. Surprisingly, it instantly highlighted only the trees. The algorithm works by going 

through every pixel, then checks the intensity of the RGB color channels and finds the one with 

the maximum value. This channel keeps its value, but the other two are set to zero. If two 
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channels have the same maximum value, then both are held, and the third is set to zero. The 

resulting image after applying the filter to the farm picture can be seen in figure 4-1. 

 

Figure 4-1: A sample of the farm picture (left) and the result once the Maximum RGB filter 

was applied (right). 

This is the python implementation of the filter: 

def maximum_rgb(image):  
 # divide the image into its BGR color channels  
 (B, G, R) = cv2.split(image)  
  
 # find the maximum pixel intensity values for each pixel  
 # then set the values less than max_intensity to zero  
 max_intensity = np.maximum(np.maximum(R, G), B)  
 R[R < 500] = 0  
 G[G < max_intensity] = 0  
 B[B < 500] = 0  
 
 # merge the channels back together  
 return cv2.merge([B, G, R])  
 






























































































