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ABSTRACT 

Recent studies of DNA ultrafiltration have demonstrated the potential for vastly improving the 

performance of membrane-based DNA separations by controlling the pore morphology to pre-

stretch the DNA prior to filtration through the very small pores of the ultrafiltration membrane.  

This pre-stretching leads to an increase in DNA transmission and a reduction in membrane 

fouling.  The objective of this thesis was to determine whether a similar approach could be used 

to enhance the performance of RNA ultrafiltration given the growing interest in RNA-based 

therapies.  Experiments were performed in a stirred ultrafiltration cell using polyethersulfone 

Biomax membranes.  Data were obtained with asymmetric membranes with the flow in either the 

normal (tight side facing the feed) or reverse orientations as well as with composite membrane 

structures created by placing a symmetric 0.22 µm pore size Durapore membrane on top of a 

small pore size ultrafiltration membrane.  Transmission through the 100 kDa nominal molecular 

weight cutoff membrane was very high in both orientations, reflecting the smaller size and 

greater flexibility of RNA compared to DNA.  RNA transmission through the 30 kDa membrane 

was much greater when operated with the reverse orientation, although it was not possible to 

clearly determine if this increase in transmission was due to pre-stretching of the RNA or to 

concentration polarization effects in the support structure.  The results do suggest that the 

ultrafiltration performance for RNA separations can potentially be enhanced by controlling the 

underlying pore morphology of the membrane. 
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1. Introduction 

The discovery of short interfering (siRNA) and micro RNA (miRNA) nearly 20 years ago by 

Fire and colleagues has led to a deepened interest in nucleic acid therapies as an alternative to 

traditional methods of treating diseases and other genetic disorders [1]. siRNA-based therapies 

have recently become one of the most clinically advanced platforms for the development of RNA 

drugs with the potential to treat currently incurable diseases like cancer and AIDS [1]. RNA can 

potentially be used to suppress or regulate gene expression simply by designing a 

complementary sequence to the target mRNA.  The specificity of RNA interactions is 

particularly attractive for the development of personalized medicine in cancer therapy [2].  In 

addition, recent advances in CRISPR technology, an RNA guided gene-editing tool, have placed 

RNA-based therapeutics at the center of what could be a watershed moment in biomedical 

science and personalized medicine [3].  CRISPR CAS-9, along with siRNAs, miRNAs, and 

antisense oligonucleotides, have the potential to revolutionize disease and cancer treatment [2]. 

There is thus a rapidly growing demand for fast and reliable commercial techniques for large-

scale purification of RNA [3]. 

Many of the current techniques used to isolate and purify RNA molecules have significant 

limitations, particularly for large-scale commercial production of these new biotherapeutics. This 

includes the use of chloroform extraction, chromatographic methods, and isolation on isopycnic 

gradients [4]. 

Membrane separation processes offer a potentially attractive alternative that addresses some of 

the key drawbacks and limitations of current methods for RNA purification.  Ultrafiltration 
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avoids the use of any additional chemicals, it is easily scalable from bench-top to commercial 

manufacturing, and it can be operated continuously with high productivity.  Although a number 

of studies have examined the behavior of ultrafiltration processes for purification of DNA and 

specific plasmid DNA isoforms, there has been little to no work on RNA ultrafiltration.  

Although RNA and DNA are both nucleic acids, DNA is much longer (larger number of base 

pairs) and the double helix DNA structure provides very different physical properties than the 

single-stranded RNA molecules. 

Previous studies of DNA ultrafiltration have demonstrated that the large DNA molecules pass 

through the narrow membrane pores by first elongating in the converging flow field above the 

pores.  There is thus a critical filtrate flux for plasmid transmission, with the plasmids being 

almost entirely rejected by the membrane below the critical flux due to the lack of elongation [5].  

These studies have generally shown little to no dependence of plasmid retention on the DNA 

size, with the larger plasmids having more time to elongate as they approach the pore.  This 

behavior is in good agreement with predictions of scaling models developed to describe the 

elongation of single polymer chains during passage through isolated small pores [6].   

 

One of the challenges in DNA ultrafiltration is membrane fouling due to plasmids becoming 

trapped at the entrance to the pores. Li et al. [7] showed that DNA fouling could be significantly 

reduced by pre-stretching (or pre-elongating) the DNA by first passing the DNA through a larger 

pore size filter (approximately 0.2 µm pore size) prior to transmission through the very small 

pores of the ultrafiltration membrane. In addition, pre-stretching the DNA significantly increased 

DNA transmission at a given value of the filtrate flux [7].  There have been no previous studies 

of the effects of pre-stretching on the ultrafiltration behavior of RNA.   



  3 

The objective of this study was to extend the previous work on DNA to the ultrafiltration of 

RNA and to specifically investigate whether pre-conditioning can be used to improve the 

performance of membrane systems for RNA purification. 

2. Materials and Methods 

Stirred (and unstirred) cell ultrafiltration experiments were conducted using Biomax 

polyethersulfone membranes (MilliporeSigma, Bedford, MA) with nominal molecular weight 

cutoffs of 30 and 100 kDa.  These membranes are asymmetric:  they have a thin skin with the 

selective pores on top of a macroporous support structure that provides the membrane with its 

mechanical stability. These membranes are traditionally used with the thin skin facing the feed; 

thus, the permeate flows through the smallest pores before entering the support structure (regular 

orientation).  It is also possible to use these membranes in the reverse orientation, with the flow 

passing first through the larger pores in the substructure before reaching the selective 

(nanometer-scale) pores in the thin skin. 

Membrane discs (22.8 mm diameter) were cut from large flat sheets using a specially designed 

membrane cutting device.  These membranes were pre-wet by soaking in 90% isopropyl alcohol 

(IPA) for a minimum of 45 minutes prior to use in the filtration experiments.  The membranes 

were then flushed with water to remove any residual IPA.  Limited experiments were also 

performed with symmetric 0.22 µm pore size Durapore hydrophilic polyvinylidene fluoride 

(PVDF) membranes placed immediately above (upstream) of a Biomax membrane.  All 

membranes were flushed with at least 40 mL of buffer solution before the RNA ultrafiltration.    
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Buffer solutions were prepared by 100x dilution of Tris-EDTA (TE) concentrate with DI water 

obtained from a Barnstead International Nanopure water purification system (Thermo Scientific, 

IL).  Solutions were prefiltered through 0.2 µm pore size Supor® 200 disc filters obtained from 

Pall Corporation (Port Washington, NY) to remove any particulate matter or undissolved salt. 

Experiments were conducted with Torula Yeast RNA, obtained from Sigma Aldrich and stored 

frozen at -80ºC.  The concentrations of the stock solutions of RNA were determined by a 

Nanodrop 1000 spectrophotometer (Thermo Scientific) based on the absorbance at 485 and 535 

nm; the RNA was checked periodically for degradation by UV-VIS Absorbance at 260 nm.  A 

small amount of stock solution was thawed and diluted with TE buffer immediately prior to use 

in the ultrafiltration experiments. 

a. Ultrafiltration Experiments 

Sieving experiments were conducted using a 15 mL stirred ultrafiltration cell (MilliporeSigma) 

placed on top of a magnetic stir plate.  The cell was initially filled with buffer and then 

connected to a polycarbonate feed reservoir which was pressurized with compressed air.  After 

measuring the permeability (see below) the stirred cell and feed reservoir were emptied and filled 

with an RNA solution, the stirrer was set to the lowest possible stirring speed, and the system 

was allowed to equilibrate for approximately 1 minute (without any filtration).  A small sample 

(approximately 500 µL) was taken directly from the stirred cell to evaluate the feed 

concentration.  The stirred cell was then reconnected to the feed reservoir, and the feed pressure 

was set to the desired value to start the ultrafiltration experiment.  RNA sieving data were 

obtained over a range of filtrate fluxes from 25 to 250 µm/s, corresponding to pressures between 

1-14 psig as measured by a digital differential pressure gauge.  Prior to taking a permeate sample 
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at each pressure, approximately 4 mL of permeate were allowed to pass through the membrane to 

wash out the dead volume beneath the membrane and ensure steady state operation.  A permeate 

sample of at least 500 µL was collected, the stirred cell was disconnected from the feed 

reservoir, and a post-sieving sample of 500 µL was taken directly from the stirred cell.  All 

experiments were performed at room temperature (22-25ºC).    

b. Membrane Permeability (Lp) 

Prior to each experiment, the integrity of the membrane permeability was evaluated to ensure 

that the membrane was intact and properly situated in the stirred cell.  The membrane was first 

flushed with 40 mL of buffer at a pressure of approximately 2.5 psig.  The filtrate flux was then 

evaluated by timed collection at pressures of 2.0, 4.0, 6.0, and 8.0 psig, with the permeability 

determined from Equation 1: 

Lp = Jµ/∆P        (1) 

where J is the filtrate flux (in m3 filtrate per second normalized by the membrane area in m2) and 

µ is the solution viscosity. Membranes were discarded if the permeability was not within 10% of 

the expected value for the given membrane (Lp = 1.1 x 1012 m for the Biomax 30 kDa and Lp = 

2.3 x 1012 m for the Biomax 100 kDa). The calculated values of the permeability were also used 

to determine the required pressure to achieve a desired filtrate flux.   

c. Quantitative Assay 

 

RNA concentrations were determined using the Quant-iT RiboGreen RNA Assay Kit (Life 

Technologies, Carlsbad, CA).  The RiboGreen working solution was prepared by 2000x dilution 
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of the concentrated dye with DI water and 20x TE buffer provided by the manufacturer.  100 µL 

of the sample and working solution were loaded into separate wells of a 96-well microplate 

(VWR, Philadelphia, PA).  Each sample was run in duplicate.  Due to RiboGreen’s sensitivity to 

light, all procedures were performed with the lights off.  The microplate was inserted into a 

TECAN GENiosFL microplate reader set to 25ºC, mixed by orbital shaking for 60 seconds, and 

allowed to settle for 30 seconds.  A calibration curve was constructed by measuring the 

fluorescence intensity for samples of known concentration loaded on the microplate. 

 

d. Concentration Polarization Model 

The experimental data for RNA transmission were used to evaluate the observed sieving 

coefficient (So), defined as the ratio between the RNA concentration in the permeate (Cp) to that 

in the bulk solution (Cb): 

 

𝑆𝑜 =
𝐶𝑝

𝐶𝑏
    (2) 

Recent work by Manzano and Zydney [8] has shown that the dependence of the RNA sieving 

coefficient on the ultrafiltration flux can be described by the concentration polarization model, 

which accounts for the accumulation of retained RNA in the solution immediately upstream of 

the membrane.  The RNA concentration (C) in the boundary layer above the membrane is 

evaluated using a simple one-dimensional mass balance: 

−𝐽𝐶 − 𝐷
𝜕𝐶

𝜕𝑌
= 𝑁𝑆 = −𝐽𝐶𝑃     (3) 
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where J is the filtrate flux, y is the distance measured perpendicular to the membrane surface, D 

is the RNA diffusion coefficient, Ns is the RNA flux through the membrane, and Cp is the RNA 

concentration in the permeate solution.  The filtrate flux carries RNA towards the membrane, 

with the RNA retention by the small pores leading to a buildup of RNA molecules at the 

membrane surface. The resulting concentration gradient causes back diffusion of RNA away 

from the membrane surface.  At low flux, the rate of diffusion dominates convection so that there 

is negligible accumulation of RNA in the solution upstream of the membrane surface with C = 

Cb at all values of y.  However, at high flux, the RNA begins to accumulate in the solution above 

the membrane, with the RNA concentration at the membrane surface becoming much larger than 

that in the bulk (feed) solution.   

Equation (3) can be integrated across the concentration polarization boundary layer, with the 

RNA concentration at the membrane surface, y = 0, equal to CW, and the RNA concentration at 

the edge of the boundary layer, y = δ, equal to Cb. The resulting equation can be reorganized to 

solve for the sieving coefficient: 

𝑆𝑜 =
𝑆𝑎

(1−𝑆𝑎)𝑒𝑥𝑝(−𝐽 𝑘𝑚⁄ )+𝑆𝑎
    (4) 

The bulk mass transfer coefficient, km, has been set equal to D/δ.  The mass transfer coefficient is 

a function of the RNA diffusion coefficient, the geometry of the stirred cell, and the stirrer speed. 

Sa = Cp/Cw is the actual sieving coefficient, which describes the fractional transmission of the 

RNA through the membrane (ratio of permeate concentration to the concentration in the solution 

at the upstream surface of the membrane). 
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3. Results and Analysis 

Fig. 1 shows a typical calibration curve used to evaluate the RNA concentration.  The 

fluorescence intensity was measured using the RiboGreen assay for samples with RNA 

concentrations up to 600 ng/ml for Torula Yeast RNA samples with known concentration. The 

data are highly linear, with a correlation coefficient of R2 = 0.994.  RNA calibration curves were 

constructed for each experiment to account for any variations in the fluorescent dye, the ambient 

temperature, or the microplate reader.    

 

Figure 1 — Typical calibration curve for RNA concentrations using RiboGreen assay 

 

Figure 2 shows results from a preliminary experiment.  So was very low at the beginning of the 
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described by Manzano and Zydney [8] and were shown to be due to RNA adsorption to the new 

membrane at the start of the experiment.  This is shown explicitly in Figure 3 which compares 

data for a new (Non-Saturated) membrane with that for a membrane that was pre-adsorbed with 

RNA (Pre-saturated).  The sieving coefficient through the Pre-saturated membrane is much 

higher for the first data point (at low flux) but the transmission through the two membranes are 

nearly the same at the end of the experiment (data at high flux).   

 

Fig 2 — Sieving coefficient versus flux for an early experiment using a clean (not pre-saturated) 

100 kDa membrane in the normal orientation 
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experiments used membranes that were Pre-saturated with RNA.  This pretreatment involved 

permeating 10 mL of a high concentration (24 µg/mL) RNA solution through the membrane at 

~2 psi to saturate the membrane surface with RNA.   

 

Fig 3 –  Sieving coefficient versus flux for two 100 kDa Ultracel® membranes, one Non-

Saturated (■) and one Pre-saturated (■) with a 24 µg/mL RNA solution.  The data 

points at J = 50 µm/s were taken first followed by the data at 100 and 200 µm/s. 

 

 

Figure 4 shows data for the observed sieving coefficient (So) obtained with a 0.4 µg/mL solution 

of the Torula yeast RNA during ultrafiltration through a pre-saturated Biomax 30 kDa membrane 

in the normal orientation (skin-side facing the feed). So was very low at low fluxes, but increased 

with increasing flux reaching a value of 0.33 at a filtrate flux of 100 µm/s (corresponding to 360 

L/m2/h).  This behavior is in good agreement with predictions of the concentration polarization 
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model discussed earlier, with the increase in sieving coefficient arising from the increase in RNA 

concentration in the solution immediately upstream of the membrane surface. 

 

The solid curve in Figure 4 shows the calculated values of the observed sieving coefficient given 

by the concentration polarization model using the best fit values of the actual sieving coefficient, 

Sa = 3.0 x 10-5, and the mass transfer coefficient, km = 10.2 µm/s, both determined by minimizing 

the sum of the squared residuals between the model (Equation 4) and the data.  The model 

calculations are in excellent agreement with the data over the full range of filtrate flux, providing 

strong support for the validity of the concentration polarization model for RNA ultrafiltration 

under the conditions of this experiment.   
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Fig 4 — RNA sieving coefficient as a function of filtrate flux (●) for the Biomax 30 kDa 

membrane in normal orientation.  Solid curve is the best fit to the concentration 

polarization model (Equation 4). 

 

 

Figure 5 shows corresponding data obtained for RNA ultrafiltration through a single smaller pore 

size Biomax 30 kDa membrane in both the normal and reverse orientations.  The results were 

obtained with a single membrane, first with the skin-side up (normal) and then with the skin-side 

facing away from the feed (reverse).  The RNA sieving coefficients were much higher when the 

membrane was oriented with the skin-side down, with the sieving coefficient remaining well 

above 0.5 for all values of the filtrate flux with only a very weak dependence on the flux.  In 

contrast, RNA transmission through the membrane in the normal orientation was essentially zero 

for filtrate flux below 40 µm/s, increasing to only So = 0.33 at J = 94 µm/s. 
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Fig 5 — RNA sieving coefficient as a function of filtrate flux for a single Biomax 30 kD in the 

normal (●) and reverse (●) orientations. 

 

 

The RNA sieving coefficient data in the normal orientation have been replotted in Figure 6 using 

a linearized form of the concentration polarization model: 
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1
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1
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𝑘𝑚
    (5) 
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are highly linear when plotted in this fashion, again confirming the validity of the concentration 

polarization model for RNA ultrafiltration with the membrane oriented with the skin-side up.  

The mass transfer coefficient can be evaluated directly from the slope of the data in Figure 6 

giving km = 10.9 µm/s, which is in good agreement with the best fit value calculated directly 

from the data in Figure 5 (for a separate membrane).  The actual sieving coefficient can be 

calculated from the y-intercept in Figure 6 giving Sa = 1.8x10-3 which is noticeably larger than 

the value determined from the data in Figure 3 (Sa = 3.0 x 10-5). This discrepancy may simply 

reflect the inherent variability between membranes. However, it should also be noted that there is 

considerable uncertainty in the calculated values of the actual sieving coefficient determined 

from the slope due to the difficulty in accurately evaluating the very small values of the observed 

sieving coefficient at low filtrate flux.  For example, a shift in the observed sieving value at a 

flux of 37 µm/s from So = 0.017 to So = 0.010 would lead to Sa = 9.4 x 10-4 based on a revised 

linear regression fit to the data as given by Equation (5). 
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Fig 6 — Sieving function versus filtrate flux for RNA ultrafiltration through a Biomax 30 kDa 

membrane in the normal orientation.  Solid line is linear regression fit to the data 

using the linearized form of the concentration polarization model (Equation 5). 

 

 

Figure 7 shows a linearized plot of the RNA sieving coefficient data for the Biomax 30 kDa 

membrane in the reverse orientation (data from Figure 5).  In sharp contrast to the results in 

Figure 6, the data do not appear linear when plotted in this fashion, demonstrating that the RNA 

transmission behavior through the membrane in the reverse orientation cannot be accurately 

described by the concentration polarization model. 
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Fig 7 — Sieving function versus filtrate flux for RNA ultrafiltration through a Biomax 30 kDa 

membrane in the reverse orientation. 
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orientation, the RNA directly enters the small pores at the upper surface of the membrane, 

leading to considerable accumulation of retained RNA at the upstream surface of the membrane 

(which we refer to as concentration polarization).  However, when the membrane is oriented in 

the reverse orientation, the funnel shape allows the RNA to easily enter the large pores and pass 

into the depth of the membrane.  In the case of DNA, Li et al. [7] showed that transport of the 
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phenomenon may also occur for RNA, leading to the high transmission observed in Figure 5.  

Alternatively, the RNA may be retained within the membrane, just “above” the tight pores at the 

exit, leading to an “internal concentration polarization” phenomenon.  This type of internal 

polarization would result in an increase in RNA transmission since the RNA concentration 

immediately above the tight pores would be much larger than that in the bulk (feed) solution.  

However, the dependence of RNA transmission on filtrate flux for this type of internal 

polarization may not be effectively described by the classical concentration polarization model 

(Equations 4 and 5), which could explain the non-linear behavior seen in Figure 7.  Additional 

experiments would be required to more fully explain the flux behavior in the reverse orientation. 

 

 

Fig 8 – Schematic diagram showing RNA transmission through an asymmetric membrane in the 

(A) forward and (B) reverse orientations.  Reproduced from [7]. 
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As discussed previously, RNA is much smaller than DNA. The effective size of the Torula yeast 

RNA used in these experiments was evaluated by dynamic light scattering (DLS), with results 

shown in Figure 9.  The mean hydrodynamic radius of the RNA is 1.6 nm compared to the >100 

nm radius determined for DNA [9].  It is very possible that the RNA is simply too small to be 

able elongate in the several hundred nanometer size pores within the supporting structure of the 

Biomax membrane.   

 

 

Fig 9 – Dynamic Light Scattering results for Torula Yeast RNA. 
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orientations. The observed sieving coefficient data for the Torula yeast RNA are shown in Figure 

10 over a range of filtrate flux between 10 and 250 µm/s.  The RNA transmission was very high 

in both membrane orientations with values between 0.8 and 1.0, essentially independent of the 

filtrate flux.  The lack of any flux dependence is consistent with the minimal degree of 

concentration polarization expected with membranes that provide very low levels of RNA 

retention.  RNA transmission was slightly higher when the membrane was in the reverse 

orientation, with an average value of So = 0.93 versus So = 0.85 in the normal orientation.  

However, given the scatter in the data, it was not possible to draw any quantitative conclusions 

about the effects of membrane orientation on RNA transmission through this large pore size 

membrane. 

 

Fig 10 — RNA sieving coefficient as a function of filtrate flux for ultrafiltration through a 

Biomax 100 kDa membrane in the normal (●) and reverse orientations (●). 
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Figure 11 summarizes results for the observed sieving coefficient during RNA ultrafiltration 

through the Biomax 30 kDa membrane in 3 different configurations at filtrate flux values of 100 

and 55 µm/s: (a) the membrane oriented with the skin-side up (normal) with stirring, (b) the 

membrane oriented with the skin-side down with stirring, and (c) the membrane oriented with 

the skin-side up but without stirring.  The highest sieving coefficients are obtained with the 

membrane oriented with the skin-side down, with So > 0.7 at both values of the filtrate flux. The 

sieving coefficients obtained with the skin-side up in the presence of stirring show a strong 

dependence on the filtrate flux, with an 8-fold increase in value as the flux increases from J = 55 

µm/s to J = 100 µm/s. The results in the unstirred system show a much smaller dependence of So 

on the filtrate flux with values at both fluxes being larger than those in the stirred system.  The 

increase in RNA transmission in the absence of stirring is consistent with an increase in the 

extent of concentration polarization, with the effective mass transfer coefficient being smaller in 

the unstirred system.  However, the very weak dependence of RNA transmission on the flux in 

the unstirred system is surprising.  Additional experimental studies would be required to clarify 

this behavior. 
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Fig 11 — Bar graph showing the RNA sieving coefficient through a Biomax 30 kDa membrane 

at J ≈ 100 µm/s (■) and 55 µm/s (■) in normal and reverse orientations and in the 

normal orientation but without any stirring. 
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PVDF membrane directly on top of (before) a Biomax 30 kDa membrane, with the Biomax 

membrane operated in the normal orientation (skin-side up).  The PVDF membrane is 

homogenous (uniform pore size throughout the depth) with a much larger pore size than the 
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for filtrate fluxes below 100 µm/s and increase to nearly 0.8 at J = 200 µm/s.  Note that the RNA 

transmission through the Biomax 30 kDa membrane alone (data in Figure 4) remained below 0.1 

for filtrate flux values as high as 80 µm/s.  Thus, the presence of the 0.2 µm pore size PVDF 

membrane causes nearly a 10-fold increase in RNA transmission at low to moderate flux, similar 

to the high transmission seen with the Biomax 30 kDa membrane when operated in the reverse 

orientation (Figure 5). These data confirm that the increase in RNA transmission is directly due 

to the membrane morphology and is not related to any damage to the membrane when operated 

in the reverse orientation.  

 

 

Fig 12. RNA sieving coefficient as a function of the filtrate flux for a composite membrane 

composed of a 0.2 µm pore size PVDF layer on top of a Biomax 30 kDa membrane 

oriented with the skin-side up.   
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Interestingly, the RNA transmission through the composite membrane structure was 

considerably greater than that seen in the unstirred system using the Biomax 30 kDa membrane 

in its normal orientation (So = 0.26 and 0.38 at J = 55 and 100 µm/s – data in Figure 9).  This 

indicates that the presence of the 0.2 µm layer is more effective at increasing the RNA 

transmission than a “stagnant” (unstirred layer). This could simply be due to the reduced rate of 

RNA transport within the 0.2 µm membrane (hindered diffusion due to the presence of the 

pores), although it may also provide evidence for some type of flow-induced pre-elongation of 

the RNA within the pores of the PVDF membrane.    

4.  Discussion 

The flux dependence of RNA transmission seen throughout this study is very similar to what has 

previously been seen with DNA.  The RNA (and DNA) are both highly retained at low filtrate 

flux, with transmission increasing with increasing flux.  However, DNA ultrafiltration is 

typically performed with a larger pore size membrane (500 kDa molecular weight cutoff), but the 

pores of these membranes (10 – 20 nm in radius) are much smaller than the size of the DNA 

(>100 nm). These studies have shown that in order for the DNA molecules to pass through the 

small membrane pores, they must first be elongated in the flow field above the membrane.  At 

low filtrate flux, where the elongational flow field was very weak, the DNA was highly retained 

by the membrane.  Although our data also show an increase in RNA transmission with increasing 

filtrate flux, this appears to be due to concentration polarization effects instead of RNA 

elongation. 
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Our ultrafiltration data also show no evidence of membrane fouling such as the pore blockage 

phenomenon observed previously with DNA [10].  During DNA ultrafiltration, there is a 

significant reduction in DNA transmission with time as pores are blocked by DNA molecules 

that become trapped at the pore entrance.  There was no evidence of this type of fouling during 

RNA ultrafiltration, with the RNA transmission remaining constant as a function of time for as 

much as 40 min (data not shown).  The reason for this difference is likely related to the 

difference in size and structure of the DNA and RNA.  The plasmid DNA examined by Borujeni 

et al. [10] was between 3,000 and 17,000 base pairs long – if fully elongated, these DNA 

molecules would be 1.0 – 5.8 µm.  In contrast, the RNA examined in this work is likely to be 

around 100 nucleotides long, with a radius of gyration (as determined by dynamic light 

scattering) of less than 2 nm.  The much longer DNA molecules adopt a highly twisted 

supercoiled conformation that can easily lead to “knots” (regions of DNA that are difficult to 

untangle).  These knots can be difficult to unwind and elongate by the hydrodynamic forces 

during membrane filtration, with some of these “knotted” DNA molecules becoming trapped at 

the entrance to the pores leading to membrane fouling.  In contrast, the RNA molecules 

examined in this study are smaller than the effective pore size of the membrane.  Thus, it is 

highly unlikely that the RNA will become physically trapped at the pore entrance, essentially 

eliminating the fouling phenomenon seen with DNA. 

5. Conclusions 

The experimental data presented in this thesis clearly demonstrate that the membrane pore 

morphology has a large effect on RNA transmission during ultrafiltration.  In particular, the 

RNA transmission through an asymmetric Biomax 30 kDa membrane operated in the reverse 
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orientation (skin-side down) was as much as 10-fold (or more) larger than that through the same 

membrane when operated in the normal orientation.  A similar increase in transmission was seen 

with a composite membrane composed of a large pore size membrane placed directly on top of 

the Biomax 30 kDa membrane, clearly demonstrating that this behavior is due to the “funnel-

shaped” morphology of the pores (and not to any damage to the membrane when used in the 

reverse orientation). 

 

The origin of the increase in transmission through the composite and reverse membranes is still 

unclear.  This behavior could be due to an internal concentration polarization phenomenon, with 

the RNA that is retained by the tight pores in the skin accumulating within the large pores of the 

upper layer of the composite membrane (or of the support structure in the asymmetric 

membrane).  However, RNA transmission through the composite and reverse membranes was 

actually greater than that observed through a normal Biomax 30 kDa membrane used in an 

unstirred system, which should have caused a very high degree of concentration polarization.  

Alternatively, the high degree of transmission with the reverse / composite membranes could be 

due to a pre-elongation of the RNA as it moves through the large pores, similar to the 

phenomenon seen previously with DNA.  However, the much smaller size of the RNA (<2 nm) 

compared to the DNA would suggest that significant RNA elongation is unlikely to occur in this 

experimental system. 

 

RNA transmission during ultrafiltration through the Biomax membranes in the normal 

orientation (skin-side up) is strongly influenced by concentration polarization effects, which 

causes the observed sieving coefficient to increase with increasing filtrate flux.  The RNA 
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sieving coefficient data for the Biomax 30 kDa membrane was shown to be in excellent 

agreement with predictions of the concentration polarization model.  In addition, RNA 

transmission in an unstirred system was considerably higher than that in a stirred system, with 

this increase in transmission due to the greater degree of concentration polarization in the 

absence of stirring.  This behavior is considerably different than that observed previously during 

DNA ultrafiltration in which the DNA sieving coefficient was independent of the stirring speed.  

This provides further evidence for the very different behavior of RNA and DNA during 

ultrafiltration.   

 

Although these studies have begun to identify some of the key factors controlling the 

ultrafiltration behavior of RNA in membranes with different pore morphologies, additional 

studies need to be conducted to fully clarify the origin of the observed phenomena.  When the 

membrane is oriented in the reverse orientation, the funnel shape allows the RNA to easily enter 

the large pores and pass into the depth of the membrane. One likely reason cited for the increase 

in transmission is that the RNA molecules accumulate within this macroporous region.  

However, the RNA could easily become trapped within the membrane substructure, posing a risk 

of trapping other biomolecules that the ultrafiltration process is designed to remove.  Further 

studies should be designed to evaluate this risk.   

 

In the case of DNA, the difference in transmission observed in the forward and reverse 

orientations is directly related to the hydrodynamics, with the fluid flow causing plasmid 

elongation either in the converging flow field entering the small pores (normal orientation) or in 

the membrane substructure (reverse orientation).  Although this seems unlikely to occur with 
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RNA for the reasons described above, the very high transmission and very weak dependence of 

the sieving coefficient on the filtrate flux when the membrane is used in the reverse orientation 

do not seem consistent with the effects of internal concentration polarization.  Therefore, further 

research is required to elucidate the mechanism of transmission when the membrane is operated 

with “funnel-shaped” pores.  In any case, this work clearly demonstrates the potential for the use 

of “reverse” ultrafiltration, in which the membrane is oriented skin-side down, to enhance RNA 

transmission through a membrane with small pores.   
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