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Abstract

The purpose of this Schreyer Honors Thesis is to explore theories, methods and applications of

orthogonal polynomial sequences. This thesis is designed to be approachable and understandable

by any undergraduate mathematics or physics major at The Pennsylvania State University in order

to serve as a learning resource. This paper is to be comprehensive and self-consistent; that is, we

hope to cover all prerequisite information here that is required for the understanding of this paper,

hence the thorough introduction. Throughout this paper, several definitions, terminologies and

notations are used, as listed in Chapter 1. The presentation of polynomial sequences here closely

follow that in [1] and [2]. Limit, series and integral relations involving orthogonal polynomials

are presented in Chapter 2. Chapter 3 covers the inverse method and Schrödinger form for various

orthogonal polynomial sequences. Chapter 4 introduces applications of orthogonal polynomials in

physics and numerical analysis.
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Chapter 1

Introduction to Functional Analysis
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We need to introduce three concepts: metric spaces, normed vector spaces and inner-product
spaces. We follow the presentation of these concepts by [3].

1.1 Metric Spaces

A metric (property of distance) on a set X is a function, where X2 = X × X ,

d : X2 → R+

(x, y) → d(x, y)
(1.1.1)

such that, for every x, y, z ∈ X ,

1. Positive-definiteness: d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y

2. Symmetry: d(x, y) = d(y, x)

3. The Triangle Inequality: d(x, y) ≤ d(x, z) + d(z, y)

If X has a metric d, we say it is a metric space, denoted by (X, d).
Example: If x, y ∈ R3, where x = (x1, x2, x3) and y = (y1, y2, y3), we have the Euclidean metric

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

If X is a normed vector space, then the norm of the space, denoted | | · | |, induces a metric on X
defined in a natural way: if a, b ∈ X , then d(a, b) = | |b − a| |. So, what is a norm?

1.2 Normed Vector Spaces
A normed space X is a vector space over R or C with the norm (property of length) | | · | | : X →

R such that, for every x, y ∈ X, λ ∈ R,

1. Positive-definiteness: | |x| | ≥ 0, | |x| | = 0 if and only if x = 0

2. Scaling-homogeneity: | |λx| | = |λ | | |x| |

3. The Triangle Inequality: | |x + y| | ≤ | |x| | + | |y| |

If X has a norm | | · | |, we say it is a normed space, denoted by (X, | | · | |).
Example: If x ∈ R3, where x = 〈x1, x2, x3〉, we have the Euclidean norm

| |x| | =
√

x2
1 + x2

2 + x2
3

If a space has an inner-product, usually denoted 〈,〉, the space will induce a norm in a natural
way: | |x| |2 = 〈x, x〉. So, what is an inner-product?
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1.3 Inner-Product Spaces

An inner-product space X is a space with the inner-product (property of angles) 〈 , 〉 : X2 →
F, F = C or R, such that, for every x, y, z ∈ X, λ ∈ F,

1. Positive-definiteness: 〈x, x〉 ≥ 0, 〈x, x〉 = 0 if and only if x = 0

2. Scaling-homogeneity: 〈x, λy〉 = λ 〈x, y〉

3. Complex-Scaling: 〈λx, y〉 = λ 〈x, y〉

4. Complex-Symmetry (remember, the complex conjugate of a real number is itself): 〈x, y〉 =
〈y, x〉

5. Distribution: 〈x, z + y〉 = 〈x, y〉 + 〈x, z〉 and 〈x + z, y〉 = 〈x, y〉 + 〈z, y〉

6. Angles: cos θ = 〈x,y〉
| |x| | | |y| |

We also define the projection of two vectors. If x, y ∈ X then the scalar projection of x onto y is

projyx =
〈x, y〉
| |y| |2

=
〈x, y〉
〈y, y〉

(1.3.1)

Example: If x, y ∈ R3, where x = 〈x1, x2, x3〉 , y = 〈y1, y2, y3〉, we have the dot-product

x·y = x1y1 + x2y2 + x3y3

An inner-product always induces a norm. Given the norm, we can test if the norm was induced
by an inner-product using the Parallelogram Law, which is obeyed by all norms induced by an
inner-product:

| |a + b| |2 + | |a − b| |2 = 2| |a| |2 + 2| |b| |2 (1.3.2)

We also the the Cauchy-Schwarz inequality

〈x, y〉2 ≤ ||x| |2 | |y| |2 (1.3.3)

We now ask ourselves, what was the purpose introducing these concepts? So we could discuss
orthogonality.

1.4 Orthogonality
Two vectors x, y are said to be orthogonal (generalization of the quality of perpendicularity

from Rn) if 〈x, y〉 = 0. Before we continue, we must introduce a new concept: the Kronecker Delta,
defined as

δnm =

{
1, if n = m
0, if n , m

(1.4.1)
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A collection of orthogonal vectors {ek}k∈J, where J is some countable index, has the property due
to the definition of orthogonality, ei ∈ X, 〈en, em〉 = | |en | |

2δnm. If they span X , then they can form
a basis for X . That is, if x ∈ X then

x =
∑
k∈W

ck ek, ck = projekx

The set of all polynomials is a vector space, and an orthogonal polynomial sequence can form a
basis of said space over the support interval, denoted Ω of the orthogonal polynomial. So, let us
introduce concepts of polynomial sequences.

1.5 Foundations of Polynomial Sequences
We start with introducing some foundational terms.

Definition 1.5.1. Let {Pn(x)}∞n=0 be a set of polynomials such that the degree of Pn(x) is exactly n,
written as deg(Pn(x)) = n. We call this set a polynomial sequence

Definition 1.5.2. A set of polynomials {Qn(x)}∞n=0 is said to be a monic polynomial sequence, or
simply monic, if deg(Qn(x) − xn) ≤ n − 1. That is, the leading coefficient is 1.

Definition 1.5.3. The weight function, w(x), is a non-negative and integrable function over some
interval Ω ⊂ R such that

∫
Ω
w(x)dx > 0 and w(x) > 0∀x ∈ Ω.

A polynomial sequence can be made monic by simply dividing by the leading coefficient in
the polynomial sequence. The bridge between polynomial sequences and orthogonal polynomials
sequences is the moment-functional. We start by requiring that the nth moment µn, defined as

µn =

∫
Ω

xnw(x)dx n = 0, 1, 2... (1.5.1)

be finite. We can thus construct the sequence {µn}
∞
n=0. From here, we can define the operator

L[ f (x)] =
∫
Ω

f (x)w(x)dx (1.5.2)

So, L[xn] = µn. We say that L is the moment-functional determined by the moment sequence
{µn}

∞
n=0. L is also an inner-product over the vector space of polynomials, a subspace of L2Ω. That

is, for f , g polynomials,

〈 f , g〉 = L[ f , g] =
∫
Ω

f ∗(x)g(x)w(x)dx

Where f ∗(x) is the complex conjugate of f (x). For our purposes, wewill only consider polynomials
with real coefficients being integrated on some interval of the reals, in which case f ∗(x) = f (x).
Since polynomials are dense, we can extend this inner-product to all of L2Ω. We also require that
L to be positive-definite. That is,

L[ f 2(x)] ≥ 0, L[ f 2(x)] = 0 if and only if f (x) = 0
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Definition 1.5.4. Two polynomials related by some index, say fn, fm, are said to be orthogonal
with respect to moment-functional L (or, equivalently, with respect to weight w(x)) if

L[ fn, fm] = Knδnm (1.5.3)

Where Kn = L[ fn, fn] will be referred to as the squared norm. If Kn = 1, the polynomials are said
to be orthonormal.

Example: Let Ω = [−π, π] and w(x) = 1. Then, for n , 0,m , 0.

L[cos(nx), cos(mx)] =
∫ π

−π
cos(nx) cos(mx)dx = πδnm (1.5.4)

where cos(nx) can be thought of as a polynomial via its Taylor expansion.

Definition 1.5.5. A set {Pn(x)}∞n=0 is called an orthogonal polynomial sequence (OPS for short)
with respect to some moment functional L (or, again, with respect to weight w(x)) if

1. {Pn(x)}∞n=0 is a polynomial sequence, as defined above

2. L[Pn(x), Pm(x)] = Knδnm, that is, any two terms in the sequence are orthogonal. Kn =

L[Pn(x), Pn(x)] is the squared norm of an OPS, and, if Kn = 1, the OPS is an orthonormal
polynomial sequence (ONPS).

Theorem 1.5.6. If {Pn(x)}∞n=0 is an OPS, then it forms a basis on the vector space of polynomials.
That is, if π(x) is a polynomial such that deg(π(x)) = n, then,

π(x) =
n∑

k=0
ck Pk(x) (1.5.1)

where

ck =
L[π(x), Pk(x)]
L[Pk(x), Pk(x)]

That is, ck is the projection of π(x) onto Pk(x) via themoment-functional associatedwith {Pn(x)}∞n=0.

Corollary 1.5.6.1. If {Pn(x)}∞n=0 is an OPS with respect to some L, then it is unique up to some
arbitrary coefficient. That is, if {Rn(x)}∞n=0 is an OPS with respect to the same L, then

Rk = qk Pk, qk , 0, ∀ k ∈W

Corollary 1.5.6.2. If π(x) is a polynomial such that deg(π(x)) = j, j < n, then, L[π(x), Pn(x)] = 0

Proof. From Eq. (1.5.1), we can write π(x) =
∑ j

k=0 ck Pk(x). So,

L[π(x), Pn(x)] =
∫
Ω

π(x)Pn(x)w(x)dx =
∫
Ω

( j∑
k=0

ck Pk(x)

)
Pn(x)w(x)dx

=

j∑
k=0

ck

∫
Ω

Pk(x)Pn(x)w(x)dx =
j∑

k=0
0 = 0
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where the orthogonality of the OPS made each integral zero. An important special case is

π(x) = x j

. �

Theorem 1.5.7. If {Pn(x)}∞n=0 an OPS with respect to L and with squared norm Kn, then the set
{pn(x)}∞n=0, where

pn(x) =
Pn(x)
√

Kn

has the property

L[pm(x), pn(x)] =
∫
Ω

pm(x)pn(x)w(x)dx = δnm

and is called the associated ONPS. We say that pn(x) is the normal version of Pn(x), and that Pn(x)
has been normalized.

It would be careless if the following distinction was not brought to light: L is a continuous
inner-product. There exists a discrete inner-product that is obeyed by certain orthogonal polynomial
sequences (e.g. the Charlier, Meixner and Krawtchouk polynomials, etc.):∑

x∈Ω2

Pn(x)Pm(x)w(x) = Knδnm (1.5.2)

where Ω2 ⊂ W.
Orthogonal polynomial sequences are a type of special function. An example of a special

function is the Gamma function:

Γ(z) =
∫ ∞

0
tz−1e−tdt, Re z > 0 (1.5.3)

The gamma function is the generalization of the factorial, and has the following three properties:

1. If n is a positive integer: Γ(n) = (n − 1)!

2. Γ(12 ) =
√
π

3. Γ(z) = Γ(z+1)
z

The gamma function appears in the definition of some orthogonal polynomials, hence the brief
digression to cover its properties here.
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1.6 Properties of Orthogonal Polynomials
Now that we have an idea of what an orthogonal polynomial sequence is, we will introduce the

associated concept of the recursion relation.
We first begin by introducing new concepts, starting with what is hopefully familiar. Consider

the binomial theorem:

(x + y)n =

n∑
k=0

(
n
k

)
xn−k yk (1.6.1)

Next, we introduce the Pochhammer symbol (a)k :

(a)k := a(a + 1)(a + 2) · · · (a + k − 1), (a)0 := 1 (1.6.2)

and
(a1, ..., a j)k := (a1)k · · · (a j)k (1.6.3)

We can now generalize the binomial theorem.

Definition 1.6.1. The Classical Hypergeometric Function r Fs is a power series of the form

r Fs

( a1,...ar
b1,...,bs

���x) = ∞∑
k=0

(a1, ...ar)k

(b1, ..., bs)k

xk

k!
(1.6.4)

Corollary 1.6.1.1. To see that the Hypergeometric function is a generalization of the binomial
theorem, observe that

1F0

( a

−

���z) = ∞∑
k=0

(a)k zk

k!
= (1 − z)−a (1.6.5)

From here, we introduce a theorem.

Theorem 1.6.2. Every OPS has a hypergeometric form, and the definition of the OPS is its
hypergeometric form.

Now, we must introduce the concept of generating functions, following [4].

Definition 1.6.3. An infinite sequence {cn}
∞
n=0 has the ordinary generating function (OGF)

G(x) = c0 + c1x + c2x2 + c3x3 + · · · + cnxn + · · · (1.6.6)

where the series on the right hand side of Eq. (1.6.6) is called the explicit form. There is also an
implicit form if the series converges.

As an example, consider the sequence of all 1’s:

G(x) = 1 + x + x2 + x3 + · · · =
1

1 − x

where we used the properties of geometric series to obtain 1
1−x , the implicit form. Another example,

returning to Eq. (1.6.1), where y = 1, we get
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(1 + x)n =
n∑

k=0

(
n
k

)
xk (1.6.7)

So, for the finite sequence {
(n
k

)
}nk=0, the left hand side of Eq. (1.6.7) is the implicit generating

function, and the right hand side is the explicit generating function. Now, we introduce the concept
of exponential generating functions (EGF).

Definition 1.6.4. A sequence {cn}
∞
n=0 has the exponential generating function:

G(x) =
c0
0!
+

c1x
1!
+

c2x2

2!
+

c3x3

3!
+ · · · +

cnxn

n!
+ · · · (1.6.8)

Example, again using the sequence of all 1’s:

1
0!
+

x
1!
+

x2

2!
+

x3

3!
+ · · · = ex (1.6.9)

Where the left hand side of Eq. (1.6.9) is the explicit form, and the right hand side is the implicit
form, obtained using the Taylor expansion of ex . A sequence has both an OGF and an EGF, but a
general rule-of-thumb is: if the elements of the sequence are not constants, use an EGF. And now
we state a theorem.

Theorem 1.6.5. Every OPS has a generating function, either exponential or ordinary. We say that
function generates the OPS.

From here, we introduce a key concept of orthogonal polynomial sequences: the recursion
relation. For example, consider the Fibonacci sequence {Fn}

∞
n=0

0, 1, 1, 2, 3, 5, 8, 13, ...

The Fibonacci sequence obeys the following recursion relation:

Fn = Fn−1 + Fn−2, n > 1, F0 = 0, F1 = 1

That is, we can determine the nth Fibonacci number from adding the previous two. We can now
introduce another theorem.

Theorem 1.6.6. It is a necessary and sufficient condition that an OPS {Pn(x)}∞n=0 satisfies an
unrestricted three-term recurrence relation:

Pn+1(x) = (Anx + Bn)Pn(x) − CnPn−1(x), An An−1Cn > 0 (1.6.10)

where P−1(x) = 0, P0(x) = 1.

Corollary 1.6.6.1. IfQn(x) is the monic form of Pn(x), then it is a necessary and sufficient condition
that {Qn(x)}∞n=0 satisfies the following monic three-term recurrence relation:

Qn+1(x) = (x − bn)Qn(x) − cnQn−1(x), cn > 0 (1.6.11)

where Q−1(x) = 0,Q0(x) = 1.
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Corollary 1.6.6.2. If {pn(x)}∞n=0 is an ONPS (and, remember, every OPS has an associated ONPS),
then pn(x) satisfies following orthonormal three-term recurrence relation

an+1pn+1(x) = (x − bn)pn(x) − anpn−1(x) (1.6.12)

Now, it is trivial to show1 that, by comparing Eq. (1.6.12) to Eq. (1.6.11), we get an =
√

cn. So,
we can also write Eq. (1.6.12) as

√
cn+1pn+1(x) = (x − bn)pn(x) −

√
cnpn−1(x)

Next, we define three functions which will become readily important. For a given weight w(x),
domain Ω and associated ONPS {pn(x)}∞n=0, we have

ν(x) = − ln(w(x)), (1.6.13)

An(x) = an

(
p2

n(y)w(y)

y − x

����
∂Ω

+

∫
Ω

ν′(x) − ν′(y)
x − y

p2
n(y)w(y)dy

)
, (1.6.14)

Bn(x) = an

(
pn(y)pn−1(y)w(y)

y − x

����
∂Ω

+

∫
Ω

ν′(x) − ν′(y)
x − y

pn(y)pn−1(y)w(y)dy
)

(1.6.15)

where an is from Eq. (1.6.12).

Theorem 1.6.7. The following differential equation and relations are true

p′n(x) = −Bn(x)pn(x) + An(x)pn−1(x), (1.6.16)

Bn(x) + Bn+1(x) =
x − bn

an
An(x) − ν′(x), (1.6.17)

Bn+1(x) − Bn(x) =
an+1 An+1(x)

x − bn
−

a2
n An−1(x)

an−1(x − bn)
−

1
x − bn

(1.6.18)

1Proof, courtesy of Dr. Chuck Yeung, Professor of Physics at The Pennsylvania State, Behrend.
Begin by Normalizing Eq. (1.6.11)

pn+1 =
Qn+1
| |Qn+1 | |

=
| |Qn | |

| |Qn+1 | |
(x − bn)

Qn

| |Qn | |
−
| |Qn−1 | |

| |Qn+1 | |
cn

Qn−1
| |Qn−1 | |

So
pn+1 =

| |Qn | |

| |Qn+1 | |
(x − b_n)pn −

||Qn−1 | |

| |Qn+1 | |
cnpn−1

Putting in form Eq. (1.6.12)
| |Qn+1 | |

| |Qn | |
pn+1 = (x − b_n)pn −

||Qn−1 | |

| |Qn | |
cnpn−1

So comparing this to Eq. (1.6.12) gives

an+1 =
| |Qn+1 | |

| |Qn | |

While
an =

| |Qn | |

| |Qn−1 | |
=
| |Qn−1 | |

| |Qn | |
cn =

1
an

cn

So
cn = a2

n → an =
√

cn
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where Eq. (1.6.18) is called the string equation. These equations become the foundation of
Section 3.2.

1.7 Apell and Sheffer Polynomials
We now begin discussing the Apell and Sheffer classifications of polynomials sequences, which

are a focus in this paper.

Definition 1.7.1. A polynomial set {Pn(x)}∞n=0 is said to be Apell if there exists

A(t) =
∞∑

n=0
antn, a0 = 1

such that

A(t)ext =

∞∑
n=0

Pn(x)tn (1.7.1)

Example: We get the well-known Taylor Expansion:

ext =

∞∑
n=0

xn

n!
tn

when
a0 = 1, an = 0 ∀ n ≥ 1

Thus, the polynomial set { xn
n! }
∞
n=0 is Apell.

Corollary 1.7.1.1. An alternative definition of Apell is that

P′n(x) = Pn−1(x) (1.7.2)

.

Proof. Observe that differentiating Eq. (1.7.1) reveals, from the left-hand-side:

d
dx

A(t)ext = t A(t)ext =

∞∑
n=0

Pn(x)tn+1 =

∞∑
n=1

Pn−1(x)tn (1.7.3)

and, from the right-hand-side:
∞∑

n=1
P′n(x)t

n (1.7.4)

Thus, comparing coefficients reveals that

P′n(x) = Pn−1(x) (1.7.5)

. �
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From here, we note that the derivative is really just an operator acting on Pn, and we can
generalize to state the following theorem:

Theorem 1.7.2. For a given polynomial set {Pn(x)}∞n=0 there exists a unique operator, called the
backward shift operator J such that

J[Pn(x)] = Pn−1(x) (1.7.6)

Definition 1.7.3. We say that the polynomial set is of Sheffer Type 0 if J has the following form:

J[y(x)] =
∞∑

n=1
cny
(n)(x) c1 , 0 (1.7.7)

The generating function of J is the power set

J(t) :=
∞∑

n=1
cntn, c1 , 0 (1.7.8)

with inverse

H(t) :=
∞∑

n=1
sntn, s1 = c−1

1 , 0 (1.7.9)

That is, H(J(t)) = J(H(t)) = t.
For each J there exists infinitely many associated polynomial sets. However, there exists only

one set, {Bn(x)}∞n=0, called the basic set, with the property that

B0 = 1, Bn(0) = 0 n = 1, 2, 3... (1.7.10)

The set has the generating function

exH(t) =

∞∑
n=0

Bn(x)tn (1.7.11)

where H(t) is as it is defined in Eq. (1.7.9). We are now beginning to see a further connection
between being Apell and Type-0 - this leads to the following theorem, written exactly as stated in
[2]:

Theorem 1.7.4. The set {Pn(x)}∞n=0 corresponds to the operator J and is of Sheffer Type 0 if and
only if the sequence {an}

∞
n=0 exists such that

A(t)exH(t) =

∞∑
n=0

Pn(x)tn (1.7.12)

where

A(t) :=
∞∑

n=0
an(x)tn a0 = 1 and H(t) :=

∞∑
n=1

sntn, s1 = 1 (1.7.13)
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1.8 Orthogonal Sheffer Type-0 Polynomials
Now, determining which Sheffer Type-0 Polynomials are also orthogonal is a very laborious

task, not covered here (again, see [2]). We will however show the results, which were proven by J.
Meixner to be unique [5]. Here listed are the definitions (in hyper-geometric form), orthogonality,
recursion relation, monic recursion relation and generating function for the six polynomials, all
obtained from [6]. The orthogonality may be discrete or continuous, hence we write them out
explicitly instead of using the L notation.

1. Laguerre (note: the Laguerre polynomials are actually a family of orthogonal polynomials,
hence the α )

(a) Definition:
L(α)n (x) :=

(α + 1)n
n! 1F1

(
−n

α+1

���x) (1.8.1.1)

(b) Orthogonality:∫ ∞

0
L(α)n (x)L

α
m(x)e−x xαdx =

Γ(n + α + 1)
n!

δnm, α > −1 (1.8.1.2)

(c) Recurrence Relation

(n + 1)L(α)n+1(x) = (2n + α + 1 − x)L(α)n (x) − (n + α)L
(α)
n−1(x) (1.8.1.3)

(d) Monic Recurrence Relation
If we set

Qn(x) =
n!
(−1)n

L(α)n (x)

we get
Qn+1(x) = (x − 2n − α − 1)Qn(x) − n(n + α)Qn−1(x) (1.8.1.4)

(e) Generating Function

(1 − t)−α−1e
xt
t−1 =

∞∑
n=0

L(α)n (x)t
n (1.8.1.5)

2. Charlier (note the Charlier polynomials are a function of two variables, hence the a in the
function arguments)

(a) Definition:
Cn(x; a) := 2F0

(
−n,−x

−

��� − 1
a

)
(1.8.2.1)

(b) Orthogonality:
∞∑

x=0
Cn(x; a)Cm(x; a)

ax

x!
= a−nean!δnm, a > 0 (1.8.2.2)
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(c) Recurrence Relation

aCn+1(x; a) = (n + a − x)Cn(x; a) − nCn−1(x; a) (1.8.2.3)

(d) Monic Recurrence Relation
If we set

Qn(x) = (−a)nCn(x; a)

we get
Qn+1(x) = (x − n − a)Qn(x) − naQn−1(x) (1.8.2.4)

(e) Generating Function

et
(
1 −

t
a

) x
=

∞∑
n=0

Cn(x; a)
n!

tn (1.8.2.5)

3. Hermite

(a) Definition:
Hn(x) := (2x)n2F0

(
− n

2 ,−
n−1

2
−

��� − 1
x2

)
(1.8.3.1)

(b) Orthogonality: ∫ ∞

−∞

Hn(x)Hm(x)e−x2
=
√
π2nn!δnm (1.8.3.2)

(c) Recurrence Relation
Hn+1(x) = 2xHn(x) − 2nHn−1(x) (1.8.3.3)

(d) Monic Recurrence Relation
If we set

Qn(x) = 2−nHn(x)

we get
Qn+1(x) = xQn(x) −

n
2

Qn−1(x) (1.8.3.4)

(e) Generating Function

e2xt−t2
=

∞∑
n=0

Hn(x)
n!

tn (1.8.3.5)

4. Meixner (note: the Meixner polynomials are functions are three variables)

(a) Definition:
Mn(x; β, c) := 2F1

(
−n,−x

β

���1 − 1
c

)
(1.8.4.1)
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(b) Orthogonality:
∞∑

x=0
Mn(x; β, c)Mm(x; β, c)cx (β)x

x!
=

c−nn!
(β)n(1 − c)β

δnm,

β > 0 and 0 < c < 1
(1.8.4.2)

(c) Recurrence Relation

c(n + β)Mn+1(x; β, c) = [n − x + (n + β + x)c]Mn(x; β, c) − nMn−1(x; β, c) (1.8.4.3)

(d) Monic Recurrence Relation
If we set

Qn(x) = (β)n
( c
c − 1

)n
Mn(x; β, c)

we get

Qn+1(x) =
(
x −

n + (n + β)c
c − 1

)
Qn(x) −

n(n + β − 1)c
(1 − c)2

Qn−1(x) (1.8.4.4)

(e) Generating Function (
1 −

t
c

) x
(1 − t)−x−β =

∞∑
n=0

(β)n
n!

Mn(x; β, c)tn (1.8.4.5)

5. Meixner-Pollaczek (note: theMeixner-Pollaczek polynomials are a function of two variables)

(a) Definition

Pλ
n (x; φ) :=

(2λ)neinφ

n! 2F1

(
−n,λ+ix

2λ

���1 − e−2iφ
)

(1.8.5.1)

(b) Orthogonality∫ ∞

−∞

Pλ
n (x; φ)Pλ

m(x; φ)e(2φ−π)x |Γ(λ + ix)|2dx

=
2πΓ(n + 2λ)
(2 sin(φ))2λn!

δnm, λ > 0 and 0 < φ < π

(1.8.5.2)

(c) Recurrence Relation

(n + 1)Pλ
n+1(x; φ) = 2[x sin φ + (n + λ) cos φ]Pλ

n (x; φ)
− (n + 2λ − 1)Pn−1(x; φ)

(1.8.5.3)

(d) Monic Recurrence Relation
If we set

Qn(x) =
n!

(2 sin φ)n
Pλ

n (x; φ)

we get

Qn+1(x) =
(
x +

n + λ
tan φ

)
Qn(x) −

n(n + 2λ − 1)
(2 sin φ)2

Qn−1(x) (1.8.5.4)
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(e) Generating Function(
1 − eiφt

)−λ+ix (
1 − e−iφt

)−λ−ix
=

∞∑
n=0

Pλ
n (x; φ)tn (1.8.5.5)

6. Krawtchouk (note: the Krawtchouk polynomials are functions of three variables)

(a) Definition
Kn(x; p, N) := 2F1

(
−n,−x

−N

���1
p

)
, n = 0, 1, 2, ..., N (1.8.6.1)

The Krawtchouk polynomials are self-dual, and thus obey

Kn(x; p, N) = Kx(n; p, N), x, n ∈ 1, 2, ..., N (1.8.6.2)

(b) Orthogonality
N∑

x=0
Kn(x; p, N)Km(x; p, N)

(
N
x

)
px (1 − p

)N−x

=
(−1)nn!
(−N)n

(1 − p
p

)n
δnm, 0 < p < 1

(1.8.6.3)

and, due to being self-dual:

N∑
n=0

Kn(x; p, N)Kn(y; p, N)
(
N
n

)
pn (1 − p

)N−n

=

(
1−p

p

) x(N
x

) δxy, 0 < p < 1 and x, y ∈ 0, 1, 2, ..., N

(1.8.6.4)

(c) Recurrence Relation

p(N − n)Kn+1(x; p, N) = [p(N − n) + n(1 − p) − x]Kn(x; p, N)
− n(1 − p)Kn−1(x; p, N)

(1.8.6.5)

(d) Monic Recurrence Relation
If we set

Qn(x) = (−N)npnKn(x; p, N)

we get

Qn+1(x) = −[p(N − n) + n(1 − p) − x]Qn(x)
− np(1 − p)(N + 1 − n)Qn−1(x)

(1.8.6.6)

(e) Generating Function(
1 −

1 − p
p

t
) x (

1 + t
)N−x

=

N∑
n=0

(
N
n

)
Kn(x; p, N)tn (1.8.6.7)
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1.9 Jacobi Polynomials
Section 2.1 details properties concerning the Jacobi polynomials. Hence, we cover them here,

following [7].

1. The Jacobi polynomials have an intimate relationship with the beta function, as it is through
the beta function the moment-functional associated with the Jacobi polynomial is often
evaluated. Thus, we define it here

B(x, y) =
∫ 1

0
t x−1(1 − t)y−1dt, Re x > 0, Re y > 0

with the property B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

(1.9.1.1)

2. Jacobi polynomials have the weight function

w(x;α, β) := (1 − x)α(1 + x)β (1.9.2.1)

and thus we have

µ0 = L[x0] =

∫ 1

−1
w(x;α, β)dx = 2α+β+1Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
(1.9.2.2)

which was evaluated using Eq. (1.9.1.1).
Now, we can list the definition of the Jacobi polynomials, followed by special cases.

3. The Jacobi polynomials

(a) Definition
P(α,β)n (x) :=

(α + 1)n
n! 2F1

(
−n,n+α+β+1

α+1

���1 − x
2

)
(1.9.3.1)

and they have the property that, if x → −x, thenα→ β. That is,

P(α,β)n (x) = (−1)nP(β,α)n (−x)

=
(−1)n(β + 1)n

n! 2F1

(
−n,n+α+β+1

β+1

���1 + x
2

) (1.9.3.2)

(b) Orthogonality
First, we define

h(α,β)n =
2α+β+1Γ(α + n + 1)Γ(β + n + 1)

n!Γ(α + β + n + 1)(α + β + 2n + 1)
α, β > −1 (1.9.3.3)

So, using h(α,β)n as defined in Eq. (1.9.3.3) and w(x;α, β) as defined in Eq. (1.9.2.1), we
have ∫ 1

−1
P(α,β)n (x)P(α,β)m (x)w(x;α, β)dx = h(α,β)n δnm, (1.9.3.4)
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(c) Recursion Relation

2(n + 1)(α + β + n + 1)
(α + β + 2n + 1)(α + β + 2(n + 1))

P(α,β)n+1 (x)

=
[
x +

α2 − β2

(α + β + 2n)(α + β + 2(n + 1))

]
P(α,β)n (x)

−
2(n + α)(n + β)

(α + β + 2n)(α + β + 2n + 1)
P(α,β)n−1 (x)

(1.9.3.5)

(d) Monic Recursion Relation
If we set

Qn(x) =
2nn!

(n + α + β + 1)n
P(α,β)n (x) (1.9.3.6)

we get

Qn+1(x) =
[
x +

α2 − β2

(α + β + 2n)(α + β + 2(n + 1))

]
Qn(x)

−
4n(n + α)(n + β)(n + α + β)

(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)
Qn−1(x)

(1.9.3.7)

(e) Generating Function
If we set

R =
√

1 − 2xt + t2

we get
2α+β

R(1 + R − t)α(1 + R + t)β
=

∞∑
n=0

P(α,β)n (x)tn (1.9.3.8)

4. Ultraspherical or Gegenbauer Polynomials. These polynomials are a scaled Jacobi polyno-
mial, with α = β = ν − 1/2

(a) Definition

Cν
n (x) :=

(2ν)n
(ν + 1/2)n

P(ν−1/2,ν−1/2)
n (x)

=
(2ν)n

n! 2F1

(
−n,n+2ν

ν+1/2

���1 − x
2

) (1.9.4.1)

(b) Orthogonality∫ 1

−1
C(ν)n (x)C

(ν)
m (x)(1 − x2)ν−1/2dx =

(2ν)n
√
πΓ(ν + 1/2)

n!(n + ν)Γ(ν)
δnm (1.9.4.2)

(c) Recursion Relation

(n + 1)C(ν)n+1(x) = 2(n + ν)xC(ν)n (x) − (n + 2ν − 1)C(ν)n−1(x) (1.9.4.3)
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(d) Monic Recursion Relation
If we set

Qn(x) =
n!

2n(ν)n
C(ν)n (x) (1.9.4.4)

we get

Qn+1(x) = xQn(x) −
n(n + 2ν − 1)

4(n + ν − 1)(n + ν)
Qn−1(x) (1.9.4.5)

(e) Generating Function

(1 − 2xt + t2)−ν =

∞∑
n=0

C(ν)n (x)t
n (1.9.4.6)

5. Chebyshev. These can be derived from both the Jacobi and the Ultraspherical polynomials.
There are two types: the First Kind, denoted Tn(x), and the Second Kind, denoted Un(x).

(a) Definition of the First Kind
i. Ultraspherical

Tn(x) = lim
ν→0

n + 2ν
2ν

C(ν)n (x) (1.9.5.1)

ii. Jacobi

Tn(x) :=
P(−1/2,−1/2)

n (x)

P(−1/2,−1/2)
n (1)

= 2F1

(
−n,n

1/2

���1 − x
2

)
(1.9.5.2)

iii. Trigonometric
Tn(cos θ) = cos(nθ) (1.9.5.3)

(b) Definition of the Second Kind
i. Ultraspherical

Un(x) = C(1)n (x) (1.9.5.4)
ii. Jacobi

Un(x) :=
P(1/2,1/2)n (x)

P(1/2,1/2)n (1)
= (n + 1)2F1

(
−n,n+2

3/2

���1 − x
2

)
(1.9.5.5)

iii. Trigonometric

Un(cos θ) =
sin(n + 1)θ

sin θ
(1.9.5.6)

(c) Orthogonality
For the First Kind:∫ 1

−1
Tn(x)Tm(x)(1 − x2)−1/2dx =

{
π
2 δnm, if n , 0
πδnm, if n = 0

(1.9.5.7)

For the Second Kind: ∫ 1

−1
Un(x)Um(x)(1 − x2)1/2dx =

π

2
δnm (1.9.5.8)
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(d) Recursion Relations

Tn+1(x) = 2xTn(x) − Tn−1(x)
n ≥ 1, T−1(x) = 0, T0(x) = 1, T1(x) = x

(1.9.5.9)

Un+1(x) = 2xUn(x) −Un−1(x)
n ≥ 0, U−1(x) = 0, U0(x) = 1

(1.9.5.10)

(e) Monic Recurrence Relations
If we set

tn(x) = 2−nTn(x)
un(x) = 2−nUn(x)

(1.9.5.11)

we have

tn+1(x) = xtn(x) −
1
4

tn−1(x)

n ≥ 1, t−1(x) = 0, t0(x) = 1, t1(x) =
x
2

(1.9.5.12)

un+1(x) = xun(x) −
1
4

un−1(x)

n ≥ 0, u−1(x) = 0, u0(x) = 1
(1.9.5.13)

(f) Generating Functions

1 − xt
1 − 2xt + t2 =

∞∑
n=0

Tn(x)tn

1
1 − 2xt + t2 =

∞∑
n=0

Un(x)tn

(1.9.5.14)

6. Legendre, or Spherical Polynomials: Jacobi polynomials with α = β = 0.

(a) Definition
Pn(x) := P(0,0)n (x) = 2F1

(
−n,n+1

1

���1 − x
2

)
(1.9.6.1)

(b) Orthogonality ∫ 1

−1
Pn(x)Pm(x)dx =

2
2n + 1

δnm (1.9.6.2)

Notice that the weight function is w(x) = 1.
(c) Recurrence Relation

(n + 1)Pn+1(x) = x(2n + 1)Pn(x) − nPn−1(x) (1.9.6.3)
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(d) Monic Recurrence Relation
If we set

Qn(x) =
2n(2n
n

) Pn(x) (1.9.6.4)

we have
Qn+1(x) = xQn(x) −

n2

(2n − 1)(2n + 1)
Qn−1(x) (1.9.6.5)

(e) Generating Function
1

√
1 − 2xt + t2

=

∞∑
n=0

Pn(x)tn (1.9.6.6)

We now begin looking into properties, methods and applications of orthogonal polynomial se-
quences.
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Chapter 2

Theorems



22

2.1 Theory
This section will lay some foundational groundwork for various orthogonal polynomials and

then lead into proofs, Section 2.2. Before we begin, we must also list important properties of the
pochhammer symbol Eq. (1.6.2) that were used throughout the proofs.

The most straightforward yet useful is the following:

(1)n = n! (2.1.1)

Written as a combination, we have that

(n)k
k!
=

(
n + k − 1

k

)
=
(n + k − 1)!
k!(n − 1)!

(2.1.2)

The sign of the argument of the pochhammer symbol can be altered through the following relation,
where the second line is obtained via Eq. (2.1.2)

(−n)k = (−1)k(n − k + 1)k

=
(−1)kn!
(n − k)!

(2.1.3)

The pochhammer symbol has a strong connection to the Gamma function, through the following
relation:

(a)n =
Γ(a + n)
Γ(a)

(2.1.4)

This then leads to the duplication formula, in both pochhammer and Gamma function form:

Γ(2z) =
22z−1Γ(z)Γ(z + 1/2)

√
π

(2a)2n = 22n(a)n(a + 1/2)n
(2.1.5)

Combining Eq. (2.1.1) and Eq. (2.1.5) reveals that

(2n)! = (1)2n = 22n(1/2)nn! (2.1.6)

For the ratio of two pochhammer symbols with the same argument but different index, we have

(a)n
(a)m

=

{
(a + m)n−m n > m

1
(a+n)m−n

m < n
(2.1.7)

Finally, we have the Chu-Vandermande Sum

∞∑
k=0

(−n)k(b)k
(c)k

1
k!
=

n∑
k=0

(−n)k(b)k
(c)k

1
k!

=
(c − b)n
(c)n

(2.1.8)
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And now we are ready to start covering rudimentary orthogonal polynomial theory. As a reminder,
L(α)n (x) refer to the Laguerre polynomials, Hn(x) refer to the Hermite polynomials, Pn(x) refer to
the Legendre polynomials and Cλ(x) refer to the ultraspherical polynomials. Please feel free to
review Section 1.8 to obtain a refresher of their properties, but we will list the pertinent properties
for each proof as we need them. We shall start by focusing on the Legendre Polynomials as a case
study of the development of the theory behind orthogonal polynomials.

2.1.1 The Legendre Polynomials
In this section, we will focus on the common development of a theory behind an orthogonal

polynomial. Usually, some equation, called the Rodrigues formula, is derived for a polynomial.
From the formula, a hypergeometric series representation is discovered, and the orthogonality of the
polynomial is proven over some interval, called the support interval. Finally, it is then shown that
the orthogonal polynomial forms a basis for measurable functions on the support interval. We will
use the Legendre polynomials as our case study, and shall start with deriving the hypergeometric
series representation.

We start by defining the Legendre polynomials as

Pn(x) =
(−1)n

n!2n
dn

dxn

[
(1 − x2)n

]
=

1
n!2n

dn

dxn

[
(x2 − 1)n

]
(2.1.1.1)

Many use this equation, the Rodrigues formula for the Legenred polynomials, as the definition
of the Legendre polynomials, and derive all other properties from this definition. That is, an
orthogonal polynomial’s Rodrigues formula is historically the starting point in the development of
an orthogonal polynomial. Now, we shall use the binomial theorem, Eq. (1.6.1), on Eq. (2.1.1.1)
to get the following series relation.

Pn(x) =
1

n!2n
dn

dxn

[
n∑

k=0

(
n
k

)
x2n−2k(−1)k

]
(2.1.1.2)

Now, observe that the derivative will be nonzero when 2n− 2k ≥ n, which means bn/2c ≥ k. And,
for n , m, dn

dxn xm = m!
(m−n)! xm−n. So now we get

Pn(x) =
1

n!2n

bn/2c∑
k=0

(
n
k

)
(2n − 2k)!
(n − 2k)!

xn−2k(−1)k =
bn/2c∑
k=0

(2n − 2k)!
(n − 2k)!2n

xn−2k(−1)k

k!(n − k)!
(2.1.1.3)

Now, the duplication formula, Eq. (2.1.5), tells us that

Γ(2(n − k)) =
22n−2k−1Γ(n − k)Γ(n − k + 1/2)

Γ(1/2)

or, by multiplying through by (2n − 2k)

(2n − 2k)! =
22n−2k(n − k)!Γ(n − k + 1/2)

Γ(1/2)
= 22n−2k(n − k)!(1/2)n−k
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where the Gamma relation for the pochhammer symbols, Eq. (2.1.4), was used in the final step.
Inserting, we find that

Pn(x) =
bn/2c∑
k=0

(2x)n−2k(−1)k(1/2)n−k

k!(n − 2k)!
(2.1.1.4)

This is a valid series representation of the Legendre polynomials. However, it is not the standard
often used. In Section 2.1.2, we will discuss that the Legendre polynomials are defined in terms
of the Jacobi-polynomials P(α,β)n (x), defined by Eq. (1.9.3.1), where α = β = 0. In Problem 2
of Section 2.2, we also show that Eq. (2.1.1.4) is equivalent to C(1/2)n (x) where C(λ)n (x) are the
Ultraspherical polynomials defined in Eq. (2.1.2.1). So we thus have

Pn(x) = P(0,0)(x) = C(1/2)n (x).

Which means we have
Pn(x) = C(1/2)n (x) = 2F1

(
−n,n+1

1

���1 − x
2

)
(2.1.1.5)

We next set out to prove that the Legendre polynomials are orthogonal over the support interval
Ω = [−1, 1]. For f , g polynomials continuous on [−1, 1], define the inner product

〈 f , g〉 =
∫ 1

−1
f (x)g(x)dx (2.1.1.6)

Thus, in in terms of our inner-product, we have that if {Pn(x)}∞n denotes the Legendre orthogonal
polynomial sequence and n , m, then 〈Pn(x), Pm(x)〉 = 0.

Proof. Observe that the Legendre polynomials have the form Pm(x) =
∑m

j=0 a j x j which means that
using the inner-product defined in Eq. (2.1.1.6) yields 〈Pn(x), Pm(x)〉 =

∑m
j=0 a j 〈x j, Pn(x)〉. So,

let’s focus on 〈x j, Pn(x)〉. We shall use the Rodrigues formula for the Legendre polynomials. Using
the Legendre polynomial and x j within the inner-product yields the integral

〈x j, Pn(x)〉 =
1

2nn!

∫ 1

−1
x j dn(x2 − 1)n

dxn dx (2.1.1.7)

Now, do integration by parts of u = x j to get

〈x j, Pn(x)〉 =
1

2nn!
©«x j dn−1(x2 − 1)n

dxn−1

�����1
−1

− j
∫ 1

−1
x j−1 dn−1(x2 − 1)n

dxn−1 dxª®¬
Letting u = x j−1 and doing another integration by parts yields

〈x j, Pn(x)〉 =
1

2nn!
©«x j dn−1(x2 − 1)n

dxn−1

�����1
−1

− j x j−1 dn−2(x2 − 1)n

dxn−2

�����1
−1

+ j( j − 1)
∫ 1

−1
x j−2 dn−2(x2 − 1)n

dxn−2 dxª®¬
Iterating integration by parts until the coefficient of the leading x is 1 inductively yields the following
relation:

〈x j, Pn(x)〉 =
1

2nn!

( j∑
k=0

j!
( j − k)!

x j−k dn−k−1(x2 − 1)n

dxn−k−1

) �����1
−1

(2.1.1.8)
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Let’s focus on dn−k−1(x2−1)n
dxn−k−1 . Since the order of the derivative is less than n ∀ k, every term will

contain (x2 − 1). Observe that ((1)2 − 1) = ((−1)2 − 1) = 0. Thus, dn−k−1(x2−1)n
dxn−k−1 goes to zero when

evaluated, and we get

〈Pm(x), Pn(x)〉 = 〈x j, Pn(x)〉 = 0, j ≤ m < n (2.1.1.9)

�

Now we must cover the case when n = m. We first introduce the following lemma, which will
be useful later in proving our claim.

Lemma 2.1.1. Let un(x) = (x2 − 1)n. Then,

d2nun(x)
dx2n = (2n)! (2.1.1.10)

Proof. From the binomial theorem, we have

un(x) =
n∑

k=0

(
n
k

)
x2n−2k(−1)k (2.1.1.11)

Now, after differentiating 2n times, only the x2n term remains. Observe that

d2nun(x)
dx2n =

d2nx2n

dx2n = (2n)!

and we are done. �

Theorem 2.1.2. Now, we claim that, using the inner-product defined in Eq. (2.1.1.6),

〈Pn(x), Pn(x)〉 = | |Pn(x)| |2 =
2

2n + 1
(2.1.1.12)

Proof. Observe that using the inner-product defined in Eq. (2.1.1.6) on Pn(x) yields

〈Pn(x), Pn(x)〉 =
∫ 1

−1
P2

n(x)dx =
1

22n(n!)2

∫ 1

−1

dn(x2 − 1)n

dxn
dn(x2 − 1)n

dxn dx (2.1.1.13)

Let u = dn(x2−1)n
dxn and do integration by parts to get

〈Pn(x), Pn(x)〉 = −
1

22n(n!)2

∫ 1

−1

dn−1(x2 − 1)n

dxn−1
dn+1(x2 − 1)n

dxn+1 dx (2.1.1.14)

where the term that needed evaluated was zero at 1 and -1 due to the (x2 − 1) term. Now, do
integration by parts again to get

〈Pn(x), Pn(x)〉 =
1

22n(n!)2

∫ 1

−1

dn−2(x2 − 1)n

dxn−2
dn+2(x2 − 1)n

dxn+2 dx (2.1.1.15)
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Doing integration by parts n times yields

〈Pn(x), Pn(x)〉 =
(−1)n

22n(n!)2

∫ 1

−1
(x2 − 1)n

d2n(x2 − 1)n

dx2n dx (2.1.1.16)

However, we can use the result of Lemma 2.1.1 to get

〈Pn(x), Pn(x)〉 =
(−1)n(2n)!
22n(n!)2

∫ 1

−1
(x2 − 1)ndx =

(2n)!
22n(n!)2

∫ 1

−1
(1 − x2)ndx (2.1.1.17)

Using Eq. (2.1.5) tells us that (2n)! = (1/2)n22nn! and we now have

〈Pn(x), Pn(x)〉 =
(1/2)n

n!

∫ 1

−1
(1 − x2)ndx

Now observe that we can take advantage of the fact that (1− x2)n is an even function. Then, we can
do a variable substitution of t = 1 − x2 to get

〈Pn(x), Pn(x)〉 =
2(1/2)n

n!

∫ 1

0
(1 − x2)ndx =

(1/2)n
n!

∫ 1

0
tn(1 − t)−1/2dx

Recall theBeta function, B(x, y), defined inEq. (1.9.1.1). Thus, our integral is simply B(n+1, 1/2) =
Γ(n + 1)Γ(1/2)/Γ(n + 3/2), which means we have

| |Pn(x)| |2 = 〈Pn(x), Pn(x)〉 =
(1/2)n

n!
Γ(1/2)Γ(n + 1)
Γ(n + 3/2)

=
(1/2)nΓ(1/2)
Γ(n + 3/2)

=
Γ(n + 1/2)
Γ(n + 3/2)

=
1

n + 1/2
=

2
2n + 1

Where the pochhammer ratio relation, Eq. (2.1.7), was used on (1/2)n. �

Finally, we claimed in the introduction that an orthogonal polynomial sequence forms a basis
on the vector space of polynomials over the support interval Ω of the orthogonal polynomial. In
fact, there is a theorem known as the Stone-Weierstrass theorem, see Theorem 6.24 in [3], that
states that any function continuous on a closed and compact set is identical to some polynomial
continuous on that set. That is, polynomials are dense on the set of functions continuous on Ω.
Thus, on the vector space of measurable (finite Lebesgue integrable) functions, denoted L2Ω, an
orthogonal polynomial will form a basis. We wish to show that the set of orthogonal Legendre
polynomials forms an orthogonal basis on L2[−1, 1]. Which is equivalent to showing that the set
of the normalized Legendre orthogonal polynomials forms an orthonormal basis in L2[−1, 1]. This
means we must show that no other polynomials, except for the polynomial identically zero, in
L2[−1, 1] is orthogonal to the set of normalized Legendre orthogonal polynomials.
Theorem 2.1.3. Using the norm induced by the inner-product defined in Eq. (2.1.1.6), let en =

Pn(x)/| |Pn(x)| |. Then, {en}
∞
n=0 forms an orthonormal basis on L2[−1, 1]. That is, for f (x) ∈

L2[−1, 1],
f (x) =

∑
n

〈 f (x), en〉 en

If f (x) polynomial of degree m, we get

f (x) =
m∑

n=0
〈 f (x), en〉 en
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Proof. Assume f (x) polynomial orthogonal to {Pn(x)}∞n=0 such that f (x) is not identically zero,
and denote m = deg f (x). Now, f (x) must have the form

f (x) =
m∑

j=0
a j x j

or

xm =
f (x)
am
−

m−1∑
j=0

a j

am
x j

Using the the inner-product defined in Eq. (2.1.1.6) and the norm induced by it, set en =

Pn(x)/| |Pn(x)| |. Now, observe that 〈en, em〉 =
〈Pm(x),Pn(x)〉
| |Pn(x)| |2

= δnm. So {en}
∞
n=0 forms an orthonormal

set. If bm denotes the leading coefficient of em, we get that

em = bmxm + O(xm−1)

where O(xm−1) means a polynomial of degree at most m − 1. Inserting xm in terms of f (x) into em
yields

em =
bm f (x)

am
+ O(xm−1)

or
f (x) =

amen

bm
+ O(xm−1)

Taking the inner-product reveals

〈 f (x), em〉 = 〈
amem

bm
+ O(xm−1), em〉 =

am

bm
〈em, em〉 =

am

bm
, 0 (2.1.1.18)

But this contradicts f (x) being orthogonal to {Pn(x)}∞n=0. Which means that f (x) is the function
identically zero, and thus {en}

∞
n=0 forms an orthonormal basis, or {Pn(x)}∞n=0 forms an orthogonal

basis, on the vector space of polynomials on [−1, 1]. Now, using the Stone-Weierstrass Theorem,
we know that for f (x) ∈ L2[−1, 1] there exists polynomial continuous on [−1, 1] that is equivalent
to f (x). Thus, using the previous part of the proof, {en}

∞
n=0 forms an orthonormal basis ({Pn(x)}∞n=0

forms an orthogonal basis), on L2[−1, 1]. �

Next, we turn to the ultraspherical polynomials previously mentioned, and show that both the
Ultraspherical and Legendre polynomials are two specific types of Jacobi polynomials.

2.1.2 The Ultraspherical Polynomials
Another set of well-studied Jacobi polynomials are the Ultraspherical polynomials, defined as

Cλ
n (x) :=

(2λ)n
(λ + 1/2)n

P(λ−1/2,λ−1/2)
n (x)

=
(2λ)n

n! 2F1

(
−n,n+2λ

λ+1/2

���1 − x
2

) (2.1.2.1)
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We will first attempt to find the Rodrigues formula for the Ultraspherical polynomials. Just like the
hypergeometric equation and the three-term recurrence relation, the Rodrigues formula for a given
orthogonal polynomial sequence is an equivalent way to define them. Physicists often refer to these
formulas when using orthogonal polynomial sequences. So, we will turn to the Jacobi polynomials
and use its properties for this special case. Recall, if we define

h(α,β)n =
2α+β+1Γ(α + n + 1)Γ(β + n + 1)

n!Γ(α + β + n + 1)(α + β + 2n + 1)
α, β > −1 (2.1.2.2)

and
w(x;α, β) := (1 − x)α(1 + x)β (2.1.2.3)

we have the orthogonality of the Jacobi polynomials {P(α,β)n (x)}∞n=0∫ 1

−1
P(α,β)n (x)P(α,β)m (x)w(x;α, β)dx = h(α,β)n δnm (2.1.2.4)

We will also need the adjoint operator

d
dx

P(α,β)n (x) =
1
2
(n + α + β + 1)P(α+1,β+1)

n−1 (x)

This can be obtained using the recurrence relation and hypergeometric form, found in Section 1.9.
We will not prove that here and just accept the operator to be true. If we substitute the adjoint
operator into the orthogonality and also use the change of indices α→ α + 1, β→ β + 1, we have∫ 1

−1

d
dx

[
P(α,β)n+1 (x)

]
P(α+1,β+1)

m (x)(1 − x)α+1(1 + x)β+1dx

=
n + α + β + 2

2
h(α+1,β+1)

n δnm

(2.1.2.5)

Next, if we do integration by parts, with

dv =
d
dx

[
P(α,β)n+1 (x)

]
dx, u = P(α+1,β+1)

m (x)(1 − x)α+1(1 + x)β+1

we have
n + α + β + 2

2
h(α+1,β+1)

n δnm =

−

∫ 1

−1

d
dx

[
P(α+1,β+1)

m (x)(1 − x)α+1(1 + x)β+1
]

P(α,β)n+1 (x)dx
(2.1.2.6)

where the term that needed to be evaluated goes to zero at -1 and 1. Now, let’s look at the case
when the orthogonality is non-zero (i.e. n = m). Let’s re-arrange and multiple both sides by h(α,β)n+1 .
We have, then,

h(α,β)n+1 = −
2h(α,β)n+1

h(α+1,β+1)
n (n + α + β + 2)

×

∫ 1

−1

d
dx

[
P(α+1,β+1)

n (x)(1 − x)α+1(1 + x)β+1
]

P(α,β)n+1 (x)dx

(2.1.2.7)
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But, from the orthogonality of the Jacobi polynomials, we know that

h(α,β)n+1 =

∫ 1

−1

(
P(α,β)n+1 (x)

)2
(1 − x)α(1 + x)βdx (2.1.2.8)

which means, since the orthogonality is unique, that

−
2h(α,β)n+1

h(α+1,β+1)
n (n + α + β + 2)

d
dx

[
P(α+1,β+1)

n (x)(1 − x)α+1(1 + x)β+1
]

= P(α,β)n+1 (x)(1 − x)α(1 + x)β
(2.1.2.9)

Now, let n→ n − 1 and re-arrange to get

−P(α,β)n (x)
h(α+1,β+1)

n−1 (n + α + β + 1)

2h(α,β)n

=
1

(1 + x)β(1 − x)α
d
dx

[
P(α+1,β+1)

n−1 (x)(1 − x)α+1(1 + x)β+1
] (2.1.2.10)

Observe that

n + α + β + 1
2

h(α+1,β+1)
n−1

h(α,β)n

=
n + α + β + 1

2
2α+β+3Γ(α + n + 1)Γ(β + n + 1)

(n − 1)!Γ(α + β + n + 2)(α + β + 2n + 1)

×
n!Γ(α + β + n + 1)(α + β + 2n + 1)

2α+β+1Γ(α + n + 1)Γ(β + n + 1)
= 2n

Which now gives us the following relation between the nth and the (n − 1)th Jacobi polynomial.

−2nP(α,β)n (x) =
1

(1 + x)β(1 − x)α
d
dx

[
P(α+1,β+1)

n−1 (x)(1 − x)α+1(1 + x)β+1
]

(2.1.2.11)

Iterating (which is equivalent to computing successive integration-by-parts terms in our process)
gives us the following relation

(−1)k2k n!
(n − k)!

P(α,β)n (x) =

1
(1 + x)β(1 − x)α

dk

dxk

[
P(α+k,β+k)

n−k (x)(1 − x)α+k(1 + x)β+k
] (2.1.2.12)

Letting n = k gives us the Rodrigues formula for the Jacobi polynomials.

P(α,β)n (x) =
(−1)n

n!2n
1

(1 + x)β(1 − x)α
dn

dxn

[
(1 − x)α+n(1 + x)β+n] (2.1.2.13)

As an example, recall that we define the Legendre polynomials as Pn(x) = P(0,0)n (x). The Rodrigues
formula for the Legendre polynomials is thus

Pn(x) =
(−1)n

n!2n
dn

dxn

[
(1 − x2)n

]
=

1
n!2n

dn

dxn

[
(x2 − 1)n

]
(2.1.2.14)
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and we recover the Legendre polynomials as originally define in Section 2.1.1.
Returning to Eq. (2.1.2.12), let α = β = λ − 1/2. That is, we define C(λ)(x) = P(λ−1/2,λ−1/2)(x).

So, we also see that, as remarked in Section 2.1.1, Pn(x) = C(1/2)(x). Now, re-arranging
Eq. (2.1.2.12) and then multiplying through by the necessary coefficients for the Ultraspherical
polynomials, as determined by Eq. (3.1.4.1), shows that

C(λ)n (x) =
(λ + k + 1/2)n−k(2λ)n
(2λ + 2k)n−k(λ + 1/2)n

(−1)k

(1 − x2)λ−1/2
(n − k)!

n!2k

dk

dxk

[
C(λ)n−k(x)(1 − x2)λ+k−1/2

]
Using the ratio and duplication formulas for the pochhammer symbols, the eventual result is

(1 − x2)λ−1/2C(λ)n (x) =
(−2)k(λ)k(n − k)!

n!(2λ + n)k

dk

dxk

[
C(λ)n−k(x)(1 − x2)λ+k−1/2

]
(2.1.2.15)

Again letting n = k yields the Rodrigues formula

(1 − x2)λ−1/2C(λ)n (x) =
(−2)n(λ)n

n!(2λ + n)n

dn

dxn

[
(1 − x2)λ+n−1/2

]
=

(−1)n(2λ)2n

2nn!(2λ + n)n(λ + 1/2)n
dn

dxn

[
(1 − x2)λ+n−1/2

]
=
(−1)n(2λ)n

2nn!(λ + 1/2)n
dn

dxn

[
(1 − x2)λ+n−1/2

] (2.1.2.16)

where the duplication formula and then the ratio formula for pochhammer symbols were used.
We will explore an alternate derivation for the series representation of the Ultraspherical

polynomials, from a rudimentary use of the generating function and the binomial theorem, in the
proofs section. Next, we will cover the connection between two other Jacobi polynomials: the
Hermite and Laguerre orthogonal polynomials.

2.1.3 Deriving the Hermite Polynomials
The Hermite Polynomials can be derived from the Laguerre polynomials. First, recall the

definition and orthogonality of the Laguerre polynomials.

L(α)n (y) :=
(α + 1)n

n! 1F1

(
−n

α+1

���y) (2.1.3.1)∫ ∞

0
L(α)n (y)L

α
m(y)e−yxαdy =

Γ(n + α + 1)
n!

δnm, α > −1 (2.1.3.2)

Now, let y = x2, dy = 2xdx. We get

2
∫ ∞

0
L(α)n (x

2)Lαm(x
2)e−x2

x2α+1dx

=

∫ ∞

−∞

L(α)n (x
2)Lαm(x

2)e−x2
x2α+1dx =

Γ(n + α + 1)
n!

δnm, α > −1
(2.1.3.3)
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Now, let’s observe two special cases.∫ ∞

−∞

xL(1/2)n (x2)xL(1/2)m (x2)e−x2
dx =

Γ(n + 3/2)
n!

δnm, α = 1/2∫ ∞

−∞

L(−1/2)
n (x2)L(−1/2)

m (x2)e−x2
dx =

Γ(n + 1/2)
n!

δnm, α = −1/2
(2.1.3.4)

Now, the uniqueness of orthogonal polynomials, up to an arbitrary constant, implies that, with
domain R and weight function e−x2 , {xL(1/2)n (x2), L(−1/2)

n (x2)}∞n=0 form an orthogonal set. We now
attempt to "guess" the correct coefficients. In both of the derivations below, the duplication formula,
Eq. (2.1.5), is invoked.

For α = −1/2:∫ ∞

−∞

[
(−1)n22nn!L(−1/2)

n (x2)
]
×

[
(−1)m22mm!L(−1/2)

m (x2)
]
e−x2

dx

= Γ(n + 1/2)n!24nδnm

=

√
πΓ(2n)

22n−1Γ(n)
n!24nδnm

=

√
π2nΓ(2n)
22nnΓ(n)

n!24nδnm

=
√
π(2n)!22nδnm

For α = 1/2: ∫ ∞

−∞

[
(−1)n22n+1n!xL(1/2)n (x2)

]
×

[
(−1)m22m+1m!L(1/2)m (x2)

]
e−x2

dx

= Γ(n + 3/2)n!24n+2δnm

=

√
πΓ(2n + 2)

22n+1Γ(n + 1)
n!24nδnm

=
√
π(2n + 1)!22n+1δnm

So, we can now define the Hermite polynomials as

H2n(x) = (−1)n22nn!L(−1/2)
n (x2)

H2n+1(x) = (−1)n22n+1n!xL(1/2)n (x2)
(2.1.3.5)
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which changes our version of Eq. (2.1.3.4) with coefficients to∫ ∞

−∞

H2n(x)H2m(x)e−x2
dx =

√
π(2n)!22nδnm∫ ∞

−∞

H2n+1(x)H2m+1(x)e−x2
dx =

√
π(2n + 1)!22n+1δnm

or∫ ∞

−∞

Hn(x)Hm(x)e−x2
dx =

√
πn!2nδnm

(2.1.3.6)

We must now try to determine a representation of the Hermite Orthogonal polynomials in hyper-
geometric form. From Eq. (2.1.3.6) and Eq. (2.1.3.1), we can see that

H2n(x) =
(−1)n22nn!(1/2)n

n!

∞∑
k=0

(−n)k x2k

(1/2)k k!
=
(−1)n22nn!(1/2)n

n!

n∑
k=0

(−n)k x2k

(1/2)k k!

= (−1)n22nn!(1/2)n
n∑

k=0

(−1)k x2k

(n − k)!(1/2)k k!
= (−1)n(2n)!

n∑
k=0

(−1)k x2k

(n − k)!(1/2)k k!

Where we observed that for k > n, (−n)k = 0, then used equations Eq. (2.1.3) and Eq. (2.1.5). Next,
using Eq. (2.1.1) shows

H2n(x) = (−1)n(2n)!
n∑

k=0

(−1)k(2x)2k

(n − k)!(2k)!
= (2n)!

0∑
k=n

(−1)k(2x)2n−2k

k!(2n − 2k)!
= (2n)!

n∑
k=0

(−1)k(2x)2n−2k

k!(2n − 2k)!

where the summing index was reversed to have k → n − k and then we used the fact that finite
summation is associative. This implies, then, that

Hn(x) = n!
b n2 c∑
k=0

(−1)k(2x)n−2k

k!(n − 2k)!
(2.1.3.7)

We now have a series representation of the Hermite polynomials, which are accepted by many,
including [7], as the definition of the Hermite polynomials. However, we will continue with
manipulations until we reach a hypergeometric form. Now, using Eq. (2.1.3) and Eq. (2.1.5), we
find that

(−n)2k =
n!

(n − 2k)!
= 22k(−n/2)k(−(n − 1)/2)k (2.1.3.8)
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Inserting into Eq. (2.1.3.7) reveals that

Hn(x) = n!
b n2 c∑
k=0

(−1)k(2x)n−2k

k!(n − 2k)!

=

b n2 c∑
k=0

(−1)k(2x)n(−n/2)k(−(n − 1)/2)k
x2k k!

= (2x)n
∞∑

k=0

(−1)k(−n/2)k(−(n − 1)/2)k
x2k k!

= (2x)n2F0

(
− n

2 ,−
n−1

2
−

��� − 1
x2

)
(2.1.3.9)

We have successfully obtained a hypergeometric form for the Hermite orthogonal polynomials.
Due to connection between the Hermite and Laguerre polynomials within the Hermite polynomial’s
definition, we are motivated to prove other connections between the two polynomials in the proofs
section. Now that we have introduced how a theory of an orthogonal polynomial can begin, we
will explore other special functions that are not orthogonal polynomials

2.1.4 Other Special Functions: The Riemann Zeta Function
We now end this section with a brief foray into other special functions that are of interest,

starting with the Riemann Zeta Function. The Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns s ∈ C (2.1.4.1)

is of major importance in analytic number theory. In the subfield of physics that is thermodynamics,
integrals of the form ∫ ∞

0

x
ex − 1

dx

describe distributions of different particles, such as photons, into the available energy levels. We
shall see how such integrals are related to the Gamma and Zeta Functions. Start with the Gamma
function,

Γ(s) =
∫ ∞

0
e−tts−1dt (2.1.4.2)

and then let t = xn. We now have

Γ(s) =
∫ ∞

0
e−xn(nx)s−1ndx

which becomes, after re-arranging,

Γ(s)
1
ns =

∫ ∞

0
e−xnxs−1dx
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We then sum from sides from 1 to∞, and then bring the summation within the integral to obtain

Γ(s)
∞∑

n=1

1
ns =

∫ ∞

0

∞∑
n=1

e−xnxs−1dx

We can replace the summation on the l.h.s with the Riemann Zeta Function, Eq. (2.1.4.1). The
summation within the integral on the r.h.s is simply a geometric series, as

|e−x | ≤ 1 ∀x ∈ R.

So now we have

Γ(s)ζ(s) =
∫ ∞

0

xs−1e−xdx
1 − e−x

Multiplying numerator and denominator by ex gives us our solution

Γ(s)ζ(s) =
∫ ∞

0

xs−1dx
ex − 1

(2.1.4.3)

An important value is s = 2. In this case, Γ(2) = 1! = 1, ζ(2) = π2/6, and Eq. (2.1.4.3) becomes

π2

6
=

∫ ∞

0

xdx
ex − 1

(2.1.4.4)

2.1.5 Other Special Functions: The Bessel Functions
Some of the earliest known special functions were the Bessel Function and the Modified Bessel

Function, defined as, respectively,

Jν(z) =
∞∑

n=0

(−1)n(z/2)ν+2n

Γ(n + ν + 1)n!

Iν(z) =
∞∑

n=0

(z/2)ν+2n

Γ(n + ν + 1)n!

(2.1.5.1)

The Bessel functions appear in the solution for the radial component of Laplace’s equation in
cylindrical coordinates (see Eq. (4.1.1.12) for more information). They can be thought of as one
way to generalize sine and cosine waves to the 2D plane. For example, sound waves moving through
the air are described using sine and cosines, but the vibrations of a drum skin are described using
the Bessel functions. In fact, the Bessel functions have the following direct relation to sine and
cosine.

J1/2(z) =

√
2
πz

sin(z)

J−1/2(z) =

√
2
πz

cos(z)
(2.1.5.2)



35

TheBessel Functions obey the following integral relations, called Sonine’s First and Second Integral
relations.

Jα+β+1(z) =
2−βzβ+1

Γ(β + 1)

∫ 1

0
u2β+1(1 − u2)α/2Jα(z

√
1 − u2)du

xνyµJµ+ν+1(
√

x2 + y2)

(x2 + y2)(ν+µ+1)/2 =

∫ π/2

0
Jν(x sin θ)Jµ(y cos θ) cosµ+1 θ sinν+1 θdθ

=

∫ 1

0
Jν(x

√
1 − u2)Jµ(yu)uµ+1(1 − u2)ν/2du

(2.1.5.3)

Many interesting relations for sine and cosine can be obtained from these functions, which are
shown in Section 2.2.1.

2.2 Orthogonal Polynomial Relations
In this section, we introduce various proofs concerning orthogonal polynomials, focusing

primarily on the Ultraspherical, Laguerre and Hermite polynomials. We will need to make use of
several of their properties, all of which are obtained from [7]. Several problems have additional
proofs, inspired by the work of Pennsylvania State Erie, the Behrend College alumni Matthew P.
Lachesky. These proofs are marked with *.

2.2.1 Series Relations
We will first begin with using the fact that the Laguerre polynomials form a basis on the vector

space of polynomials to prove an interesting series relation.

Problem 1.

xn =

n∑
k=0

(−1)kn!(α + 1)n
(n − k)!(α + 1)k

L(α)k (x) (2.2.1.1)

Proof. Recall that an orthogonal polynomial spans the vector space of polynomials over the support
interval, denoted Ω of the orthogonal polynomial. Thus, the orthogonal polynomial forms a basis,
and this includes the Laguerre polynomials. For polynomials f (x) and g(x), we define the inner-
product

〈 f , g〉 =
∫ ∞

0
xαe−x f (x)g(x)dx (2.2.1.2)

Let Kn = Γ(α + n + 1)/n! be the associated squared-norm of the Laguerre polynomials. That is,

〈L(α)n (x), L(α)m (x)〉 =
∫ ∞

0
xαe−x L(α)n (x)L

(α)
m (x)dx = Knδnm (2.2.1.3)

This is simply, of course, the orthogonality of the Laguerre polynomials. For any polynomial π(x)
of degree n, we have,

π(x) =
n∑

k=0
cn,k L(α)k (x), cn,k =

〈π(x), L(α)k (x)〉

〈L(α)k (x), L(α)k (x)〉
(2.2.1.4)
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where cn,k is the scalar projection of π(x) onto L(α)k (x). Let π(x) = xn. Thus, Eq. (2.2.1.4) becomes

xn =

n∑
k=0

cn,k L(α)k (x), cn,k =
〈xn, L(α)k (x)〉

〈L(α)k (x), L(α)k (x)〉
(2.2.1.5)

Now,

〈L(α)k (x), L(α)k (x)〉 =
Γ(α + k + 1)

k!
=
Γ(α + 1)(α + 1)k

k!

and our summation becomes

xn =

n∑
k=0

k! 〈xn, L(α)k (x)〉

Γ(α + 1)(α + 1)k
L(α)k (x) (2.2.1.6)

Notice that

Γ(α + 1) =
Γ(α + n + 1)
(α + 1)n

so Eq. (2.2.1.6) becomes

xn =

n∑
k=0

k!(α + 1)n 〈xn, L(α)k (x)〉

Γ(α + n + 1)(α + 1)k
L(α)k (x) (2.2.1.7)

Now we must tackle 〈xn, L(α)k (x)〉, starting by inserting the definition of the Laguerre polynomials:

〈xn, L(α)k (x)〉 =
∫ ∞

0
xα+ne−x L(α)k (x)dx

=
(α + 1)k

k!

k∑
j=0

(−k) j
j!(α + 1) j

∫ ∞

0
xα+n+ je−xdx

=
(α + 1)k

k!

k∑
j=0

(−k) j
j!(α + 1) j

Γ(α + n + j + 1)

=
(α + 1)k

k!

k∑
j=0

(−k) j(α + n + 1) j
j!(α + 1) j

Γ(α + n + 1)

Where the fact that Γ(n + j + α + 1) = (α + n + 1) jΓ(α + n + 1) was used in the last step. Now,
using the Chu-Vandermande Sum Eq. (2.1.8), we get

〈xn, L(α)k (x)〉 =
(α + 1)k

k!
Γ(α + n + 1)(−n)k
(α + 1)k

=
Γ(α + n + 1)(−n)k

k!
=
Γ(α + n + 1)(−1)kn!

k!(n − k)!



37

where the relation for negative pochhammer arguments, Eq. (2.1.3), was used in the final substitu-
tion. Thus,

〈xn, L(α)k (x)〉 =
Γ(α + n + 1)(−1)kn!

k!(n − k)!
(2.2.1.8)

inserting Eq. (2.2.1.8) into Eq. (2.2.1.7) reveals

xn =

n∑
k=0

(α + 1)n(−1)kn!
(n − k)!(α + 1)k

L(α)k (x) (2.2.1.9)

�

We will present another proof* of this problem, that relies on the uniqueness of orthogonal
polynomials.

Proof. We start by modifying a derivation from the previous proof of this problem

〈xn, L(α)k (x)〉 =
Γ(α + n + 1)(−1)kn!

k!(n − k)!

=
(α + n)!(−1)kn!(α + k)!

k!(n − k)!(α + k)!

=
(α + 1)n(−1)kn!(α + k)!

k!(n − k)!(α + 1)k

(2.2.1.10)

Now, define f (α, n) =
∑n

k=0
(α+1)n(−1)kn!
(n−k)!(α+1)k L(α)k (x) and observe that, from the orthogonality of the

Laguerre polynomials, Eq. (2.2.1.2), we have

〈L(α)k (x), f (α, n)〉 =
Γ(α + 1)(α + 1)k

k!
(α + 1)n(−1)kn!
(n − k)!(α + 1)k

=
(α + k)!

k!
(α + 1)n(−1)kn!
(n − k)!(α + 1)k

= 〈xn, L(α)k (x)〉

(2.2.1.11)

Since, the orthogonality is unique, we have xn = f (α, n) or

xn =

n∑
k=0

(−1)kn!(α + 1)n
(n − k)!(α + 1)k

L(α)k (x) (2.2.1.12)

�

Next, we will derive a different series representation of the Ultraspherical polynomials.

Problem 2.

Cλ
n =

bn/2c∑
k=0

(λ)n−k(−1)k(2x)n−2k

(n − 2k)!k!
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Proof. Recall that the generating function for the Ultraspherical polynomials is
∞∑

n=0
Cλ

n (x)t
n = (1 − (2xt − t2))λ (2.2.1.13)

Using the binomial theorem, Eq. (2.2.2.16), twice reveals
∞∑

n=0
Cλ

n (x)t
n = (1 − (2xt − t2))λ

=

∞∑
j=0

(λ) j

j!
(2xt − t2) j

=

∞∑
j=0

(λ) j

j!
(2xt) j

(
1 −

t
2x

) j

=

∞∑
j=0

(λ) j

j!
(2xt) j

∞∑
k=0

(− j)k
k!

( t
2x

) k

=

∞∑
k, j=0

(λ) j(− j)k(2x) j−k

j!k!
t j+k

=

∞∑
k, j=0

(λ) j(−1)k(2x) j−k

( j − k)!k!
t j+k

where the equation for negative pochhammer arguments, Eq. (2.1.3), was used in the final step.
Comparing the exponents of t in the last series and the first reveals that n = j + k. Solving for j
and re-indexing gives us the following equation for the generating function.

∞∑
n=0

Cλ
n (x)t

n =

∞∑
n=0

(
∞∑

k=0

(λ)n−k(−1)k(2x)n−2k

(n − 2k)!k!

)
tn

which means

Cλ
n (x) =

∞∑
k=0

(λ)n−k(−1)k(2x)n−2k

(n − 2k)!k!
(2.2.1.14)

Now, notice when k = 0 we have our xn term and when k = n/2 we have our constant term.
So, as the series iterates, the terms are listed in descending order according to exponent. When
k > bn/2c, the terms listed do not correspond to any terms in the Ultraspherical polynomials. In
fact, the factorial in the denominator would no longer be defined as the poles of the Gamma function
are the negative integers. So, with both of these arguments in mind, we must stop our summation
at bn/2c. Which means we have

Cλ
n (x) =

bn/2c∑
n=0

(λ)n−k(−1)k(2x)n−2k

(n − 2k)!k!
tn (2.2.1.15)

and we have found a different series representation for the Ultraspherical polynomials. �
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Now, we will present another proof, based upon the following:

Lemma 2.2.1.
∞∑

n=0

∞∑
k=0

A(k, n) =
∞∑

n=0

bn/2c∑
k=0

A(k, n − 2k)

we leave the proof of this to [8]. And now we start another proof* of Eq. (2.2.1.15).

Proof. We begin by factoring the generating function for the ultraspherical polynomials:
∞∑

n=0
Cλ

n (x)t
n = (1 − 2xt + t2))λ

=
1

(1 + t2)λ

(
1 + t2

1 − 2xt + t2

)λ
=

1
(1 + t2)λ

(
1 − 2xt + t2

1 + t2

)−λ
=

1
(1 + t2)λ

(
1 −

2xt
1 + t2

)−λ
Now, using the binomial theorem, Eq. (1.6.1), yields:

∞∑
n=0

Cλ
n (x)t

n =
1

(1 + t2)λ

∞∑
n=0

(λ)n
n!
(2x)ntn(1 + t2)−n

=

∞∑
n=0

(λ)n
n!
(2x)ntn(1 + t2)−(n+λ)

Using the binomial theorem again will yield
∞∑

n=0
Cλ

n (x)t
n =

∞∑
n=0

∞∑
k=0
(−1)k

(λ)n
n!
(n + λ)k

k!
(2x)ntn+2k

=

∞∑
n=0

∞∑
k=0
(−1)k

(λ)n+k

n!k!
(2x)ntn+2k

=

∞∑
n=0

bn/2c∑
k=0
(−1)k

(λ)n−k

(n − 2k)!k!
(2x)n−2k tn

where Eq. (2.1.7) in the form of (λ)n+k = (n + λ)k(λ)n and then Lemma 2.2.1 were used in the last
two steps. Thus, comparing coefficients, we get

Cλ
n (x) =

bn/2c∑
n=0

(λ)n−k(−1)k(2x)n−2k

(n − 2k)!k!
(2.2.1.16)

�
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Finally, we will show how Bessel functions can give rise to various interesting series.

Problem 3.
∞∑

n=0

(−1)n

n + 1/2
Jν(

√
b2 + π2(n + 1/2)2)[

b2 + π2(n + 1/2)2
] ν/2 = π

2
b−νJν(b), b > 0, Re(ν) > −

1
2

with a special case of
∞∑

n=0

(−1)n

n + 1/2
sin

√
b2 + π2(n + 1/2)2√

b2 + π2(n + 1/2)2
=
π

2
sin b

b

(2.2.1.17)

R. William Gosper computationally proved the convergence of these summations; they were
proved using the Sonine Integrals and Bessel functions in [9]. Here we present our approach using
similar techniques to solve the problem.

Proof. We shall start with an important Fourier series. Recall that, in general, a function f (x) ∈
C[−L,L] can be expressed as

f (x) =
∞∑

n=0

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
Recognize that

cos(θ) = sin
(
θ +

π

2

)
sin(θ) = − cos

(
θ +

π

2

)
So, if we let Bn = −bn, and letting L = 1, our Fourier series becomes

f (x) =
∞∑

n=0
(Bn cos ((n + 1/2)πx) + an sin ((n + 1/2)πx))

Now, let our function be the constant function π/2. That is, f (x) = π/2. This function is even,
so an = 0 for all n. So now we have

π

2
=

∞∑
n=0

Bn cos ((n + 1/2)πx)

Now, multiply both sides by cos ((m + 1/2)πx) and recall from the orthogonality of cosine, that,
when integrating from −1 to 1, all the integrals will be zero, except when n = m. Thus we have∫ 1

−1

π

2
cos ((n + 1/2)πx) dx = Bn

∫ 1

−1
cos2 ((n + 1/2)πx) dx

Solving this integral reveals that

Bn =
(−1)n

n + 1/2
.

Thus, we have the following summation formula:

π

2
=

∞∑
n=0

(−1)n

n + 1/2
cos ((n + 1/2)πx) x ∈ [−1, 1] (2.2.1.18)
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This will be vital later. In the first integral in Eq. (2.1.5.3), Sonine’s First Integral relation, let
z = b, α = ν − 1/2, β = −1/2. We get

Jν(b) =

√
2
π

b
∫ 1

0
(1 − u2)(ν−1/2)/2Jν−1/2

(
b
√

1 − u2
)
du (2.2.1.19)

Now, in Sonine’s Second integral relation, let µ = −1/2, x = b and y = (n + 1/2)π.

bν[(n + 1/2π)]−1/2Jν+1/2(
√

b2 + π2(n + 1/2)2)
(b2 + π2(n + 1/2)2)(ν+1/2)/2

=

∫ 1

0
Jν

(
b
√

1 − u2
)

J−1/2(π(n + 1/2)u)u1/2(1 − u2)ν/2du

(2.2.1.20)

We know from Eq. (2.1.5.2) that

J−1/2(π(n + 1/2)u) =
√

2
π
[π(n + 1/2)u]−1/2 u−1/2 cos(π(n + 1/2)u)

Inserting this into Eq. (2.2.1.20), and also letting ν → ν − 1/2 gives us

Jν(
√

b2 + π2(n + 1/2)2)
(b2 + π2(n + 1/2)2)ν/2

= b−ν
√

2
π

b
∫ 1

0
Jν−1/2

(
b
√

1 − u2
)
(1 − u2)(ν−1/2)/2 cos(π(n + 1/2)u)du

(2.2.1.21)

Now, multiple both sides by (−1)n/(n + 1/2) and sum from 0 to∞. The r.h.s becomes

b−ν
√

2
π

b
∫ 1

0
Jν−1/2

(
b
√

1 − u2
)
(1 − u2)(ν−1/2)/2

×

∞∑
n=0

(−1)n

(n + 1/2)
cos(π(n + 1/2)u)du

(2.2.1.22)

After inserting our summation formula, Eq. (2.2.1.18), we get for the r.h.s

b−ν
π

2

√
2
π

b
∫ 1

0
Jν−1/2

(
b
√

1 − u2
)
(1 − u2)(ν−1/2)/2du

Then inserting our version of Sonine’s First Integral Formula, Eq. (2.1.5.3), gives us
∞∑

n=0

(−1)n

n + 1/2
Jν(

√
b2 + π2(n + 1/2)2)[

b2 + π2(n + 1/2)2
] ν/2 = π

2
b−νJν(b) (2.2.1.23)

Letting ν = 1/2 and then using the identity for sin(z) in Eq. (2.1.5.2) on both sides of the equation
yields

∞∑
n=0

(−1)n

n + 1/2

sin
(√

b2 + π2(n + 1/2)2
)

√
b2 + π2(n + 1/2)2

=
π

2
sin b

b
(2.2.1.24)
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Now for an interesting result. Let b→ 0. We have the famous limit lim
b→0
(sin b)/b = 1. Remember

also that sin(π(n + 1/2)) = (−1)n. We get, after multiplying both sides by π,

∞∑
n=0

1
(n + 1/2)2

=
π2

2

�

2.2.2 Limit Relations
We will now prove two different limit relations, one each for the Laguerre and Hermite polyno-

mials.

Problem 4.
2nn! lim

β→∞
β−nL(β

2/2)
n (−βx + β2/2) = Hn(x) (2.2.2.1)

This problem is listed as an important relation between the Hermite and Laguerre polynomials
within Askey’s classification. A combinatorial proof was given by Labelle and Yeh in [10].

Proof. We start by listing the recursion relations for both polynomials.

xL(α)n (x) = −(n + 1)L(α)n+1(x) + (2n + α + 1)L(α)n (x) − (n + α)L
(α)
n−1(x)

2xHn(x) = Hn+1(x) + 2nHn−1(x)
(2.2.2.2)

Our goal is to to show that Eq. (2.2.2.1) satisfies the recursion relation for the Hermite polynomials.
We start with the recursion relation for the Laguerre polynomials, letting α = β2/2, replacing x
with −βx + β2/2 and multiplying through by 2nn!β−n.

2nn!(−βx + β2/2)β−nL(β
2/2)

n (−βx + β2/2) =

− 2n(n + 1)!β−nL(β
2/2)

n+1 (−βx + β2/2)

+ 2nn!β−n(2n + 1 + β2/2)L(β
2/2)

n (−βx + β2/2)

− (n + β2/2)2nn!β−nL(β
2/2)

n−1 (−βx + β2/2)

(2.2.2.3)

For ease of notation, let
H?

n (x) = 2nn!β−nL(β
2/2)

n (−βx + β2/2).

That is, we’ve reduced the problem to showing that lim
β→∞

H?
n (x) = Hn(x). Before we continue,

observe that, from its definition, H?
n (x) = 0 for n < 0 and H?

0 (x) = 1. Now, Eq. (2.2.2.3) becomes

(−βx + β2/2)H?
n (x) = −

βH?
n+1(x)

2
+ (2n + 1 + β2/2)H?

n (x)

− (n + β2/2)
2n
β

H?
n−1(x)

(2.2.2.4)
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Simplifying, multiplying by 2 and dividing by −β creates

2xH?
n (x) = H?

n+1(x) + 2nH?
n−1(x) −

2
β

[
(2n + 1)H?

n (x) − nH?
n−1(x)

]
(2.2.2.5)

Taking the limit of both sides,

2x lim
β→∞

H?
n (x) = lim

β→∞
H?

n+1(x) + 2n lim
β→∞

H?
n−1(x)

− lim
β→∞

2
β

[
(2n + 1)H?

n (x) − nH?
n−1(x)

]
= lim

β→∞
H?

n+1(x) + 2n lim
β→∞

H?
n−1(x)

(2.2.2.6)

So, lim
β→∞

H?
n (x) satisfies the recursion relation for the Hermite polynomials, and thus

lim
β→∞

H?
n (x) = Hn(x) (2.2.2.7)

�

We are now going to present an alternative proof of Problem 4, but we must first go on a bit of
a digression.

Theorem 2.2.2. The Laguerre and Hermite polynomials satisfy the following adjoint operators.

dHn(x)
dx

= 2nHn−1(x)

dL(α)n

dx
= −L(α+1)

n−1 (x)

Proof. We leave the proof for the Hermite adjoint operator as an exercise for the reader, and shall
prove only the Laguerre adjoint operator here. Recall the definition of the Laguerre polynomials,
Eq. (2.1.3.1). Taking the derivative, and remembering that the contribution to the sum for k = 0 is
a constant, and thus shifts the starting index by one after differentiating, reveals

d
dx

L(α)n (x) =
(α + 1)n

n!

∞∑
k=1

(−n)k
(α + 1)k

xk−1

(k − 1)!
(2.2.2.8)

We will now switch some terms for Gamma functions, and also use the formula for negative
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pochhammer indexes, Eq. (2.1.3).

d
dx

L(α)n (x) = −
Γ(α + 1 + n)

n(n − 1)!Γ(α + 1)

∞∑
k=1

(−1)k−1(n − k + 1)kΓ(α + 1)
Γ(α + 1 + k)

xk−1

(k − 1)!

= −
Γ(α + 1 + n)

n(n − 1)!Γ(α + 2)

∞∑
k=1

(−1)k−1(n − k + 1)kΓ(α + 2)
Γ(α + 1 + k)

xk−1

(k − 1)!

= −
(α + 2)n−1
n(n − 1)!

∞∑
k=1

(−1)k−1(n − k + 1)k
(α + 2)k−1

xk−1

(k − 1)!

= −
(α + 2)n−1
n(n − 1)!

∞∑
k=1

(−1)k−1Γ(n + 1)
(α + 2)k−1Γ(n − k + 1)

xk−1

(k − 1)!

= −
(α + 2)n−1
(n − 1)!

∞∑
k=1

(−1)k−1Γ(n)
(α + 2)k−1Γ(n − k + 1)

xk−1

(k − 1)!

= −
(α + 2)n−1
(n − 1)!

∞∑
k=1

(−(n − 1))k−1
(α + 2)k−1

xk−1

(k − 1)!

= −
(α + 2)n−1
(n − 1)!

∞∑
k=0

(−(n − 1))k
(α + 2)k

xk

k!

= −L(α+1)
n−1 (x)

�

Now, we must mention that orthogonal polynomials are the solutions to different differential
equations. Historically, this is often the means through which the polynomials were discovered.
We shall need the differential equations satisfied by the Hermite and Laguerre polynomials. We
leave the proofs to other sources, [7].

Theorem 2.2.3. TheHermite and Laguerre polynomials satisfy the following differential equations,
where y(x) = Hn(x), f (x) = L(α)n (x) and primes denote derivatives with respect to x.

y′′(x) − 2xy′(x) + 2ny(x) = 0
x f ′′(x) + (1 + α − x) f ′(x) + n f (x) = 0

(2.2.2.9)

We now begin another proof for Problem 4.

Proof. Let H?
n (x) = 2nn!β−nL(β

2/2)
n (−βx + β2/2). Taking the derivative reveals that

d
dx

H?
n (x) = 2nn!β−n d

dx

(
L(β

2/2)
n (−βx + β2/2)

)
= 2nn!β−nβ

(
L(β

2/2)+1
n−1 (−βx + β2/2)

)
= 2n

(
2n−1(n − 1)!β−(n−1)L(β

2/2)+1
n−1 (−βx + β2/2)

)
= 2nH?

n−1(x)
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where the adjoint operator for the Laguerre polynomials was used. This result shows that the
adjoint operator for H?

n (x) is the same as the Hermite polynomials, and this motivates us to use
the differential equations for them. We insert L(β

2/2)
n (−βx + β2/2) into the differential equation

satisfied by the Laguerre polynomials to get

(−βx + β2/2)L(β
2/2+2)

n−2 (−βx + β2/2) − (1 + βx)L(β
2/2+1)

n−1 (−βx + β2/2)

+ nL(β
2/2)

n (−βx + β2/2) = 0

Multiplying through by 2n+1n!β−n and switching to the H?
n (x) notation reveals

4n(n − 1)(n − 2)!2n−2β−(n−2)L(β
2/2+2)

n−2 (−βx + β2/2)

− 2nx
(
2 ∗ 2n−1(n − 1)!βn−1L(β

2/2+1)
n−1 (−βx + β2/2)

)
+ 2n

(
2nn!L(β

2/2)
n (−βx + β2/2)

)
−

[
xβ−(n−1)2n+1n!L(β

2/2+2)
n−2 (−βx + β2/2) + 2n+1n!β−nL(β

2/2+1)
n−1 (−βx + β2/2)

]
= 0

or

4n(n − 1)H?
n−2(x) − 2x(2nH?

n−1(x)) + 2nH?
n (x) −

1
β

[
x8n(n − 1)H?

n−2 + 4nH?
n−1(x)

]
= 0

Taking the limit of both sides reveals that

4n(n − 1) lim
β→∞

H?
n−2(x) − 2x(2n lim

β→∞
H?

n−1(x)) + 2n lim
β→∞

H?
n (x) = 0

Using the result for the adjoint operator gives us

lim
β→∞

H?′′
n (x) − 2x lim

β→∞
H?′

n (x) + 2n lim
β→∞

H?
n (x) = 0

That is, lim
β→∞

H?
n (x) satisfies the differential equation for the Hermite polynomials, Eq. (2.2.2.9).

Also, observe that, from our definition at the beginning of the proof,

H?
n (x) = 0 for n < 0 and H?

0 (x) = 1.

And thus,

lim
β→∞

H?
n (x) = Hn(x) (2.2.2.10)

�

We will now follow another proof using the generating function*.

Proof. Recall that the generating functions for the Hermite and the Laguerre polynomials are

(1 − t)−α−1e
xt
t−1 =

∞∑
n=0

L(α)n (x)t
n (2.2.2.11)



46

and

e2xt−t2
=

∞∑
n=0

Hn(x)
n!

tn (2.2.2.12)

Insert 2nβ−nL(β
2/n)

n (−βx + β2

2 ) into Eq. (2.2.2.11) to get

∞∑
n=0

L(β
2/n)

n

(
−βx +

β2

2

) (
2t
β

)n

=

(
1 −

2t
β

)−(β2/2+1)
exp

©«
(
−βx + β2

2

) (
2t
β

)
2t
β − 1

ª®®¬ (2.2.2.13)

Now, focusing on the r.h.s we can change our base to get

exp
©«−(β2/2 + 1) ln

(
1 −

2t
β

)
−

(
−βx + β2

2

) (
2t
β

)
1 − 2t

β

ª®®¬
Now, we have the Taylor Series relation:

ln(1 − x) = −
∞∑

n=1

xn

n

which will will use on ln(1 − 2t/β). We will also use the binomial theorem, Eq. (1.6.1), on
(1 − 2t/β)−1. Inserting and distributing yields

exp

(
−(β2/2 + 1)

(
∞∑

n=1

(
2t
β

)n

n−1

)
−

(
∞∑

n=1

(1)n
n!

(
2t
β

)n−1
) (
−βx +

β2

2

) (
2t
β

))
= exp

[
∞∑

n=1

(
β2

2n
+

1
n
+ βx −

β2

2

) (
2t
β

)n
]

Getting a common denominator and isolating the terms that will remain non-zero after taking the
limit yields

= exp

∞∑

n=1

©«
nxβ + β2

2 (1 − n) + 1
βnn

ª®¬ (2t)n


= exp

βx + 1
β

2t +
2βx − β2/2 + 1

2β2 4t2 +

∞∑
n=3

©«
nxβ + β2

2 (1 − n) + 1
βnn

ª®¬ (2t)n


Taking the limit as β→∞ leaves only 2xt − t2 in the exponent, and we get

lim
β→∞

∞∑
n=0

L(β
2/n)

n

(
−βx +

β2

2

) (
2t
β

)n

= lim
β→∞

exp

βx + 1
β

2t +
2βx − β2/2 + 1

2β2 4t2 +

∞∑
n=3

©«
nxβ + β2

2 (1 − n) + 1
βnn

ª®¬ (2t)n


= exp
(
2xt − t2

)
=

∞∑
n=0

Hn(x)
n!

tn

(2.2.2.14)
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Thus, by comparing coefficients, we get

lim
β→∞

2nn!β−nL(β
2/2)

n (−βx + β2/2) = Hn(x)

�

Problem 5.

lim
α→∞

α−nL(α)n (αx) =
(1 − x)n

n!

Just like with Problem 4, this problem was listed within Askey’s classification of orthogonal
polynomials, and there is a combinatorial proof in [10].

Proof. From the definition of the Laguerre polynomials, Eq. (2.1.3.1), and from Eq. (2.1.7), we
have

L(α)n (x) =
1
n!

∞∑
k=0

(−n)k xk

k!
(α + 1)n
(α + 1)k

=
1
n!

∞∑
k=0

(−n)k xk

k!
(α + 1 + k)n−k (2.2.2.15)

Recall that the binomial theorem in pochhammer notation is

∞∑
k=0

(−n)k xk

k!
= (1 − x)n (2.2.2.16)

From Eq. (2.2.2.15), we have

α−nL(α)n (αx) =
1
n!

∞∑
k=0

(−n)k xk

k!
(α + 1 + k)n−k

αn−k

Now, when distributed
(α + 1 + k)n−k = α

n−k + O(αn−k−1).

So,

lim
α→∞

(α + 1 + k)n−k

αn−k = lim
α→∞

αn−k + O(αn−k−1)

αn−k = 1

And we have, putting it all together

lim
α→∞

α−nL(α)n (αx) =
1
n!

∞∑
k=0

(−n)k xk

k!
lim
α→∞

(α + 1 + k)n−k

αn−k

=
1
n!

∞∑
k=0

(−n)k xk

k!
=
(1 − x)n

n!

(2.2.2.17)

�
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2.2.3 Integral Relations
We show here two integral relations involving the Hermite and Laguerre polynomials.

Problem 6. Let L(0)n (x) = Ln(x), then

22n(3/2)n(−1)n
∫ t

0
Ln(u(t − u))du = H2n+1(t/2) (2.2.3.1)

or, by letting t=2x,

22n(3/2)n(−1)n
∫ 2x

0
Ln(u(2x − u))du = H2n+1(x) (2.2.3.2)

Proof. From the definition of the Laguerre polynomials, 2.1.3.1,

22n(3/2)n(−1)n
∫ 2x

0
Ln(u(2x − u))du

= 22n(3/2)n(−1)n
∞∑

k=0

(−n)k
k!

1
k!

∫ 2x

0
(2xu − u)k du

= 22n(3/2)n(−1)n
∞∑

k=0

(−n)k
k!

2k xk

k!

∫ 2x

0
uk

(
1 −

u
2x

) k
du

Now, let r = u/2x. Our integral becomes

22n(3/2)n(−1)n
∫ 2x

0
Ln(u(2x − u))du

= 22n(3/2)n(−1)n
∞∑

k=0

(−n)k
k!

22k+1x2k+1

k!

∫ 1

0
r k (1 − r)k dr

Recall the Beta function

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

=

∫ 1

0
t x−1(1 − t)y−1dt, Re x > 0, Re y > 0 (2.2.3.3)

So, the integral within the summation is simply

B(k + 1, k + 1) = Γ(k + 1)2/Γ(2k + 2) = (k!)2/(2k + 1)!.

Thus, our integral is, using the duplication formula, Eq. (2.1.5) in the third line below,

22n(3/2)n(−1)n
∫ 2x

0
Ln(u(2x − u))du = 22n(3/2)n(−1)n

∞∑
k=0

(−n)k
(2k + 1)!

22k+1x2k+1

= 22n+1(3/2)n(−1)nx
∞∑

k=0

(−n)k
2(k + 1/2)(2k)!

22k x2k

= 22n+1(3/2)n(−1)nx
∞∑

k=0

(−n)k
2(k + 1/2)(1/2)k k!

x2k



49

Now, observe that, from, Eq. (2.1.4),(
3
2

)
k
=
Γ(32 + k)
Γ(3/2)

=
(12 + k)Γ(12 + k)

1
2Γ(1/2)

= 2
(
1
2

)
k

(
1
2
+ k

)
Our integral is then, after also multiplying by n!/n!,

22n(3/2)n(−1)n
∫ 2x

0
Ln(u(2x − u))du = (−1)n22n+1xn!

(3/2)n
n!

∞∑
k=0

(−n)k
(3/2)k k!

x2k

= (−1)n22n+1n!xL(1/2)n (x2)

= H2n+1(x)

(2.2.3.4)

where the definition of the Hermite polynomials in terms of the Laguerre defined previously,
Eq. (2.1.3.5) was used. Thus, the theorem is true. �

Problem 7. Let L(0)n (x) = Ln(x), then

(−1)n

π22n(1/2)n

∫ t

0

H2n

(√
u(t − u)

)
√

u(t − u)
du = Ln(t2/4) (2.2.3.5)

or, by letting t=2x,

(−1)n

π22n(1/2)n

∫ 2x

0

H2n

(√
u(2x − u)

)
√

u(2x − u)
du = Ln(x2) (2.2.3.6)

Proof. We start be writing the Hermite polynomials in terms of the Laguerre, using their definition
from Eq. (2.1.3.5). And then, we insert the definition of the Laguerre polynomials, Eq. (2.1.3.1).

(−1)n

π22n(1/2)n

∫ 2x

0

H2n

(√
u(2x − u)

)
√

u(2x − u)
du =

n!
(1/2)nπ

∫ 2x

0

L(−1/2)
n

(√
u(2x − u)

)
√

u(2x − u)
du

=
1
π

∞∑
k=0

(−n)k
(1/2)k k!

∫ 2x

0
(2xu − u2)k−1/2du

=
1
π

∞∑
k=0

(−n)k(2x)k−1/2

(1/2)k k!

∫ 2x

0
uk−1/2

(
1 −

u
2x

) k−1/2
du

letting r = u/2x

=
1
π

∞∑
k=0

(−n)k(2x)2k

(1/2)k k!

∫ 1

0
r k−1/2 (1 − r)k−1/2 dr

Recall the Beta function, Eq. (2.2.3.3) Thus, the integral within the summation is simply B(k +
1/2, k + 1/2) = Γ(k + 1/2)2/Γ(2k + 1). Thus, our integral is

(−1)n

π22n(1/2)n

∫ 2x

0

H2n

(√
u(2x − u)

)
√

u(2x − u)
du =

1
π

∞∑
k=0

(−n)k(2x)2k

(1/2)k k!
Γ(k + 1/2)2

Γ(2k + 1)

=
1
π

∞∑
k=0

(−n)k(2x)2k

k!
Γ(1/2)Γ(k + 1/2)
Γ(2k + 1)
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The Gamma Duplication formula, Eq. (2.1.5), tells us that

Γ(1/2)
Γ(k)

=
22kΓ(k + 1/2)
Γ(2k)2

which implies
Γ(1/2)

k!
=

22kΓ(k + 1/2)
Γ(2k + 1)

So, we now have

(−1)n

π22n(1/2)n

∫ 2x

0

H2n

(√
u(2x − u)

)
√

u(2x − u)
du =

1
π

∞∑
k=0

(−n)k x2k

(k!)2
Γ(1/2)2

=
(1)n
n!

∞∑
k=0

(−n)k x2k

(1)k k!

= Ln(x2)

(2.2.3.7)

Thus, we have shown the theorem is true. �

We will now present another proof* of this integral relation, using the Hermite polynomials
defined in terms of the Laguerre polynomials.

Proof. Recall from Eq. (2.1.3.5), that the Hermite polynomials are defined in terms of the Laguerre
polynomials. So we can write

H2n

(√
x(t − x)

)
= (−1)n22nn!L(−1/2)

n (x(t − x))

= (−1)n22n
(
1
2

)
n

∞∑
k=0

(−n)k
(1/2)k k!

xk(t − x)k
(2.2.3.8)

inserting into our integral yields∫ t

0

H2n

(√
x(t − x)

)
√

x(t − x)
dx = (−1)n22n

(
1
2

)
n

∞∑
k=0

(−n)k
(1/2)k k!

∫ t

0
xk−1/2(t − x)k−1/2dx

= (−1)n22n
(
1
2

)
n

∞∑
k=0

(−n)k
(1/2)k k!

tk−1/2
∫ t

0
xk−1/2

(
1 −

x
t

) k−1/2
dx

= (−1)n22n
(
1
2

)
n

∞∑
k=0

(−n)k
(1/2)k k!

t2k
∫ 1

0
uk−1/2(1 − u)k−1/2du

= (−1)n22n
(
1
2

)
n

∞∑
k=0

(−n)k
(1/2)k k!

t2k Γ(k + 1/2)2

Γ(2k + 1)

where we first used a u-sub of u = x/t and then the Beta function, Eq. (1.9.1.1), of the form
B(k + 1/2, k + 1/2) = Γ(k+1/2)2

Γ(2k+1) . Now we will multiply by 22k k!
22k k! , use Eq. (2.1.4) in the form of
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Γ(k + 1/2) = (1/2)kΓ(1/2) and then use the duplication formula, Eq. (2.1.5),∫ t

0

H2n

(√
x(t − x)

)
√

x(t − x)
dx = (−1)n22n

(
1
2

)
n

∞∑
k=0

k!22k(−n)k
(1/2)k k!k!

( t
2

)2k Γ(k + 1/2)2

Γ(2k + 1)

= (−1)n22nπ

(
1
2

)
n

∞∑
k=0

k!22k (1/2)k (−n)k
Γ(2k + 1)k!k!

( t
2

)2k

= (−1)n22nπ

(
1
2

)
n

∞∑
k=0

(2k)!(−n)k
Γ(2k + 1)k!k!

( t
2

)2k

= (−1)n22nπ

(
1
2

)
n

∞∑
k=0

(−n)k
k!k!

( t
2

)2k

= (−1)n22nπ

(
1
2

)
n

L(0)(t2/4)

thus, we have proven our integral relation. �

Our final integral relation relates the Legendre polynomials and the Hermite polynomials.

Problem 8. Let Pn(x) denote the nth Legendre polynomial, then

Pn(x) =
2

n!
√
π

∫ ∞

0
e−t2

tnHn(xt)dt (2.2.3.9)

Proof. Let

P?n (x) =
2

n!
√
π

∫ ∞

0
e−t2

tnHn(xt)dt.

Our goal is to show that P?n (x) = Pn(x), the nth Legendre polynomials. Please free free to review
the Legendre polynomials in the introduction, Section 1.8.

For Hn(xt), we have the modified self-adjoint and recursion relations

2nHn−1(xt) = 2xtHn(xt) − Hn+1(xt)
d
dx

Hn(xt) = 2ntHn−1(xt)

Now,

P?n−1(x) =
2n

n!
√
π

∫ ∞

0
e−t2

tn−1Hn−1(xt)dt

(n + 1)P?n+1(x) =
2

n!
√
π

∫ ∞

0
e−t2

tn+1Hn+1(xt)dt
(2.2.3.10)
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Using the recursion relation on P?n−1(x) yields

P?n−1(x) =
2x

n!
√
π

∫ ∞

0
e−t2

tnHn(xt)dt −
1

n!
√
π

∫ ∞

0
e−t2

tn−1Hn+1(xt)dt

= xP?n (x) −
1

n!
√
π

∫ ∞

0
e−t2

tn−1Hn+1(xt)dt

so

nxP?n (x) = nP?n−1(x) +
n

n!
√
π

∫ ∞

0
e−t2

tn−1Hn+1(xt)dt

We will now do an integration by parts, with u = e−t2
Hn+1. We get

nxP?n (x) = nP?n−1(x) +
tne−t2

Hn+1

n!
√
π

����∞
0
− (n + 1)x

2
n!
√
π

∫ ∞

0
e−t2

tnHn(xt)dt

+(n + 1)
2

(n + 1)!
√
π

∫ ∞

0
e−t2

tn+1Hn+1(xt)dt

= nP?n−1(x) − (n + 1)xP?n (x) + (n + 1)P?n+1(x)

where the term that needed evaluated goes to zero at both limits due to the decaying exponential
and the tn component. Simplifying get us

(2n + 1)xP?n (x) = (n + 1)P?n+1(x) + nP?n−1(x) (2.2.3.11)

This is the recursion relation for the Legendre polynomials. However, wemust first check beginning
values of n for P?n (x), to ensure that they match that for the Legendre polynomials. Since Hn(x) = 0
for every n < 0, P?n (x) = 0 for every n < 0. This matches the Legendre, so must now must check
P?0 (x).

P?0 (x) =
2
√
π

∫ ∞

0
e−t2

dt =
1
√
π

∫ ∞

0
t−1/2e−tdt =

Γ(1/2)
√
π
= 1

This matches the Legendre polynomials. Thus,

P?n (x) = Pn(x)

. �

We will now show another proof* using a connection between the Legendre and Ultraspherical
polynomials.

Proof. We start by reminding ourselves of the power series representation, Eq. (2.1.1.4) of the
Legendre polynomials, derived from its Rodrigues formula in Section 2.1.1

Pn(x) =
b n2 c∑
k=0

(−1)k(2x)n−2k
(

1
2

)
n−k

k!(n − 2k)!
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which is also, of course, C(1/2)n (x), as shown in Problem 2. We begin by using the series represen-
tation of the Hermite polynomials derived in Section 2.1.3

Hn(x) =
b n2 c∑
k=0

n!(−1)k(2x)n−2k

k!(n − 2k)!
(2.2.3.12)

We insert this into our integral, Eq. (2.2.3.9), to get

2
n!
√
π

∫ ∞

0
e−t2

tnHn(xt)dt =
b n2 c∑
k=0

2(−1)k(2x)n−2k
√
πk!(n − 2k)!

∫ ∞

0
e−t2

t2n−2kdt

=

b n2 c∑
k=0

(−1)k(2x)n−2k
√
πk!(n − 2k)!

∫ ∞

0
e−uun−k−1/2du

=

b n2 c∑
k=0

(−1)k(2x)n−2k
√
πk!(n − 2k)!

Γ(n − k + 1/2)

=

b n2 c∑
k=0

(−1)k(2x)n−2k
(

1
2

)
n−k

k!(n − 2k)!

where a u-sub of u = t2 was used to turn the integral into the Gamma function, and then the
pochhammer Gamma relation, Eq. (2.1.4), in the form of (1/2)n−k = Γ(n − k + 1/2)/Γ(1/2) =
Γ(n − k + 1/2)/

√
π. Thus,

2
n!
√
π

∫ ∞

0
e−t2

tnHn(xt)dt = Pn(x) (2.2.3.13)

�

Properties of orthogonal polynomial sequences occur in various contexts, and we shall explore
some of these in the next section.
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Chapter 3

Methods on Orthogonal Polynomial
Sequences
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3.1 Inverse Method
The inverse problem in the study of orthogonal polynomial sequences (OPS) is the attempt to

obtain the weight function of an OPS given only the recursion formula. As a by-product of this
process, the generating function is obtained. We will focus purely on obtaining the generating
functions here. We first start with an example.

3.1.1 Fibonacci Sequence
Recall the Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, ... (3.1.1.1)
We would like to find a generating function for the Fibonacci sequence; an infinite polynomial
where the coefficient of tn is the nth Fibonacci number Fn. That is, a power series of the form

1 + t + 2t2 + 3t3 + 5t4 + 13t5 + · · · + Fntn + · · · =

∞∑
n=0

Fntn (3.1.1.2)

We start by defining a function I(t)

I(t) =
∞∑

n=0
Fntn (3.1.1.3)

Now, we are going to use the recursion relation of the Fibonacci numbers to find the generating
function. Recall,

Fn+1 = Fn + Fn−1, F0 = 1, F−1 = 0 (3.1.1.4)
Observe that, from Eq. (3.1.1.3),

t I(t) =
∞∑

n=0
Fntn+1 =

∞∑
n=1

Fn−1tn =

∞∑
n=0

Fn−1tn (3.1.1.5)

where, in the first step, we shifted the index, and, in the second, we used the fact that F−1 = 0 to pull
the sum back to n = 0 with impunity. Now, multiply the recursion relation (Eq. (3.1.1.4)) through
by tn and sum from n = 0 to∞ to get

∞∑
n=0

Fn+1tn =

∞∑
n=0

Fntn +

∞∑
n=0

Fn−1tn = I(t) + t I(t) (3.1.1.6)

where we inserted Eq. (3.1.1.3) and Eq. (3.1.1.5) to obtain the far right of Eq. (3.1.1.6). To take
care of the far left, we return to the definition of our function, observing that we can shift the index
of Eq. (3.1.1.3) to get

I(t) =
∞∑

n=−1
Fn+1tn+1 = 1 +

∞∑
n=0

Fn+1tn+1 (3.1.1.7)

(write out the first few terms to convince yourself that the far left of Eq. (3.1.1.7) is the same as the
original definition). So we can solve Eq. (3.1.1.7) to get

∞∑
n=0

Fn+1tn+1 = I(t) − 1
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which upon inserting into Eq. (3.1.1.6) yields

I(t) − 1 = t I(t) + t2I(t)

We can then re-arrange to solve for I(t), which is the generating function of the Fibonacci sequence.

I(t) =
1

1 − (t2 + t)
=

∞∑
n=0

Fntn (3.1.1.8)

Now that we understand the concept of the inversion method, lets apply it to orthogonal polynomial
sequences.

3.1.2 Charlier Polynomials
Recall the Charlier Polynomials have the definition

Cn(x; a) := 2F0

(
−n,−x

−

��� − 1
a

)
=

n∑
k=0

(−n)k(−x)k
k!

(
−

1
a

) k
(3.1.2.1)

with recurrence relation

−xCn(x; a) = aCn+1(x; a) − (n + a)Cn(x; a) + nCn−1(x; a) (3.1.2.2)

The generating function can be derived from the definition. First, notice

∞∑
n=0

1
n!

Cn(x; a)tn =

∞∑
n=0

n∑
k=0

(−n)k(−x)k(−1)k

k!akn!
tn

=

∞∑
n=0

n∑
k=0

(−n + k − 1)!(−x)k(−1)k

k!akn!(−n − 1)!
tn

=

∞∑
n=0

n∑
k=0

(−x)k tn

k!(n − k)!ak

(3.1.2.3)

Shifting the starting index of Eq. (3.1.2.3) yields

∞∑
n=0

∞∑
k=0

(−x)k tn+k

k!n!ak =

∞∑
n=0

tn

n!

∞∑
k=0

(−x)k tk
ak

k!

=

∞∑
n=0

tn

n!

∞∑
k=0

(−x)k( t
a )

k

k!

= et
1F0

(
−x

−

��� − t
a

)
= et

(
1 −

t
a

) x

(3.1.2.4)
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Which is the generating function for the Charlier polynomials. The inverse method can also be
used to generate this function. First, multiple both sides of Eq. (3.1.2.2) by tn/n! and sum from -1
to∞, reminding ourselves that Cn = 0, ∀n ∈ Z−.

∞∑
n=0

−xCn(x; a)tn

n!
=

∞∑
n=−1

aCn+1(x; a)tn

n!

−

∞∑
n=0

(n + a)Cn(x; a)tn

n!

+

∞∑
n=1

nCn−1(x; a)tn

n!

(3.1.2.5)

Define a function F(x; t, a) = F such that

F =
∞∑

n=0

Cn(x; a)tn

n!
. (3.1.2.6)

Letting dF
dt =

ÛF, we have

ÛF =
∞∑

n=0

Cn(x; a)tn−1

(n − 1)!
=

∞∑
n=−1

Cn+1(x; a)tn

n!
. (3.1.2.7)

Inserting Eq. (3.1.2.6) and Eq. (3.1.2.7) into Eq. (3.1.2.5), and doing some algebra yields

−xF = a ÛF − t ÛF − aF + tF, (3.1.2.8)

and after re-arranging creates
ÛF −

(
1 +

x
t − a

)
F = 0 (3.1.2.9)

This is a linear homogeneous ordinary differential equation, which can be solved using the integra-
tion technique. If P(t) = −1 − x

t−a , and µ = e
∫

P(t)dt , then

µ = (t − a)−xe−t (3.1.2.10)

Multiplying Eq. (3.1.2.9) by µ, and using the product rule in reverse, reveals that d(µF)
dt = 0. Or,

F = c(t − a)xet , where c = c(x; a) is a constant. Using that at t = 0, F(x; a) = 1, we find that the
constant is (−a)−x . So the generating function for the Charlier polynomial is thus

F(x; t, a) = et
(
1 −

t
a

) x
(3.1.2.11)

Q.E.D We have derived the generating function for the Charlier polynomials.
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3.1.3 Legendre
The Legendre (spherical) polynomials are defined as

Pn(x, t) := 2F1

(
−n,n+1

1

���1 − x
2

)
, (3.1.3.1)

with the recursion relation

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) (3.1.3.2)

First, multiple both sides by tn and sum from 0 to infinity.
∞∑

n=0
2nxtnPn(x) +

∞∑
n=0

xtnPn(x) =
∞∑

n=0
(n + 1)tnPn+1(x) +

∞∑
n=0

ntnPn−1(x) (3.1.3.3)

Next define F = F(x, t) such that

F =
∞∑

n=0
Pn(x)tn =

∞∑
n=−1

Pn+1(x)tn+1 =

∞∑
n=1

Pn−1(x)tn−1 (3.1.3.4)

and

ÛF =
∞∑

n=0
nPn(x)tn−1 =

∞∑
n=−1
(n + 1)Pn+1(x)tn =

∞∑
n=1
(n − 1)Pn−1(x)tn−2 (3.1.3.5)

Notice that

ÛF =
∞∑

n=1
(n − 1)Pn−1(x)tn−2 =

∞∑
n=1

nPn−1(x)tn−2 −

∞∑
n=1

Pn−1(x)tn−2, (3.1.3.6)

which implies
∞∑

n=1
nPn−1(x)tn−2 = ÛF +

∞∑
n=1

Pn−1(x)tn−2 (3.1.3.7)

and
∞∑

n=1
nPn−1(x)tn = ÛFt2 + t

∞∑
n=1

Pn−1(x)tn−1 = ÛFt2 + Ft (3.1.3.8)

Inserting Eq. (3.1.3.8), Eq. (3.1.3.4) and Eq. (3.1.3.5) into Eq. (3.1.3.3) yields, after rearranging,
the following First-Order Linear homogeneous differential equation.

ÛF +
t − x

t2 + 1 − 2xt
F = 0 (3.1.3.9)

Letting

P(t) = (t − x)/(t2 + 1 − 2xt)
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and integrating via u-substitution and then setting

µ = e
∫

P(t)dt

yields the integrating factor
µ =

√
t2 + 1 − 2xt (3.1.3.10)

Multiplying both sides of Eq. (3.1.3.9) by Eq. (3.1.3.10) and doing the product rule in reverse
reveals

d[Fµ]
dt

= 0, or F = c(µ)−1 (3.1.3.11)

where c is a constant. Using that F(t = 0) = 1 reveals that the constant is one, and thus

F = F(x, t) =
∞∑

n=0
Pntn =

1
√

1 + t2 − 2xt
(3.1.3.12)

Q.E.D we have derived the generating function for the Legendre Polynomials.

3.1.4 Ultraspherical
The ultraspherical, or Gegenbauer, polynomials are special cases of the Jacobi polynomials (see

Section 1.9 for more on the Jacobi polynomials). They have the definition

Cν
n (x) :=

(2ν)n
n! 2F1

(
−n,n+2ν

ν+1/2

���1 − x
2

)
, ν , 0 (3.1.4.1)

with recursion relation

2(n + ν)xCν
n (x) = (n + 1)Cν

n+1(x) + (n + 2ν − 1)Cν
n−1(x) (3.1.4.2)

Multiplying both sides of Eq. (3.1.4.2) by tn and summing from n = −1 to ∞, and using the
fact that Cν

n (x) = 0, n < 0 yields the following relation:

∞∑
n=0

2(n + ν)xtnCν
n (x) =

∞∑
n=−1
(n + 1)tnCν

n+1(x) +
∞∑

n=1
(n + 2ν − 1)tnCν

n−1(x) (3.1.4.3)

Now define a new function

F = F(x, t; ν) =
∞∑

n=0
tnCν

n (x) =
∞∑

n=−1
tn+1Cν

n+1(x) =
∞∑

n=1
tn−1Cν

n−1(x) (3.1.4.4)

whose derivative is

ÛF =
d(F(x, t; ν))

dt
=

∞∑
n=0

ntn−1Cν
n (x)

=

∞∑
n=−1
(n + 1)tnCν

n+1(x) =
∞∑

n=1
(n − 1)tn−2Cν

n−1(x)

(3.1.4.5)
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Inserting Eq. (3.1.4.4) and Eq. (3.1.4.5) into Eq. (3.1.4.3) yields the following:

2x ÛFt + 2xνF = ÛF + t2 ÛF + 2νFt. (3.1.4.6)

Rearranging Eq. (3.1.4.6) yields the following linear ordinary homogeneous differential equa-
tion:

ÛF +
2tν − 2xν

1 + t2 − 2xt
F = 0. (3.1.4.7)

Now,

P(x, t; ν)dt =
2tν − 2xν

1 + t2 − 2xt
dt

Integrating Using the u-substitution technique, where u(x, t) = 1 + t2 − 2xt, yields∫
P(x, t; ν)dt = ν ln

(
1 + t2 − 2xt

)
Setting integration factor µ = µ(x, t; ν)

µ(x, t; ν) = eν ln(1+t2−2xt) = (1 + t2 − 2xt)ν

multiplying Eq. (3.1.4.7) by µ and using the product rule in reverse reveals that
d(Fµ)

dt
= 0 (3.1.4.8)

Integrating both sides, which introduces a constant c(x; ν) on the r.h.s. of Eq. (3.1.4.8), then
dividing by µ yields

F =
c(x; ν)
µ

Since F(x, 0; ν) = 1 = c(x; ν), we get

F(x, t; ν) = F =
1

(1 + t2 − 2xt)ν
=

∞∑
n=0

Cν
n (x)t

n. (3.1.4.9)

Q.E.D We have derived the generating function for the Gegenbauer polynomials.
Finally, an observation: Notice that

F(x, t; ν = 1) =
1

1 + t2 − 2xt
=

∞∑
n=0

C1
n (x)t

n

=

∞∑
n=0

Un(x)tn =

∑∞
n=0 Tn(x)tn

1 − xt

(3.1.4.10)

where
∞∑

n=0
Un(x)tn

is the generating function for the Chebyshev polynomial of the Second Kind, and
∞∑

n=0
Tn(x)tn

is the generating function for the Chebyshev polynomial of the First Kind.
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3.1.5 Chebyshev Polynomials
There are two types of Chebyshev polynomials, differing starting at the n = 1 term.

1. The Chebyshev Polynomials of the First Kind, Tn(x), are defined as

Tn(x) := 2F1

(
−n,n

1/2

���1 − x
2

)
=

n∑
k=0

(−n)k(n)k
(12 )k k!

(1 − x
2

) k
(3.1.5.1.1)

with the condition that T0 = 1,T1 = x.
For future reference,

T2 = 2x2 − 1

The first kind has the recursion relation

2xTn(x) = Tn+1(x) + Tn−1(x) (3.1.5.1.2)

This becomes, after multiplying through by tn and summing from n = 2 to infinity,

∞∑
n=2

2xTn(x)tn =

∞∑
n=2

Tn+1(x)tn +

∞∑
n=2

Tn−1(x)tn (3.1.5.1.3)

Letting F(x, t) = F, and using the ability to shift our sum to different starting values, we have
the following relation

F =
∞∑

n=0
Tn(x)tn = T0(x) + T1(x)t +

∞∑
n=2

Tn(x)tn

= 1 + xt +
∞∑

n=2
Tn(x)tn

(3.1.5.1.4)

Shifting the sum, we also find that

F =
∞∑

n=−1
Tn+1(x)tn+1 = T0(x) + T1(x)t + T2(x)t2 +

∞∑
n=2

Tn+1(x)tn+1

= 1 + xt + 2x2t2 − t2 +

∞∑
n=2

Tn+1(x)tn+1
(3.1.5.1.5)

and

F =
∞∑

n=1
Tn−1(x)tn−1 = T0(x) +

∞∑
n=2

Tn−1(x)tn−1 = 1 +
∞∑

n=2
Tn−1(x)tn−1 (3.1.5.1.6)

Inserting Eq. (3.1.5.1.4), Eq. (3.1.5.1.5), and Eq. (3.1.5.1.6) into Eq. (3.1.5.1.3), we get

2xtF − 2xt − 2x2t2 = F − 1 − xt − 2x2t2 − t2 + Ft2 + t2 (3.1.5.1.7)
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After doing some algebra, we find that

F(x, t) = F =
1 − xt

1 − 2xt + t2 =

∞∑
n=0

Tn(x)tn (3.1.5.1.8)

Q.E.D We have derived the generating function for the Chebyshev Polynomials of the First
Kind.

2. The Chebyshev Polynomials of the Second Kind, Un(x), are defined as

Un(x) := (n + 1)2F1

(
−n,n+2

3/2

���1 − x
2

)
=

n∑
k=0

(n + 1)(−n)k(n + 2)k
(32 )k k!

(1 − x
2

) k
,

(3.1.5.2.1)

with the condition that U0 = 1,U1 = 2x. The second kind has the recursion relation

2xUn(x) = Un+1(x) +Un−1(x). (3.1.5.2.2)

This becomes, after multiplying through by tn and summing from n = 0 to infinity,

∞∑
n=0

2xUn(x)tn =

∞∑
n=0

Un+1(x)tn +

∞∑
n=0

Un−1(x)tn (3.1.5.2.3)

Letting F(x, t) = F, and using the ability to shift our sum to different starting values, we have
the following relation

F =
∞∑

n=0
Un(x)tn = U0(x) +

∞∑
n=1

Un(x)tn

= 1 +
∞∑

n=0
Un+1(x)tn+1 =

∞∑
n=1

Un−1(x)tn−1
(3.1.5.2.4)

Inserting Eq. (3.1.5.2.4) into Eq. (3.1.5.2.3) yields

2xtF = F − 1 + Ft2 (3.1.5.2.5)

After solving for F, we find that

F(x, t) = F =
1

1 − 2xt + t2 =

∞∑
n=0

Un(x)tn (3.1.5.2.6)

Q.E.DWe have derived the generating function for the Chebyshev Polynomials of the Second
Kind.
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3.1.6 Meixner-Pollaczek polynomials
TheMeixner-Pollaczek polynomials are a Sheffer Type-0OPS (see Section 1.8 formore details),

defined as
Pλ

n (x; φ) :=
(2λ)neinφ

n! 2F1

(
−n,λ+ix

2λ

���1 − e−2iφ
)

(3.1.6.1)

with the recurrence relation

(n + 1)Pλ
n+1(x; φ) =2[x sin φ + (n + λ) cos φ]Pλ

n (x; φ)
− (n + 2λ − 1)Pn−1(x; φ)

(3.1.6.2)

Letting

Pn = Pλ
n (x; φ)

and multiplying both sides of Eq. (3.1.6.2) by tn, distributing and summing from -1 to∞ yields the
following relation:

∞∑
n=−1
(n + 1)tnPn+1 =2x sin φ

∞∑
n=0

Pntn + 2 cos φ
∞∑

n=0
nPntn

+ 2λ cos φ
∞∑

n=0
Pntn −

∞∑
n=1

nPn−1tn

− 2λ
∞∑

n=1
tnPn−1 +

∞∑
n=1

tnPn−1 = 0

(3.1.6.3)

Create a function H = H(x, t; λ, φ) such that:

H =
∞∑

n=0
Pntn =

∞∑
n=−1

Pn+1tn+1 =

∞∑
n=1

Pn−1tn−1 (3.1.6.4)

and whose derivative is

ÛH =
∞∑

n=0
nPntn−1 =

∞∑
n=−1
(n + 1)Pn+1tn =

∞∑
n=1
(n − 1)Pn−1tn−2 (3.1.6.5)

Notice that Eq. (3.1.6.5) yields

ÛH =
∞∑

n=1
nPn−1tn−2 −

∞∑
n=1

Pn−1tn−2 (3.1.6.6)

which becomes, after multiplying both sides by t2,

ÛHt2 =

∞∑
n=1

nPn−1tn −

∞∑
n=1

Pn−1tn =

∞∑
n=1

nPn−1tn − Ht (3.1.6.7)
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which implies
∞∑

n=1
nPn−1tn = ÛHt2 + tH (3.1.6.8)

Putting together Eq. (3.1.6.8), Eq. (3.1.6.4), Eq. (3.1.6.5) and Eq. (3.1.6.3), and doing some algebra,
reveals the following first order linear homogeneous ordinary differential equation:

ÛH + 2
λ(t − cos φ) − x sin φ

1 − 2 cos φt + t2 H = 0. (3.1.6.9)

Using the identities

cos(φ) :=
eiφ + e−iφ

2
and

sin(φ) :=
eiφ − e−iφ

2i
we can re-write Eq. (3.1.6.9) as

ÛH +
(−λ + ix)(eiφ) + (−λ − ix)(e−iφ) + 2tλ

1 − (eiφ + e−iφ)t + t2 H = 0 (3.1.6.10)

Define a function P(x, t; φ, λ) as the coefficients of the second term of the l.h.s in Eq. (3.1.6.10),
and integrate: ∫

Pdt =
∫
(−λ + ix)(eiφ) + (−λ − ix)(e−iφ) + 2tλ

1 − (eiφ + e−iφ)t + t2 dt (3.1.6.11)

This is is solvable using partial fraction decomposition.∫
Pdt =

∫
(−λ + ix)eiφdt

1 − eiφt
+

∫
(−λ − ix)e−iφdt

1 − e−iφt
(3.1.6.12)

Using u-substitution, the integral becomes∫
Pdt = −(−λ + ix) ln

(
1 − eiφt

)
− (−λ − ix) ln

(
1 − e−iφt

)
(3.1.6.13)

The integrating factor for Eq. (3.1.6.10) is thus

µ = (1 − eiφt)−(−λ+ix)(1 − e−iφt)−(−λ−ix) (3.1.6.14)

Multiplying equation Eq. (3.1.6.10) by µ and doing the product rule in reverse reveals

d(Hµ)

dt
= 0 or H = cµ−1

where c is a constant. Using the condition H(t = 0) = 1, the constant is thus 1 and we have that

H = H(n, t, x, λ, φ) =
∞∑

n=0
Pλ

n tn = (1 − eiφt)−λ+ix(1 − e−iφt)−λ−ix (3.1.6.15)

Q.E.D We have derived the generating function for the Meixner-Pollaczek polynomials.
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3.2 Schrödinger Form
The Schrödinger form is an application of orthogonal polynomial sequences to differential

equations. Let’s jump right into the matter, and the idea of the Schrödinger form will make itself
apparent along the way. Recall that an orthogonal polynomial sequence must obey an unrestricted
three-term recursion relation of the form

Pn+1(x) = (Anx + Bn)Pn(x) − CnPn−1(x), P−1(x) = 0, P0(x) = 1 (3.2.1)

If Qn(x) represents the monic form of Pn(x), then the following monic three term relation must
be satisfied.

Qn+1(x) = (x − bn)Qn(x) − cnQn−1(x),Q−1(x) = 0,Q0(x) = 1 (3.2.2)
Also, an orthonormal polynomial sequence must satisfy the following relation:

xpn(x) = an+1pn+1(x) + bnpn + anpn−1(x), p−1(x) = 0, p0(x) = 1 (3.2.3)

Since pn(x) is also monic, we can compare Eq. (3.2.2) and Eq. (3.2.3) to find that an =
√

cn. The
relation between pn(x) and Pn(x) is that pn(x) is the normalized version of Pn(x), and they are
related by the associated squared norm Kn:

pn(x) =
1
√

Kn
Pn(x) (3.2.4)

The pn terms obey an orthonormal relation on some domainΩ, relative to some weight function
w(x).

〈pm(x), pn(x)〉 =
∫
Ω

pm(x)pn(x)w(x)dx = δnm (3.2.5)

We now introduce the following equation, followed by a theorem.

ν(x) = − ln(w(x)) (3.2.6)

Theorem 3.2.1. The orthonormal forms satisfy the following differential equation:

p′n(x) = −Bn(x)pn(x) + An(x)pn−1(x) (3.2.7)

where An(x) and Bn(x) are defined as

An(x) = an

(
p2

n(y)w(y)

y − x

����
∂Ω

+

∫
Ω

ν′(x) − ν′(y)
x − y

p2
n(y)w(y)dy

)
(3.2.8)

Bn(x) = an

(
pn(y)pn−1(y)w(y)

y − x

����
∂Ω

+

∫
Ω

ν′(x) − ν′(y)
x − y

pn(y)pn−1(y)w(y)dy
)

(3.2.9)

See [7] for a proof. It can also be shown that the following two relations are true:

Bn(x) + Bn+1(x) =
x − bn

an
An(x) − ν′(x) (3.2.10)

Bn+1(x) − Bn(x) =
an+1 An+1(x)

x − bn
−

a2
n An−1(x)

an−1(x − bn)
−

1
x − bn

(3.2.11)

Where Eq. (3.2.11) is called the string equation, again see [7] for a derivation of these relations.
Now, introducing the Schrödinger form, fundamental to the study of quantum mechanics, but

here we use a dimensionless, homogenized version.
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Definition 3.2.2. The Schrödinger form of an OPS is an associated Second-Order Elliptical Partial
Differential Equation of the form

Ψ′′n (x) + V(x; n)Ψn(x) = 0 (3.2.12)

whose solutions are

Ψn(x) :=
e−ν(x)/2√

An(x)
pn(x) (3.2.13)

and

V(x; n) =An(x)
d
dx

(
Bn(x)
An(x)

)
− Bn(x)(ν′ + Bn(x)) +

an

an−1
An(x)An−1(x) +

1
2
ν′′(x)

+
1
2

d
dx

(
A′n(x)
An(x)

)
−

1
4

(
ν′(x) +

A′n(x)
An(x)

)2 (3.2.14)

The function Ψn(x) is called the wavefunction, and V(x; n) is called the potential energy term.

The goal here is to solve for the specific wavefunctions and potential energies for different
orthogonal polynomials. If we are successful, then that tells us there may exist, somewhere in the
universe, a physical scenario where said orthogonal polynomial sequence is part of the solution.
And so we begin.

3.2.1 Hermite polynomials
The Hermite polynomials are a Sheffer Type-0 OPS defined as

Hn(x) = (2x)n2F0

(
− n

2 ,−
n−1

2
−

��� − 1
x2

)
= (2x)n

∞∑
k=0

(
−

n
2

)
k

(
−(n − 1)

2

)
k

(
−

1
x2

) k 1
k!

(3.2.1.1)

with the recursion relation
xHn(x) =

1
2

Hn+1(x) + nHn−1(x) (3.2.1.2)

and the monic recursion relation, related by Qn(x) = Hn(x)/2n

xQn(x) = Qn+1(x) +
n
2

Qn−1(x) (3.2.1.3)

Comparing Eq. (3.2.1.3) to Eq. (3.2.3) and Eq. (3.2.2) reveals that bn = 0, cn = n/2, and an =
√

n/2.
We must now try to derive these relations. First, we need the orthogonality relation for the Hermite
polynomials.

〈Hm,Hn〉 =

∫ ∞

−∞

Hm(x)Hn(x)e−x2
dx =

√
π2nn!δmn (3.2.1.4)

To match Eq. (3.2.5), we first define an orthonormal polynomial pn(x) and take note of the weight
function w(x) associated with the Hermite polynomials

pn(x) =

√
1

2nn!
√
π

Hn(x) (3.2.1.5)
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w(x) = e−x2
(3.2.1.6)

So,
ν(x) = x2, (3.2.1.7)

ν′(x) = 2x (3.2.1.8)

Let the domainΩ = (−∞,∞). We can now solve for An(x); after inserting known values, Eq. (3.2.8)
becomes

An(x) = an

(
e−y2
(Hn(y))

2
√
π2nn!(y − x)

����
∂Ω

+

∫
Ω

2x − 2y
x − y

e−y2
(Hn(y))

2
√
π2nn!

dy

)
(3.2.1.9)

The e−y2 termwill dominate at the boundary, so the first term goes to zero. Simplifying, our relation
becomes

An(x) =
an

2n−1n!
√
π

∫ ∞

−∞

e−y
2
(Hn(y))

2dy (3.2.1.10)

Notice that the integral is a variation of our orthogonality condition for the Hermite polynomials.
Re-arranging Eq. (3.2.1.4), inserting into Eq. (3.2.1.10) and simplifying reveals that

An(x) = 2an (3.2.1.11)

To solve for Bn(x), let’s plug known values into Eq. (3.2.9):

Bn(x) =an

(√
1

22n−1n!(n − 1)!
e−y2

Hn(y)Hn−1(y)
√
π(y − x)

����
∂Ω

(3.2.1.12)

+

∫
Ω

2x − 2y
x − y

√
1

22n−1n!(n − 1)!
e−y2

Hn(y)Hn−1(y)
√
π

dy

)
(3.2.1.13)

Again, the first term is dominated by e−y2 , which goes to zero when evaluated in the limit.
Simplifying, the relation becomes

Bn(x) =
2an
√

2n
√
π2nn!

∫ ∞

−∞

e−y
2
Hn(y)Hn−1(y)dy. (3.2.1.14)

But the integral is our orthonormal relation, which thus forces the terms to go to zero since the
degrees of the polynomial are different. So, Bn(x) = 0.

Inserting An(x) into Eq. (3.2.10) yields the following relation:

0 =
x − bn

an
(2an) − 2x (3.2.1.15)

So, after re-arranging, we find bn = 0, which is what we wanted. Using the string equation,
Eq. (3.2.11), we get the following relation:

0 =
2(an+1)

2

x − bn
−

2a2
nan−1

(an−1)(x − bn)
−

1
x − bn

(3.2.1.16)
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which reveals that an =
√

n/2, and thus

An(x) =
√

2n

Notice that if we compare Eq. (3.2.1.2) to Eq. (3.2.1), we find that An(x) = An and Bn(x) = Bn.
Conjecture: this relates to the interval of the Hermite polynomials; that is, it is continuous over the
reals.

To solve for the wavefunction, it must first be noted that

e−ν(x)/2 = e−x2/2 (3.2.1.17)

So, plugging all known relations into Eq. (3.2.13), we find that

Ψn(x) =
e−x2/2pn(x)

(2n)
1
4

(3.2.1.18)

Inserting Eq. (3.2.1.3) into Eq. (3.2.1.18) creates the following solution for the wavefunction:

Ψn(x) =
e−x2/2

(22n+1n(n!)2π) 14
Hn(x) (3.2.1.19)

This only leaves the potential energy term. As a recap, we know that

ν′′(x) = 2, an =

√
n
2
, An(x) =

√
2n, A′n(x) = 0

Bn(x)
An(x)

= 0,
A′n(x)
An(x)

= 0, an−1 =

√
n − 1

2
, An−1 =

√
2(n − 1)

Plugging in all known relations into Eq. (3.2.14) yields the solution for the potential energy term:

V(x; n) = 2n + 1 − x2 (3.2.1.20)

Q.E.D. We have solved for the Schrödinger form for the Hermite Polynomials.

3.2.2 Legendre Polynomials
Recall, that the Legendre (spherical) polynomials are defined as

Pn(x, t) := 2F1

(
−n, n + 1

1

����1 − x
2

)
(3.2.2.1)

with the recursion relation

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) (3.2.2.2)

and the monic form, related by Pn(x) =
(2n

n

) Qn(x)
2n

xQn(x) = Qn+1(x) +
n2

(2n − 1)(2n + 1)
Qn−1(x) (3.2.2.3)



69

Comparing Eq. (3.2.2.3) to Eq. (3.2.3) and Eq. (3.2.2) reveals that

bn = 0, cn =
n2

(2n − 1)(2n + 1)
, an =

n√
(2n − 1)(2n + 1)

.

We must now try to derive these relations using Eq. (3.2.6)- Eq. (3.2.8). First, we need the
orthogonality relation for the Legendre polynomials.

〈Pm, Pn〉 =

∫ 1

−1
Pm(x)Pn(x)dx =

2
2n + 1

δmn (3.2.2.4)

To match Eq. (3.2.5), we first define an orthonormal polynomial pn(x) and weight function
polynomial w(x) such that:

pn(x) =

√
2n + 1

2
Pn(x) (3.2.2.5)

w(x) = 1 (3.2.2.6)

So,
ν(x) = ν′(x) = 0 (3.2.2.7)

Let domain Ω = (−1, 1). We can now solve for An(x); after inserting known values, Eq. (3.2.8)
becomes

An(x) = an
(2n + 1)(Pn(y))

2

2(y − x)

����
∂Ω

(3.2.2.8)

Evaluating and simplifying, we find that

An(x) =
an(2n + 1)

1 − x2 (3.2.2.9)

To solve for Bn(x), let’s plug known values into Eq. (3.2.9):

Bn(x) = an

√
(2n + 1)(2n − 1)Pn(y)Pn−1(y)

2(y − x)

����
∂Ω

(3.2.2.10)

Evaluating and simplifying, we find that

Bn(x) =
anx

√
(2n + 1)(2n − 1)

1 − x2 (3.2.2.11)

Inserting An(x), Bn(x) into Eq. (3.2.10) creates the following relation:

anx
√
(2n + 1)(2n − 1)

1 − x2 +
an+1x

√
(2n + 3)(2n + 1)
1 − x2 =

x(2n + 1)
1 − x2 − bn

2n + 1
1 − x2 (3.2.2.12)

which becomes

bn = x

[
1 −

an
√
(2n + 1)(2n − 1)

2n + 1
−

an+1
√
(2n + 3)(2n + 1)

2n + 1

]
(3.2.2.13)
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Since this must hold for all x, bn = 0, which matches the result from observing the orthonormal
recursion relation.

Inserting An(x), Bn(x), bn(x) into the string equation, Eq. (3.2.11), and re-arranging, creates the
following relation:

an+1x2
√
(2n + 3)(2n + 1) − a2

n+1(2n + 3) = anx2
√
(2n + 1)(2n − 1) − a2

n(2n − 1) − 1 (3.2.2.14)

Since this must hold for all x, we can set x = 0, which, after re-arranging, creates the following
relation:

an =

√
(an+1)2(2n + 3) − 1

2n − 1
(3.2.2.15)

The solution to Eq. (3.2.2.15) is

an =
n√

(2n − 1)(2n + 1)

which is the result from the recursion relation. Now that we have an, we can determine several
important quantities:

An(x) =
n

(1 − x2)

√
(2n + 1)
(2n − 1)

(3.2.2.16)

and
Bn(x) =

xn
(1 − x2)

(3.2.2.17)

Now, we can begin solving for the potential energy term:

an−1 =
n − 1√

(2n − 3)(2n − 1)
, An−1(x) =

n
(1 − x2)

√
(2n − 1)
(2n − 3)

,
Bn(x)
An(x)

= x

√
(2n − 1)
(2n + 1)

an

an−1
An(x)An−1(x) =

n2

(1 − x2)2
, A′n(x) =

2xn
(1 − x2)2

√
(2n + 1)
(2n − 1)

,
A′n(x)
An(x)

=
2x

1 − x2

Inserting these relations into Eq. (3.2.14) reveals that the potential energy term is

V(x; n) =
n + n2

1 − x2 +
1

(1 − x2)2
(3.2.2.18)

Using known relations and Eq. (3.2.13), we can also solve for the wavefunction

Ψn(x) =

√
1 − x2

2n

(
4n2 − 1

) 1
4

Pn(x) (3.2.2.19)

Q.E.D, we have solved for the Schrödinger form for the Legendre Polynomials.
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3.2.3 Laguerre Polynomials
Recall, that the Laguerre polynomials are defined as

L(α)n (x) :=
(α + 1)n

n! 1F1

(
−n

α+1

���x) (3.2.3.1)

with the recursion relation

(n + 1)L(α)n+1(x) = (2n + α + 1 − x)L(α)n (x) − (n + α)L
(α)
n−1(x) (3.2.3.2)

and the monic form, related by Qn(x) = n!
(−1)n L(α)n (x)

Qn+1(x) = (x − 2n − α − 1)Qn(x) − n(n + α)Qn−1(x) (3.2.3.3)

Comparing Eq. (3.2.3.3) to Eq. (3.2.3) and Eq. (3.2.2) reveals that bn = 2n+α+1, cn = n(n+α), an =√
n(n + α). We must now try to derive these relations using Eq. (3.2.6)- Eq. (3.2.8). First, we need

the orthogonality relation for the Laguerre polynomials.

〈Lαm, L(α)n 〉 =

∫ ∞

0
L(α)n (x)L

α
m(x)e−x xαdx =

Γ(n + α + 1)
n!

δnm, α > −1 (3.2.3.4)

To match Eq. (3.2.5), we first define an orthonormal polynomial pn(x) and weight function
polynomial w(x) such that:

pn(x) = (−1)n
√

n!
Γ(n + α + 1)

L(α)n (3.2.3.5)

w(x) = e−x xα (3.2.3.6)

So,
ν(x) = x − α ln(x) ν′(x) =

x − α
x

ν′′(x) =
α

x2 (3.2.3.7)

Let domain Ω = (0,∞). We can now solve for An(x); after inserting known values, Eq. (3.2.8)
becomes

An(x) = an
e−yyα(pn(y))

2

(y − x)

����
∂Ω

+
αan

x

∫
Ω

p2
n(y)e−yyα−1dy (3.2.3.8)

Now, at y = 0, the yα term causes the first term to go to zero, and, as y → ∞, e−y causes the term
to go to zero again. So, the first term goes away. To solve the second term, we do an integration by
parts. Set u = p2

n(y)e−y, dv = yα−1dy, and you get

An(x) =
an

x
e−yyα(pn(y))

2
����
∂Ω

+
an

x

∫
Ω

p2
n(y)e−yyαdy −

an

x

∫
Ω

2pn(y)p′n(y)e−yyαdy

The first term goes to zero for the same reason the previous first term went to zero. Now, p′n(y) is
a polynomial of degree at most n − 1. Therefore, by Theorem 1.5.6, the third term is zero. The
integral in middle term is our orthonormal relation, and is 1. Therefore, we find that

An(x) =
an

x
(3.2.3.9)
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To solve for Bn(x), let’s plug known values into Eq. (3.2.9):

Bn(x) = an
e−yyαpn(y)pn−1(y)

(y − x)

����
∂Ω

+
αan

x

∫
Ω

pn(y)pn−1(y)e−yyα−1dy (3.2.3.10)

The first term goes away again, and we tackle the second term via integration by parts. Set
u = pn(y)pn−1(y)e−y, dv = yα−1dy, and you get

Bn(x) =
an

x
e−yyαpn(y)pn−1(y)

����
∂Ω

−
an

x

∫
Ω

p′n(y)pn−1(y)e−yyαdy

−
an

x

∫
Ω

pn(y)p′n−1(y)e
−yyαdy +

an

x

∫
Ω

pn(y)pn−1(y)e−yyαdy

The first term goes to zero, the last term goes to zero due to orthogonality, and, since p′n−1(y) is a
polynomial of degree at most n − 2, the third term goes to zero. This only leaves the second term.

Bn(x) = −
an

x

∫
Ω

p′n(y)pn−1(y)e−yyαdy

Now, observe for any orthogonal polynomial Rn(x) that we can write Rn(x) = rn,nxn + πn(x) where
πn(x) is a polynomial of degree at most n − 1 and rn,n is the coefficient of xn in Rn. So,∫

Ω

(Rn)
2w(x)dx =

∫
Ω

Rn(rn,nxn + π(x))w(x)dx = rn,n

∫
Ω

Rnxnw(x)dx

That is, we can freely switch between having an OPS or just xn times some coefficient in our
integral. Since pn(x) = on,nxn + πn(x), we have that p′n(x) = non,nxn−1 + π′n(x), where on,n is a
coefficient, πn(x) is a polynomial of degree at most n − 1 and π′n(x) is at most degree n − 2. Also,
pn(x) = on−1,n−1xn−1 + πn−1(x), where πn−1(x) is a polynomial of degree at most n − 2. With all of
this in mind, we can first replace p′n(x) with non,nxn−1 in our integral, and then replace xn−1 with
pn−1(x)
on−1,n−1

. So now we have

Bn(x) = −
non,nan

xon−1,n−1

∫
Ω

(pn−1(y))
2e−yyαdy = −

non,nan

xon−1,n−1

Now, the question is, what are our coefficients? Well, looking at the generic recursion relation,
Eq. (3.2.3), we see that the coefficient of xn in pn(x) is on,n = (a1a2...an)

−1 (write out a generic
ONPS for yourself to check, a big giveaway is to solve for pn+1(x) and see that the coefficient of
xn+1 is determined by the xpn(x)/an+1 term). So, on,nan/on−1,n−1 = 1, and we find that

Bn(x) = −
n
x

(3.2.3.11)

Inserting An(x), Bn(x) into Eq. (3.2.10) creates the following relation:

−
n
x
−

n + 1
x
=

x − bn

an

an

x
−

x − α
x

(3.2.3.12)

which becomes

bn = α + 2n + 1



73

Inserting An(x), Bn(x), bn(x) into the string equation, Eq. (3.2.11) creates

−
n + 1

x
+

n
x
=

a2
n+1

x(x − bn)
−

a2
n

x(x − bn)
−

1
x − bn

Which becomes after re-arranging, the following relation:

bn = a2
n+1 − a2

n = α + 2n + 1 (3.2.3.13)

where the solution for bn was inserted on the far right. The solution to Eq. (3.2.3.13) is

an =
√

n(n + α)

which is the result from the recursion relation. Now that we have an, we can determine several
important quantities:

An(x) =

√
n(n + α)

x
, Bn(x) = −

n
x
, an−1 =

√
(n − 1)(n − 1 + α)

An−1(x) =

√
(n − 1)(n − 1 + α)

x
,

Bn(x)
An(x)

= −

√
n

n + α
, an =

√
n(n + α)

an

an−1
An(x)An−1(x) =

n(n + α)
x2 , A′n(x) = −

√
n(n + α)

x2 ,
A′n(x)
An(x)

= −
1
x

(3.2.3.14)

Inserting these relations and Eq. (3.2.3.7) into Eq. (3.2.14) reveals that the potential energy term is

V(x; n) =
−x2 + 2x(α + 1 + 2n) + 1 − α2

4x2 (3.2.3.15)

Using known relations and Eq. (3.2.13), we can also solve for the wavefunction

Ψn(x) =
x

1
2 (α+1)e−x/2L(α)n (x)

(n(n + α))
1
4

√
n!

Γ(n + α + 1)
(3.2.3.16)

Q.E.D, we have solved for the Schrödinger form for the Laguerre Polynomials.

3.2.4 Chebyshev Polynomials of the First Kind
Recall that the Chebyshev Polynomials of the First Kind are defined as

Tn(x) := 2F1

(
−n,n

1/2

���1 − x
2

)
(3.2.4.1)

with recursion relation

Tn+1(x) = 2xTn(x) − Tn−1(x) n ≥ 1, T0(x) = 1, T1(x) = x (3.2.4.2)

and the monic recursion relation, related by Qn(x) = 2−nTn(x)

Qn+1(x) = xQn(x) −
1
4

Qn−1(x) n ≥ 1, Q0(x) = 1, Q1(x) =
x
2

(3.2.4.3)



74

Comparing Eq. (3.2.4.3) to Eq. (3.2.3) and Eq. (3.2.2) reveals that bn = 0, cn = 1/4, an = 1/2.
We must now try to derive these relations using Eq. (3.2.8) - Eq. (3.2.6). First, we need the
orthogonality relation for the Chebyshev polynomials of the First Kind.∫ 1

−1
Tn(x)Tm(x)(1 − x2)−1/2dx =

{
π
2 δnm, if n , 0
πδnm, if n = 0

(3.2.4.4)

To match Eq. (3.2.5), we first define an orthonormal polynomial pn(x) and weight function poly-
nomial w(x) such that:

pn(x) =

√
1

Kn
Tn(x) Kn =

{
π
2, if n , 0
π, if n = 0

(3.2.4.5)

w(x) = (1 − x2)−1/2 (3.2.4.6)

So,

ν(x) =
1
2

ln
(
1 − x2

)
, ν′(x) =

−x
1 − x2 , ν

′′ = −
1 + x2

1 − x2 (3.2.4.7)

Let domain Ω = (−1, 1). We can now solve for An(x) and Bn(x). If we try to evaluate Eq. (3.2.8)
or Eq. (3.2.9) at −1 and 1, we encounter difficulties such as division by zero. Instead, we shall first
take a bit of a detour to prove a useful lemma that will allow us to derive the An(x) and Bn(x) an
alternate way.1.

Lemma 3.2.3. For n = 1, 2, 3...

(1 − x2)Un−1(x) = xTn(x) − Tn+1(x)

Proof. We invoke the trigonometric identity of the Chebyshev Polynomial of the First Kind,
Eq. (1.9.5.3), and also remembering that x = cos θ,

Tn+1(x) = cos(n + 1)θ
= cos nθ cos θ − sin nθ sin θ

= xTn(x) −
sin nθ
sin θ

sin2 θ = xTn(x) − (1 − x2)Un−1(x)

where we used Eq. (1.9.5.6) for the final substitution. Now, just arrange for Tn(x). �

Theorem 3.2.4. The Chebyshev Polynomials of the First Kind, Tn(x), satisfy the following differ-
ential equation:

T ′n(x) =
n

1 − x2Tn−1(x) −
nx

1 − x2Tn(x) (3.2.4.8)

or, after multiplying through by
√

1/Kn

p′n(x) =
n

1 − x2 pn−1(x) −
nx

1 − x2 pn(x) (3.2.4.9)

1Proof of Lemma 3.2.3 and Eq. (3.2.4.8) courtesy of Dr. Boon Wee Amos Ong, Professor of Mathematics at The
Pennsylvania State University, Behrend
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Proof.

T ′n(x) =
d
dx
(cos nθ) =

dθ
dx

d
dθ
(cos nθ)

=
1

− sin θ
(−n sin nθ)

= nUn−1(x) =
1

1 − x2

(
n(1 − x2)Un−1(x)

)
=

1
1 − x2 (nxTn(x) − nTn+1(x))

=
1

1 − x2 (nxTn(x) − 2xnTn(x) + nTn−1)

=
n

1 − x2Tn−1(x) −
nx

1 − x2Tn(x)

whereLemma3.2.3was used in the fourth line and theThreeTermRecurrenceRelation, Eq. (1.9.5.9),
was used in the fifth line. �

Comparing Eq. (3.2.4.9) to Eq. (4.1.2.1) yields An(x) and Bn(x), along with notable terms

An(x) =
n

1 − x2 , Bn(x) =
nx

1 − x2 , An+1(x) =
n + 1
1 − x2

Bn+1(x) =
(n + 1)x
1 − x2 , An−1(x) =

n − 1
1 − x2 , A′n(x) =

2xn
(1 − x2)2

(3.2.4.10)

Inserting into Eq. (3.2.10) yields

2xn + x
1 − x2 =

x − bn

an

n
1 − x2 +

x
1 − x2 (3.2.4.11)

or, after re-arranging,
x − bn = 2xan (3.2.4.12)

Since this must be valid for all x, including x = 0, we get for free that bn = 0 and an = 1/2, which
is what we were looking for. If we want to still use the string equation Eq. (3.2.11) to verify, we get

x
1 − x2 =

an+1
x − bn

n + 1
1 − x2 −

a2
n

an−1

n − 1
1 − x2

1
x − bn

−
1

x − bn
(3.2.4.13)

which becomes after multiplying by (x − bn)(1 − x2)

(x − bn)x = an+1(n + 1) −
a2

n

an−1
(n − 1) + x2 − 1

and then we can insert Eq. (3.2.4.12) to get

2x2an = an+1(n + 1) −
a2

n

an−1
(n − 1) + x2 − 1

To move ahead, we take a leap of faith and hope that an is a constant independent of the index. That
is, an = an−1 = an+1 = a. Thus we have

2x2a = a(n + 1) − a(n − 1) + x2 − 1
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which becomes, after algebra,

2a(x2 − 1) = x2 − 1, or a =
1
2

which means, from Eq. (3.2.4.12), that bn = 0. To find our wavefunction, Eq. (3.2.13)

Ψn(x) =

√
2
πn
[1 − x2]

1
4 Tn(x) (3.2.4.14)

For the potential energy term, we insert an, bn and the relations found in Eq. (3.2.4.10) into
Eq. (3.2.14) to get

V(x; n) =
n2 + 1

2
1 − x2 +

3
4

x2

(1 − x2)2
(3.2.4.15)

Q.E.D. We have solved the Schrödinger form for the Chebyshev Polynomials of the First Kind.
Now, let’s observe the Chebyshev Polynomials of the Second Kind.

3.2.5 Chebyshev Polynomials of the Second Kind
Recall that the Chebyshev Polynomials of the Second Kind are defined as

Un(x) := (n + 1)2F1

(
−n,n+2

3/2

���1 − x
2

)
(3.2.5.1)

with recursion relation

Un+1(x) = 2xUn(x) −Un−1(x) n ≥ 0, U0(x) = 1 (3.2.5.2)

and the monic recursion relation, related by Qn(x) = 2−nUn(x)

Qn+1(x) = xQn(x) −
1
4

Qn−1(x) n ≥ 0, Q0(x) = 1 (3.2.5.3)

Comparing Eq. (3.2.5.3) to Eq. (3.2.3) and Eq. (3.2.2) reveals that bn = 0, cn = 1/4, an = 1/2. We
now attempt to derive these terms. First, we need the orthogonality relation for the Chebyshev
polynomials of the Second Kind.∫ 1

−1
Un(x)Um(x)(1 − x2)1/2dx =

π

2
δnm (3.2.5.4)

To match Eq. (3.2.5), we first define an orthonormal polynomial pn(x) and weight function poly-
nomial w(x) such that:

pn(x) =

√
2
π

Un(x) (3.2.5.5)

w(x) = (1 − x2)1/2 (3.2.5.6)

So,

ν(x) = −
1
2

ln
(
1 − x2

)
, ν′(x) =

x
1 − x2 , ν

′′ =
1 + x2

1 − x2 (3.2.5.7)
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Let domain Ω = (−1, 1). We can now solve for An(x) and Bn(x). If we try to evaluate Eq. (3.2.8)
or Eq. (3.2.9) at −1 and 1, we encounter difficulties such as division by zero. Instead, we shall first
take a bit of a detour to prove a useful lemma that will allow us to derive the An(x) and Bn(x) an
alternate way.2.

Lemma 3.2.5. For n = 1, 2, 3...

Tn(x) = Un(x) − xUn−1(x)

Proof. We invoke the trigonometric identity of the Chebyshev Polynomial of the Second Kind,
Eq. (1.9.5.6), and also remembering that x = cos θ,

Un(x) =
1

sin θ
sin(n + 1)θ

=
1

sin θ
(sin nθ cos θ + cos nθ sin θ)

= xUn−1(x) + Tn(x)

where we invoked Eq. (1.9.5.3) in the final substitution. �

Theorem 3.2.6. The Chebyshev Polynomials of the Second Kind, Un(x), satisfy the following
differential equation:

U′n(x) =
n + 1
1 − x2 Un−1(x) −

nx
1 − x2 Un(x) (3.2.5.8)

or, after multiplying through by
√

2/π

p′n(x) =
n + 1
1 − x2 pn−1(x) −

nx
1 − x2 pn(x) (3.2.5.9)

Proof.

U′n(x) =
d
dx

(
1

sin θ
sin(n + 1)θ

)
=

dθ
dx

d
dθ

(
1

sin θ
sin(n + 1)θ

)
=

1
− sin θ

(
(n + 1) cos(n + 1)θ sin θ − sin(n + 1)θ cos θ

sin2 θ

)
=
(n + 1) cos(n + 1)θ

− sin2 θ
−

sin(n + 1)θ cos θ
− sin θ sin2 θ

= −
n + 1

1 − cos2 θ
Tn+1(x) +

cos θ
1 − cos2 θ

Un(x)

= −
n + 1
1 − x2Tn+1(x) +

x
1 − x2 Un(x)

2Proof of Lemma 3.2.5 and Eq. (3.2.5.8) courtesy of Dr. Boon Wee Amos Ong, Professor of Mathematics at The
Pennsylvania State University, Behrend
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Now, using Lemma 3.2.5 shows

U′n(x) = −
n + 1
1 − x2 (Un+1(x) − xUn(x)) +

x
1 − x2 Un(x)

=
x(n + 1)
1 − x2 Un(x) +

x
1 − x2 Un(x) −

n + 1
1 − x2 Un+1(x)

=
xn + 2x
1 − x2 Un(x) −

n + 1
1 − x2 (2xUn(x) −Un − 1(x))

=
n + 1
1 − x2 Un−1(x) −

nx
1 − x2 Un(x)

where the Three Term Recurrence Relation, Eq. (1.9.5.10), was used in the second to last step. �

Comparing Eq. (3.2.5.9) to Eq. (4.1.2.1) yields An(x) and Bn(x), along with notable terms

An(x) =
n + 1
1 − x2 , Bn(x) =

nx
1 − x2 , An+1(x) =

n + 2
1 − x2

Bn+1(x) =
(n + 1)x
1 − x2 , An−1(x) =

n
1 − x2 , A′n(x) =

2x(n + 1)
(1 − x2)2

(3.2.5.10)

Inserting into Eq. (3.2.10) yields

2xn + x
1 − x2 =

x − bn

an

(n + 1)
1 − x2 −

x
1 − x2 (3.2.5.11)

or, after re-arranging,
x − bn = 2xan (3.2.5.12)

Since this must be valid for all x, including x = 0, we get for free that bn = 0 and an = 1/2, which
is what we were looking for. If we want to still use the string equation Eq. (3.2.11) to verify, we get

x
1 − x2 =

an+1
x − bn

n + 2
1 − x2 −

a2
n

an−1

n
1 − x2

1
x − bn

−
1

x − bn
(3.2.5.13)

which becomes after multiplying by (x − bn)(1 − x2)

(x − bn)x = an+1(n + 2) −
a2

n

an−1
n + x2 − 1

and then we can insert Eq. (3.2.4.12) to get

2x2an = an+1(n + 2) −
a2

n

an−1
n + x2 − 1

To move ahead, we take a leap of faith and hope that an is a constant independent of the index. That
is, an = an−1 = an+1 = a. Thus we have

2x2a = a(n + 2) − an + x2 − 1
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which becomes, after algebra,

2a(x2 − 1) = x2 − 1, or a =
1
2

which means, from Eq. (3.2.4.12), that bn = 0.
The solution to our wavefunction,is thus, from Eq. (3.2.13),

Ψn(x) =

√
2

π(n + 1)
[1 − x2]

3
4 Un(x) (3.2.5.14)

For the potential energy term, we insert an, bn and the relations found in Eq. (3.2.4.10) into
Eq. (3.2.14) to get

V(x; n) =
(n + 1)2

1 − x2 +
1
2 x2 + 1

4
(1 − x2)2

(3.2.5.15)

Q.E.D. We have solved the Schrödinger form for the Chebyshev Polynomials of the Second Kind.
We are now ready to state a conjecture.

3.3 Conjecture
Before continuing, we would like to focus on an important development. Begin by noticing that

the domain for the Legendre Polynomials are

Ω = (−1, 1)

and we have

An(x) =
n

(1 − x2)

√
(2n + 1)
(2n − 1)

Bn(x) =
xn

(1 − x2)

V(x; n) =
n + n2

1 − x2 +
1

(1 − x2)2

which are all discontinuous at −1 and 1. We also have the wavefunction,

Ψn(x; n) =

√
1 − x2

2n

(
4n2 − 1

) 1
4

Pn(x)

which goes to zero as x goes to 1 or −1.
Also, notice that for the Hermite Polynomials,

Ω = (−∞,∞)

and we have

Bn(x) = 0, An(x) =
√

2n, V(x; n) = 2n + 1 − x2



80

which are all continuous everywhere. We also have the wave function

Ψ =
e−x2/2

(22n+1n(n!)2π) 14
Hn(x)

which goes to zero in the limit as x goes to infinity from the decaying exponential term.
For the Laguerre Polynomials,

Ω = (0,∞)

and we have

Bn(x) = −
n
x

An(x) =

√
n(n + α)

x

V(x; n) =
−x2 + 2x(α + 1 + 2n) + 1 − α2

4x2

which are all discontinuous at 0. We also have the wave function

Ψn(x) =
x

1
2 (α+1)e−x/2L(α)n (x)

(n(n + α))
1
4

√
n!

Γ(n + α + 1)

which goes to zero in the limit as x goes to infinity from the decaying exponential term, and is also
zero when evaluated at x = 0.

For the Chebyshev Polynomials of the First Kind

Ω = (−1, 1)

and we have

An(x) =
n

1 − x2 , Bn(x) =
nx

1 − x2

V(x; n) =
n2 + 1

2
1 − x2 +

3
4

x2

(1 − x2)2

which are all discontinuous at 1 and −1. We also have the wavefunction

Ψn(x; n) =

√
2
πn
[1 − x2]

1
4 Tn(x)

which goes to zero as x goes to 1 or −1.
And finally for the Chebyshev Polynomials of the Second Kind

Ω = (−1, 1)

and we have

An(x) =
n + 1
1 − x2 , Bn(x) =

nx
1 − x2

V(x; n) =
(n + 1)2

1 − x2 +
1
2 x2 + 1

4
(1 − x2)2
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which are discontinuous at 1 and −1. We also have the wavefunction

Ψn(x; n) =

√
2

π(n + 1)
[1 − x2]

3
4 Un(x)

which goes to zero as x goes to 1 or −1.

Conjecture 3.3.1. The variable coefficients An(x) and Bn(x) and the potential energy V(x; n) for
anyOPS are discontinuous at the boundary of the domainΩ of the polynomial, and the wavefunction
Ψ(x; n) goes to zero as x approaches either boundary term.

This remains to be proven.
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Chapter 4

Applications in Physics and Numerical
Analysis
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4.1 Applications

4.1.1 A Physicist’s Introduction
Orthogonal polynomial sequences make the occasional appearance within the contexts of

physics. Here, we will cover the two instances that should be familiar with every undergradu-
ate physicist. Note: dots above a function correspond to time derivatives, primes some other,
usually position, derivative.

Electrostatics

An object with charge density ρ generates an electric field

E(r) =
1

4πε0

∫
τ

ρ r dτ
| |r| |3

(4.1.1.1)

where ε0 is the permittivity of free space, and τ represents some volume. Now, the electric field is
a conservative vector field; that is, it is the gradient of some scalar function. That function is the
(negative of the) electric potential V(r). That is, if ∇ represents the gradient,

E(r) = −∇V(r) (4.1.1.2)

Now, when calculating the flux of the electric field, we encounter Gauss’s Law, the first of
what are known as Maxwell’s Equations, named after James Clerk Maxwell. If we construct some
Gaussian surface, with outward normal unit vector n̂ and surface area A, enclosing some charge
qenc, we get, where · is the dot product,∫

A
E(r)·n̂dA =

qenc

ε0
(4.1.1.3)

Now, we take note that if the Gaussian surface is enclosing some charge density ρ, we have

qenc =

∫
τ
ρdτ (4.1.1.4)

and, from Green’s Theorem, ∫
τ
∇·E(r)dτ =

∫
A
E(r)·n̂dA (4.1.1.5)

where τ is the volume enclosed by the Gaussian surface.

Definition 4.1.1. If v vector, ∇·v is called the divergence of v. In Cartesian coordinates:

v = v(x, y, z)

∇·v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
(4.1.1.6)

In Spherical coordinates:

v = v(r, θ, φ)

∇·v =
1
r2

∂

∂r
(r2vr) +

1
r sin θ

∂

∂θ
(sin θvθ) +

1
r sin θ

∂vφ

∂φ

(4.1.1.7)
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Thus, replacing the l.h.s of Eq. (4.1.1.3) with Eq. (4.1.1.5), and the r.h.s with Eq. (4.1.1.4), we
get ∫

τ
∇·E(r)dτ =

1
ε0

∫
τ
ρdτ

or
∇·E(r) =

ρ

ε0
(4.1.1.8)

Eq. (4.1.1.8) is fundamental to the study of electromagnetism, and is referred to as the Differential
Form of Gauss’s Law. Now, inserting Eq. (4.1.1.8) into Eq. (4.1.1.2) yields

∇2V(r) = −
ρ

ε0
(4.1.1.9)

Definition 4.1.2. The operator ∇2 = ∇·∇ is called the Laplace operator, and, if f scalar function,
∇2 f is the Laplacian of f .

In Cartesian coordinates:

f = f (x, y, z)

∇2 f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2

(4.1.1.10)

In Spherical coordinates:

f = f (r, θ, φ)

∇2 f =
1
r2

∂

∂r

(
r2 ∂ f
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
r2 sin2 θ

∂2 f
∂φ2

(4.1.1.11)

Eq. (4.1.1.9) is called the Poisson Equation, and is an Elliptical Partial Differential Equation.
If we set ρ = 0, we have

∇2V(r) = 0 (4.1.1.12)

Eq. (4.1.1.12) is called Laplace’s Equation. Note: It is made clear in [11] that this does not state the
charge density is 0, otherwise, there would not be an electric potential! This is simply stating that
we are looking in a charge-free region for an electric potential that is generated by charges located
somewhere else.

Now, given initial values and boundary conditions, the solutions to Eq. (4.1.1.12) are unique.
For one dimension, the solution is a linear equation. For two dimensions, which is solved using the
separation of variables technique, the solution is usually a Fourier Series tampered by a decaying
exponential. We shall focus on the three-dimensional Laplacian. We will concern ourselves with
situations that have azimuthal symmetry, where the electric potential V is independent of φ, which
suggests using spherical coordinates. Thus, Laplace’s Equation becomes, via Eq. (4.1.1.11),

1
r2

∂

∂r

(
r2 ∂V
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂V
∂θ

)
= 0 (4.1.1.13)

Now, we use separation of variables

V(r, θ) = R(r)Θ(θ)



85

to get
1
R
∂

∂r

(
r2 ∂R
∂r

)
= −

1
Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
(4.1.1.14)

The l.h.s of Eq. (4.1.1.14) is a function of r , and the r.h.s is a function of θ. They can only be equal
if they both equal a constant.

1
R
∂

∂r

(
r2 ∂R
∂r

)
= `(` + 1),

1
Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
= −`(` + 1) (4.1.1.15)

The radial equation
∂

∂r

(
r2 ∂R
∂r

)
= R`(` + 1) (4.1.1.16)

has solution
R(r) = A`r` +

B`
r`+1 (4.1.1.17)

and the angular equation
∂

∂θ

(
sin θ

∂Θ

∂θ

)
= −Θ sin θ`(` + 1) (4.1.1.18)

has solution
Θ(θ) = P`(cos θ) (4.1.1.19)

where P`(cos θ) are the Legendre Orthogonal Polynomials! A physicist defines them not in terms
of hypergeometric functions, but via the Rodrigues formula

P`(x) =
1

2``!

( d
dx

)`
(x2 − 1)` (4.1.1.20)

Thus, the general solution is, via the Principle of Superposition,

V(r, θ) =
∞∑̀
=0

(
A`r` +

B`
r`+1

)
P`(cos θ) (4.1.1.21)

We will now work through one example.
Consider a sphere of radius R with the following electric potential, written in terms of both θ

and x = cos θ:

V(r, θ) =


V0, 0 < θ < π

4, r = R
0, π

4 < θ < 3π
2 , r = R

V0,
3π
2 < θ < π, r = R

0, r →∞

V(r, x) =


V0, 1 < x < 1√

2
, r = R

0, 1√
2
< x < −1√

2
, r = R

V0,
−1√

2
< x < −1, r = R

0, r →∞

(4.1.1.22)

Find the first three non-zero terms in the explicit equation for the electric potential.
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We begin by observing that the condition V(r → ∞) = 0 implies that A in Eq. (4.1.1.21) is
zero, as that term will blow-up otherwise. Thus, we start with

V(r, θ) =
∞∑

m=0

Bm

rm+1 Pm(cos θ) (4.1.1.23)

Define Vm(θ) as

Vm(θ) = V(R, θ) =
∞∑̀
=0

Bm

Rm+1 Pm(cos θ) (4.1.1.24)

Now, upon observingEq. (4.1.1.22)we see that the electric potential is even. Using the orthogonality
of the Legendre polynomials, Eq. (1.9.6.2), we have∫ π

0
Pn(cos θ)Vm(θ) sin θdx =

∫ π

0
Pn(cos θ)

∞∑
m=0

Bm

Rm+1 Pm(cos θ)dx

=
2Bn

(2n + 1)Rn+1 δnm

or, re-arranging for Bn, integrating over x, and, since V0(θ) is even, multiplying by a factor of 2 and
integrating over half the domain yields

Bn = (2n + 1)Rn+1
∫ 1

0
Pn(x)Vm(x)dx = (2n + 1)V0Rn+1

∫ 1

1√
2

Pn(x)dx (4.1.1.25)

Since V0(θ) is even, the first three non-zero terms co-efficients are B0, B2 and B4 So, we need
P0(x), P2(x) and P4(x).

P0(x) = 1

P2(x) =
3x2 − 1

2

P4(x) =
35x4 − 30x2 + 3

8

Thus, we have

B0 = V0R
∫ 1

1√
2

dx = V0R
(
1 −

1
√

2

)
B2 = 5V0R3

∫ 1

1√
2

3x2 − 1
2

dx =
5
2

V0R3
(
x3 − x

)1

1√
2

=
5

4
√

2
V0R3

B4 = 9V0R5
∫ 1

1√
2

35x4 − 30x2 + 3
8

dx =
9
8

V0R5
(
7x5 − 10x3 + 3x

)1

1√
2

=
9

32
√

2
V0R5

(4.1.1.26)
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Thus, our electric potential to three terms (which is practical enough) is

V(r, θ) =V0

[
R
r

(
1 −

1
√

2

)
+

R3

r3
5

4
√

2

(
1 −

3
2

sin2 θ
)

+
R5

r5
9

256
√

2

(
35 cos4 θ − 30 cos2 θ + 3

)] (4.1.1.27)

We now cover the second usage of orthogonal polynomials in introductory physics.

Quantum Harmonic Oscillator

The journey to the quantum harmonic oscillator is one that stretches 19th and early 20th century
physics.

Definition 4.1.3. The Lagrangian J = J(q, Ûq) of a system with kinetic energyT and potential energy
V is defined with generalized coordinates q, Ûq as

J(q, Ûq) := T( Ûq) − V(q)

whose action is defined as

S =
∫

Jdt

If there are multiple objects within the system, the kinetic and potential terms, T and V
respectively, may be sums. Lagrangians were introduced in the 18th century by Joseph-Louis
Lagrange; however, they really came into importance in the mid-19th century due to the following
principle by Irish mathematician Sir William Rowan Hamilton.

Theorem 4.1.4 (Hamilton’s Principle). Given two different states that describe the coordinates of
a physical system, the variation between the states is zero. Thus, the action is minimized, that is the
functional derivative of the action is

δS =
∫

δJdt = 0 (4.1.1.28)

Corollary 4.1.4.1. Due to Hamilton’s Principle, the Euler-Lagrange Equation is true, where the
Euler-Lagrange Equation is defined as

∂J
∂q
=

d
dt

[∂J
∂ Ûq

]
(4.1.1.29)

Proof. Now, the functional derivative of the Lagrangian is, by definition,

δJ =
∂J
∂q
δq +

∂J
∂ Ûq
δ Ûq (4.1.1.30)

Observe that
d
dt

[∂J
∂ Ûq
δq

]
=

d
dt

[∂J
∂ Ûq

]
δq +

∂J
∂ Ûq
δ Ûq (4.1.1.31)
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Inserting Eq. (4.1.1.31) and Eq. (4.1.1.30) into Eq. (4.1.1.28) reveals∫
δJdt =

∫ [∂J
∂q
−

d
dt

[∂J
∂ Ûq

] ]
δqdt +

∫
d
dt

[∂J
∂ Ûq
δq

]
dt

=

∫ [∂J
∂q
−

d
dt

[∂J
∂ Ûq

] ]
δqdt = 0

(4.1.1.32)

where the second term went to zero because the functional derivative, evaluated at the boundary of
the Lagrangian, is zero as a consequence of Hamilton’s Principle. Now, the r.h.s of Eq. (4.1.1.32)
can only be zero if

∂J
∂q
=

d
dt

[∂J
∂ Ûq

]
(4.1.1.33)

�

We will take as an axiom here that the momentum of the system, linear if q is a translational
coordinate, angular otherwise, is

pq(t) =
∂J
∂ Ûq

(4.1.1.34)

which means, after inserting Eq. (4.1.1.34) into the Euler-Lagrange equation (4.1.1.29) yields

Ûpq(t) =
∂J
∂q

(4.1.1.35)

Since the Lagrangian is amanifestation of the energy of the system, Eq. (4.1.1.34) and Eq. (4.1.1.35)
hint at something bigger.

Theorem 4.1.5. The generalized momentum pq(t) and the corresponding generalized coordinate q
are conjugate pairs.

Before we can offer more evidence of our theorem, we must review Hamilton’s continuation of
Lagrangian mechanics: The Hamiltonian.

Definition 4.1.6. The Hamiltonian H = H(q, pq) is

H =
∑

i

Ûqi pq − L (4.1.1.36)

where
∑

i Ûqi pq is summing over all objects within the system.

Theorem 4.1.7. If the system is conservative, the Hamiltonian is the energy of the system.

Proof. If the system is conservative, then all outside forces are represented within the potential
energy term (as the sum of the forces within the system would be the negative gradient of the
potential energy, in the exact same way the electric field was the negative gradient of the electric
potential in Section 4.1.1). Observe that ∑

i

Ûqi pq = 2T
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(For example, if qi = x, then Ûqi = v and pq = mv. So, Ûqi pq = mv2, which is twice the translational
kinetic energy.) From here, we have

H = 2T − L = 2T − T + V = T + V

Thus, the Hamiltonian is the energy of the system. �

Proof of Theorem 4.1.5. Observe that the functional of the Hamiltonian is, by definition,

δH =
∑

i

∂H
∂qi

δqi +
∂H
∂pq

δpq (4.1.1.37)

So, taking the functional of Eq. (4.1.1.36) reveals

δH =
∑

i

δ[ Ûqi pq] − δL =
∑

i

δ Ûqi pq + Ûqiδpq −
∂J
∂qi

δqi −
∂J
∂ Ûqi

δ Ûqi (4.1.1.38)

Inserting Eq. (4.1.1.34) and Eq. (4.1.1.35) into Eq. (4.1.1.38) yields

δH =
∑

i

δ Ûqi pq + Ûqiδpq − Ûpqδqi − pqδ Ûqi =
∑

i

Ûqiδpq − Ûpqδqi (4.1.1.39)

comparing Eq. (4.1.1.39) to Eq. (4.1.1.37) reveals

∂H
∂pq
= Ûqi,

∂H
∂qi
= − Ûpq (4.1.1.40)

Since the Hamiltonian is the energy of our system, equations 4.1.1.35, 4.1.1.34 and 4.1.1.40 are
direct statements that momentum and position are conjugate pairs. �

Albert Einstein revealed that the energy at the smallest scales is quantized, particularly in the
case of photons. This supported the fact that photons are waves. That is, if ν is the frequency a
photon and h is Planck’s constant, we have, where ~ = h/2π

E = hν = ~ω (4.1.1.41)

Louis DeBrogile revealed that all matter are waves, and that the momentum of quantized matter is,
where λ is the wavelength and k = 2π/λ

p =
h
λ
= ~k (4.1.1.42)

If matter is a wave, then it must solve the wave-equation, an Elliptical Partial Differential Equation
of the form:

∂2Ψ(r, t)
∂t2 = c2 ∂

2Ψ(r, t)
∂r2 (4.1.1.43)

WhereΨ = Ψ(r, t) is called thewavefunction and c is the speed of thewave (often the speed of light).
Erwin Schroedinger, through a famous thought experiment, took Eq. (4.1.1.43), Eq. (4.1.1.41),
Eq. (4.1.1.42) and Eq. (4.1.1.36) to create the Schroedinger equation

i~
∂Ψ

∂t
=

(
−~2

2m
∇2
Ψ + VΨ

)
= ĤΨ (4.1.1.44)
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where

Ĥ =
(
−~2

2m
∇2 + V

)
is called the Hamiltonian operator. Observe that if we claim the momentum is also an operator,
defined as

p = −i~∇ (4.1.1.45)

we get

Ĥ =
( p2

2m
+ V

)
= T + V

which is the Hamiltonian of classical mechanics, Eq. (4.1.1.36), for a conservative system. If we
separate variables and let Ψ = ψ(r)φ(t), we get the time-independent Schroedinger equation, with
(eigen) energy E:

Ĥψ = Eψ (4.1.1.46)

Consider the Taylor expansion of the potential energy term, wherewe are at a small displacement
from a minima x0, which, since we are free to set out coordinate system, we make the origin.

V(x) = V(x0) + V ′(x0)x +
1
2

V ′′(x0)x2 + · · · (4.1.1.47)

V(x0) is the background energy, and, since we set the coordinate system, we make it zero. Since
we are at a minima, V ′(x0) = 0 and, since our displace is small, xn = 0, n ≥ 3. This leaves only
the second order term. Let k = V ′′(x0) be called the spring constant, to yield the potential energy:

V(x) =
1
2

k x2 (4.1.1.48)

which is the potential energy for an idealized spring undergoing harmonic motion, the classic
simple harmonic oscillator. The force F(x) = F with said potential energy is Hooke’s Law, where,
if we have a mass m on the end of a spring with spring constant k

F = −
dV
dx
= −k x = m Üx (4.1.1.49)

Where the r.h.s is from Newton’s Second Law. If we set

ω =

√
k
m

(4.1.1.50)

we get the Second Order Linear Homogeneous Ordinary Differential Equation

Üx + ω2x = 0

with solution
x(t) = A cos(ωt) + B sin(ωt) (4.1.1.51)
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Now, using Eq. (4.1.1.50) our potential energy term becomes

V(x) =
1
2

mω2x2 (4.1.1.52)

This potential energy is applicable to any mass undergoing oscillatory motion under the con-
straints of the derivation of Eq. (4.1.1.48), and this includes diatomic molecules. So, under this
motivation, if we insert Eq. (4.1.1.52) into the time-independent Schroedinger equation (4.1.1.46)
we get the quantum harmonic oscillator(

−~2

2m
d2

dx2 +
1
2

mω2x2
)
ψ = Eψ (4.1.1.53)

We will follow the algebraic technique of [12] to solve this system, with a result that we hope
is surprising.

We begin by reminding ourselves that the momentum in one dimension is p = −i~ d
dx , and thus

our Hamiltonian is
Ĥ =

1
2m
[p2 + (mωx)2] (4.1.1.54)

Since operators do not commute, we can not factor the Hamiltonian in the hopes of simplifying the
problem. Introduce the ladder operators:

a± =
1

√
2~mω

(
∓ ip + mωx

)
(4.1.1.55)

We next introduce the commutator, which ’measures’ the degree operators failure to commute. For
momentum and position operators p and x,

[x, p] = xp − px = i~ (4.1.1.56)

(see [12] for the proof). Now, we find that when we calculate a−a+

a−a+ =
1

2~mω
(
ip + mωx

) (
− ip + mωx

)
=

1
2~mω

[p2 + (mωx)2 − imω[x, p]] =
1
~ω

Ĥ +
1
2

where we used Eq. (4.1.1.56). Also, upon calculating, a+a−, we find

a+a− =
1
~ω

Ĥ −
1
2

Thus, [a,a+] = 1, and

Ĥ = ~ω
(
a∓a± ∓

1
2

)
(4.1.1.57)

We call a± the ladder operators because

Ĥa+ψ = (E + ~ω)ψ

Ĥa−ψ = (E − ~ω)ψ
(4.1.1.58)
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That is, if you know your current energy level E , applying the appropriate ladder operator a± will
raise or lower your energy to E ± ~ω [12].

There must be some energy level ψ0 where we can go no lower. Which would mean

a−ψ0 = 0

So we get

1
√

2~mω

(
~

d
dx
+ mωx

)
ψ0 = 0

or,
dψ0
dx
= −

mω
~

xψ0 (4.1.1.59)

This is a non-linear differential equation, but we can solve it by separation of variables. The solution
is

ψ0 = A0e−
mω
2~ x2

Now, to determine the arbitrary coefficient A0, we use a process called normalization. We begin
by taking note that we are operating in a Hilbert probability space. This is a type of inner-product
space (see Section 1.3) with the requirement that inner-products correspond to probabilities and
must be finite. In particular, if we take the inner product over the domain of the inner-product, we
must get 1. Here, the inner-product is an integral, and the domain is the reals. Thus,

〈ψ0, ψ0〉 = 1 = |A0 |
2
∫ ∞

−∞

e−
mω
~ x2

dx = |A0 |
2
√

π~

mω

Thus, A2
0 =

√
mω/π~, and we have

ψ0 =
(mω
π~

) 1
4 e−

mω
2~ x2

(4.1.1.60)

Now, for the eigen energy E0, via Eq. (4.1.1.57), and keeping in mind that a−ψ0 = 0

Ĥψ = ~ω(a+a−ψ0 +
1
2
ψ0) = E0ψ0 (4.1.1.61)

Thus,
E0 =

1
2
~ω

The general solution for any nth eigen energy is thus obtained using the ladder operations.

ψn(x) = An(a+)nψ0(x), with En = ~ω
(
n +

1
2

)
To find the coefficient An, we assume that, if ∼ means proportional to,

a+ψn ∼ ψn+1 a−ψn ∼ ψn+1
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We then introduce constants of proportionality, and find those constants by normalizing the calcu-
lations of 〈a+ψn, a+ψn〉 and 〈a−ψn, a−ψn〉. We get that

a+ψn =
√

n + 1ψn+1, a−ψn =
√

nψn−1

which means that
ψn(x) =

1
√

n!
(a+)nψ0(x) (4.1.1.62)

Great! So we solved the problem (for the computations of the last few equations, see [12]). But,
the exasperated reader asks, that is great and all, but why is this here? Fret not! For starters, the
inclusion of the ladder operator makes calculations cumbersome. Second, had we used another
approach involving power series instead of algebraic operators, we would have obtained a different
solution. The goal now is to "bridge-the-gap" to that solution. We begin writing out ψ0 explicitly
and multiplying by

√
2n
√

2n
in Eq. (4.1.1.62). We shall keep the denominator

√
2n, but combine the

numerator
√

2n and (a+)n to create a new operator: Hn(y), where

y =

√
mω
~

x

So, in light of these modifications, Eq. (4.1.1.62) becomes

ψn(x) =
(mω
π~

) 1
4 1
√

2nn!
Hn(y)e−

y2
2 (4.1.1.63)

The solution for Hn(y) is
Hn(y) = (−1)ney

2
( d
dy

)n
e−y

2
(4.1.1.64)

which is the Rodrigues formula for the Hermite Orthogonal Polynomials! That is, Hn(y) are are
the Hermite polynomials! Surprised?

4.1.2 Numerical Analysis
The most applicable use of orthogonal polynomial sequences is in numerical analysis, due

to an OPS serving as a basis on the vector space of polynomials. Their main use comes from
approximating integrals. We first begin with a quick introduction for the prerequisite numerical
analysis concepts needed.

Introduction to Interpolation

We first begin by taking a set of numbers, called the nodes, {ti}ni=0 and construct a polynomial
of degree n + 1 whose roots are those numbers. We assume that the nodes are ordered, that is
t0 < t1 < · · · < tn.

Pn(x) =
n∏

i=0
(x − ti) (4.1.2.1)
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Notice that the derivative evaluated at one of the nodes is

P′n(tk) = lim
x→tk

Pn(x)
x − tk

=

n∏
i=0
i,k

(tk − ti) (4.1.2.2)

We now construct a polynomial of degree n using Eq. (4.1.2.2) and Eq. (4.1.2.1).

lk(x) =
Pn(x)

(x − tk)P′n(tk)
=

n∏
i=0
i,k

(x − ti)
(tk − ti)

(4.1.2.3)

Notice that lk has the orthogonality property

lk(t j) = δk j (4.1.2.4)

Which means if the polynomial lk is evaluated at one of the nodes, it will be one if the index of the
node matches the index of the polynomial, and zero otherwise.

Now, if we have another set of numbers, called the ordinates, { f (tk)}
n
k=0, we would like to create

a polynomial of degree at most n that passes through (tk, f (tk)), k ∈ {0, 1, 2, ...n}. That polynomial
is the Lagrange Interpolation Polynomial:

Ln(x) =
n∑

k=0
lk(x) f (tk) (4.1.2.5)

and has the orthogonality property due to Eq. (4.1.2.4)

Ln(t j) =

n∑
k=0

δk j f (tk) = f (t j) j ∈ {0, 1, 2, ...n} (4.1.2.6)

To continue, we must introduce a foundational theorem from Analysis.

Theorem 4.1.8. The Weierstrass-Approximation Theorem Let f = f (x), x ∈ R be a continuous
function on some interval [a, b]. Then, ∀ε > 0 there exists some polynomial p(x) = p continuous
on [a, b] such that | f (x) − p(x)| < ε

Say we have some phenomenon in science or engineering that is governed by some function
f (x), but we do not know what this function is; all we can do is record data at different nodes
t to receive the ordinates f (t). From the Weierstrass Approximation Theorem, we know that for
a function on any compact interval [a, b] (where, for us, a = t0 and b = tn), we can construct a
polynomial to approximate that function. Hence, the motivation for this process. Let’s cover an
example: Say we are given the follow data:

t f (t)
0.5 0.4862
0.6 0.5543
0.7 0.6321
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Create an interpolation polynomial to fit this data.
First, we find our lk polynomials.

l0(x) =
(x − 0.6)(x − 0.7)
(0.5 − 0.6)(0.5 − 0.7)

l1(x) =
(x − 0.5)(x − 0.7)
(0.6 − 0.5)(0.6 − 0.7)

l2(x) =
(x − 0.5)(x − 0.6)
(0.7 − 0.5)(0.7 − 0.6)

Thus, our interpolation polynomial is

L2(x) = 0.4862l0 + 0.5543l1 + 0.6321l2

Introduction to Gaussian Quadrature

We now introduce the concept of quadrature. The word "quadrature" means to rectify, or to
"square", a shape. The ancient Greeks would use quadrilaterals and triangles to accomplish this,
and their hope was that they could find the area of any shape using inscribed quadrilaterals and
triangles. Of course, it was later proven that quadrature of a circle is impossible, hence the phrase
"You can’t square a circle." In modern mathematics, a common problem is trying to approximate
an integral as a finite series. That is, if f (x) continuous on some interval [a, b], then∫ b

a
f (x)dx ≈

n∑
i=0

f (xi)∆x

Since integrals are related to the area under a function on a graph, this process is called Gaussian
quadrature. There are manymethods of doing this: Rectangular, Midpoint, Trapezoidal, Simpson’s
etc. Here, we will observe another method involving orthogonal polynomials and interpolation
polynomials.

Now, let π(x) be any polynomial of degree at most 2n − 1, and we re-introduce the positive-
definite operator L, where, if w(x) is some weight function on a domain Ω

L[ f (x)] =
∫
Ω

f (x)w(x)dx (4.1.2.7)

(see Eq. (1.5.2) in the introduction for a refresher on this topic). Now, of course, every orthogonal
polynomial {Pn(x)}∞n=0 sequence has an associated L. That is, if Kn is some constant called the
squared norm, then

L[Pn(x), Pm(x)] =
∫
Ω

Pn(n)Pm(x)w(x)dx = Knδnm (4.1.2.8)

Now, create the Lagrange interpolation polynomial of degree n − 1 for our polynomial π(x).

Ln(x) =
n∑

k=1
π(tk)lk(x), lk(x) =

Pn(x)
(x − tk)P′n(tk)

(4.1.2.9)

where Pn(x) is our orthogonal polynomial of degree n and {tk}
n
k=1 is the set of its roots.
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Theorem 4.1.9. L[π(x)] = L[Ln(x)]. That is,∫
Ω

π(x)w(x)dx = L[π(x)] = L[Ln(x)] =
n∑

k=1
λkπ(tk)

See [1] for more details on the proof.

Definition 4.1.10. The Christoffel Numbers λk are defined as

λk = L[lk(x)] =
∫
Ω

Pn(x)w(x)dx
(x − tk)P′n(tk)

(4.1.2.10)

Corollary 4.1.10.1. If f (x) continuous and differentiable on Ω, then∫
Ω

f (x)w(x)dx ≈
n∑

k=1
λk f (tk)

Let’s see an example using a polynomial. Evaluate
∫ ∞
−∞
(3x2 − 2x2)e−x2dx. We begin by setting

π(x) = 3x3 − 2x2, Ω = (−∞,∞), and w(x) = e−x2 . We recognize that this weight function and
domain are associated with the Hermite polynomials, {Hn}

∞
n=0 (Eq. (1.8.3.2)). Since deg(π(x)) = 3,

we need H3(x),H′3(x) and its roots.

H3(x) = x3 −
3
2

x, H′3(x) = 3x2 −
3
2

with roots:

x1 = 0, x2 =

√
3
2
, x3 = −

√
3
2

Now, we evaluate both H′3(x) and π(x) with the roots of H3(x).

Index (k) xk H′3(xk) π(xk)

1 0 3
2 0

2
√

3/2 3 3
( [

3/2
]3/2
− 1

)
3 −

√
3/2 3 −3

( [
3/2

]3/2
+ 1

)
Next, we evaluate the Christoffel Numbers using the values in the table and The Gamma Function
(see Eq. (1.5.3) in the introduction for more details).

λ1 =

∫ ∞

−∞

(x3 − 3
2 x)e−x2dx

(−3
2 )(x − 0)

=
2π
3

λ2 =

∫ ∞

−∞

(x3 − 3
2 x)e−x2dx

3
(
x −

√
3
2

) =

√
π

6

λ3 =

∫ ∞

−∞

(x3 − 3
2 x)e−x2dx

3
(
x +

√
3
2

) =

√
π

6
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Thus, we get ∫ ∞

−∞

(3x2 − 2x2)e−x2
dx =

3∑
k=1

λkπ(xk) = −
√
π (4.1.2.11)

Now we have a computational method to solve intricate integrals. But, the reader asks, how does
one approximate any integral f (x) on [a, b]? That is,

∫ b
a f (x)dx? First, we must find an orthogonal

polynomial whose weight function is w(x) = 1. We see that there is: the Legendre Polynomials
(Eq. (1.9.6.1)). But, the domain is [−1, 1]. So, we must do a change of variables to change the
limits of integration a → −1, b→ 1. The diligent reader could find numerous ways, but the most
straightforward is a linear line. That is,

t =
(

2
b − a

)
x −

b + a
b − a

=
2x − b − a

b − a
, dt =

(
2

b − a

)
dx (4.1.2.12)

So our integral becomes∫ b

a
f (x)dx =

∫ 1

−1
f
(
(b − a)t + (b + a)

2

) (
b − a

2

)
dt ≈

n∑
k=1

λk f (tk) (4.1.2.13)

where Pn is the nth Legendre Polynomials, {tk}
n
k=1 is the set of its roots and the Christoffel Numbers

λk are

λk =

∫ 1

−1

Pn(x)dx
(x − tk)P′n(tk)

(4.1.2.14)

The approximation sign in Eq. (4.1.2.13) is an equality if f (x) is a polynomial of degree at most
2n − 1. We now see one of the importances of orthogonal polynomials in numerical analysis.
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