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Abstract

In the 2008 Financial Crisis, one of the primary sources causes this disaster is Mortgage-
Backed Security(MBS), which is one of the derivatives among thousands. People who are un-
familiar with finance would ask, what is derivatives? Derivative is a contract between two or more
parties whose value is depended on an agreed-upon underlying financial products or set of assets.
Financial institution developed derivatives aiming to creates tools for investors to hedge risks, but
at the same time, hedging depends on accurately assuming risk. If financial institutions and in-
vestors do not know how to use it in a right way, it may lead to catastrophe. Therefore, how to
price options become an essential problem.

There are two major underlying financial assets trading in the market, which are bonds and
stocks. The bond market size is about $40.7 trillion and the stock market size is about $30 trillion
in U.S., which means the stock options and bond options are major derivatives in the market to
hedge risks. This paper focus exactly on these two options, which includes a view of the approach
to the models and different methods to solve those models.
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1 | Introduction to Option Pricing

In order to use mathematics in option pricing, it is necessary to start by specifying some back-
ground knowledge in financial mathematics.

1.1 What is option
Definition: An option is a contract which gives investors the right to buy or sell financial un-

derlying in the future with previous determined price. Whether investor executes the contract is
decided by the value of the underlying asset price such as stocks or bonds.

Option contract are classified with several characteristics including:

• possible execution times (a fixed data vs a time interval),

• the number of underlying assets,

• how the value of option depends on the asset prices (depending on the price at the execution
time vs a path dependent value of the asset prices).

Brownian motion

Robert Brown first observed microscopic particles moving under buffeting of a gas, the math-
ematical model then was developed to describe their movements.

Definition of Brownian motion [1]:

• Wt is continuous, and W0 = 0,

• the value of Wt is distributed, under P, as a normal random variable N(0,t),

• the increment Ws+t -Ws is distributed as a normal N(0,t), under P, and is independent of F ,
the history of what the process did up to time s.

Brownian motion vs stock market

The behavior of the log of the market is very similar to Brownian motion, but we have misgiv-
ings about this model since Brownian motion wanders around zero, whereas the stock of a company
normally grows at certain rate-there is an increasing trend if we look at historically prices for stocks
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and bond because of inflation. Therefore, the process Brownian motion with drift can reflect the
log of this growth: log(St) = Wt+µt, for some constant µ.

Also, stock market only volatilize with certain degrees, it can not with too much noise, then the
general form to reflect the movement in stock market: log(St) = σWt+µt, for some constant µ.

Figure 1.1: Microsoft stock price from 2000 to 2018. We can see from time 0 to 3000, the stock
price centered around 30. But after time 3000, there is an obvious increasing trend, we need to use
the drift to capture this feature.

1.2 Stochastic calculus
If we zoom in on Brownian motion plot, we could find that it is nowhere differentiable, which

means we could not use traditional differential method. So here we introduce stochastic calculus.

Stochastic processes

A stochastic process X is a continuous process (Xt : t > 0) such that Xt can be written as:
[1]

Xt=X0+
∫ t

0
σsdWs +

∫ t
0
µsds ,

where σ and µ are random F-previsible processes. The differential form of this equation can be
written:

dXt = σtdWt+µtdt.

In this special case, the σt and µt are some deterministic function which depends on time t. But
σ and µ can be different types in many cases. For example, in Black Scholes Model, σ and µ are
constant; in Interest Rate Model, σ and µ are depending on t for each T, which are σ(t, T ) and
µ(t, T ), where T is maturity.
However, if we consider more complex Stochastic Differential Equation (SDE), such as
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dXt = Xt(σdWt+µdt).

We can not apply classic technique to solve for Xt, which brings us to Itô calculus.

Itô calculus

Consider a Taylor expansion of f(Wt) for some smooth f in order to obtain df(Wt)
dt

:

df(Wt) = f ′(Wt)dWt + 1/2f ′′(Wt)(dWt)
2 + 1/6f ′′′(Wt)(dWt)

3 + . . .

In normal case, we assumed that (dWt)
2 and higher terms to be zero. But in here, Brownian

motion is different, we have (dWt)
2 = dt. Therefore, we can not ignore (dWt)

2 as (dWt)
2 ∼ dt.

Finally Taylor gives us:

df(Wt) = f ′(Wt)dWt + 1/2f ′′(Wt)dt.

Itô formula

If X is a stochastic process, satisfying dXt = σtdWt + µtdt, and f is a deterministic twice con-
tinuously differentiable function, the Yt = f(Xt) is also a stochastic process and is given by: [1]

dYt = (σtf ′(Xt))dWt + (µtf ′(Xt) + 1/2σt2f ′′(Xt))dt.

to apply this formula, then we have Itô lemma:

dWt = ∂f
∂Wt

dWt+(∂f
∂t

+ 1/2 ∂2f
∂W 2

t
)dt.

SDEs from processes

It is an important application of Itô calculus to generate SDEs from functional expression for a
process. Now, consider the exponential Brownian motion, we are interested in about the this expo-
nential type since the stock market movement actually follows the exponential Brownian motion
since the price can not go down below zero.

Xt = exp(σWt + µt).

In here, we took Yt = σWt + µt, and f to be the exponential function f(x) = ex, notice, the derivative
of exponential function is itself, so we could apply Itô formula gives us: [1]

dWt = σf ′(Yt)dWt + (µf ′(Yt) + 1/2σ2f ′′(Yt))dt,

dWt = Xt(σdWt + (µ + 1/2σ2)dt).

We will use this formula repeatedly in later content, it is a very powerful tool to help us deal
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with SDEs.

1.3 Martingale representation theorem
A martingale measure is one which makes the expected future value is equal to its present value

conditional on available information, see [2]

Martingales

A stochastic process Mt is a martingale with respect to a measure P if and only if:

• EP (|Mt|) <∞, for all t,

• EP (Mt|Fs) = Ms, for all s 6 t.

If X is a stochastic process driven by Wt with volatility σt, which satisfied the technical condition
E[(
∫ T

0
σs

2ds)0.5] <∞, then:
X is a martingale⇐⇒ X is driftless.

The martingale property allow to apply replicating strategy and construct Black Scholes Model
in later chapter.

1.4 Construction strategies
Now we need to hook those mathematical tool into a financial model, in Black Scholes Model

for example, we have a portfolio which consists of a stock and a riskless cash bond.

The portfolio (φ, ϕ)

A potfolio is a pair of processes φt and ϕt which represents respectively the number of units
of stock and of the bond which we hold at t. The stock component of the portfolio φ should be F
previsible: depending only on information up to time t but not t itself.

Self-financing property

A portfolio is self-financing if and only if the change in its value only depends on the change
of the asset prices. It has something to do with SDE.
Now, we set up the stock price is St and bond price is Bt, the value of portfolio is Vt at time t, then
the total value of this portfolio is given by Vt = φtSt + ϕBt. At next time increment, two things
would happen: the old portfollio changes value because St and Bt changed price; and portfolio
itself need to be adjusted to give a new portfolio as instructed by the trading strategy (φ, ϕ). If
the cost of the adjustment is perfectly matched by the profits or losses made by the portfolio, then
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no need extra money from outside. If we transfer this information into mathematics formula, we
could get: [1]

(φt, ϕt) is self-financing⇐⇒ dVt = φtdSt + ϕtdBt.

Replicating strategy

Suppose we are in market of a stock and a riskless bond with volatility σt, and a claim X on
events up to time T. A replicating strategy for X is a self-financing portfolio (φ, ϕ) such that VT
= φTST + ϕTBT = X, which means the claim value of some derivative which we need to pay off
at time T is equal to the portfolio value itself, this important formula will provide us an ideal to
develop Black-Scholes Model.

Three steps to replication, see [1]

• Find a measure Q under which St is a martingale,

• Form the process Et = EQ(X|F),

• Find a previsible process φt, such that dEt = φtdSt.

The tools described earlier are essential to do this, We will use Cameron-Martin-Girsano theorem
for the first step and the martingale representation theorem for the third one. We will see how does
those work in Black Scholes Model in next chapter.
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2 | Black Scholes Model

The Black Scholes Model is a fundamental, but simplified model for option pricing. It is a
good one to begin. The asset we considered is a stock which could be held without additional cost
or benefit and was freely tradable at the price quoted. and here, we discussed is vanilla European
option, also the simplest one, the maturity date is fixed. [3]

2.1 Black Scholes Model
We will assume the existence of a deterministic r and σ, where r is the riskless interest rate and

σ is the stock volatility, such that the bond price Bt and stock price St follow:

Bt = exp(rt),

St = S0exp(σWt + rt).

we take the log of St and find its derivative:

log(St) = logS0 + (σWt + rt),

d(log(St)) = σdWt + rdt,

dSt = σStdWt + rStdt.
(2.1)

We know Vt is a function with respect to logSt and time t, then

Vt = f (logSt, t).

We treat logSt as X and find its derivative using Itô formula:

dVt = ∂V
∂X
dXt+

∂V
∂t
dt,

dVt = ∂V
∂X

(t) + ∂V
∂X
rdt+ 1/2 ∂

2V
∂X2σ

2dt+ ∂V
∂t
dt.
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We need to change back to S, where X = logS

dVt = s∂V
∂S

(t) + s∂V
∂S
rdt+ 1/2∂

2V
∂S2 σ

2s2dt+ ∂V
∂t
dt.

(2.2)
Replicating strategy

• hold φt units of stock at time t, and

• hold ϕt = Vt - φtSt units of the bond at time t.

This holding strategy will make this portfolio self-financing, thus we will have:

dVt = φtdSt + ϕtdBt.
(2.3)

We know dBt = rBtdt, since it is just normal derivative. Now we plug (2.1) into (2.3), we will get:

dVt = φt(σsdWt+rsdt) + ϕtrBtdt,
(2.4)

dVt = φtσsdWt + (ϕtrBt + φtrs)dt.
(2.5)

Now, we could match dWt term and dt term between equation (2.2) and (2.5), we will get follow-
ing:

φt = ∂V
∂S

,
(2.6)

ϕtrBt + φtrs = s∂V
∂S
r + 1/2∂

2V
∂S2 σ

2s2+∂V
∂t

,
(2.7)

ϕtrBt = 1/2∂
2V
∂S2 σ

2s2+∂V
∂t

.
(2.8)

Remember, at the very beginning, we have the portfolio value formula, which is: Vt = φtSt + ϕtBt.
If we multiply both sides by interest rate r, we will get following:

φtStr + ϕtBtr - rVt = 0.
(2.9)

Then we plug (2.6) and (2.8) inside (2.9), we will get:

∂V
∂S
sr + 1/2∂

2V
∂S2 σ

2s2+∂V
∂t

- V r = 0.
(2.10)

This Partial Differential Equation (PDE) we get is Black Scholes Model. This equation can be
transformed into heat equation through change of variable, so we will have exact solution for
Black Schole Model. Next, we will talk about how to find its exact solution.

2.2 Exact solution
As we mentioned in the above content, we could transfer the (2.10) to a heat equation, which

can be solved explicitly, then we change variables back to Black Scholes Model.
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Step 1

We let x = ln(S/E), τ = T − t, and a new function Z(x, τ ) = V (Eee, T − τ). Then we derived a
new equation.

∂Z
∂τ
− 1/2∂

2Z
∂x2 σ

2+∂Z
∂x

(σ
2

2
− r) + rZ = 0.

(2.11)
Step 2

New equation u(x, τ) = eαx+βτZ(x, τ), where the constants α, β are chosen so that the PDE of
u is the heat equation. We get PDE for u is:

∂u
∂τ
− 1/2∂

2u
∂x2σ

2+A∂u
∂x

(σ
2

2
− r) +Bu = 0,

(2.12)
where

A = ασ2 + σ2/2− r, B = (1 + α)r − β − (α2σ2+ασ2)/2.

We have to set A = B = 0, then we could get α, β:

α = r
σ2 − 1

2
, β = r

2
+ σ2

8
+ r2

2σ2 .

Then we will get heat equation for u(x, τ):

∂u
∂τ

- σ2

2
∂2u
∂x2 = 0.

(2.13)
Step 3

The solution u(x, τ) of the heat equation is given by the general formula:

u(x, τ) = 1√
2σ2πτ

∫∞
−∞ e

− (x−s)2

2σ2τ u(s, 0)ds.

Notice, the initial condition u(x, 0) also changed to:

u(x, 0) = eαxV (Eex, T ) = eαx, if x > 0,

u(x, 0) = 0, otherwise.

The solution u(x, τ) is:

u(x, τ) = 1√
2πσ2τ

∫∞
0
e−

(x−s)2

2σ2τ eαsds.
(2.14)
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Then, we evaluate the integral and perform backward substitutions u(x, τ) −→ Z(x, τ) −→
V (s, T ), we will get our exact solution for Black Scholes Model:

V (s, T ) = sΦ(
log s

k
+(r+1/2σ2)T

σ
√
T

)− ke−rTΦ(
log s

k
+(r−1/2σ2)T

σ
√
T

),
(2.15)

where

Φ(x) = 1√
2π

∫ x
−∞ e

−y2

2 dy.

People usually prefer to write it as:

V (s, T ) = sΦ(d1)− ke−rTΦ(d2),
(2.16)

where d1 =
log s

k
+(r+1/2σ2)T

σ
√
T

, and d2 =
log s

k
+(r−1/2σ2)T

σ
√
T

.

Plot from Python

Figure 2.1: Stock price vs Option price by exact solution.We choose r = 0.03, σ = 0.2 and T = 1.

2.3 Monte Carlo method to compute European options price
Monte Carlo Option Price is a method often used in Mathematical finance to calculate the value

of an option with multiple sources of uncertainties and random features, such as changing stock
prices. After repeatedly simulating stock prices, it is possible to obtain estimates of the price of a
European call option. A statistical simulation algorithm of this type is what we known as “Monte
Carlo method”.

We choose Euler’ formula to generate the path, which gives us following to calculate the stock
price [4]

Sn+1 = Sn + µSndt+ σSnεn+1

√
dt.

(2.17)
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where we have initial condition S0 = s, Sn is the predicted stock price at N steps, and dt = T
N

, µ
is the annual growth rate of the stock, and σ is the stock volatility. Each term in sequence ε takes
on the value of -1 or 1 with same probability 1

2
, in other words, for each n = 1,2, . . .

εn =

{
1 with probability 1

2
,

−1 with probability 1
2
.

(2.18)

From above steps, we only calculated one path, but we need to generate more paths, and calculate
the average to be accurate. We use two dimensions Euler’s formula to do this:

Skn+1 = Skn + rSkndt+ σSknεn
√
dt.

(2.19)
(2.19) is identical to (2.17) for each k = 1,. . ., M, except the growth rate µ is replaced by interest
rate r.

Figure 2.2: Stock price path generated by Monte Carlo, each color represents a path of stock price.

A European call option is a contract between two parties, a holder and a writer, whereby, for
a premium paid to the writer, the holder can purchase the stock at a future data T (the expiration
data) at a price K (the strike price) agreed upon in the contract. If the buyer elect to exercise the
option on the expiration data, the writer is obligated to sell the underlying stock to the buyer at the
price K, the strike price. Thus, the option has a payoff function:

f(S) = max(S −K, 0).
(2.20)

Option pricing requires that the average value of the payoffs equal to the compounded total return
obtained by investing the option premium, we use V represents the price of option:

V = e−rT 1
M

M∑
k=1

f(SkN).

(2.21)
Example 1
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Now, we use Python to implement. For this example, we choose the parameters as below: r =
0.03, σ = 0.2, N = 200, K = 50, T = 1, we adjust M .

Result from python

MCE(100) MCE(1000) MCE(10000) Eaxct solution
V (40) = 0.499 V (40) = 0.779 V (40) = 0.765 V (40) = 0.781

V (45) = 2.575 V (45) = 2.223 V (45) = 2.263 V (45) = 2.224

V (50) = 5.920 V (50) = 4.646 V (50) = 4.785 V (50) = 4.707

Table 2.1: Comparison between MCE and exact solution for BSM. We try the differ-
ent M from M=100, M=1000 to M=10000, see the change of accuracy.

Absolute error comparison

MCE(100) MCE(1000) MCE(10000)
S = 40 Err = 0.282 Err = 0.002 Err = 0.0016

S = 45 Err = 0.351 Err = 0.001 Err = 0.0390

S = 50 Err = 1.213 Err = 0.061 Err = 0.0780

Table 2.2: We calculate the difference between MCE calculation and exact solution,
then take the absolute value, we want to see how much digit of accuracy that MCE
could achieve.

Relative error comparison

MCE(100) MCE(1000) MCE(10000)
S = 40 Err = 36.108% Err = 0.256% Err = 0.205%

S = 45 Err = 15.782% Err = 0.045% Err = 1.756%

S = 50 Err = 25.770% Err = 1.296% Err = 1.657%

Table 2.3: We use the formula: Err = abs(MCE−exact)
exact

to compute the relative error,
to see how much percent is away the exact solution.
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Plot from Python of MCE

Figure 2.3: Stock option price plot by MCE. We choose M = 1000, N = 200, K = 50, r =
0.03, σ = 0.2, T = 1, S = [0, 100]

Plot from Python for comparison

Figure 2.4: Plotted stock option price between MCE with M=100 and exact solution. Also right
plot is the error function between them. We choose M = 100, N = 200, K = 50, r = 0.03, σ =
0.2, T = 1, S = [0, 100].
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Figure 2.5: Plotted stock option price between MCE with M=1000 and exact solution. Also right
plot is the error function between them. We choose M = 1000, N = 200, K = 50, r = 0.03, σ =
0.2, T = 1, S = [0, 100]

Figure 2.6: Plotted stock option price between MCE with M=10000 and exact solution. Also right
plot is the error function between them. We choose M = 10000, N = 200, K = 50, r = 0.03, σ =
0.2, T = 1, S = [0, 100]

Example 2

For this example, we choose the parameters as below: r = 0.03, σ = 0.5, N = 200, K = 50, T =
1. Except for σ, all the others keep the same, we want to see how σ could influence the option price.
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Result from python

MCE(100) MCE(1000) MCE(10000) Eaxct solution
V (40) = 6.589 V (40) = 5.489 V (40) = 5.075 V (40) = 5.104

V (45) = 7.609 V (45) = 8.073 V (45) = 7.485 V (45) = 7.573

V (50) = 10.332 V (50) = 10.612 V (50) = 10.518 V (50) = 10.481

Table 2.4: Comparison between MCE and exact solution for BSM. We try the differ-
ent M from M=100, M=1000 to M=10000, see the change of accuracy.

Absolute error comparison

MCE(100) MCE(1000) MCE(10000)
S = 40 Err = 1.485 Err = 0.385 Err = 0.029

S = 45 Err = 0.036 Err = 0.5 Err = 0.088

S = 50 Err = 0.149 Err = 0.131 Err = 0.037

Table 2.5: We calculate the difference between MCE calculation and exact solution,
then take the absolute value, we want to see how much digit of accuracy that MCE
could achieve.

Relative error comparison

MCE(100) MCE(1000) MCE(10000)
S = 40 Err = 29.10% Err = 7.54% Err = 0.57%

S = 45 Err = 0.48% Err = 6.60% Err = 1.16%

S = 50 Err = 1.42% Err = 1.25% Err = 0.35%

Table 2.6: We use the formula: Err = abs(MCE−exact)
exact

to compute the relative error,
to see how much percent is away the exact solution.
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Plot from Python of MCE

Figure 2.7: Stock option price plot by MCE. We choose M = 1000, N = 200, K = 50, r =
0.03, σ = 0.5, T = 1, S = [0, 100]

Plot from Python for comparison

Figure 2.8: Plotted stock option price between MCE with M=100 and exact solution. Also right
plot is the error function between them. We choose M = 100, N = 200, K = 50, r = 0.03, σ =
0.5, T = 1, S = [0, 100]
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Figure 2.9: Plotted stock option price between MCE with M=1000 and exact solution. Also right
plot is the error function between them. We choose M = 1000, N = 200, K = 50, r = 0.03, σ =
0.2, T = 1, S = [0, 100]

Figure 2.10: Plotted stock option price between MCE with M=10000 and exact solution. Also
right plot is the error function between them. We choose M = 10000, N = 200, K = 50, r =
0.03, σ = 0.2, T = 1, S = [0, 100]

Conclusion

Monte Carlo Simulation giving the option price is a sample average, according to the basic princi-
ple of statistics, its standard deviation is the standard deviation of the sample divided by the square
root of the sample size. So the error reduces at the rate of 1 over the square root of the sample size,
the accuracy of Monte Carlo Simulation is increasing as the size of sample increase (M increases).
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Moreover, as we increase the volatility, the error seems also increase and the MC plot fluctuate
more with higher volatility. Finally, the Monte Carlo Simulation is a simple method to implement,
hence is popular used among investment banks.

2.4 Variance Reduction by Antithetic Variate
Antithetic variate is a simple and widely used method to increase the accuracy of Monte Carlo

Estimation. The principle of this method is taking its antithetic path. For example, in our above
simulation, we generated the path {ε1, . . . , εN} , and also to take {−ε1, . . . ,−εN}, then we plug
these two sequences into (2.17), we could get two corresponding payoffs

{
f(Sk+

N ), f(Sk−N )
}

.

We choose the parameters as below: r = 0.03, σ = 0.5, N = 200, K = 50, T = 1. They are
the same as example 2 in Section 2.3.

Result after applying antithetic variate

MCE(100) MCE(1000) MCE(10000) Eaxct solution
V (40) = 6.097 V (40) = 5.354 V (40) = 5.147 V (40) = 5.104

V (45) = 7.832 V (45) = 7.799 V (45) = 7.621 V (45) = 7.573

V (50) = 10.273 V (50) = 10.387 V (50) = 10.472 V (50) = 10.481

Table 2.7: Comparison between MCE and exact solution for BSM after applying
antithetic variate. We try the different M from M=100, M=1000 to M=10000, see the
change of accuracy.

Absolute error comparison after applying Antithetic Variate

MCE(100) MCE(1000) MCE(10000)
S = 40 Err = 0.993 Err = 0.250 Err = 0.043

S = 45 Err = 0.259 Err = 0.226 Err = 0.048

S = 50 Err = 0.208 Err = 0.094 Err = 0.009

Table 2.8: We calculate the difference between MCE calculation and exact solution,
then take the absolute value, we want to see how much digit of accuracy that MCE
could achieve.
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Relative error comparison after applying Antithetic Variate

MCE(100) MCE(1000) MCE(10000)
S = 40 Err = 19.46% Err = 4.90% Err = 0.84%

S = 45 Err = 3.42% Err = 2.98% Err = 0.63%

S = 50 Err = 1.98% Err = 0.90% Err = 0.09%

Table 2.9: We use the formula: Err = abs(MCE−exact)
exact

to compute the relative error,
to see how much percent is away the exact solution.

Conclusion

If we compare table 2.7, 2.8, 2.9 with 2.4, 2.5, 2.6, we could detect that the error becomes
smaller after we applied the antithetic variate method

2.5 Explicit finite difference to compute European options price
Finite difference methods are aiming to obtain numerical solutions to partial differential equa-

tions. They constitute a very powerful and flexible technique and are capable of generating almost
accurate numerical solutions for PDE. There are many finite difference methods, in this chapter,
we will focus on explicit finite difference method, which is also called forward difference.

The idea underlying finite difference methods is to replace the partial derivatives by approxima-
tions based on Taylor series expansions near the point. For example, the partial derivatives ∂u

∂µ
can

be written by the limiting difference [5]:

∂u
∂τ

(x, τ) = lim
δτ→0

u(x, τ + δτ)− u(x, τ)

δτ
.

(2.22)
Instead of taking the limit δτ → 0, we regard δτ as nonzero but small, we obtain the approximation

∂u
∂τ

(x, τ) ≈ u(x,τ+δτ)−u(x,τ)
δτ

+O(δτ).
(2.23)

We use (2.22) to represent each differential term in (2.10). But when we deal with (2.10), we need
to use two-dimension Taylor expansion, normally, we use mesh points to represent this idea, we
write

V m
n = V (nδx,mδτ).

(2.24)
Then we could come up with every term in (2.10) using this mesh points representation.

∂V
∂t

= Vm+1
n −Vmn

∆t
+O(∆t),

∂V
∂s

=
Vmn+1−Vmn−1

2∆s
+O(∆s)2,
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∂2V
∂s2

=
Vmn+1−2Vmn +Vmn−1

(∆s)2 +O(∆s)2.

We ignore the error terms and plug into (2.10)

Vm+1
n −Vmn

∆t
− 1

2
σ2n2(∆s)2 V

m
n+1−2Vmn +Vmn−1

(∆s)2 − rn∆s
Vmn+1−Vmn−1

2∆s
+ rV m

n = 0.
(2.25)

Notice, we replace s with n∆s, after we do some simple algebra, we could get following

V m+1
n = 1

2
(σ2n2∆t− rn∆t)V m

n−1 + (1− σ2n2∆t− r∆t)V m
n + 1

2
(σ2n2∆t+ rn∆t)V m

n+1.
(2.26)

We have initial conditions

V 0
n = max(Sn −K, 0), n = 0, 1, . . . , N .

(2.27)
We also have boundary conditions

V m
0 = 0, V m

N = 0, m = 1, 2, . . . ,M .
(2.28)

The following condition of stability is needed to avoid oscillation. [6]

0 < ∆t < 1
σ2N2+ 1

2
r
.

(2.29)
Truncation error

Key issue is how accurate the numerical solution is. The usual way to measure is using the
formula: (solution of finite different method - exact solution). Truncation error is the error made
by truncating an infinite sum by a finite sum, the difference between these two results are trunca-
tion error. When we apply finite difference method to approximate solution for BSM, there is a
place would have truncation error and would influence the overall accurate of the finite difference
method.

When we compare the finite difference solution to the exact solution, we only plot the error
from 0 to 2K instead of taking infinite interval. We can see that from the plot, at the very beginning,
either the finite difference method or exact solution, they both centered at y = 0. The error between
them can nearly be detected. However, at the very end of the plot, the difference between them
are huge, which means the error is large and accurate is terrible. This phenomenon happened
because we set the boundary conditions are all 0. Therefore, when we want to see the error, it
is meaningless to count this part since we could simple avoid this huge jump by changing the
boundary conditions. If we include this huge error into our consideration, then this finite different
method is always inaccurate and inferior than other methods. Therefore, we truncate the error only
around strike price in order to improve the accuracy of this finite different method.
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Example 1

We choose N = 200, K = 50, r = 0.03, σ = 0.2, T = 1, S = n∆s, n = 0, 1, . . . , N

Plot from Python of explicit finite difference

Figure 2.11: Stock option price plot by explicit finite difference with σ = 0.2. We set the boundary
condition is all equal to 0, so at the final time step, the plot drops quickly to 0. We choose N =
200, K = 50, r = 0.03, σ = 0.2, T = 1, S = n∆s, n = 0, 1, . . . , N

Plot from Python for comparison

Figure 2.12: Plotted stock option price between explicit finite difference and exact solution. And
right plot is the error between them. I only want to see the error of stock price from 40 to 60, which
is centered around strike price. We could see the error is much smaller than MCE method. We
choose N = 200, K = 50, r = 0.03, σ = 0.2, T = 1, S = n∆s, n = 0, 1, . . . , N
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Example 2

We choose N = 200, K = 50, r = 0.03, σ = 0.5, T = 1, S = n∆s, n = 0, 1, . . . , N

Plot from Python of explicit finite difference

Figure 2.13: Stock option price plot by explicit finite difference with σ = 0.5. We set the boundary
condition is all equal to 0, so at the final time step, the plot drops quickly to 0. We choose N =
200, K = 50, r = 0.03, σ = 0.5, T = 1, S = n∆s, n = 0, 1, . . . , N
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Plot from Python for comparison

Figure 2.14: Plotted stock option price between explicit finite difference and exact solution. And
right plot is the error between them. I only want to see the error of stock price from 40 to 60,
which is centered around strike price. We could see the error is even smaller than last example.
We choose N = 200, K = 50, r = 0.03, σ = 0.5, T = 1, S = n∆s, n = 0, 1, . . . , N

Conclusion

As we can see, when the stock price is centered around the strike price, the calculation for op-
tion price is almost equal to the exact solution, but when the stock price is far away from the strike
price which is too high, the error became very large. this is the downside of this explicit method.
Since we can not control the time space M, it is decided by the stability term, and also the boundary
condition we set is 0 at N, it is decreasing extremely down to 0 at last time point.

2.6 Implicit finite difference to compute European options price
We already know that the methodology behind the finite difference is Taylor expansion, there

is another way to write the limit for (2.21), which is:

∂u
∂τ

(x, τ) = lim
δτ→0

u(x, τ)− u(x, τ − δτ)

δτ
.

(2.30)
We called this kind of method implicit finite difference, which is using backward to solve the
equation. Instead of taking the limit δτ → 0, we regard δτ as nonzero but small, we obtain the
approximation

∂u
∂τ

(x, τ) ≈ u(x,τ)−u(x,τ−δτ)
δτ

+O(δτ).
(2.31)
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We use (2.30) to represent each differential term in (2.10). But when we deal with (2.10), we need
to use two-dimension Taylor expansion, normally, we use mesh points to represent this idea, we
write

V m
n = V (nδx,mδτ).

(2.32)
Then we could come up with every term in (2.10) using this mesh points representation.

∂V
∂t

= Vm+1
n −Vmn

∆t
+O(∆t),

∂V
∂s

=
Vm+1
n+1 −V

m+1
n−1

2∆s
+O(∆s)2,

∂2V
∂s2

=
Vm+1
n+1 −2Vm+1

n +Vm+1
n−1

(∆s)2 +O(∆s)2.

We ignore the error terms and plug into (2.10)

Vm+1
n −Vmn

∆t
− 1

2
σ2n2(∆s)2 V

m+1
n+1 −2Vm+1

n +Vm+1
n−1

(∆s)2 − rn∆s
Vm+1
n+1 −V

m+1
n−1

2∆s
+ rV m+1

n = 0.
(2.33)

Notice, we replace s with n∆s, after we do some simple algebra, we could get following

V m
n = 1

2
(rn∆t− σ2n2∆t)V m+1

n−1 + (1 + σ2n2∆t+ r∆t)V m+1
n − 1

2
(σ2n2∆t+ rn∆t)V m+1

n+1 .
(2.34)

Now, we let:

an = 1
2
(rn∆t− σ2n2∆t),

(2.35)
bn = 1 + σ2n2∆t+ r∆t,

(2.36)
cn = −1

2
(σ2n2∆t+ rn∆t).

(2.37)
We call this method implicit finite difference because we can not solve it explicitly like last one,
we need to use Matrix to solve for each time space, we then need to put the an, bn, andcn into the
Matrix as following: [6]

A =


b1 c2 0 . . .
a1 b2 c3 . . .
... . . . . . . cN−1

0 . . . aN−2 bN−1

 , (2.38)

V m+1 =


V m+1

1

V m+1
2
...

V m+1
N−1

 , (2.39)
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bm =


V m

1 −a0V
m+1

0

V m
2
...

V m
N−1 −cNV m+1

N

 . (2.40)

We have initial conditions

V 0
n = max(Sn −K, 0), n = 0, 1, . . . , N .

(2.41)
We also have boundary conditions

V m+1
0 = 0, V m+1

N = 0, m = 1, 2, . . . ,M .
(2.42)

Then we need to solve this linear process to get V m+1 for each time m.

AV m+1 = bm.
(2.43)

In python, there is a simple command called ’solve’ to deal with linear process each time, but this
method is not efficient, you could use LU Decomposition Method or SOR Method. If you want to
see details, see [5]. Notice, in this implicit finite difference method, we do not need any stability
requirement, which means we are free to choose time size M and dt as well.

Example 1

We choose N = 200,M = 500, K = 50, r = 0.03, σ = 0.2, T = 1, S = n∆s, n = 0, 1, . . . , N .

Plot from Python of implicit finite difference

Figure 2.15: Stock option price plot by implicit finite difference with σ = 0.2. We set the boundary
condition is all equal to 0, so at the final time step, the plot drops quickly to 0. We choose N =
200,M = 500, K = 50, r = 0.03, σ = 0.2, T = 1, S = n∆s, n = 0, 1, . . . , N .
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Plot from Python for comparison

Figure 2.16: Plotted stock option price between implicit finite difference and exact solution. And
right plot is the error between them. I only want to see the error of stock price from 40 to 60, which
is centered around strike price. We could see the error is much smaller than MCE method. We
choose N = 200,M = 500, K = 50, r = 0.03, σ = 0.2, T = 1, S = n∆s, n = 0, 1, . . . , N .

Example 2

We choose N = 200,M = 500, K = 50, r = 0.03, σ = 0.5, T = 1, S = n∆s, n = 0, 1, . . . , N .

Plot from Python of implicit finite difference

Figure 2.17: Stock option price plot by implicit finite difference with σ = 0.5. We set the boundary
condition is all equal to 0, so at the final time step, the plot drops quickly to 0. We choose N =
200,M = 500, K = 50, r = 0.03, σ = 0.5, T = 1, S = n∆s, n = 0, 1, . . . , N .
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Plot from Python for comparison

Figure 2.18: Compared stock option price plot between implicit finite difference and exact solution.
And detect the error between them. I only want to see the error of stock price from 40 to 60, which
is centered around strike price. We could see the error is even smaller than last example. We
choose N = 200,M = 500, K = 50, r = 0.03, σ = 0.5, T = 1, S = n∆s, n = 0, 1, . . . , N .

Conclusion

As we can see, when the stock price is centered around the strike price, the calculation for op-
tion price is much more accurate. However, overall this method is less accurate than the other two
in some sense. But compared to explicit method, one of the advantages of implicit method is we
could control the time size, there is no stability problem.
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3 | Interest Rate Model

Time is money, a dollor today is worthy more than a dollar tomorrow since the interest rate.
In Black-Scholes Model, we assume the interest rate is constant, but in reality, interest rates also
fluctuates and we can also model this as a stochastic process. The uncertainty of the market opens
up the possibility of derivatives on bonds, such as bond options, interest rate swaps and others. In
this chapter, we will focus on bond options.

3.1 Rederived PDE for Interest Rate Model

We introduced a financial term named forward rate f(0, T ), which is people’s prediction for
future rate. We say it follows Brownian motion: [1]

f(t, T ) = f(0, T )+
∫ t

0
σ(s, T )dWs+

∫ t
0
α(s, T )ds.

or in differential form

dtf(t, T ) = σ(t, T )dWt + α(t, T )dt.
(3.1)

where volatilities σ(t, T ) and the drifts α(t, T ) is a deterministic function depends on current time
t to maturity data T. (3.1) is a general form for interest rate model. In following chapter, we only
focus on one particular and most well known interest rate model called Vasicek Model, see [7]

drt = a(b− rt)dt+ σdWt,
(3.2)

where a, b, σ are all positive constant.Then,

rt = e−at(r0+
∫ t

0
abeaudu+ σ

∫ t
0
eaudWu).

(3.3)
And by Itô’s formula, we get:

rt = e−at(r0 + b(eat − 1) +
∫ t

0
eauσdWu),

(3.4)
rt = µt + σ

∫ t
0
ea(u−t)dWu.

(3.5)
where µt is a deterministic function and

∫ t
0
eaudWu is gaussian integral of a deterministic stochastic

function with respect to Brownian motion, then [8]

E[rt] = µt.
(3.6)
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By taking the expectation of (3.3) and (3.5), we also know that µt must satisify:

µt = E[rt] = r0 +
∫ t

0
a(b− E[ru])du,

dµt = a(b− µt).
(3.7)

which gives another way to calculate µt by taking E[(rt − µt)2] = σ2e−2atE[
∫ t

0
e2audu], we could

use property of Brownian motion

var[rt] = σ2
t =⇒ rt ∼ N(µt, σ

2t).
(3.8)

Subtracting b from rt, we set a driftless gaussian process, which must be a martingale if X(u) =rt
-b, then

E[X(u) = X(0)e−au,
(3.9)

E[
∫ t

0
X(u)du] = X(0)

a
(1− e−at).

(3.10)
Then we can calculate the variance:

var[
∫ t

0
X(u)du] = σ2

2a3 (2at− 3t4e−at − e−2at).
(3.11)

Now, from (3.10)

E[−
∫ t

0
rudu] = E[−

∫ t
0
(X(u) + b)du],

(3.12)
=⇒

E[
∫ T
t
rudu] = E[

∫ T
0
rudu−

∫ t
0
rudu] = −( rt−b

a
)(1− e−a(T−t) − b(T − t)).

(3.13)
And we can similarly calculate variance from (3.11)

var[
∫ T
t
rudu] = σ2

2σ3 (2a(T − t)− 3t4e−a(T−t) − e−2a(T−t)).
(3.14)

We can also express bond price with respect to rt

B(t, T ) = E[e−
∫ T
t rudu],

where ru is a function of rt via filtration =⇒ B(t, T, rt) = eA(t,T )rt+D(t,T ), where A(t, T ) =
−e−a(T−t)

a
, D(t, T ) = (b− σ2

2a2 )[A(t, T )− (T − t)]− σ2A(t,T )2

4a
.

∂ru(rt)
∂rt

= e−a(u−t),
=⇒ ∫ T

t
∂ru(rt)
∂rt

du = 1
a
(1− e−a(T−t)).
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∂B
∂rt

(t, T, rt) = −A(t, T )B(t, T, rT ),
=⇒

B(t, T, rt) = c(t, T )e−A(t,T )rt , where c is independent of rt,
(3.15)

=⇒

e−
∫ t
0 ru(rt)duB(t, T, rt) = E[e−

∫ T
0 rudu/F ].

(3.16)
We use Taylor expand in t, then we could use Itô’s formula on (3.16)

B(t, T, rt)e
−

∫ t
0 ru(rt)du = B(0, T, r0) +

∫ t

0

−rue−
∫ u
0 rvdvB(u, T, ru)du

+

∫ t

0

e−
∫ u
0 rvdv

∂

∂u
B(u, T, ru)du

+

∫ t

0

e−
∫ u
0 rvdv

∂

∂ru
B(u, T, ru)(a(b− ru)du + σ(dWu))

+
1

2
σ2

∫ t

0

e−
∫ u
0 rvdv

∂2

∂r2
u

B(u, T, ru)du.

(3.17)

But (3.16) gives a martingale under the P measure, so all the du term must sum to zero, this gives
us the PDE form of Vasicek Model, instead of using B(t, T, rt), we will use V to represent the
value.

∂V
∂t

+ 1
2
σ2 ∂2V

∂r2 + a(b− r)∂V
∂r
− rV = 0.

(3.18)

3.2 Monte Carlo method to compute bond option
For this interest rate model, we can not solve it by hands directly,so we need to use approxima-

tion methods to deal with it. In this section, we will focus on the Monte Carlo method. Remember
in section 2.3, we use Monte Carlo to simulate the stock price path, instead, in this section, we
will use Monte Carlo to simulate the interest rate, since interest rate is stochastic process in this
chapter.

As what we did before, we still use Euler’s formula, which gives us following equation to
predict interest rate [9]:

rn+1 = rn + a(b− rn)dt+ σrnεn+1

√
dt.

(3.19)
where we have initial condition r0 = r, rn is the predicted interest rate at N steps, and dt = T

N
,

and σ is the interest rate volatility. Each term in sequence ε takes on the value of -1 or 1 with same
probability 1

2
, in other words, for each n = 1,2, . . .
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εn =

{
1 with probability 1

2
,

−1 with probability 1
2
.

(3.20)

From above steps, we only calculated one path, but we need to generate more paths, and calculate
the average to be accurate. We use two dimensions Euler’s formula to do this:

rkn+1 = rkn + rSkndt+ σrknεn
√
dt.

(3.21)
Our goal is to find bond option price instead of interest rate, so we still need the formula to calcu-
late the bond price and payoff function.

Bond pricing function with interest rate:

B(t) = e−
∫ T
t rudu.

(3.22)
Notice, from this equation, we could know that all the bond price should be lower than 1, but I
multiply 100 in later calculation, just easy for setting up the strike price, making strike price be
integer.

Payoff function for option price:

f(B) = max(B(t)−K, 0).
(3.23)

Option pricing requires that the average value of the payoffs, we use V represents the price of
option:

V = 1
M

M∑
k=1

f(Bk
N).

(3.24)
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Example 1

Now, we use Python to implement this idea. For this example, we choose the parameters as below:
a = 0.1, b = 0.04, σ = 0.2, N = 200, K = 97, T = 1, we adjust M .

Plot from python

Figure 3.1: Bond option price plot by MCE. We choose a = 0.1, b = 0.04,M = 100, N =
200, K = 97, σ = 0.2, T = 1, r = [0.01, 0.1]

Figure 3.2: Bond option price plot by MCE. We choose a = 0.1, b = 0.04,M = 1000, N =
200, K = 97, σ = 0.2, T = 1, r = [0.01, 0.1]
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Figure 3.3: Bond option price plot by MCE. We choose a = 0.1, b = 0.04,M = 10000, N =
200, K = 97, σ = 0.2, T = 1, r = [0.01, 0.1]

In this final plot, we will use M=1,000,000 and then use this approximation as our exact solu-
tion for interest rate model, we will use this plot to compare the result from explicit and implicit
method on interest rate model for σ = 0.2.

Figure 3.4: Bond option price plot by MCE. We choose a = 0.1, b = 0.04,M = 1, 000, 000, N =
200, K = 97, σ = 0.2, T = 1, r = [0.01, 0.1]

Example 2

Now, we use Python to implement this idea. For this example, we choose the parameters as below:
a = 0.1, b = 0.04, σ = 0.5, N = 200, K = 96, T = 1, we adjust M .
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Plot from python

Figure 3.5: Bond option price plot by MCE. We choose a = 0.1, b = 0.04,M = 100, N =
200, K = 96, σ = 0.5, T = 1, r = [0.01, 0.1]

Figure 3.6: Bond option price plot by MCE. We choose a = 0.1, b = 0.04,M = 1000, N =
200, K = 96, σ = 0.5, T = 1, r = [0.01, 0.1]
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Figure 3.7: Bond option price plot by MCE. We choose a = 0.1, b = 0.04,M = 10000, N =
200, K = 96, σ = 0.5, T = 1, r = [0.01, 0.1]

So same thing here, we will use M=1,000,000 as our exact solution for interest rate model for
σ = 0.5.

Figure 3.8: Bond option price plot by MCE. We choose a = 0.1, b = 0.04,M = 1, 000, 000, N =
200, K = 96, σ = 0.5, T = 1, r = [0.01, 0.1]

Conclusion

For interest rate model, we do not have exact solution, so we could assume large generated path as
our exact solution. The same thing happened like we did for Black Scholes Model, as we increase
the volatility, the MC plot fluctuate more with higher volatility. The plot for bond option price is
the opposite way for stock option price since the interest rate and bond price have inverse relation-
ship. The bond price keeps lower when interest rate is higher since people would like to put money
in the bank for risk free interest rate instead of investing in bond.
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3.3 Explicit method to compute bond option
We already familiar with the explicit method, we want to duplicate the same as we did for

Black Scholes Model. We want to rewrite the (3.18) as below:

∂V
∂τ

+ 1
2
σ2 ∂2V

∂r2 + a(b− r)∂V
∂r
− rV = 0.

(3.25)
Then we let τ = T − t, we would like to this change of variable is that we want to solve this PDE
backward since we know all the information at maturity, but we want to know information at the
very beginning [10]. Then (3.25) became:

−∂V
∂t

+ 1
2
σ2 ∂2V

∂r2 + a(b− r)∂V
∂r
− rV = 0.

(3.26)
Then we have:

∂V
∂t

= Vm+1
n −Vmn

∆t
+O(∆t),

∂V
∂r

=
Vmn+1−Vmn−1

2∆r
+O(∆r)2,

∂2V
∂r2 =

Vmn+1−2Vmn +Vmn−1

(∆r)2 +O(∆r)2.

We ignore the error terms and plug into (3.26)

−Vm+1
n −Vmn

∆t
+ 1

2
σ2 V

m
n+1−2Vmn +Vmn−1

(∆r)2 + a(b− rn)
Vmn+1−Vmn−1

2∆r
− rnV m

n = 0.
(3.27)

After we do some simple algebra, we could get following

V m+1
n = 1

2
(σ2 ∆t

∆r2 − a(b−rn)∆t
2∆r

)V m
n−1 + (1− σ2∆t

∆r2 − rn∆t)V m
n + 1

2
(σ2 ∆t

∆r2 + a(b−rn)∆t
2∆r

).
(3.28)

We have initial conditions

V 0
n = max(B(0)−K, 0),

(3.29)
where

B(0) = e−
∫ T
0 rudu.

(3.30)
We also have boundary conditions

V m
0 = 3,

(3.31)
V m
N = 0, m = 1, 2, . . . ,M .

(3.32)
The following condition of stability

1

2( σ2

∆r2
+rmax)

< ∆t < 1
σ2

∆r2
+rmax

.

(3.33)



36

Therefore, we could simply let

∆t = 1

1.5( σ2

∆r2
+r(max))

.

(3.34)
Example 1

We choose N = 200, K = 97, σ = 0.2, T = 1, a = 0.1, b = 0.04, r = [0, 0.08]

Plot from Python of explicit finite difference

Figure 3.9: Bond option price plot by explicit finite difference with σ = 0.2. We set the boundary
condition are equal to 3 for upper bound and 0 for lower bound. We chooseN = 200, K = 97, r =
[0, 0.08]σ = 0.2, T = 1, a = 0.1, b = 0.04

Plot from Python for comparison

Figure 3.10: Plotted bond option price between explicit finite difference and MCE solution. We
could see the error between them is small. We choose N = 200, K = 97, r = [0, 0.08], σ =
0.2, T = 1, a = 0.1, b = 0.04
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Example 2

We choose N = 200, K = 96, r = [0, 0.08], σ = 0.5, T = 1, a = 0.1, b = 0.04

Plot from Python of explicit finite difference

Figure 3.11: Bond option price plot by explicit finite difference with σ = 0.5. We set the boundary
condition is equal to 4 for upper bound and 0 to lower bound. We choose N = 200, K = 96, r =
[0, 0.08], σ = 0.5, T = 1, a = 0.1, b = 0.04

Plot from Python for comparison

Figure 3.12: Plotted bond option price between explicit finite difference and MCE solution. We
choose N = 200, K = 96, r = [0, 0.08], σ = 0.5, T = 1, a = 0.1, b = 0.04
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Conclusion

As we increase the volatility of interest rate and lower the strike the price, we could see the option
price increases. And also since the M is big enough is this situation, we could barely see the fluc-
tuation from the comparison plot. I changed the boundary conditions,which is (3.31), in order to
not have huge jump at the very beginning of the plot.

3.4 Implicit method to compute bond option
No matter explicit method or implicit method, we both need backward scheme to solve the

PDE. Therefore, we finally would get the (3.26). Remember the approximation for implicit finite
difference method:

∂V
∂t

= Vm+1
n −Vmn

∆t
+O(∆t),

∂V
∂r

=
Vm+1
n+1 −V

m+1
n−1

2∆r
+O(∆r)2,

∂2V
∂r2 =

Vm+1
n+1 −2Vm+1

n +Vm+1
n−1

(∆r)2 +O(∆r)2.

We ignore the error terms and plug into (3.26)

−Vm+1
n −Vmn

∆t
+ 1

2
σ2 V

m+1
n+1 −2Vm+1

n +Vm+1
n−1

(∆r)2 + a(b− rn)
Vm+1
n+1 −V

m+1
n−1

2∆r
− rnV m+1

n = 0.
(3.35)

After we do some simple algebra, we could get following

V m
n = 1

2
(a(b−rn)∆t

∆r
− σ2 ∆t

∆r2 )V m+1
n−1 + (1 + σ2 ∆t

∆r2 + rn∆t)V m+1
n − 1

2
(a(b−rn)∆t

∆r
+ σ2 ∆t

∆r2 )V m+1
n+1 .
(3.36)

Now, we let:

an = 1
2
(a(b−rn)∆t

∆r
− σ2 ∆t

∆r2 ),
(3.37)

bn = 1 + σ2 ∆t
∆r2 + rn∆t,

(3.38)
cn = −1

2
(a(b−rn)∆t

∆r
+ σ2 ∆t

∆r2 ).
(3.39)

Then we put all these into a linear system:

A =


b1 c2 0 . . .
a1 b2 c3 . . .
... . . . . . . cN−1

0 . . . aN−2 bN−1

 , (3.40)
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V m+1 =


V m+1

1

V m+1
2
...

V m+1
N−1

 , (3.41)

bm =


V m

1 −a0V
m+1

0

V m
2
...

V m
N−1 −cNV m+1

N

 . (3.42)

We have initial conditions

V 0
n = max(B(0)−K, 0),

(3.43)
where

B(0) = e−
∫ T
0 rudu.

(3.44)
We also have boundary conditions

V m
0 = 3,

(3.45)
V m
N = 0, m = 1, 2, . . . ,M .

(3.46)
Then we need to solve this linear process to get V m+1 for each time m.

AV m+1 = bm.
(3.47)
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Example 1

We choose N = 200,M = 2000, K = 97, σ = 0.2, T = 1, a = 0.1, b = 0.04, r = [0, 0.08]

Plot from Python of implicit finite difference

Figure 3.13: Bond option price plot by implicit finite difference with σ = 0.2. We set the boundary
condition are equal to 3 for upper bound and 0 for lower bound. We choose N = 200,M =
2000, K = 97, r = [0, 0.08]σ = 0.2, T = 1, a = 0.1, b = 0.04

Plot from Python for comparison

Figure 3.14: Plotted bond option price plot between implicit finite difference and MCE solution.
We could see the error between them is small. We choose N = 200,M = 2000, K = 97, r =
[0, 0.08], σ = 0.2, T = 1, a = 0.1, b = 0.04
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Example 2

We choose N = 200,M = 2000, K = 96, r = [0, 0.08], σ = 0.5, T = 1, a = 0.1, b = 0.04

Plot from Python of implicit finite difference

Figure 3.15: Bond option price plot by implicit finite difference with σ = 0.5. We set the bound-
ary condition is equal to 4 for upper bound and 0 to lower bound. We choose N = 200,M =
2000, K = 96, r = [0, 0.08], σ = 0.5, T = 1, a = 0.1, b = 0.04

Plot from Python for comparison

Figure 3.16: Plotted bond option price between implicit finite difference and MCE solution. We
choose N = 200,M = 2000, K = 96, r = [0, 0.08], σ = 0.5, T = 1, a = 0.1, b = 0.04



42

Conclusion

We tried the same thing as we did for explicit finite difference method, we could find it follows the
same rule. From above all three different methods, we could find the error between those is very
little. And I also changed the boundary conditions, which is (3.45) for these two examples in order
not to have huge jump in the plot.
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4 | Conclusion and Future Work

This thesis is combination work with finance and mathematics, and also include how to use pro-
gramming to help us solve partial differential equation. In Chapter 1, I introduce some background
information on this interdisciplinary field, how to link mathematics with finance.

And in Chapter 2, I introduce the most famous and popular model in quantitative finance, which
is Black Scholes Model for stock option pricing, including how to get the formula, how to find the
exact solution, how to use different numerical methods to solve it. Normally, we could see that
Monte Carlo method is to generate many different paths for stock price, this is random process
relating to the fact V = E[e−rt(St − K)+]. However, we know this is not exactly correct since
the market also influenced by other factors, such as regulations and pop news, it is not entirely
random, but we ignore those factors in order to easily generate by mathematics. This is popular
used by investment banking because they have powerful computers to generate much more paths to
get much more accurate results than mine. For finite difference method, we could see this requires
more mathematics calculations, but the result in some sense is better than Monte Carlo method’s.
But they have something in common, the larger of N and M, the more accurate result we could get.
Moreover, the slightly difference between explicit method and implicit method is that the explicit
method requires stability, this means we can not determine what is M, it is determined by N and σ;
but implicit method does not have this problem.

In Chapter 3, I introduce the interest rate model for bond option pricing, particularly is Vasicek
Model. Instead of predicting stock price paths, I want to generate the interest rate paths, and then
use the formula to compute bond price, and the following steps are to duplicate the same process
as I did in Chapter 2. Notice, we could not find exact solution on this interest rate model, so I did
not compare the error between these methods and exact solution. However, I did compare between
Monte Carlo and finite difference method, just have a basic idea of the error between them.

There are two major future work can be done based on this thesis. First, since limitation on my
laptop, I only tried the relative small numbers for N and M, but we could also try large number of
N and M, like millions or billions, to detect the error between them for Black Scholes Model. We
could also use large enough numbers for Monte Carlo method as our exact solution for interest rate
model and find the error between those different methods. Second, Vasicek Model is the just one
of the interest rate models, it is also called mean reverting model. There are many other interest
rate models such as Hull-White Model and Ho-Lee Model, we could use those models to generate
interest rate paths and find corresponding bond price and option price as well.
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