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ABSTRACT

This papeexpand upon existing educational actuanmbdels to constructr@ew general
insurance pricing model that will demonstrate the effects of additional actuarial concepts to
studens via an interactive web application built irRSRiny. The new model is designed to
calculate the marginal cost of adding one additional policgraup of policiesto an existing
businesgortfolio of policies The paper achieves this by viewing allipies from an investment
portfolio perspectivandprojecting the resulting cashflows forward in tio@ng simulation.

Then, the model assesses the simulaimicalculategsheaverage ngpresent valu¢NPV) of
thesimulation which isthe soldinancial objectivefor the company represented by the model
The paper defines théair upfrontmarginalpremiuni of a given policy to be thehange in

average IRV caused by adding the additional policy. Thus, the premium can be considered the
upfrontpremiumrate at which the insurers  u tthelsame with thes additional insured as
without. The resulting model &simplification of the different actuarial measurements taken to
effectively price insurance imdustry, butserves as an apt educatioframework for students to
understananore practicabusiness applications. Particularly, the key advantage of the model is
in revealing deeper patterns with respect to the cost of policy loss vatiiticetely, this

paper finds that under such a prgiinamework, the risk appetite of an insurance company
varies dramatically depending upon its current financial circumstance, and that this model can
provide revealing metrics of implied risk premiums to provide objective measures of risk

appetite.
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Chapter 1

Introduction

Insurersare incentivized to compete on the price of policies written. The actuarial
practice of pricing policies is a complex process influencesiroplifying assumptions,
including those made about tfidlowing: thenature of policies to be sqlthe costs opolicies
already sold policyholderbehavior;and investments made over the term of the policy. As a
result, the modeling techniques employed to prmeies in industry arékewisecomplex and
varied.However, by the time most undergraduate actuarial students find professional
employment, they have little exposure to the application of these various techniques which
support the basis of the actuapabfessionTo increase undergraduate exposure to these
peripheral pricing techniquean educational pricing moded created and built into an accessible
tool for students to explore as a supplemengagdemiexerciseln particular,model is built to
provide deeper insights into the risk appetites of insurance firms.

In Chapter 2,He literatureeview section of thpaperachieves twmbjectives The first
objectiveis to motivate students tmntemplate the various business ndbdsactuarial models
must service in a realorld setting. The second objectiveasreview the academic background
provided by undergraduate institutions following the stan8aiety of ActuariesSOA)
curriculum,with a focus orthe o primarypricing techniques covered in theng Term
Actuarial MathematicsL(TAM ) curriculum the Equivalence Rnciple, andthe Portfolio
Percentile PrincipleNhile mastery othese tvo techniquess indeednecessaryo understanding

realworld insurance pricingt isinsufficientto grasphe wider scope of actuarial techniques



that are used in industry to support such pricing decisfma.result, this section will also
providea secondary focus on the supporting techniques of stochastic Monte Carlo simulation
andportfolio theorycovered in theew Investment and Financi8arkets (FM) exam

curriculum Themodelcreated in this papaeeks to borrow theoretical concepts from these
more variedechniques and combine them with th® simpler premium calculation rtreods to
price basic general insurance polici€ke result is a novel pricing modehichincorporates the
additionalconsideratios of solvency, investment risknd loss interdependency under a single
framework.

In Chapter 3,le papediscusses the meeducatioal model in detail. Firstthe paper
positsa simple hypothetical exampieaturing an existing insurance company to motivate the
analysis. Simplifying assumptionsgarding he company’ s existngasdethment r e
and liabilitiesand financial objectives are first made btulelarify the scope of the problem and
to provide quantitative inputs for variation. Once these assumptions are neagdap#r proposes
a stochastienodd as a solution by outlinopits methodology. Namelgiscrete time stochastic
simulations are rum whichnet cash flows from thexisting base ofissets and liabilities are
first forecasted into the future to project future company equfigse values are then discounted
back to the present day and addmgkther to form a pattlependent Net Presevialue (NPV)
calculation Statistical measurements are taken from the distribution of simulated NPV
calculations. Therthe existing portfolio base of assets and liabilities is modified to
accommodate the additial policyhotersbeing priced by the modednd the simulation is run
again. The difference in mean simulated NPVs fromatpeori, or original portfolio base tdhe
a posteriori or adjustegbortfolio baseserves as the napfront marginapremium @ the model.

Once the model dynamics are discussed, mathematical analyses are conducted to better
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understand the behavior of the model, includegursive definitionsf the probability density

functionandestimates o¥arianceconvergencel.astly, themodel iscodedinto an interactiveR-
Shinywebapplication to serve as educational tool, and the chapter ends by discussing the utility
of these applications.

In Chapter 4the quantitative results are pulled from the web application to analyze the
deeperrelationships of thenodel.Specifically, univariate relationstsregraphedo expos the
effects of isolated assumption shockspolicy price. Patterns are drawn fronstanalysis and
extended tgrovide insights into general insurance businesgegfyaAfter this, the paper will
turn its focus tdhe secondary purpose of this model; to explore the relationship between risk
appetite and annual loss ratio.

Finally, in Chapter 5the modeknd its associatitools are discussed to expdbeir
greatesstrengths and weaknessesand concl usions are drawn r ega
applicability and educational value. These insights will be followed by suggestions for further

investigationsnto the model



Chapter 2

Literature Review

The literature review of this paper serves two purpofes, to outline the practi¢a
business needs that an actuarial pricing model should seamideecond, to review all

prerequisite undergraduaetuarial mathematics for understanding the model.

2.1Pricing Motivation

Selling aproduct inan open market be it lifeinsurance oasteak kniie — might seem quite
simple.One musfirst considerthe cost of producing the good sadahdthenadd ahealthy padding of
profit marginwhile still trying tokeepng theprice competive enough teell a high volumeof that good.
However,we can furtheseparate this business problem itto distinct challenges estimating the cost
of goodssold, or thesupply curveandestimating the consumer demand cuhiile bothforcesdrive
market prices equally through the law of supply and demand, it istoftsplefocus ofacademic
actuarial models accomplish the formEhus, the rest of the paper will raxuthe scope dhe problem
of pricing insurance to merely estimating the cost of goods ®dttin this scope, however, insurarise
still arelativelycomplexserviceto price.There are three primary needs that any practical insurance
pricing system mst serve the need for a holistic reflection of the annual loss risk profile; the need for
future business solvency; and the need for pricing precision.

To capture the effect on annual loss risk profile that a given policy may have, one must take
precise measurements of the loss distribution of policies annually, includiagribelloss mean and

variance. While many practical pricing models may claiat these measurements can be safely taken
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under the assumption of policy loss independence, this is not the casefenougypes of insurance

policies. Cyber Risk insurance, for example, may coved#mages caused by the hackiigarious
companies Wich all share the same cyber security infrastructsheuld one such company be breached,
the likelihood of the others in the portfolio also being breached would be raised significantly, implying a
loss correlation. Loss interdependency can even bedmguiesurance markets like health and life
insurance, where mortality and morbidity improvements are made idiosyncratically rather than
systematically. For example, the life expectancies of two different diabetics may hinge on the same
development of diadtes treatments, making them more closely related in risk than someone who is not
diabetic.However, due to the larger number of policies in these ngtket ultimate total loss each year,
given by thdaw of large numberswill be largely unaffected bsuch relationshipsThus, we can see that
any model capturing loss interdependeoagimprove the estimation of annual loss distributions for
some, but not alinsuranceportfolios.

The next concern for a pricing model is future business solvencylySimip the policies must be
priced so that the insurer can expected sustained earnings. Should the losses in any future year of the
policy begreater than the premiums earned, a reserve must be used to pay off the difference. Should the
company nopredid this future loss and not set aside a large enough regemight be forced to file for
bankruptcy due to insolvency. Obviously, the goal of any pricing model would be to expose and study
this risk to prevent such an occurrence. And although thereguations put in place which require such
adequate reserves to be heldaccurate risk assessment is nonetheless required for proper financial
planning.

Finally, there is something to be said about the motivation for model precBiermight ask
“ wyhis it important to differentiatbetween policies and charge different prif@@shem when it is far
easier tassigrall policies the same priege” The si mpl e answer is to guard

Adverse selection anium tevesuesnate énsuffi@ent toicaver istinsured lesseg r e

because it insures an increasing proportiohigi-risk customers and a dwindling proportion of low risk



c u st o(@ahers2018)If you chargeall your insureds the same price, but at leastather

competing company in the market differentiates on price between high and low risk customers, then

logically your low risk customers will wish to find a better deal on insurance from your competitor, while

the highrisk insureds in the market will gh to find a better deal on insurance from you. To prevent this,

insurance companies must compete on price, and more specifically, the precision of their pricing models.
With these three practical business needs, we may formulate criteria for a usefuiael

pricing model for undergraduate actuarial science students. Keep the above needs in mind when reading

the next section of the paper, which coversegxisting educational models, to evaluate their strengths

and weaknesses.

2.2 Academic Background

This section will review thacademic knowledge required to understand the educational model of
the paperKnowledge of elementary calcul(iATH 230), probability theory (MATH 414) and financial
mathematicsRM 410)will be required to begin the reviewhe pricing methods used intBeO A’ s
LTAM examinatiorwill be covered first, using the textbodctuarial Mathematics for Life Contingent
Risksas the definite source of information. Th&fgnte Carlo valuation methods will be introduced
usingt he SOA’ s | Finarcial ManlketgIEM) aexand official textDerivatives Marketsas the
primary source of informatiorkinally, MeanVariance Portfolio Theory will be summariz&dm the
SOA’ s official s (Corpotate FirmanceThis will cdmpléle theeonteptual review for

undergraduatstudents endeavoring to study the model.



2.2.1Long-Term Actuarial Mathematics

To begin a revievef various methods of premium calculation, we must first define some key
terms.Accordingtothe LA M t e xinisyrance aaticyis a financialagreement between the insurance
company and the policyholdga | s o ¢ al | e.dhe&surahce companmy agiees to pay some
benefits for examplethe sum insured on the death of the policyholder withintéie of an insurance
policy, and the policyholder agrees to pay premiums to the insurance company to secure these benefits
(Dickson, 2013p. 144. The purpose of the premiumgseeminentiyto help the insurance company
recoup the losses associated with said poliyremium does natecessarihave toreflect the cost of
additional policy expenses, such as sales commigssiaerwritingexpensespr business overhead
premium calculatedtreflect only the cost of polidyenefitsis called ainet premiumo (Dickson, 2013)

A premium calculated to reflect costboth policy benefits and additional expenisesalled aigross
premiumo (Dickson, 2013)Additionally, premiums may be calculdten the basis cé onetime
payment, called &single premium,0 or on the basis afegular installmentéDickson, 2013)This paper
focuses onhefinet single premiund calculation as the basis for generating a new pricing model
(Dickson, 2013)

For agiven policy, we denoté as“net future los (Dickson, 2013p. 145) This is equal to
thepresent value of afuture cash outflows due to benefits, less the present valak femiums
collected For examplesupposen insured purchase®aeyear $15,000 death benefit life insurance
policy for $200in a single paymenAssume the payment will come at the end of the year if the insured
diesWi t h an i nterest 0D af(agtheinsured dbes ndt die withsn the gebrcagd (la t e
if the insured does die:

@0 0wdQ: QQAINiI Qa4 Qo @i cmm ¢mm

M) O5 0 wdQt Q QXN I Q& QO @ibr hHpstv ¢ T p T YR p
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Next, we focus directly on pmgium calculatiormethods. The first and most basic premium

calculation ishased on théequivalence principled which assumg“the net premium is sstich that the

expected present value of the future lossisr o at t he s {Diaksdan, 2018p. WMH Ehiscontr ac

assumption is mathematically denoted ‘&s) Tt This directly implies that the expected present
value ofbenefit outgo is equal to the expected present value of collected premhimeelationship can
be used to solve for theet premium. L e trevigit our previous examplesuppose an insured purchases
a oneyear $15,000 death benefit life insurance policy for a single premium, P. fssilve payment

will come at the end of the year if the insured déxl the insured has2&o risk of dying within the year,
we can novwcalculate thanet single premiumfor the policy:

00 @ Qe QQMIDdI Qda Q6 & i

b plrrmm,
S pat v v
CYgp O

Now, we will discusghe second key premium calculation metheadich uses thportfolio
percentile premium principle (PPP)s o met i me s eAaR il £Ricksony2013m £63).The
key idea with this second pricing method is that it reflects not only the expectatiomet faéure loss
random variable, but also the variance associattdthis risk. The basic question answered by the
equivalence princigl is “if | sold a large amount of policies like thlpw much would | have to charge
each customer toeither make nor lose money, on avefddd¢owever the basic question answered by
PPPis: “ i f | s rmumbérofaolidiegjustdjke thisone how much would | havéo charge each
customer in order to haya maximum, 6% chanceof losing moneyon the portfoli@ "To answer th
latterquestion, wdirst assume thate are pricing not one policy, but rather a largefpbo of identical
and independent policieder e, t he term ‘identical’ me arisks t hat

profile. Every policy sold will have its owfuture loss radom variabled j, with all N policieshaving

the samaneanandvariance ‘| nd e p e n d e n cle;’has avereelaton codiffieient o0avithh

a



all otherpolicies—sothat the outcome of any one policy will mrbvide new information othe
outcome of any other policyFrom these assumptions, we can model the behavioe ddsh random

variable associated with the entire portfolio thygiugman, 2012)

While aloss chance of 5% was assunethe example question posedoirevious paragraplhis chance
is in fact arbitrary. One could juas often wish to price insurance witbr examplean 8% chance of
having a positive loss on a pimito. For the PPP method, we denote this niasuraisingthe Greek
| et t erwhérgpl p is the chance that a portfolio loss will pesitive,signifying a financial loss
for the insure( moh Tog Qi 1 Qo 8w thsindgtation, we may nowprice insurance
under our new assumptions by beginning withaheat e me nt “ tréndompaviabkstioold i o | os s
have an alph@ercent chance dfeingnegativé (Dickson, 2013):
00 T |

For large N, we apply the centrahit theorem implying that:

*x 0&i a®as h 0 ,
where p ando are now constants peiriing to thelosses on the entiportfolio. We thenstandardizehe

distributionto find that:
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Where is the cumulative normal distribution function. From here, we misg¢ pandc i n t er ms of

to solve for P. The exact relationshighisawn here will depend on the exact question being pbtsedt * s
borrow from our previous example, where supposed eadhsured purchases a ogear $15,000 death
benefit life insurance policgayableat the end of the year of death, valued at a 5% interestonate,
single premium, RAf eachinsuredhas a2% risk of dying within the yeaindependently from each other

insured and we wish to sell 100 policies such twathave a 5% chance of losing money, t{igickson,

2013)
‘ i p PIT 0
putrmm g 081 U p LTIV
p i z 8t 0 T
> P =2 Y ¢ 0 p

The last few steps to solve for P will requstandardalgebrac manipulaton, but the precise solutios i
nonetheless beyond the scope of this paper

I n summary, LTAM s primary t mpedornedundatheu m cal cul a
Equivalence Principle (EP) and the Portfolio PercemilEmium Principle (PPP). Note halthowh the
EP premiunis easily calculated, does noteflectany risk measure beyond the first moment (mean) of a
loss distributionWhile premiums calculated under the PPP methoalcdount for the second moment of
the loss distributiorthe calculation igar more complex. Furthethe PPRepresentationf loss volatility
is limited to asingular point of focusthealphapercent chance of negatipertfolio loss For example,
the premium calculation is blind to the expedath on the portfolio given #i there is a gain, and the
expected loss conditional on the loss beaingitive (financial loss for insurerdn addition to these
drawbacks, it also requires thmiting assumptioathat all policies are both independent and identically
distributed, whth as previously discussed knownto be unrealistic for many insurance applications.
Finally, the entire calculation process restdgirelyon t he r i sWhilgpregulaomsentye r o
essentially enf or caminsurerma & h onicandevagbitrarilg loweothian o

mandatedand even the regulator’”s cutoff itselof may be
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objectivelyinfer anappropriate alpha for a givgrortfolio, in practice These glaring weaknesses in the

academianodels taught in LTAM serve as the bdsisthe problem this paper aims to solve.

2.2.2Modern Portfolio Theory

The model this paper introduces will require basic knowledge of modern portfolio theory, also
calledmeanvariance portfolio analysis.This method was first created in 1952 by Harry Markowitz,
who later was awarded the Nobel Prize for his work. The reasomg#thod is so important is because it
guantified and confirmed what investors knew for years to be-ttiiat diversification can help an
investment portfolio balance its risk. The first assumption of the method is that investors care about
investment viatility, and that they are generally averse tMarkowitz, 1952) Furtherjnvestors want
two things from their investment portfolia high expected return and a low return variambas,for
every investor, we may construct a theoretical curvedifference, which outlines the set of all

combinations of return and variance for which an

investor is indifferent in investing between each

Utility combination. To the left, we see such a curve drawn on

independent axes of expected
variance(Fabozzi, 2012)Note that as the level of risk
increases, the invastwants a higher expected return

in order to feel like the investment provides her the

U
d
1
1
I
I
I
I
I
I
I
I
I
1

il X

same utility. The only way to increase the utility a

Risk
portfolio provides is to move up and/or to thé& of the
Figure 1: Indifference Curves (Fabozzi, 2012

curve, thus either increasing the expected return,
decreasing the risk, or both. While the exact formulation of secinve maybe difficult, the concept is

useful in demonstratg the payoffs between risk and expected return. The real pmigis theory is in
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shifting the focus of asset valuation from an individual asset to the effect it has eexastirgy portfolio

of assets. The statistical propertté#ghe relationship are trivially calculated from the mean and variance
of the returs on the prexisting portfolio, as well as the mean and variance of the return on the
additional asset, and finally the correlation of returns between the asset and the portfolio. This focus on
the portfolio and the marginal benefit an asset providdsetpartfolio will underpin the conceptual

framework of the model laid forth in this paper.

2.2.3Monte Carlo Methods

The general insurance pricing modetforth in this paper requires basic knowledge of Monte
Carlo valuation method3. h e S OA’ s ulunFéereacesher offiaal textDerivatives Market$o
introduce the concept of Monte Carlo valuatidrthile it does this fronthe context of pricing derivatives,
it is well suited to dcing various financial instruments. Theethod generally crops up finance
whenever a closedorm analytical solution (such as those given by EP and PPP for insurance pricing)
may not be easily obtainedhis is a common occurrence among stochastically defaretbm variables
which exhibit patkdependencyin the conéxt of pricing options, this occurs when the payoff depends on
theprecisemovemets of stock prices hence wh e pathdte lp e n fieeRDoaafdf2013ps
573).The Monte Carlo approach to valuing such methods‘isgoi mul at e f uandthenust ock p
these simulated prices to compute the discounted
simulations and taking the average result acatigsins.Assuming the underlying moded unbiased,
then ly thelaw of large numbersve would expect the average of all these simulations emhabiased
estimator ofthe t ochasti ¢ r andom vGenerallydMome Carlowvaluatienise x pect at i
performed under riskeutral assumptions. This means that thefrisk rate of interest is used in
discounting, and thate care onlyto estimae thefirst moment of ouwvariable.The key advantage of

Monte Carl o val uat i oyoudinslatdha gossiblé futurd valuedfdhe seeuritGar | o
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therefore, as a byproduct you generate the distribution of paybdftbonald, 2013, p573). In other

words, whereas the previous two pricing methods prdindeed information aboubnly themoments of
the loss random variable, the Monte Carlo valuation can be used to describe the entire distfith&ion o
loss random variable through simulation. Tiaist heavily inspired the model design featurethis

paper.

This concludes the literature review section of this paper. In summanyancepricingis a
complex process that requiresde breadth of informatioto price even the most basic products in a
realistic settingAmong the kg considerations are model precisitigs volatility, enterprisesk
toleranceand assumption flexibilitk. TAM’ s manual set s f @ricingmethodo pr i ma
- the Equivalence Principlenethod and the Portfolio Percentileemium Principle method. Each method
has its own advantages and disadvantddeever, together these methods are not esthauin
reflecting theaforementioned kegonsicerations of insurance pricing. Teeet these business needs with
knowledge gained frorastandardindergraduate educatiosm new model will be constructed which is

built upon the concepts of meaariance portfolio theory and Monte Cavlaluatian.
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Chapter 3

The Model

This section focuses on tbeginal work of the paper, the educational general insurance pricing
model. Firstdetailed assumptions will be made to clarify the context of the model. Thet he model ' s
basic framework will be laid ouaiccompanied bytap-by-stepsample calculations to further reinforce
t he model ' s un d eprattigai eragplepresults velishe compesl and analyzed to assess
variousbehavias of themodel. These behaviors will be skeptically evaluated to determhmtherthey
are characteristic of insurance pricing in a+gatld setting Finally, the modék practicaliy will be

discussedvithad escr i pti on of the model’'s foremost strengi

3.1Model Assumptions

Thepricing model created inthissegtio of t he paper is first and fo
model. This means thitevaluates the costs and benefits associated with adding one additional policy (or
set of policies) to an existing policy portfaliosing basic meawvariance portfolio thery assumptions
Another key assumption the model malszabout the financial objective of the company. As previously
discussed, a company might hasgious competing objectives when pricing insurafidés model
assumes that an insurance companyonasole financial objective measurement, éxgected future
equity of thecompany pr evi ously written as the “Actuari al P
the abstract of this papdecause the sole objective is the expectation of future equetg ikino
concern for the variance of future equitis implies a longerm riskneutral approach to thesurance

pricing model Sincethe longesterm investment commonly sold today has a term of 30 yeara30-
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yearUS Treasury Bond), the model will assume 30 years is an appropriate planning farablong

term investment planning. As such, gawe measure of financial performance in the model will default
specifically tothe expected future equity of the caany exactly 30 years from present dake upfront
marginal premium is theadditionalpremiumpaid todayat which the expected future equity of the
company is the same with the new policy as withgivien that the policy may already have an arbitrary
annwal premium associated with Moreover, the model solves for thigfront premium by taking the
difference between thexpectechetpresent value of the company portfolio before and after adding in the
new policy.

Thus, to calculate the premium assamiwvith any new policy, the modehust first calculate the
expected net present value of the-existing company portfolio, and then recalculatgith the addition
of the new policyBecauseéhe model viewgompany equitysa stochastic processiicet o mor r ow’ s
equityi s a random movVv e mg,andbecausihmmdde enforges germargnt stateyof
bankruptcy whermompanyequity bottoms out at zero, th&ure equity of an insurance compaayseen
asa pathdependent stochastic random variable. Thus, a Monte Carlo valuation is used to gisnulate
distribution.The equity movements of a company are modeled annuadlgr the assumption that the
portfolio has a set of policies which gy total fixed anual premiunmand has aandomly distributed
annualloss, which measures the costs associated with annual benefit Adjtionally, arisk-freerate
ofreturni s earned annually on t aedcampanydqutyillstayaeOar ' s equ i
forever if it ever crosses zerbhe simulated future equitg thendescribed by the following recursive
definition:

. 0 0 aw p i Y ahm "Qfd s
W n~
m Q¢ ® LS
Wherew represents the company equity at timeit the annal risk-free rate of return earned equity,
R (for revenue) is the annual premiums collected from the policy portfoliay @theaccumulated

annuallossamount over thé year. Specifically



16
ax Yi 0¢ oihdQOOM Mo & OO VNG d

This annual loss distribution was chosen for two reasons. First, due to the central limit thesurigab)\a
large portfolio would expect to have normally distributed annual lpaseler the same assumptions that
underlie the PPP principle. Secopdlicy benefit outgshould never be negative, since policyholders
filing claims will never pay the insurer to do, $®nce the truncation at zeFar our stochastic
simulation, we willassume thab ,i,'Y, ‘ , and, are given constants.

The concept of the model hinges on its abfiitst to simulatethe portfolio before adding the
additional policy, and theto simulate itagain once the policy is added into the portfolio. Adittneeds
to be done for this is to adjust the loss distribution parameters accordihglydjustment is given
below.

Ifa x 0 h, ,a x h, , and & a a, then:
ax o ¢ ' h, ; G 7 f ; ;

To reinforce the previous sectiamvery brief gample will be reviewed belowf | t oday ’ s
company equity is valued at $50, the figke rate of return is 3%, and the annual premium revenue is
$20, let’s calculate next year’ s equitybthd ( a)
company experiences an annual loss of $80.

@w OD6TMT pgtic ¢nmom OO6OT @ Atdn
Mw uvm pdto ¢cmYnm DO QO YD it ABIT
Note that in scenario (b), all future equity pé@l\/ill also equal 0, to reflect a permanent state of

bankruptcy.
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3.2 Mathematical Analysis

Although the pricing model will be practically solved using a Monte Carlo simulation, it is worth
noting that an analytical solution exists, and in fahetmodekan bepracticallysolved using @rogram
run on symbolic computatio®ince the knowledge base required to understand such an application strays
far from the core actuarial skills acquired from an undergraduate education, the application will not be a
part of this thesis. However, the basic definition behind the approadrtis studying as it resembles a
discretetime, uncountably infinite statgpaceMarkov chainWith the previously made assumptions, we

can define the entire probability distribution of future equity at any future point in time recursively, by the

following:
. O&G o p i Yho n
0@ © o4& & pi Y &hed w
. 0@ no. 0 » 0@ md ‘W h m
O@W w R
0 @ W O@wWw W h
foro p8

From here, the remaining probability staients are given either by recursive solution or by the
probability density function or cumulative distribution function of the truncated normal distribution. This
definition, if solved computationally with‘dor loop,” for example, would provide all nessary
information for the expected future equity of the company simulated, and thus provide analytically
precise prices for additional policies. This has major advantages over a Monte Carlo approach, from
which we would expect a price estimate variancgestito computatioal convergenc@roportional to
the root of the number of simulations, possibly an estimate bias, and perhaps most importantly, a far

greater demand for intensive computation.
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Chapter 4 Application and Results
Now that themathematical framework of the pricing model has been established, the paper will

review the interactive web application built frorrsRiny to showcase the model, and then discuss the

primary findings of the application and model.

4.1 Generalized Pricing Tool

To demonstrate the educational value of the model, | constructed a web application in R

Shinyfor students to interact withPictured below is the homepagfethe site kittps://michaebregory

callahan.shinyapps.io/Thesis Deno/

C @ hitps//michael-gregory-callahan.shinyapps.io/T

v @ :
Insurance Simulator (Thesis Demo)
Made by Mike Callahan
Inputs: Results:
Number of simulations: Equity Forecast Equity Knockaut Final Equity Histogran Pricing
1000 Company Equity Over Time
Planning Horizon (Yrs):
300
Portfolio Revenue: Policy Revenue:
- — Legend
100 5 “200 — Mean
= ~— Median
Portfolio Expected Loss: Policy Expected Loss: g_ 75th Percentile
o o w 25th Percentile
100 10
100-
Portfolio Loss Standard Policy Loss Standard
Deviation: Deviation:
50 5 0-
Portfolio Reserve: Policy Correlation to Portfolio: 0 10 Time (YFS) 20 0
100
Portfolio Investment Return: Simulation Seed:
0.03 8557

Figure 2: Web Application Home Page


https://michael-gregory-callahan.shinyapps.io/Thesis_Demo/
https://michael-gregory-callahan.shinyapps.io/Thesis_Demo/
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Above, we can seediyeneral layout of the website. To the left, there is a sidebar panel

populated with albf the quantitativénputs required to run the modé&here, the default inputs are shown
for each variable. The user may select any of these white input boxes and change the nhumber inside, and
the entire webpage will react accordingly the right, we sethe main panel, which is programmed as a
tabset panel. This means that tlser can switch between tabs freely to view different informaltios.
important to note however, that the first three tabs are displaying information regarding the beginning
portfolio, and that the change in risk profile associated with the additional policy is not reflected in these
tabs.
The first tab is call earethe2% 50y and 38 pdraentilestnd st . ” Sh
the mearof future equity over evgrmeliod simulatedin the above picture, you can see that roughly 25%
of all simulations went bankrupt lgar seven, and 50% went bankrupt around year 18. Howbeer,

mean and 75percentile lines trend upward strongly.

C @ httpsy//michael-gregory-callahan shinyapps.io * @O
Insurance Simulator (Thesis Demo)
Made by Mike Callahan
Inputs: Results:

Number of simulations: Equity Foreca Equtty Knockout Final Equity Histogram Pricing

100 Cumulative Bankruptcy Function
0.6
Planning Horizon (Yrs): //——f)’
5

Portfolio Revenue: Policy Revenue:

Portfolio Expected Loss: Policy Expected Loss:

Portfolio Loss Standard Policy Loss Standard
Deviation: Deviation:

_ Cumulative Bankruptey (%)

Portfolio Reserve: Policy Correlation to Portfolio: Time (Yrs]

Portfolio Investment Return: Simulation Seed:

Figure 3: Web App Equity Knockout Tab
Thenext tab i s call edb,pidumedabaveproldesagadphlawhbich. ” Thi s t

displays the cumulative proportion of simulations which have reached bankruptcy over time.
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In this particular example, the graph shdtet almost 40% of the,d00 simulations run went bankrupt

by the 1@ annual iteration, and about 55% were bankrupt by tHét@tation. Note how the knockout
curve bends downward, implying that as time goes on, the likelihood of additional simuigtions
bankrupt decreases. This makes sense, since the average/aigeity simulations which are not
bankrupt but the 20iteration, for example, is higher than at the outset of the simuldtiesis an
excellent educational example of the importan€conditional expectationSince interest is earned
proportional to the equityalue this means that the o r t faaonual earnisgare also higher than at the

outset, creating a positive feedback loop.

¥ @ hitpsy//michael-gregory-callahan shinyapps.io, v @

Insurance Simulator (Thesis Demo)
Made by Mike Callahan

Inputs: Results:
Number of simulations: Final Equity Histog: f
100 . . -
Histogram of Final Equity
Planning Horizon (Yrs):
g -
Portfolio Revenue: Policy Revenue: § |
100 = 5
i g
Portfolio Expected Loss: Policy Expected Loss: g8
100 g
Portfolio Loss Standard Policy Loss Standard § 1
Deviation: Deviation: [ |

Portfolio Reserve: Policy Correlation to Portfolio: Final Equity

Portfolio Investment Return: Simulation Seed:

Figure 4: Web App Final Equity Histogram Tab

The third tab is titled “ Fiabaé¢offsgalnistagramidi st ogr a
display the ending disitribution of company equity across all simulations, which in this case is 30 years
from the start of theisulations. Here, we see that over 600 of the 1,000 simuldtimthsess tha200
in equity (most of which were bankrufity this time which is consistent with the ending point of the
previously shown knockout curve. Of the remaining simulation, wesearhat the final equityalueis

spread in decreasing frequency from $200 up to $1,000 with a few outliers above $1,000. This confirms
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the previous statement regarding the remaining simulations over time, as they have a signifcicantly higher

final equityvaluethan the $100 starting reserve. This histogram serves as a rough approximation of the

probability density function for the future loss random variable at 30 years.

C @& hitps//michael-gregory-callahan shinyapps.io, w @

Insurance Simulator (Thesis Demo)
Made by Mike Callahan

Inputs: Results:

Final Equity Hist Pricing
Number of simulations: L L jrar i

A Priori Portfolio NPV: -22.11
Planning Horizon (Yrs):

A Priori Portfolio Simulated Return: 0.021

Posteriori Portfolio Revenue: 105

Portfolio Revenue: Policy Revenue:
100 ° Posteriori Portfolio Expected Loss: 110
Portfolio Expected Loss: Policy Expected Loss: Posteriori Portfolio Loss Std. Dev.: 50.25

100
Posteriori Portfolio NPV: -55.51

Portfolio Loss Standard Policy Loss Standard
Deviation: Deviation:

Fair Upfront Premium: 33.4

Portfolio Reserve: Policy Correlation to Portfolio:

Portfolio Investment Return: Simulation Seed:

Figure 5: Web App Pricing Tab

The final Ptabi nhg,dciurEdabime prévigdsa simple text display of all of
the quantitative inputs for calculating the price of the additonal pdiicy.d er “a pri or i portf
the tab shows that the average final eqaftthe original portfolig discounted back to todaless the
$100“ i ni t i t alresérveis -2 InThaus,thé NPV is really showing how the portfolio's
performance on that $100 compsie the market rate (set to 0.03 in the simulation). The end number is
similar to the discountr premiumyou might find on bonds.
For example, the "market rate" of 0.03 implies that if this $48¢ investedh the marketit
would accumulateeturnsover time, and totgd T mp8t o A ¢ ®can 30 yearsBut the money is
currently investedrithe insurance portoflio, which has earnings simulated by the méeled, he model

projects a averagdinal equityof $18906. This imples that the insurance bussprovides a
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annualizedeturnof 0.02457 (shown above as the rounded figure 0.02#)ich is lowerthan the market

rate.So the current NP¥an be shown as:

— PTT - C®p

This meanghat although you have $100 today for the insurance portfoilill karn as much as an
amount$22.11 less than if yoiad investedhat $100 in the markethis calculatation is very similao a
zero coupon bond with a fagalueof $100 being discouad by $22.1Hue to rising market rates

Next, the tab displays how the parametdrheannual loss distribution of the portolfio change
once adjusted by the parameters of the loss disitribution of the new paligtively, we can think of the
policy as adding $5 iannualrevenue, but costing an average of $20yeardue to losses. Salding the
policy issimilar to adling in a-$5 cash flow for the next 30 yeamn the surfaceHowever, because the
equity bottoms out at $0, most of those potntegative cash flows are never realized, which is why the
costwill turn out to bea lot less than a $5 3f@ar annuity immediat&Ve can see that the NPV of the
adjusted portfolio is $65.51, which is even lower than the original NPV. This means titig the
policy to the portfolio will | ower theuppootrtf ol i o’
marginal price for adding the policy to the portfolio is $33.40.

This concludes the basic review of the functionality of the web application tool | built out in R
Shiny.From here, we will investigate the basic insights such a model has on the pricing of insurance

policies.
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4.2 Results

Given that the primary objectivaf the model is to price insurance, it makes sense to study the
relationship that the model shows between price and other input variables. Thus, this sed¢t&n will
brief inventory ofthe univariate effects of the quantitative model inputtherouput model price. While
further investigation may be done to uncover bivariate relationships with pricgeyrtiierof model
variable pairings required, T ywould far exceed the length and scope of this paper.

The default inputs previously shown wei@ nhosen arbitrarily. The projection planning horizon
of 30 years reflects the longdstm security investment commonly available today, and the balance of
revenue to expected loss and loss variance, as well astihlereservewere all chosen to shoas wide
a range of final equity outcomes as possible while using simple, round numbers. For these reasons, the
default inputs will serve as the center of each univariate analysis, and each variable will be adjusted up
and down symmetrically fromthisstda i ng poi nt t o det eeffeciompeicet he vari a
Further to limit the conputational demand of data acquisition, each variable will only be altered up and
down from the base level by 10%, 2030%, 40% an&0%,for a total of 11 data poistper variable
graph. This should suffice to show the deterministic curves of variable interaction in the lHovadeler,
the number of simulations will be increased from 1,000 to 10,000 to allow for cleaneddetast
method of data control is thall simulationsrun for data acquisitiowill be run on the same seed999,
meaning that any random model bias Wwélconstant throughout the experiment to further control for
random variation in the data.

After this brief inventory is taken, treecondary purpose of the modehich focugson the
effect of policy loss variance armblicy-to-portfolio losscorrelationon policy price-also known as
“risk appetitg’ will be revisited.Theinitial hypothesis of this paper is that the risk appetite will vary
between riskseeking and rislaverse behavior, depending upon the financial circumstance of the original
insurance portfolio. For background contexttjncreasen the standard deviatioof the additional policy

will increase the volatility of the annual losses. Although the expected path of future equity is much the
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same, there is effectively a greater chance that the company will go bankrupt, along with a greater chance

that the companwill have very low losses in any given year.

Theprediction is that this balance is asymmetric, andttfeasymmetry will vargreatlyacross
different scenariogvenyielding opposing relationshigtepending upon the exact settings of the
simulatiors run. The intuition for this is as followshaving an exceptionally good year provides lasting
advantages through interest on equatlyd having an exceptionally bad year would put a stop to all cash
flows indefinitely. Thus, vhen the portfab is progranmed to have low expected loss ratjeve would
expect to ithavepositive profits in most yeart this caseaper unit increase in volatilitghouldbecome
costlier, because now the bankrupted simulations would have likely been able to come back from bad
years, but those positive returns are cut short by bankruptcthe othehand when the loss ratio is
much greater than onthe volatility canimprovethelongtermfinancial outlook by creatingiorehigh-
profit outlierseach year, whicprovide lasting advantages, and no negative outliers thanks to the

bankruptcy cutoffWe will return to take an inventory of this pattern towards the end of this chapter.

Effect of Planning Horizon on Price

50
45

s 31.88 32.79 33.33 3427 34.88 352

35 B 2g9.2g 30-76
30 ' 35.69
25

00 | 24.92

15
10

Price

15 20 25 30 35 40 45

Planning Horizon (Years)

Figure 6: Univariate Effect of Planning Horizon on PriceGraph

The first input variable studied was the planning horizon. This variable represents the future point

in time and which equity is projected and made the pricing obgofithe model. The graph (pictured
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abové reflects a very mild positive effect of the planning horizon on policy pfidditionally, the curve

seems almost asymptatioeaning that as the planning horizon increases to a sufficiently large number,
the pice converges as well. This makes intuitive sense, since changing the planning horizon form 30
years to 100 years will likely have litteffecton the cumulative total knockouts, as supporte#ligyre

3. Additionally, the direction of the curve is intivigly explained by the same phenomendgss time for

the projection results infeer relative knockouts due &mlding in the new policy, hence the policy has

less downward effean the portfolio NP\for shorter time frames and thus costs.less

Effect of Portfolio Revenue on Price
90 7888 8L1 806
80
70 62.66 63.4
60
50

77.37

56.65 56.05
46.02

Price

32.7

10.44
155 008 0 0
50 70 90 110 130 150
Portfolio Revenue and Expected Loss
—@— Revenue Expected Loss

Figure 7: Univariate Effect of Portfolio Revenue on PriceGraph

The next two variables studieere the revenue and expected annual loss on the original
portfolio of the insurer. These variables yield perhaps the most interesting, réiselte their parity and
magnitude of effect, and the fact that the previously reviewed academic pricing models do not reflect
them in pricing policies. Tégraph pictured abov@g-igure 3 demonstrates just how influential the pre
existing insurer loss pfile is underthenew pricing scheme\s portfolio revenue falls from the base
assumptions, or as expected loss rises from the base assumptions, the price of the additional policy falls
asymptotically tazera This is a result afhei n s u gergain ansl immediate financial demise as the result

of exceedingly high annual loss ratios. Simply put, the insurer will go bankrupt regardless of the policy
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being added in, so the marginal price is effectively negligible. On the other hand, wherethesitev

increasedor the expected loss decreadedm theirrespectivebase levels, thprice of the policy

increases to a point, and then comes back down. This pattern is far more complex. Initially, the decreased
loss ratio implies lesssk of future bankruptcy in the original portfolio, and thus greater relative increase

in bankruptcyrisk once the new policy is added, which bends the NPV down more and increases the price

of the new policy. However, aft ethelkellhoadioft ai n poi nt
bankruptcy wears off as the portfolio becomes so profitable that even the new policy cannot greatly affect
bankruptcy outcomes over the projection period.

Effect of Portfolio Loss Standard Deviation on Price
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Figure 8: Univariate Effect of Portfolio Loss Standard Deviation on PriceGraph

The next variable studied was t he @dhisisgi nal por
another variable which traditional academic pricing models do not accouyffitris shown in the
graph toabove (Figure 8o hawe a strong impact on the price of the additional politye curve has a
decreasing logistic shapeith an inflection point at 50. The direction of the curve implies that the higher
the initial volatilityin the original portfolio, the less the additiopallicy will negatively affect the
portf ol i o’ Addipoeally tbercume seerms.to have two horizontal asymptotes, which may

serve to bequilibria points across the portfolio loss standard deviation.
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Effect of Portfolio Reserve on Price
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Figure 9: Univariate Effect of Portfolio Reserve on PriceGraph

The last variable concerning the original portfaidhe starting portfolio reserve. Tlhissthe
beginning equity at time zero in the simulatioAs.we can see from the graphove(Figure 9) the
reserve seems to have a direct linear relationship with the price of the policy. This pattern reflects all
previously seen paitns in the modelany change in the original portfolio which would increase business
longevity -- in this case, increasing theging equityalue-- will make the additional policgostlierto
the portfolio’s ov ethemforinatignegleaedrommilaeprevous glagh® | vy i ng
however, it is unlikely that this curve is linear in nature throughout the domain of poréetirve values,

andtherefordikelyar e s eei n g -ijnu sdslodampothern muohdaldger logistic curve.
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Effect of Real Return on Price
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Figure 10: Univariate Effect of Real Return on PriceGraph

The next variable studied was tteal return on annual investments. This variable determines the
annual i ncome earned on tThegragphabove cearlyg displ&aysaan’ s equi t
approximately linear curvethich shows a mild inverse relationship with policy prithis is gaph is
fascinating becaustbreaks the previously observed pattern, whereby variables moving in the direction
of greateroriginal portfolio profitability and sustainabilitiyere associated with upward movements in
price. In this case, the greater thedme earned, tHesscostly the additional policy becomes to the
portfolio s performance. One | i kel y eXdlbdowa toino rc afs
has a duration (or cashfleweighted average timajmilar to that of the origil portfolio, and thus since
theNPV of the portfolio is made more negative by the addition of the policyatber loss (that with the
policy) is discounted down in magnitude more than that obthei gi n a | p Bor axdmplé,i o' s | os
supposehe orignal portfoliohad an NPV of- $30.00, and the additional policy decreased this NPV by
$20tohave anew NPV of®.00 | f we subject both NPV 2%to the s

(which would be a supported assumption under the equivalence obdarbétween portfolios), theve



29
would arrive at a new NPV 0f624.00 for the origingbortfolio and-$42.00 for the adjusted portfolio.

This would imply that the marginal price decreased from@ 2@ $18.00.

Effect of Policy Revenue on Price
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Figure 11: Univariate Effect of Policy Revenue on Pric&raph

Effect of Policy Expected Loss on Price
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Figure 12: Univariate Effect of Policy Expected Loss on Pric&raph

The next two variables pertain to the additional policy being pri€iest, the policy
revenue represents the annual income coming in from the addition of the policy to the original portfolio,
andis ostensiblyanannually recurring premiumn the policy. The second variable, the expected annual

loss on the policyrepresets the mean of the truncated normal random varjallieh represents annual
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losses due to the policy alone. These two variables serve assnmnfd, just athe revenue and

expected loss on the original portfolio did. Herd-igures 11 and 12ve see aidentical pattern to those
two previous variablehowever, due to a smaller scalevoh r i at i on, we -isme'e @naps kot
of the same pattern. This is the pattern which would indeed be capturedibignal pricing models,

though not in the eact same shape as pictured here, due to a difference in financial objectives.

Effect of Policy Loss Standard Deviation on Price
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Figure 13: Univariate Effect of Policy Loss Standard Deviation on Pric&raph
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Figure 14: Univariate Effect of Policy-to-Portfolio Loss Correlation on Price Graph
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Thefinal two variables of the analysise the policy loss standard deviation and the correlation

coefficient between the policy loss and portfolio loss. These two varialdesbviously tied to the
standard deviation of the original portfoliw athreeway interaction which determines the overall
volatility of the annual loss of the newly adjusted portfofie.such, these two curves abdfgures 13
and 14)displaya similar patterrio each otherbecause theolicy-to-portfolio correlation coefficient is
effectively a scaling factor of the policy loss standard deviaémcan observe that the higher the
additional volatility of the adjustegortfolio due to the policythecostlierthepolicy becanes. This is a
direct reflection ohow thecurrent portfolio being modeled favorsisk-aversepricing scheme.
However, it is worth noting that the model ' s
because the base assumptions for thidyais were deliberately chosen to show a wide range of final

equity outcomesso the riskappetite is in fact more neutral thianvould normally be.

Price % Change from base price
Policy Loss Std. Dgv. 80% LR | 100% LR| 120% LR| 80% LR | 100% LR| 120% LR
30 125.01 40.65 1.19 39.38% | 13.20% | -13.14%
28 117.13 39.56 1.22 30.59% | 10.16% | -10.95%
26 109.46 38.57 1.26 22.04% 7.41% -8.03%
24 102.39 37.57 1.3 14.16% 4.62% -5.11%
22 95.97 36.72 1.34 7.00% 2.26% -2.19%
20 89.69 35.91 1.37 0.00% 0.00% 0.00%
18 84.48 35.29 1.41 -5.81% -1.73% 2.92%
16 79.47 34.67 1.43 -11.39% | -3.45% 4.38%
14 75.2 34.16 1.46 -16.16% | -4.87% 6.57%
12 71.32 33.63 1.48 -20.48% | -6.35% 8.03%
10 68.04 33.28 1.51 -24.14% | -7.32% 10.22%

Figure 15. Effect of Loss Ratio on Risk Appetite Data Table

To test this idea, the same analysis was performed, but wiblafieeassumption of tis¢andard

sens

deviation of annual loss on the additional policy increased to 20 (to magnify the relationships observed),

and the expected loss on the original portfoliaedup and down by 20 from the base assumption
100, to provide a look at risk appetite across diffeexpected loss ratiasf 80%, 100% and 120% hen,

the standard deviation was varied up and down 10%, 20%, 30%, 40%, and 50% fnemw Iase



32
assumpbn of 2Q and the corresponding changes in price were recorded. Finally, the corresponding

prices were converted into-2hanges from the base price to control for the direct effects of loss ratio on
price (Figure 15).Since the correlation factor previoysliscussed is simply an amplifier of adjusted

portfolio volatility, one would expect a price relationship identical to policy loss variance, so the paper

will not repeat the experiment for politg-portfolio correlation. One glaring detail not discussethe

following analysis is that the prices change dramatically in scale going from a high loss ratio to a low loss
ratio. This means that as a company becomes less financially solveitpme less sensitive to

additional future losses, and thus matiting to charge less in premium to take on costly policies.

Effect of Loss Ratio on Risk Appetite
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Figure 16: Effect of Loss Ratio on Risk Appetite

The findingsof the experimendre presented on the graph abdvigire 16). On the graph, we
can clearly see thatelrelationship between price and policy loss volatility does in fact invert across the
different assumptiosion theloss ratioof the original portfolio The 80% loss ratio portfolio put a high
price on volatility, resulting in a strong risk premium movirgm left to right on the graplthe 100%

loss ratio portfolio put a low price on volatiljtyesulting in a mild risk premium moving from left to right
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on the graphand the 120% loss ratio portfolio pusiallbounty on volatility, resulting in a mildsk-

based discount moving from left to right on the graph.

Thus, we conclude that tldatasupports thg a p dypothesis thatin the modelrisk appetite
is dynamic and can vary across different financial circumstafces: afar, this might seem
comterintuitive, as a company beimtentvized fo engatdje imevena
riskier practices to right itself, resulting in the high likelihood of an even faster demise. The paper will

therefore label the counterintuitive relationstiip® Bking ShipPar ad o x . ”

S
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Chapter 5

Conclusion

This sedbn will evaluate the merits of the proposed pricing model, regardeng t
conceptual foundations, educational value, and practthaintageand disadvantageand
pricing insights of thenarginal pricing modeReflections will also be made on te#eciveness
of theR-Shiny tool,andpossible avenudsr future investigation.

While the two conceptual modetarrentlyused to educate undergraduate studars
necessary componeritsunderstanding the actuarial industry, they are not exhaustive in
providing all the basic insights required for students to understandost common pricing
processes imdustry. Most notably, these pricing modedy on the independence of lassks
andconsider only arbitrarily defined cutoffs for mitigating portfolio riske marginal pricing
modelprovides a new perspectif@r pricing general insurance, where explicit assumptions
aboutrisk appetiteneed to be nde.With these oversimplifying asewptions removed, one sees
that the marginal pricprovides greatimprovements in accuracy, particuladgderthree
different circumstancesfirst, when the prexisting book of business is highvolatile; second,
when the additional policy annual lospossesses a high varianoegelation to the prexisting
portf ol i o’ andhidswventheaadditiana pobcy has sonobservabldoss
correlation to theriginal portfolio of business. However, when theseumstances are turned
around, anc vastly larger book of business is comparedrtmiah smalleadditional policy,
both withrelatively low loss ratios, then theamginal price will become very similar to the

results obtained from simpler pricing methotiis implies that the marginal pimg model
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might be a worthwhile effort famore boutique insurance companieseven reinsurers which

possess a smalumberof very large policies

However, while thenarginal pricingnodelallows formoreparsimonios assumptions
and thus a stronger sense of realesrar the other two modelthe practicality ofts application
is more burdensome. The model may be solved analytiwéhya symboliccomputatiorengine,
requiring highly advancesboftware, or computati@lly, which demands a large of amount of
bruteforce computational power for acceptable levels of convergeBmitn options are difficult
to implement, especially for a boutique firm small enough for the underlying theory to still be
advantageous. Thu$is is a model whicks likely bestimplementedy reinsurers odeveloped
into a highly advanced analytical software package to be licensed tedmoallique firms.

This difficulty of implementatiorreduce the educational value of the model. If students
cannot easily apply the model on an examssess their knowledgewill be less likely that the
model will bediscussed in the first place. However, the madel still beaccessed vithe
interactive wé applicationwhich can provide deep insights to students on the nature of
insuranceoricing and expose themarlieronto a direct application of variowtuarial
techniques, namely financial forecasting and simula#aidlitionally, the students can beade
to hypothesize the relationship of the input variables to the output pridehen test those
hypotheses in real tim&hese benefits may be wh the time to furtheexpand on the paper and
createinstructional materials for educators.

The relationships exposedimt s paper ' s anichpatternsinigsarantei on r
business strategy. Firstly, the leetoff a company is, the moneoneyit will demand inupfront
premiumfor a given additional risky poligyand viceversa. However, this pattern, like most

economic patternshows diminishing returns in either direction. It also shows how simply
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settingopne’ s f i nanci al pl anni ng hoonrebebkswior mdreuriskt h e r

averse in the short term. One might argue thatkiiosviedge could be applied to executive
compensation to mitigatesky behaviorFurther, the analysis suggests tatncrease in
interest rates effectively shortens this planning horizon by maéiagfuture payoffs less
valuable thus increasing the shasdrm risk tolerance of the insuréiinally, the analysishows
how crucial the intectivity of loss distribubns is when modeling insurance prices under certain
circumstancesRisk appetite, for example, can completely ineed then speed up the
bankruptcy of a firm vigdhe® Si nki ng S Mhege inSlightdemdnstrat the need for
integrativeenterprise risk management in insuraribe,dangers akolating the performance
projections okegregatd policy portfolios and most importantly, the need for regulation in the
insurance market

Certain areas of the marginal pricing model warrant &uritivestigationFirstly, a direct
application of the analytical solution would prove to be invaluable in obtaining further insights
into the modelespecially in relation to longrm equilibria and infinite limitsSecondly, within
the computational mad, with greater resources one copfdvide wider views of univariate
interactions in the model, as wedl multivariate interactions, and even measures of
computational convergence, to determine how many simulations need to be rurst@idhbée
resuls to be significanta a single dollaof policy premiumFinally, one might even endeavor to
expand upothetheoreticaframework that the model providasseveral ways by adding in
path-dependent dividend payoffs from annual earniongdyprogramming the interest rate as a
random variablepr by programming in the market forces of supply and demand

In conclusion, the marginal prices model provides great advantages over existing models,

but only invery specific circumstances. The best use casdbdanodel are in reinsurance, or
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third-party software development for smaller boutique insurance firms. The model can be used

educationally, to introduce different actuarial concepts, and the associated tool can be used to test
variable relationshipsin e a | ti me. Finally, an analysis of

deep insights into insurance business practic
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