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 ABSTRACT 

 

This paper expands upon existing educational actuarial models to construct a new general 

insurance pricing model that will demonstrate the effects of additional actuarial concepts to 

students via an interactive web application built in R-Shiny. The new model is designed to 

calculate the marginal cost of adding one additional policy, or group of policies, to an existing 

business portfolio of policies. The paper achieves this by viewing all policies from an investment 

portfolio perspective and projecting the resulting cashflows forward in time using simulation. 

Then, the model assesses the simulation and calculates the average net present value (NPV) of 

the simulation, which is the sole financial objective for the company represented by the model. 

The paper defines the “fair upfront marginal premium” of a given policy to be the change in 

average NPV caused by adding the additional policy. Thus, the premium can be considered the 

upfront premium rate at which the insurer’s utility is the same with the additional insured as 

without. The resulting model is a simplification of the different actuarial measurements taken to 

effectively price insurance in industry, but serves as an apt educational framework for students to 

understand more practical business applications. Particularly, the key advantage of the model is 

in revealing deeper patterns with respect to the cost of policy loss variance. Ultimately, this 

paper finds that under such a pricing framework, the risk appetite of an insurance company 

varies dramatically depending upon its current financial circumstance, and that this model can 

provide revealing metrics of implied risk premiums to provide objective measures of risk 

appetite.  
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Chapter 1  

Introduction 

Insurers are incentivized to compete on the price of policies written. The actuarial 

practice of pricing policies is a complex process influenced by simplifying assumptions, 

including those made about the following:  the nature of policies to be sold; the costs of policies 

already sold; policyholder behavior; and investments made over the term of the policy. As a 

result, the modeling techniques employed to price policies in industry are likewise complex and 

varied. However, by the time most undergraduate actuarial students find professional 

employment, they have little exposure to the application of these various techniques which 

support the basis of the actuarial profession. To increase undergraduate exposure to these 

peripheral pricing techniques, an educational pricing model is created and built into an accessible 

tool for students to explore as a supplementary academic exercise. In particular, model is built to 

provide deeper insights into the risk appetites of insurance firms. 

In Chapter 2, the literature review section of the paper achieves two objectives. The first 

objective is to motivate students to contemplate the various business needs that actuarial models 

must service in a real-world setting. The second objective is to review the academic background 

provided by undergraduate institutions following the standard Society of Actuaries (SOA) 

curriculum, with a focus on the two primary pricing techniques covered in the Long Term 

Actuarial Mathematics (LTAM) curriculum; the Equivalence Principle, and the Portfolio 

Percentile Principle. While mastery of these two techniques is indeed necessary to understanding 

real-world insurance pricing, it is insufficient to grasp the wider scope of actuarial techniques 
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that are used in industry to support such pricing decisions. As a result, this section will also 

provide a secondary focus on the supporting techniques of stochastic Monte Carlo simulation 

and portfolio theory covered in the new Investment and Financial Markets (IFM) exam 

curriculum. The model created in this paper seeks to borrow theoretical concepts from these 

more varied techniques and combine them with the two simpler premium calculation methods to 

price basic general insurance policies. The result is a novel pricing model which incorporates the 

additional considerations of solvency, investment risk and loss interdependency under a single 

framework.   

In Chapter 3, the paper discusses the new educational model in detail. First, the paper 

posits a simple hypothetical example featuring an existing insurance company to motivate the 

analysis. Simplifying assumptions regarding the company’s investment returns, existing assets 

and liabilities and financial objectives are first made both to clarify the scope of the problem and 

to provide quantitative inputs for variation. Once these assumptions are made, the paper proposes 

a stochastic model as a solution by outlining its methodology. Namely, discrete time stochastic 

simulations are run in which net cash flows from the existing base of assets and liabilities are 

first forecasted into the future to project future company equity. These values are then discounted 

back to the present day and added together to form a path-dependent Net Present Value (NPV) 

calculation. Statistical measurements are taken from the distribution of simulated NPV 

calculations. Then, the existing portfolio base of assets and liabilities is modified to 

accommodate the additional policyholders being priced by the model, and the simulation is run 

again. The difference in mean simulated NPVs from the a priori, or original, portfolio base to the 

a posteriori, or adjusted portfolio base, serves as the net upfront marginal premium of the model. 

Once the model dynamics are discussed, mathematical analyses are conducted to better 
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understand the behavior of the model, including recursive definitions of the probability density 

function and estimates of variance-convergence. Lastly, the model is coded into an interactive R-

Shiny web application to serve as educational tool, and the chapter ends by discussing the utility 

of these applications.  

In Chapter 4, the quantitative results are pulled from the web application to analyze the 

deeper relationships of the model. Specifically, univariate relationships are graphed to expose the 

effects of isolated assumption shocks on policy price. Patterns are drawn from this analysis and 

extended to provide insights into general insurance business strategy. After this, the paper will 

turn its focus to the secondary purpose of this model; to explore the relationship between risk 

appetite and annual loss ratio.   

Finally, in Chapter 5, the model and its associated tools are discussed to expose their 

greatest strengths and weaknesses, and conclusions are drawn regarding the model’s practical 

applicability and educational value. These insights will be followed by suggestions for further 

investigations into the model.
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Chapter 2  

Literature Review 

 The literature review of this paper serves two purposes:  first, to outline the practical 

business needs that an actuarial pricing model should service; and second, to review all 

prerequisite undergraduate actuarial mathematics for understanding the model. 

2.1 Pricing Motivation 

 Selling a product in an open market – be it life insurance or a steak knife – might seem quite 

simple. One must first consider the cost of producing the good sold, and then add a healthy padding of 

profit margin while still trying to keeping the price competitive enough to sell a high volume of that good. 

However, we can further separate this business problem into two distinct challenges – estimating the cost 

of goods sold, or the supply curve, and estimating the consumer demand curve. While both forces drive 

market prices equally through the law of supply and demand, it is often the sole focus of academic 

actuarial models accomplish the former. Thus, the rest of the paper will reduce the scope of the problem 

of pricing insurance to merely estimating the cost of goods sold. Within this scope, however, insurance is 

still a relatively complex service to price. There are three primary needs that any practical insurance 

pricing system must serve:  the need for a holistic reflection of the annual loss risk profile; the need for 

future business solvency; and the need for pricing precision.  

 To capture the effect on annual loss risk profile that a given policy may have, one must take 

precise measurements of the loss distribution of policies annually, including the annual loss’ mean and 

variance. While many practical pricing models may claim that these measurements can be safely taken 
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under the assumption of policy loss independence, this is not the case for numerous types of insurance 

policies. Cyber Risk insurance, for example, may cover the damages caused by the hacking of various 

companies which all share the same cyber security infrastructure. Should one such company be breached, 

the likelihood of the others in the portfolio also being breached would be raised significantly, implying a 

loss correlation. Loss interdependency can even be argued in insurance markets like health and life 

insurance, where mortality and morbidity improvements are made idiosyncratically rather than 

systematically. For example, the life expectancies of two different diabetics may hinge on the same 

development of diabetes treatments, making them more closely related in risk than someone who is not 

diabetic. However, due to the larger number of policies in these markets, the ultimate total loss each year, 

given by the law of large numbers, will be largely unaffected by such relationships. Thus, we can see that 

any model capturing loss interdependency can improve the estimation of annual loss distributions for 

some, but not all, insurance portfolios.  

 The next concern for a pricing model is future business solvency. Simply put, the policies must be 

priced so that the insurer can expected sustained earnings. Should the losses in any future year of the 

policy be greater than the premiums earned, a reserve must be used to pay off the difference. Should the 

company not predict this future loss and not set aside a large enough reserve, it might be forced to file for 

bankruptcy due to insolvency. Obviously, the goal of any pricing model would be to expose and study 

this risk to prevent such an occurrence. And although there are regulations put in place which require such 

adequate reserves to be held, an accurate risk assessment is nonetheless required for proper financial 

planning. 

 Finally, there is something to be said about the motivation for model precision. One might ask 

“why is it important to differentiate between policies and charge different prices for them, when it is far 

easier to assign all policies the same price?” The simple answer is to guard against adverse selection. 

Adverse selection “occurs when an insurer’s premium revenues are insufficient to cover its insured losses 

because it insures an increasing proportion of high-risk customers and a dwindling proportion of low risk 
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customers” (Cather, 2018). If you charge all your insureds the same price, but at least one other 

competing company in the market differentiates on price between high and low risk customers, then 

logically your low risk customers will wish to find a better deal on insurance from your competitor, while 

the high-risk insureds in the market will wish to find a better deal on insurance from you. To prevent this, 

insurance companies must compete on price, and more specifically, the precision of their pricing models.  

 With these three practical business needs, we may formulate criteria for a useful educational 

pricing model for undergraduate actuarial science students. Keep the above needs in mind when reading 

the next section of the paper, which covers pre-existing educational models, to evaluate their strengths 

and weaknesses. 

2.2 Academic Background 

This section will review the academic knowledge required to understand the educational model of 

the paper. Knowledge of elementary calculus (MATH 230), probability theory (MATH 414) and financial 

mathematics (RM 410) will be required to begin the review. The pricing methods used in the SOA’s 

LTAM examination will be covered first, using the textbook Actuarial Mathematics for Life Contingent 

Risks as the definite source of information. Then, Monte Carlo valuation methods will be introduced 

using the SOA’s Investment and Financial Markets (IFM) exam official text, Derivatives Markets, as the 

primary source of information. Finally, Mean-Variance Portfolio Theory will be summarized from the 

SOA’s official supplementary IFM text, Corporate Finance. This will complete the conceptual review for 

undergraduate students endeavoring to study the model.  
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2.2.1 Long-Term Actuarial Mathematics 

 To begin a review of various methods of premium calculation, we must first define some key 

terms. According to the LTAM text, “an insurance policy is a financial agreement between the insurance 

company and the policyholder [also called an ‘insured’]. The insurance company agrees to pay some 

benefits, for example the sum insured on the death of the policyholder within the term of an insurance 

policy, and the policyholder agrees to pay premiums to the insurance company to secure these benefits” 

(Dickson, 2013, p. 144). The purpose of the premium is preeminently to help the insurance company 

recoup the losses associated with said policy.  A premium does not necessarily have to reflect the cost of 

additional policy expenses, such as sales commission, underwriting expenses, or business overhead.  A 

premium calculated to reflect only the cost of policy benefits is called a “net premium” (Dickson, 2013). 

A premium calculated to reflect costs of both policy benefits and additional expenses is called a “gross 

premium” (Dickson, 2013). Additionally, premiums may be calculated on the basis of a one-time 

payment, called a “single premium,” or on the basis of regular installments (Dickson, 2013). This paper 

focuses on the “net single premium” calculation as the basis for generating a new pricing model 

(Dickson, 2013).  

For a given policy, we denote 𝐿0
𝑛 as “net future loss” (Dickson, 2013, p. 145). This is equal to 

the present value of all future cash outflows due to benefits, less the present value of all premiums 

collected. For example, suppose an insured purchases a one-year $15,000 death benefit life insurance 

policy for $200 in a single payment. Assume the payment will come at the end of the year if the insured 

dies. With an interest rate of 5%, let’s calculate 𝐿0
𝑛 if (a) the insured does not die within the year, and (b) 

if the insured does die: 

(a) 𝐿0
𝑛 = 𝑃𝑉(𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠) − 𝑃𝑉(𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠) = 0 − 200 =  −200 

(b) 𝐿0
𝑛 = 𝑃𝑉(𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠) − 𝑃𝑉(𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠) = 15,000/(1.05) − 200 =  14,085.71 
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 Next, we focus directly on premium calculation methods. The first and most basic premium 

calculation is based on the “equivalence principle,” which assumes “the net premium is set such that the 

expected present value of the future loss is zero at the start of the contract” (Dickson, 2013, p. 147). This 

assumption is mathematically denoted as:  𝐸[𝐿0
𝑛] = 0. This directly implies that the expected present 

value of benefit outgo is equal to the expected present value of collected premiums. This relationship can 

be used to solve for the net premium. Let’s revisit our previous example:  suppose an insured purchases 

a one-year $15,000 death benefit life insurance policy for a single premium, P. Assuming the payment 

will come at the end of the year if the insured dies, and the insured has a 2% risk of dying within the year, 

we can now calculate the net single premium for the policy: 

𝐸𝑃𝑉(𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠) = 𝐸𝑃𝑉(𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑠) 

(2%) ×
15,000

1.05
= 𝑃 

285.71 = 𝑃 

 Now, we will discuss the second key premium calculation method, which uses the portfolio 

percentile premium principle (PPP), sometimes called “Value-At-Risk” (Dickson, 2013, p. 163). The 

key idea with this second pricing method is that it reflects not only the expectation of the net future loss 

random variable, but also the variance associated with this risk. The basic question answered by the 

equivalence principle is:  “if I sold a large amount of policies like this, how much would I have to charge 

each customer to neither make nor lose money, on average?” However, the basic question answered by 

PPP is:  “if I sold a large number of policies just like this one, how much would I have to charge each 

customer in order to have, at maximum, a 5% chance of losing money on the portfolio?” To answer the 

latter question, we first assume that we are pricing not one policy, but rather a large portfolio of identical 

and independent policies. Here, the term ‘identical’ means that all policyholders will pose the same risk 

profile. Every policy sold will have its own future loss random variable, 𝐿0,𝑖, with all N policies having 

the same mean and variance. ‘Independence’ means that each 𝐿0,𝑖 has a correlation coefficient of 0 with 
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all other policies – so that the outcome of any one policy will not provide new information on the 

outcome of any other policy.  From these assumptions, we can model the behavior of the loss random 

variable associated with the entire portfolio thusly (Klugman, 2012): 

𝐿 =  ∑ 𝐿0,𝑖

𝑁

𝑖=1

 

𝐸[𝐿] =  ∑ 𝐸[𝐿0,𝑖]

𝑁

𝑖=1

= 𝑁 × 𝐸[𝐿0,𝑖] 

𝑉𝑎𝑟[𝐿] =  ∑ 𝑉𝑎𝑟[𝐿0,𝑖]

𝑁

𝑖=1

= 𝑁 × 𝑉𝑎𝑟[𝐿0,𝑖]  

While a loss chance of 5% was assumed in the example question posed in previous paragraph, this chance 

is in fact arbitrary. One could just as often wish to price insurance with, for example, an 8% chance of 

having a positive loss on a portfolio. For the PPP method, we denote this risk measure using the Greek 

letter ‘alpha,’ where 1 − 𝛼 is the chance that a portfolio loss will be positive, signifying a financial loss 

for the insurer (𝛼 = 0.95, 𝛼 = 0.92 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). With this notation, we may now price insurance 

under our new assumptions by beginning with the statement “the portfolio loss random variable should 

have an alpha-percent chance of being negative” (Dickson, 2013): 

𝑃[𝐿 <  0] =  𝛼 

For large N, we apply the central limit theorem, implying that: 

𝐿~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝑁 × 𝜇𝑝𝑜𝑙𝑖𝑐𝑦 , 𝜎2 =  𝑁 × 𝜎𝑝𝑜𝑙𝑖𝑐𝑦
2 ) 

where µ and σ are now constants pertaining to the losses on the entire portfolio. We then standardize the 

distribution to find that: 

𝑃 [
𝐿 − 𝜇

𝜎
<  −

𝜇

𝜎
 ] =  𝛷 (−

𝜇

𝜎
) =  𝛼 

𝜇

𝜎
=  −𝛷−1(𝛼) 
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Where 𝛷 is the cumulative normal distribution function. From here, we must write µ and σ in terms of P 

to solve for P. The exact relationships drawn here will depend on the exact question being posed. Let’s 

borrow from our previous example, where we supposed each insured purchases a one-year $15,000 death 

benefit life insurance policy payable at the end of the year of death, valued at a 5% interest rate, for a 

single premium, P. If each insured has a 2% risk of dying within the year, independently from each other 

insured, and we wish to sell 100 policies such that we have a 5% chance of losing money, then (Dickson, 

2013): 

𝜇 = 15,000 × (2%) ×
100

1.05
 −  100 × 𝑃  

𝜎 = √100 × ((
15,000

1.05
− 𝑃)

2

∗ .02 + (−𝑃)2 × 0.98) 

The last few steps to solve for P will require standard algebraic manipulation, but the precise solution is 

nonetheless beyond the scope of this paper. 

 In summary, LTAM’s primary two premium calculation methods are performed under the 

Equivalence Principle (EP) and the Portfolio Percentile Premium Principle (PPP). Note how although the 

EP premium is easily calculated, it does not reflect any risk measure beyond the first moment (mean) of a 

loss distribution. While premiums calculated under the PPP method do account for the second moment of 

the loss distribution, the calculation is far more complex. Further, the PPP representation of loss volatility 

is limited to a singular point of focus, the alpha-percent chance of negative portfolio loss. For example, 

the premium calculation is blind to the expected gain on the portfolio given that there is a gain, and the 

expected loss conditional on the loss being positive (financial loss for insurer). In addition to these 

drawbacks, it also requires the limiting assumptions that all policies are both independent and identically 

distributed, which as previously discussed, is known to be unrealistic for many insurance applications. 

Finally, the entire calculation process rests entirely on the risk parameter α. While regulators may 

essentially enforce a maximum value for α, an insurers’ choice of α can be arbitrarily lower than 

mandated, and even the regulator’s cutoff itself may be entirely arbitrary in nature. It is then difficult to 
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objectively infer an appropriate alpha for a given portfolio, in practice. These glaring weaknesses in the 

academic models taught in LTAM serve as the basis for the problem this paper aims to solve.  

2.2.2 Modern Portfolio Theory 

The model this paper introduces will require basic knowledge of modern portfolio theory, also 

called mean-variance portfolio analysis. This method was first created in 1952 by Harry Markowitz, 

who later was awarded the Nobel Prize for his work. The reason this method is so important is because it 

quantified and confirmed what investors knew for years to be true – that diversification can help an 

investment portfolio balance its risk. The first assumption of the method is that investors care about 

investment volatility, and that they are generally averse to it (Markowitz, 1952). Further, investors want 

two things from their investment portfolio:  a high expected return and a low return variance. Thus, for 

every investor, we may construct a theoretical curve of indifference, which outlines the set of all 

combinations of return and variance for which an 

investor is indifferent in investing between each 

combination. To the left, we see such a curve drawn on 

independent axes of expected return and “risk” or 

variance (Fabozzi, 2012). Note that as the level of risk 

increases, the investor wants a higher expected return 

in order to feel like the investment provides her the 

same utility. The only way to increase the utility a 

portfolio provides is to move up and/or to the left of the 

curve, thus either increasing the expected return, 

decreasing the risk, or both. While the exact formulation of such a curve may be difficult, the concept is 

useful in demonstrating the payoffs between risk and expected return. The real power of this theory is in 

Figure 1:  Indifference Curves (Fabozzi, 2012) 
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shifting the focus of asset valuation from an individual asset to the effect it has on a pre-existing portfolio 

of assets. The statistical properties of the relationship are trivially calculated from the mean and variance 

of the returns on the pre-existing portfolio, as well as the mean and variance of the return on the 

additional asset, and finally the correlation of returns between the asset and the portfolio. This focus on 

the portfolio and the marginal benefit an asset provides to the portfolio will underpin the conceptual 

framework of the model laid forth in this paper. 

2.2.3 Monte Carlo Methods 

The general insurance pricing model set forth in this paper requires basic knowledge of Monte 

Carlo valuation methods. The SOA’s IFM curriculum references the official text Derivatives Markets to 

introduce the concept of Monte Carlo valuation. While it does this from the context of pricing derivatives, 

it is well suited to pricing various financial instruments. The method generally crops up in finance 

whenever a closed-form analytical solution (such as those given by EP and PPP for insurance pricing) 

may not be easily obtained. This is a common occurrence among stochastically defined random variables 

which exhibit path-dependency. In the context of pricing options, this occurs when the payoff depends on 

the precise movements of stock prices, hence when “the payoff is path-dependent” (McDonald, 2013, p. 

573). The Monte Carlo approach to valuing such methods is to “simulate future stock prices, and then use 

these simulated prices to compute the discounted expected payoff of the option” by running many 

simulations and taking the average result across all runs. Assuming the underlying model is unbiased, 

then by the law of large numbers, we would expect the average of all these simulations to be an unbiased 

estimator of the stochastic random variable’s true expectation. Generally, Monte Carlo valuation is 

performed under risk-neutral assumptions. This means that the risk-free rate of interest is used in 

discounting, and that we care only to estimate the first moment of our variable. The key advantage of 

Monte Carlo valuation is that “with Monte Carlo you simulate the possible future value of the security; 
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therefore, as a byproduct you generate the distribution of payoffs” (McDonald, 2013, p. 573). In other 

words, whereas the previous two pricing methods provide limited information about only the moments of 

the loss random variable, the Monte Carlo valuation can be used to describe the entire distribution of the 

loss random variable through simulation. This fact heavily inspired the model design featured in this 

paper. 

This concludes the literature review section of this paper. In summary, insurance pricing is a 

complex process that requires wide breadth of information to price even the most basic products in a 

realistic setting. Among the key considerations are model precision, loss volatility, enterprise risk 

tolerance, and assumption flexibility. LTAM’s manual sets forth two primary insurance pricing methods -

- the Equivalence Principle method and the Portfolio Percentile Premium Principle method. Each method 

has its own advantages and disadvantages. However, together these methods are not exhaustive in 

reflecting the aforementioned key considerations of insurance pricing. To meet these business needs with 

knowledge gained from a standard undergraduate education, a new model will be constructed which is 

built upon the concepts of mean-variance portfolio theory and Monte Carlo valuation.
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Chapter 3  

The Model 

 This section focuses on the original work of the paper, the educational general insurance pricing 

model. First, detailed assumptions will be made to clarify the context of the model. Then, the model’s 

basic framework will be laid out, accompanied by step-by-step sample calculations to further reinforce 

the model’s underlying process. Next, practical example results will be compiled and analyzed to assess 

various behaviors of the model. These behaviors will be skeptically evaluated to determine whether they 

are characteristic of insurance pricing in a real-world setting. Finally, the model’s practicality will be 

discussed with a description of the model’s foremost strengths and weaknesses.  

3.1 Model Assumptions 

 The pricing model created in this section of the paper is first and foremost a ‘marginal’ pricing 

model. This means that it evaluates the costs and benefits associated with adding one additional policy (or 

set of policies) to an existing policy portfolio, using basic mean-variance portfolio theory assumptions. 

Another key assumption the model makes is about the financial objective of the company. As previously 

discussed, a company might have various competing objectives when pricing insurance. This model 

assumes that an insurance company has one sole financial objective measurement, the expected future 

equity of the company, previously written as the “Actuarial Present Value” (APV) of future cashflows in 

the abstract of this paper. Because the sole objective is the expectation of future equity, there is no 

concern for the variance of future equity. This implies a long-term risk-neutral approach to the insurance 

pricing model. Since the longest-term investment commonly sold today has a term of 30 years (i.e. a 30-



15 

 

year US Treasury Bond), the model will assume 30 years is an appropriate planning horizon for all long-

term investment planning. As such, the sole measure of financial performance in the model will default 

specifically to the expected future equity of the company exactly 30 years from present day. The upfront 

marginal premium is the additional premium paid today at which the expected future equity of the 

company is the same with the new policy as without, given that the policy may already have an arbitrary 

annual premium associated with it. Moreover, the model solves for this upfront premium by taking the 

difference between the expected net present value of the company portfolio before and after adding in the 

new policy.  

 Thus, to calculate the premium associated with any new policy, the model must first calculate the 

expected net present value of the pre-existing company portfolio, and then recalculate it with the addition 

of the new policy. Because the model views company equity as a stochastic process (since tomorrow’s 

equity is a random movement from today’s equity), and because the model enforces a permanent state of 

bankruptcy when company equity bottoms out at zero, the future equity of an insurance company is seen 

as a path-dependent stochastic random variable. Thus, a Monte Carlo valuation is used to simulate its 

distribution. The equity movements of a company are modeled annually under the assumption that the 

portfolio has a set of policies which pays a total fixed annual premium and has a randomly distributed 

annual loss, which measures the costs associated with annual benefit outgo. Additionally, a risk-free rate 

of return is earned annually on the previous year’s equity holdings, and company equity will stay at 0 

forever if it ever crosses zero. The simulated future equity is then described by the following recursive 

definition: 

𝑦𝑡 = {
𝑀𝐴𝑋[𝑦𝑡−1 × (1 + 𝑟) + 𝑅 −  𝑙𝑡 , 0]   𝑓𝑜𝑟 𝑦𝑡−1 ≠ 0 

0   𝑓𝑜𝑟 𝑦𝑡−1 = 0
 

Where 𝑦𝑡 represents the company equity at time t, 𝑟 is the annual risk-free rate of return earned on equity, 

R (for revenue) is the annual premiums collected from the policy portfolio, and 𝑙𝑡 is the accumulated 

annual loss amount over the 𝑡𝑡ℎ year. Specifically:   
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𝑙𝑡  ~ 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇, 𝜎2, 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑎𝑡 0) 

This annual loss distribution was chosen for two reasons. First, due to the central limit theorem, a suitably 

large portfolio would expect to have normally distributed annual losses, under the same assumptions that 

underlie the PPP principle. Second, policy benefit outgo should never be negative, since policyholders 

filing claims will never pay the insurer to do so, hence the truncation at zero. For our stochastic 

simulation, we will assume that 𝑦0, 𝑟, 𝑅, 𝜇, and 𝜎 are given constants.  

 The concept of the model hinges on its ability first to simulate the portfolio before adding the 

additional policy, and then to simulate it again once the policy is added into the portfolio. All that needs 

to be done for this is to adjust the loss distribution parameters accordingly. The adjustment is given 

below:   

If  𝑙𝑝𝑜𝑙𝑖𝑐𝑦~ 𝑁(𝜇𝑝𝑜𝑙𝑖𝑐𝑦 , 𝜎𝑝𝑜𝑙𝑖𝑐𝑦
2 ), 𝑙𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜~ 𝑁(𝜇𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 , 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

2 ), and  𝑙𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 + 𝑙𝑝𝑜𝑙𝑖𝑐𝑦 =  𝑙𝑡, then: 

𝑙𝑡  ~ 𝑁(𝜇𝑝𝑜𝑙𝑖𝑐𝑦 +  𝜇𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 , 𝜎𝑝𝑜𝑙𝑖𝑐𝑦
2 +  𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

2 + 2 × 𝜌𝑝𝑜𝑙𝑖𝑐𝑦,𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 × 𝜎𝑝𝑜𝑙𝑖𝑐𝑦 × 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜). 

 To reinforce the previous section, a very brief example will be reviewed below. If today’s 

company equity is valued at $50, the risk-free rate of return is 3%, and the annual premium revenue is 

$20, let’s calculate next year’s equity if (a) the company experiences an annual loss of $30, and (b) the 

company experiences an annual loss of $80. 

(a) 𝑦1 = 𝑀𝐴𝑋[50 × (1.03) + 20 − 30,0] = 𝑀𝐴𝑋[ 41.50, 0] =  $41.50  

(b) 𝑦1 = 50 × (1.03) + 20 − 80 = 𝑀𝐴𝑋[−8.50, 0] = $0.00 

Note that in scenario (b), all future equity past 𝑦
1
will also equal 0, to reflect a permanent state of 

bankruptcy.  
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3.2 Mathematical Analysis 

Although the pricing model will be practically solved using a Monte Carlo simulation, it is worth 

noting that an analytical solution exists, and in fact the model can be practically solved using a program 

run on symbolic computation. Since the knowledge base required to understand such an application strays 

far from the core actuarial skills acquired from an undergraduate education, the application will not be a 

part of this thesis. However, the basic definition behind the approach is worth studying, as it resembles a 

discrete-time, uncountably infinite state-space Markov chain. With the previously made assumptions, we 

can define the entire probability distribution of future equity at any future point in time recursively, by the 

following: 

Pr(𝑌1 = 𝑦1) =  {
Pr (𝑙1 ≥ 𝑦0 × (1 + 𝑟) + 𝑅),   𝑦1 = 0

Pr(𝑙1 = 𝑦0 × (1 + 𝑟) + 𝑅 −  𝑦1),   𝑦1 ≠ 0 
 

Pr(𝑌𝑡 = 𝑦𝑡) =  {
Pr(𝑌𝑡−1 = 0) +  ∫ Pr (𝑌𝑡−1 = 𝑦𝑡−1) × Pr(𝑌𝑡 = 0|𝑌𝑡−1) 𝑑𝑦𝑡−1

∞

0
, 𝑦𝑡 = 0

∫ Pr (𝑌𝑡−1 = 𝑦𝑡−1) × Pr(𝑌𝑡|𝑦𝑡−1) 𝑑𝑦𝑡−1
∞

0
, 𝑦𝑡 ≠ 0

  

for 𝑡 > 1.  

 From here, the remaining probability statements are given either by recursive solution or by the 

probability density function or cumulative distribution function of the truncated normal distribution. This 

definition, if solved computationally with a “for loop,” for example, would provide all necessary 

information for the expected future equity of the company simulated, and thus provide analytically 

precise prices for additional policies. This has major advantages over a Monte Carlo approach, from 

which we would expect a price estimate variance subject to computational convergence proportional to 

the root of the number of simulations, possibly an estimate bias, and perhaps most importantly, a far 

greater demand for intensive computation.  
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Chapter 4 Application and Results 

Now that the mathematical framework of the pricing model has been established, the paper will 

review the interactive web application built from R-shiny to showcase the model, and then discuss the 

primary findings of the application and model.  

4.1 Generalized Pricing Tool 

 To demonstrate the educational value of the model, I constructed a web application in R-

Shiny for students to interact with. Pictured below is the homepage of the site (https://michael-gregory-

callahan.shinyapps.io/Thesis_Demo/).

 

Figure 2:  Web Application Home Page 

https://michael-gregory-callahan.shinyapps.io/Thesis_Demo/
https://michael-gregory-callahan.shinyapps.io/Thesis_Demo/
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Above, we can see the general layout of the website. To the left, there is a sidebar panel 

populated with all of the quantitative inputs required to run the model. There, the default inputs are shown 

for each variable. The user may select any of these white input boxes and change the number inside, and 

the entire webpage will react accordingly. To the right, we see the main panel, which is programmed as a 

tabset panel. This means that the user can switch between tabs freely to view different information. It is 

important to note however, that the first three tabs are displaying information regarding the beginning 

portfolio, and that the change in risk profile associated with the additional policy is not reflected in these 

tabs. 

The first tab is called  “Equity Forecast.” Shown there are the 25th, 50th, and 75th percentiles and 

the mean of future equity over every period simulated. In the above picture, you can see that roughly 25% 

of all simulations went bankrupt by year seven, and 50% went bankrupt around year 18. However, the 

mean and 75th percentile lines trend upward strongly.  

 

Figure 3:  Web App Equity Knockout Tab 

The next tab is called “Equity Knockout.” This tab, pictured above, provides a graph which 

displays the cumulative proportion of simulations which have reached bankruptcy over time. 
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In this particular example, the graph shows that almost 40% of the 1,000 simulations run went bankrupt 

by the 10th annual iteration, and about 55% were bankrupt by the 20th iteration. Note how the knockout 

curve bends downward, implying that as time goes on, the likelihood of additional simulations going 

bankrupt decreases. This makes sense, since the average equity value of simulations which are not 

bankrupt but the 20th iteration, for example, is higher than at the outset of the simulation. This is an 

excellent educational example of the importance of conditional expectations. Since interest is earned 

proportional to the equity value, this means that the portfolio’s annual earnings are also higher than at the 

outset, creating a positive feedback loop.  

 

Figure 4:  Web App Final Equity Histogram Tab 

 The third tab is titled “Final Equity Histogram.” This tab, pictured above, offers a histogram to 

display the ending disitribution of company equity across all simulations, which in this case is 30 years  

from the start of the simulations. Here, we see that over 600 of the 1,000 simulations had less than $200 

in equity (most of which were bankrupt) by this time, which is consistent with the ending point of the 

previously shown knockout curve. Of the remaining simulation, we can see that the final equity value is 

spread in decreasing frequency from $200 up to $1,000 with a few outliers above $1,000. This confirms 
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the previous statement regarding the remaining simulations over time, as they have a signifcicantly higher 

final equity value than the $100 starting reserve. This histogram serves as a rough approximation of the 

probability density function for the future loss random variable at 30 years. 

 

 

Figure 5:  Web App Pricing Tab 

 The final tab is titled “Pricing.” This tab, pictured above, provides a simple text display of all of 

the quantitative inputs for calculating the price of the additonal policy. Under “a priori portfolio NPV,” 

the tab shows that the average final equity of the original portfolio, discounted back to today, less the 

$100  “initital investment” reserve, is $ -22.11. Thus, the NPV is really showing how the portfolio's 

performance on that $100 compares to the market rate (set to 0.03 in the simulation). The end number is 

similar to the discount or premium you might find on bonds.  

 For example, the "market rate" of 0.03 implies that if this $100 was invested in the market, it 

would accumulate returns over time, and total 100 × 1.0330 = $242.73 in 30 years. But the money is 

currently invested in the insurance portoflio, which has earnings simulated by the model. Here, the model 

projects an average final equity of $189.06. This imples that the insurance business provides an 
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annualized return of 0.021457 (shown above as the rounded figure 0.021), which is lower than the market 

rate. So the current NPV can be shown as: 

189.06

1.0330
− 100 =

(100×1.02145730− 100×1.0330)

1.0330
= −22.11. 

This means that although you have $100 today for the insurance portfolio, it will earn as much as an 

amount $22.11 less than if you had invested that $100 in the market. This calculatation is very similar to a 

zero coupon bond with a face value of $100 being discounted by $22.11 due to rising market rates. 

 Next, the tab displays how the parameters of the annual loss distribution of the portolfio change 

once adjusted by the parameters of the loss disitribution of the new policy. Intuitively, we can think of the 

policy as adding $5 in annual revenue, but costing an average of $10 per year due to losses. So adding the 

policy is similar to adding in a -$5 cash flow for the next 30 years, on the surface. However, because the 

equity bottoms out at $0, most of those potential negative cash flows are never realized, which is why the 

cost will turn out to be a lot less than a $5 30-year annuity immediate. We can see that the NPV of the 

adjusted portfolio is $ -55.51, which is even lower than the original NPV. This means that adding the 

policy to the portfolio will lower the portfolio’s current market value by $33.40. Thus, the fair upfront 

marginal price for adding the policy to the portfolio is $33.40.  

 This concludes the basic review of the functionality of the web application tool I built out in R-

Shiny. From here, we will investigate the basic insights such a model has on the pricing of insurance 

policies. 
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4.2 Results 

Given that the primary objective of the model is to price insurance, it makes sense to study the 

relationship that the model shows between price and other input variables. Thus, this section will take a 

brief inventory of the univariate effects of the quantitative model inputs on the output model price. While 

further investigation may be done to uncover bivariate relationships with price, the number of model 

variable pairings required, (10
2

) = 45, would far exceed the length and scope of this paper.  

The default inputs previously shown were not chosen arbitrarily. The projection planning horizon 

of 30 years reflects the longest-term security investment commonly available today, and the balance of 

revenue to expected loss and loss variance, as well as the initial reserve, were all chosen to show as wide 

a range of final equity outcomes as possible while using simple, round numbers. For these reasons, the 

default inputs will serve as the center of each univariate analysis, and each variable will be adjusted up 

and down symmetrically from this starting point to determine the variable’s isolated effect on price. 

Further, to limit the computational demand of data acquisition, each variable will only be altered up and 

down from the base level by 10%, 20%, 30%, 40% and 50%, for a total of 11 data points per variable 

graph. This should suffice to show the deterministic curves of variable interaction in the model. However, 

the number of simulations will be increased from 1,000 to 10,000 to allow for cleaner data. One last 

method of data control is that all simulations run for data acquisition will be run on the same seed, 9,999, 

meaning that any random model bias will be constant throughout the experiment to further control for 

random variation in the data. 

After this brief inventory is taken, the secondary purpose of the model, which focuses on the 

effects of policy loss variance and policy-to-portfolio loss correlation on policy price – also known as 

“risk appetite,” will be revisited. The initial hypothesis of this paper is that the risk appetite will vary 

between risk-seeking and risk-averse behavior, depending upon the financial circumstance of the original 

insurance portfolio. For background context, an increase in the standard deviation of the additional policy 

will increase the volatility of the annual losses. Although the expected path of future equity is much the 
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same, there is effectively a greater chance that the company will go bankrupt, along with a greater chance 

that the company will have very low losses in any given year.  

The prediction is that this balance is asymmetric, and that the asymmetry will vary greatly across 

different scenarios, even yielding opposing relationships depending upon the exact settings of the 

simulations run. The intuition for this is as follows:  having an exceptionally good year provides lasting 

advantages through interest on equity; and having an exceptionally bad year would put a stop to all cash 

flows indefinitely. Thus, when the portfolio is programmed to have a low expected loss ratio, we would 

expect to it have positive profits in most years. In this case, a per unit increase in volatility should become 

costlier, because now the bankrupted simulations would have likely been able to come back from bad 

years, but those positive returns are cut short by bankruptcy. On the other hand, when the loss ratio is 

much greater than one, the volatility can improve the long-term financial outlook by creating more high-

profit outliers each year, which provide lasting advantages, and no negative outliers thanks to the 

bankruptcy cutoff. We will return to take an inventory of this pattern towards the end of this chapter. 

 

Figure 6:  Univariate Effect of Planning Horizon on Price Graph 

The first input variable studied was the planning horizon. This variable represents the future point 

in time and which equity is projected and made the pricing objective of the model. The graph (pictured 
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above) reflects a very mild positive effect of the planning horizon on policy price. Additionally, the curve 

seems almost asymptotic, meaning that as the planning horizon increases to a sufficiently large number, 

the price converges as well. This makes intuitive sense, since changing the planning horizon form 30 

years to 100 years will likely have little effect on the cumulative total knockouts, as supported by Figure 

3. Additionally, the direction of the curve is intuitively explained by the same phenomenon:  less time for 

the projection results in fewer relative knockouts due to adding in the new policy, hence the policy has 

less downward effect on the portfolio NPV for shorter time frames and thus costs less. 

 

Figure 7:  Univariate Effect of Portfolio Revenue on Price Graph 

The next two variables studied were the revenue and expected annual loss on the original 

portfolio of the insurer. These variables yield perhaps the most interesting results, due to their parity and 

magnitude of effect, and the fact that the previously reviewed academic pricing models do not reflect 

them in pricing policies. The graph pictured above (Figure 7) demonstrates just how influential the pre-

existing insurer loss profile is under the new pricing scheme. As portfolio revenue falls from the base 

assumptions, or as expected loss rises from the base assumptions, the price of the additional policy falls 

asymptotically to zero. This is a result of the insurer’s certain and immediate financial demise as the result 

of exceedingly high annual loss ratios. Simply put, the insurer will go bankrupt regardless of the policy 
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being added in, so the marginal price is effectively negligible. On the other hand, when the revenue is 

increased, or the expected loss decreased, from their respective base levels, the price of the policy 

increases to a point, and then comes back down. This pattern is far more complex. Initially, the decreased 

loss ratio implies less risk of future bankruptcy in the original portfolio, and thus greater relative increase 

in bankruptcy risk once the new policy is added, which bends the NPV down more and increases the price 

of the new policy. However, after a certain point, perhaps the policy’s effect on the likelihood of 

bankruptcy wears off as the portfolio becomes so profitable that even the new policy cannot greatly affect 

bankruptcy outcomes over the projection period. 

 

Figure 8:  Univariate Effect of Portfolio Loss Standard Deviation on Price Graph 

The next variable studied was the original portfolio’s annual loss standard deviation. This is 

another variable which traditional academic pricing models do not account for, yet it is shown in the 

graph to above (Figure 8) to have a strong impact on the price of the additional policy. The curve has a 

decreasing logistic shape, with an inflection point at 50. The direction of the curve implies that the higher 

the initial volatility in the original portfolio, the less the additional policy will negatively affect the 

portfolio’s performance. Additionally, the curve seems to have two horizontal asymptotes, which may 

serve to be equilibria points across the portfolio loss standard deviation.  
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Figure 9:  Univariate Effect of Portfolio Reserve on Price Graph 

The last variable concerning the original portfolio is the starting portfolio reserve. This is the 

beginning equity at time zero in the simulations. As we can see from the graph above (Figure 9), the 

reserve seems to have a direct linear relationship with the price of the policy. This pattern reflects all 

previously seen patterns in the model:  any change in the original portfolio which would increase business 

longevity -- in this case, increasing the starting equity value -- will make the additional policy costlier to 

the portfolio’s overall performance. Applying the information gleaned from the previous graphs, 

however, it is unlikely that this curve is linear in nature throughout the domain of portfolio reserve values, 

and therefore likely are seeing just a ‘zoomed-in’ snapshot of another, much larger logistic curve.  
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Figure 10:  Univariate Effect of Real Return on Price Graph 

 

 The next variable studied was the real return on annual investments. This variable determines the 

annual income earned on the previous year’s equity holdings. The graph above clearly displays an 

approximately linear curve which shows a mild inverse relationship with policy price. This is graph is 

fascinating because it breaks the previously observed pattern, whereby variables moving in the direction 
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would arrive at a new NPV of -$24.00 for the original portfolio and -$42.00 for the adjusted portfolio. 

This would imply that the marginal price decreased from $20.00 to $18.00. 

 

Figure 11:  Univariate Effect of Policy Revenue on Price Graph 

 

Figure 12:  Univariate Effect of Policy Expected Loss on Price Graph 
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losses due to the policy alone. These two variables serve as complements, just as the revenue and 

expected loss on the original portfolio did. Here in Figures 11 and 12, we see an identical pattern to those 

two previous variables; however, due to a smaller scale of variation, we see a more ‘zoomed-in’ snapshot 

of the same pattern. This is the pattern which would indeed be captured by traditional pricing models, 

though not in the exact same shape as pictured here, due to a difference in financial objectives. 

 

Figure 13:  Univariate Effect of Policy Loss Standard Deviation on Price Graph 

 

Figure 14:  Univariate Effect of Policy-to-Portfolio Loss Correlation on Price Graph 
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The final two variables of the analysis are the policy loss standard deviation and the correlation 

coefficient between the policy loss and portfolio loss. These two variables are obviously tied to the 

standard deviation of the original portfolio in a three-way interaction which determines the overall 

volatility of the annual loss of the newly adjusted portfolio. As such, these two curves above (Figures 13 

and 14) display a similar pattern to each other, because the policy-to-portfolio correlation coefficient is 

effectively a scaling factor of the policy loss standard deviation. We can observe that the higher the 

additional volatility of the adjusted portfolio due to the policy, the costlier the policy becomes. This is a 

direct reflection of how the current portfolio being modeled favors a risk-averse pricing scheme. 

However, it is worth noting that the model’s sensitivity to these variables is very low. This is likely 

because the base assumptions for this analysis were deliberately chosen to show a wide range of final 

equity outcomes, so the risk-appetite is in fact more neutral than it would normally be.  

 

Figure 15:  Effect of Loss Ratio on Risk Appetite Data Table 

To test this idea, the same analysis was performed, but with the base assumption of the standard 

deviation of annual loss on the additional policy increased to 20 (to magnify the relationships observed), 

and the expected loss on the original portfolio varied up and down by 20 from the base assumption of 

100, to provide a look at risk appetite across different expected loss ratios of 80%, 100% and 120%. Then, 

the standard deviation was varied up and down 10%, 20%, 30%, 40%, and 50% from the new base 

Policy Loss Std. Dev. 80% LR 100% LR 120% LR 80% LR 100% LR 120% LR

30 125.01 40.65 1.19 39.38% 13.20% -13.14%

28 117.13 39.56 1.22 30.59% 10.16% -10.95%

26 109.46 38.57 1.26 22.04% 7.41% -8.03%

24 102.39 37.57 1.3 14.16% 4.62% -5.11%

22 95.97 36.72 1.34 7.00% 2.26% -2.19%

20 89.69 35.91 1.37 0.00% 0.00% 0.00%

18 84.48 35.29 1.41 -5.81% -1.73% 2.92%

16 79.47 34.67 1.43 -11.39% -3.45% 4.38%

14 75.2 34.16 1.46 -16.16% -4.87% 6.57%

12 71.32 33.63 1.48 -20.48% -6.35% 8.03%

10 68.04 33.28 1.51 -24.14% -7.32% 10.22%

% Change from base pricePrice
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assumption of 20, and the corresponding changes in price were recorded. Finally, the corresponding 

prices were converted into %-changes from the base price to control for the direct effects of loss ratio on 

price (Figure 15). Since the correlation factor previously discussed is simply an amplifier of adjusted 

portfolio volatility, one would expect a price relationship identical to policy loss variance, so the paper 

will not repeat the experiment for policy-to-portfolio correlation. One glaring detail not discussed in the 

following analysis is that the prices change dramatically in scale going from a high loss ratio to a low loss 

ratio. This means that as a company becomes less financially solvent, it becomes less sensitive to 

additional future losses, and thus more willing to charge less in premium to take on costly policies. 

 

Figure 16:  Effect of Loss Ratio on Risk Appetite 

The findings of the experiment are presented on the graph above (Figure 16). On the graph, we 

can clearly see that the relationship between price and policy loss volatility does in fact invert across the 

different assumptions on the loss ratio of the original portfolio. The 80% loss ratio portfolio put a high 

price on volatility, resulting in a strong risk premium moving from left to right on the graph; the 100% 

loss ratio portfolio put a low price on volatility, resulting in a mild risk premium moving from left to right 
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on the graph; and the 120% loss ratio portfolio put a small bounty on volatility, resulting in a mild risk-

based discount moving from left to right on the graph.  

Thus, we conclude that the data supports the paper’s hypothesis:  that in the model, risk appetite 

is dynamic and can vary across different financial circumstances. From afar, this might seem 

counterintuitive, as a company identified as a “sinking ship” can thusly be incentivized to engage in even 

riskier practices to right itself, resulting in the high likelihood of an even faster demise. The paper will 

therefore label the counterintuitive relationship the “Sinking Ship Paradox.”  
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Chapter 5  

Conclusion 

This section will evaluate the merits of the proposed pricing model, regarding the 

conceptual foundations, educational value, and practical advantages and disadvantages, and 

pricing insights of the marginal pricing model. Reflections will also be made on the effectiveness 

of the R-Shiny tool, and possible avenues for future investigation. 

While the two conceptual models currently used to educate undergraduate students are 

necessary components to understanding the actuarial industry, they are not exhaustive in 

providing all the basic insights required for students to understand the most common pricing 

processes in industry. Most notably, these pricing models rely on the independence of loss risks 

and consider only arbitrarily defined cutoffs for mitigating portfolio risk. The marginal pricing 

model provides a new perspective for pricing general insurance, where no explicit assumptions 

about risk appetite need to be made. With these oversimplifying assumptions removed, one sees 

that the marginal price provides great improvements in accuracy, particularly under three 

different circumstances:  first, when the pre-existing book of business is highly volatile; second, 

when the additional policy’s annual loss possesses a high variance in relation to the pre-existing 

portfolio’s loss variance; and third, when the additional policy has some observable loss 

correlation to the original portfolio of business. However, when these circumstances are turned 

around, and a vastly larger book of business is compared to a much smaller additional policy, 

both with relatively low loss ratios, then the marginal price will become very similar to the 

results obtained from simpler pricing methods. This implies that the marginal pricing model 
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might be a worthwhile effort for more boutique insurance companies, or even reinsurers which 

possess a small number of very large policies.  

However, while the marginal pricing model allows for more parsimonious assumptions 

and thus a stronger sense of realism over the other two models, the practicality of its application 

is more burdensome. The model may be solved analytically with a symbolic computation engine, 

requiring highly advanced software, or computationally, which demands a large of amount of 

brute-force computational power for acceptable levels of convergence. Both options are difficult 

to implement, especially for a boutique firm small enough for the underlying theory to still be 

advantageous. Thus, this is a model which is likely best implemented by reinsurers or developed 

into a highly advanced analytical software package to be licensed to smaller boutique firms.  

This difficulty of implementation reduces the educational value of the model. If students 

cannot easily apply the model on an exam to assess their knowledge, it will be less likely that the 

model will be discussed in the first place. However, the model can still be accessed via the 

interactive web application, which can provide deep insights to students on the nature of 

insurance pricing and expose them earlier on to a direct application of various actuarial 

techniques, namely financial forecasting and simulation. Additionally, the students can be made 

to hypothesize the relationship of the input variables to the output price, and then test those 

hypotheses in real time. These benefits may be worth the time to further expand on the paper and 

create instructional materials for educators. 

The relationships exposed in this paper’s analysis section reveal rich patterns in insurance 

business strategy. Firstly, the better off a company is, the more money it will demand in upfront 

premium for a given additional risky policy, and vice-versa. However, this pattern, like most 

economic patterns, shows diminishing returns in either direction. It also shows how simply 
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setting one’s financial planning horizon further into the future makes one’s behavior more risk-

averse in the short term. One might argue that this knowledge could be applied to executive 

compensation to mitigate risky behavior. Further, the analysis suggests that an increase in 

interest rates effectively shortens this planning horizon by making later future payoffs less 

valuable, thus increasing the short-term risk tolerance of the insurer. Finally, the analysis shows 

how crucial the interactivity of loss distributions is when modeling insurance prices under certain 

circumstances. Risk appetite, for example, can completely invert and then speed up the 

bankruptcy of a firm via the “Sinking Ship Paradox.” These insights demonstrate the need for 

integrative enterprise risk management in insurance, the dangers of isolating the performance 

projections of segregated policy portfolios, and most importantly, the need for regulation in the 

insurance market. 

Certain areas of the marginal pricing model warrant further investigation. Firstly, a direct 

application of the analytical solution would prove to be invaluable in obtaining further insights 

into the model, especially in relation to long term equilibria and infinite limits. Secondly, within 

the computational model, with greater resources one could provide wider views of univariate 

interactions in the model, as well as multivariate interactions, and even measures of 

computational convergence, to determine how many simulations need to be run for the scalable 

results to be significant to a single dollar of policy premium. Finally, one might even endeavor to 

expand upon the theoretical framework that the model provides in several ways:  by adding in 

path-dependent dividend payoffs from annual earnings; or by programming the interest rate as a 

random variable; or by programming in the market forces of supply and demand. 

 In conclusion, the marginal prices model provides great advantages over existing models, 

but only in very specific circumstances. The best use cases for the model are in reinsurance, or 
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third-party software development for smaller boutique insurance firms. The model can be used 

educationally, to introduce different actuarial concepts, and the associated tool can be used to test 

variable relationships in real time. Finally, an analysis of the model’s results generated some 

deep insights into insurance business practices; namely, the “Sinking Ship Paradox.” 
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