
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NLP ANNOTATION TOOLS FOR MANUAL MARKUP OF CONTENT IN SHORT
SUMMARIES AND ESSAYS

ALEX DRIBAN
SPRING 2019

A thesis
submitted in partial fulfillment

of the requirements
for baccalaureate degrees

in Computer Science and Biochemistry and Molecular Biology
with honors in Computer Science

Reviewed and approved* by the following:

Rebecca Passonneau
Professor of Computer Science and Engineering

Thesis Supervisor

John Hannan
Associate Department Head of Computer Science and Engineering

Honors Adviser

* Signatures are on file in the Schreyer Honors College.

i

ABSTRACT

Automated evaluation of students’ reading and writing skills could enable teachers to

more efficiently assess student abilities. One important skill is mastery of content: a student’s

ability to understand reading material and demonstrate their understanding through short

summaries or essays about what they have read. Student mastery of content can be evaluated by

comparing students’ written summaries to those written by a “wise crowd,” considered to be a

gold standard of content mastery. There are several automated methods for building the wise

crowd content model (called a pyramid) and scoring student summaries, such as PyrEval. These

methods have been tested against manual methods for accuracy using DUCView, a tool for

performing and collecting manual content annotations of summaries. However, PyrEval and

DUCView are only suitable for simple summaries. I have developed a new tool called SEAView,

using the DUCView source code as a starting point, for content annotation of essays that have a

special format. This special format includes a summary in the header of the essay, followed by a

body that makes an argument. DUCView was last updated in 2005, and the original Java source

code has since been lost. However, the DUCView JAR file has been decompiled using two

decompilers to recover the code. I have made modifications to the DUCView source code and

created this new tool using the decompiled Java code. The manual annotations created using this

tool will be used for developing, training, and testing machine learned models to performed

automated annotations. It will also be used to study the relationship between summary and essay

content, and for scoring essays of this format according to their content.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Introduction ... 1

1.1 Evaluation of Reading and Writing Skills .. 1
1.1.1 Content Mastery .. 2
1.1.2 Different Genres of Content Mastery .. 2
1.1.3 Capturing Main Ideas: Rubric versus Wise Crowd Scoring 3

1.2 Pyramid Method of Summary Content Annotation ... 5
1.2.1 Summary Content Units .. 6
1.2.2 Building the Pyramid .. 8
1.2.3 Using the Pyramid ... 9
1.2.4 Pyramid Scores .. 10

1.3 Pyramid Annotation Tools ... 11
1.3.1 Manual Methods of Summary Content Analysis: DUCView 12
1.3.2 Automatic Methods of Summary Content Analysis: PyrEval 15

1.4 Argument Annotation... 16
1.4.1 Next Step in Content Annotation: Summaries versus Arguments 16
1.4.2 Elementary Discourse Units .. 18
1.4.3 Argumentative Discourse Units .. 20
1.4.4 Need for a Tool for Manual Content Annotation of Argumentative Writing.. 21

Chapter 2 DUCView: A Tool for Summary Content Annotation 22

2.1 Decompilation of the DUCView JAR File .. 22
2.2 Analysis of Decompiled DUCView Source Code ... 23
2.3 Control Flow of DUCView .. 25
2.4 Modifications to DUCView ... 28

Chapter 3 SEAView: A New Tool for Argument Content Annotation 31

3.1 Design of SEAView ... 31
3.2 Implementation of SEAView Design ... 33
3.3 Using SEAView ... 37
3.4 Analysis of SEAView Design .. 48

Chapter 4 Conclusions and Future Work ... 50

BIBLIOGRAPHY .. 51

iii

LIST OF FIGURES

Figure 1. Two SCUs annotated from six gold-standard summaries. 6

Figure 2. Annotated SCUs. .. 7

Figure 3. Four-level pyramid constructed from four gold-standard summaries. 8

Figure 4. Optimal content score of a peer summary. ... 10

Figure 5. Pyramid creation in DUCView version 1.4. ... 12

Figure 6. Peer annotation in DUCView version 1.4. ... 13

Figure 7. Peer annotation score in DUCView version 1.4. .. 14

Figure 8. Evidence relation in RST. ... 18

Figure 9. Sentences containing two clausal EDUs... 19

Figure 10. A sentence with a phrasal EDU. ... 20

Figure 11. Pyramid creation view in DUCView version 1.5. .. 26

Figure 12. Peer annotation view in DUCView version 1.5. ... 27

Figure 13. Comparison of version 1.4 and 1.5 score windows .. 30

Figure 14. Essay annotation schematic .. 32

Figure 15. SEAView ready screen ... 37

Figure 16. Pyramid loaded in SEAView. ... 38

Figure 17. Selected SCU in SEAView... 39

Figure 18. An error during EDU creation in SEAView. .. 40

Figure 19. An EDU and SCU annotated in SEAView ... 41

Figure 20. Changed EDU label in SEAView. .. 42

Figure 21. A SCU without a corresponding EDU in SEAView. ... 43

Figure 22. An ordered SEA table in SEAView. .. 44

Figure 23. SCU-EDU alignment window. ... 45

Figure 24. Peer annotation view in SEAView. .. 46

iv

Figure 25. Model essays window in SEAView. .. 47

v

LIST OF TABLES

Table 1. Descriptions of DUCView source code files. .. 23

Table 2. DUCView version 1.5 changes. ... 28

Table 3. Essay annotation workflow using DUCView and SEAView. 34

Table 4. Primary functions of SEAView source code files. .. 35

vi

ACKNOWLEDGEMENTS

I would like to thank all the members of the Penn State Natural Language Processing lab

for their inspiration and discussions, but especially the following people: Dr. Passonneau, my

thesis adviser, for providing me with an enriching and valuable research experience, and her

feedback and guidance throughout this project; Saptarashmi for his amazing work on

decompiling the DUCView source code into a usable format; and Yanjun for her help with

understanding this project and learning about DUCView. I would also like to thank my honors

adviser, Dr. Hannan, for his guidance during my undergraduate career. Finally, I am grateful for

all the support of my family and friends.

1

Chapter 1

Introduction

1.1 Evaluation of Reading and Writing Skills

Development of reading and writing skills is a priority for educators since these skills and

fundamental to success in many careers. However, data from the National Center for Education

Statistics suggests that most students in the United States fail to demonstrate grade level reading

and writing proficiency on national assessments [1], [2]. The reasons for this systematic

inadequacy are complex. One possible cause for concern is insufficient preparation of

instructors: several national surveys on the quality of writing instruction in high school and

middle school classrooms suggest that the majority of teachers feel they did not receive enough

training on how to teach writing. In addition, teachers indicated many of their most commonly

used writing activities lack analysis or personalization of information. These concerns were most

prevalent in teachers who taught subjects other than language arts, although teachers generally

agreed that teaching writing should be a shared responsibility among different subjects [3], [4].

These surveys call into question current teaching paradigms and suggest they should be

reassessed to improve the quality of writing instruction in the United States.

2
1.1.1 Content Mastery

Content mastery is an important domain of reading and writing skills for educators to

evaluate and provide feedback on for students to improve their abilities. It encompasses a

student’s ability to understand reading material and demonstrate their understanding through

essays about what they have read [5]. In a piece of writing, evaluation of content mastery

focusses on the quality of ideas incorporated into the text, rather than details such as grammar

and style.

 In research conducted in both low- and high-achieving third-grade classrooms, most

feedback teachers tended to give students was related to surface-level problems in their students’

writing, such as spelling or grammar issues. However, the amount of content-level feedback on

the students’ drafts significantly predicated the quality of content and organization in students’

final work. This suggests that content-level feedback is important for improving the quality of

students’ writing, but some teachers fail to give adequate feedback on content issues [6].

1.1.2 Different Genres of Content Mastery

 Content mastery itself is an abstract concept, and it can be shown in many ways,

depending on the subject. Several applications relevant to this paper include summarization and

argumentative essays. For instance, students can display content mastery by reading news

articles and writing short summaries about the content they read. Students who exhibit content

mastery are able to discern the most important details from the text and put them in their own

words in a short summary [5]. Thus, those students have displayed their mastery of reading

comprehension and summarization. Summarization itself is an important skill for students to

3
learn because it is required for certain academic and professional assignments, such as writing

papers or presentations using complex source materials. Furthermore, it is a useful study aid for

some students. Therefore, testing students’ summarization skills is a practical exercise [7].

 Another relevant means of demonstrating content mastery is through the writing of

argumentative essays. Studies have demonstrated that for most children, persuasive essay writing

is more difficult than other types of writing because it is more cognitively demanding [8], [9].

This complexity can present challenges in evaluating mastery of argumentative writing. In

addition, student performance on national surveys of persuasive writing ability have historically

been poor [2], [10]. However, the ability to write effective and logical arguments is important in

the context of students’ academic, professional, and personal lives. Therefore, evaluating

mastery of argumentative writing is also an important avenue for educator intervention.

1.1.3 Capturing Main Ideas: Rubric versus Wise Crowd Scoring

Rubrics are one of the most commonly used methods of assessing student content

mastery. They are a standardized method of scoring student responses based on the fulfillment of

various categories determined to be important to their mastery of the subject matter. In principle,

rubrics reduce subjectivity in the grading process and can save time in individually analyzing

student essays. However, in practice, creating high quality rubrics that accurately reflect learning

goals is a time-consuming and difficult process for many educators [11]. Two rubric writers,

each of whom could be highly qualified for their positions, may present different interpretations

of the most important main ideas of their rubrics. Furthermore, scoring using rubrics requires

judgment to decide if a student has adequately met the requirements of a given category;

4
subjective biases may present an obstacle to objective scoring using a rubric [5]. These issues are

compounded for teachers who feel unprepared to teach writing, particularly teachers in math and

science.

 These challenges suggest an opportunity for a new type of scoring and feedback system

to be implemented to save educators time and effort. One possible approach to reducing

complexity and subjectivity in rubric generation involves the use of a “wise crowd.” A wise

crowd is distinguished from an irrational crowd by four key criteria, according to James

Surowiecki. These criteria including the following characteristics: diversity of opinions,

independence of opinions (people are not influenced by other members of the wise crowd),

decentralized knowledge (members of the crowd form opinions based on their own specialized,

local knowledge), and aggregation of opinions (the group makes a collective decision based on

individual judgments). He argues that wise crowds often make better decisions than any

individual in the crowd could make. Surowiecki gives a few examples of wise crowds in real life

scenarios, such as Google’s PageRank algorithm, which powers its famous search engine.

PageRank works by ranking search results according to the frequencies with which each result is

linked to by other sites. Suppose the search result is Page A, and an arbitrary site that linked to A

is page B. Then the weight of the link from B to A is also determined by the rank of page B in

PageRank. PageRank assumes that important content on the Web is important because the rest of

the Web indicates its importance by linking to it. Therefore, the Web is considered the wise

crowd that powers Google’s search algorithm, and certainly, the diversity of the users of the Web

satisfies Surowiecki’s four criteria [12].

The wise crowd has relevance to scoring and providing feedback on reading and writing

tasks because it can be used to determine the most important ideas for a given task. To use the

5
Google analogy, rather than having one person rank every search result according to importance,

the wise crowd of Web users collectively rank the search results, which generally results in a

more objectively useful ranking. Similarly, recall the example in Section 1.1.2 of students

demonstrating content mastery through short summaries of news articles. A wise crowd could be

asked to complete the same task, and those ideas which are most commonly represented in the

wise crowd summaries constitute the highest weighted portions of a content rubric. Then, this

wise crowd generated rubric can be distributed to other educators, and used with relatively little

cost in terms of time or effort. This method, known as the “pyramid method,” is discussed

further in Section 1.2. Another benefit afforded by wise crowd rubrics for content is the

standardization of scores, which may enhance fairness in grading and promote standardization

across curricula [5].

1.2 Pyramid Method of Summary Content Annotation

The pyramid method of summary content annotation is an application of wise crowd

rubrics toward grading of summaries. As input, this method takes a series of several gold-

standard summaries – summaries that meet a high standard of quality of content. These gold-

standard summaries constitute the wise crowd for the pyramid method. Each of the summaries is

used to construct a content model that ranks the importance of content, to be used as a rubric for

assessing the quality of content in a peer summary – a summary written by a student. This

content model is built upon summary content units [13], as discussed in Section 1.2.1.

6
1.2.1 Summary Content Units

Summary content units, or SCUs, are the building blocks of the content model for the

pyramid method of summary content annotation. Each SCU is a short unit of text that generally

conveys a single idea, derived from semantic similarity between one or more summaries. SCUs

may be as short as one word, but never longer than one sentence; the length may vary depending

on the annotator. Figure 1, an excerpt from Nenkova and Passonneau [13], depicts the annotation

of two SCUs from a single sentence from each of six gold-standard summaries.

Figure 1. Two SCUs annotated from six gold-standard summaries.

In Figure 1, each of the six sentences is preceded by a letter and a number. The letter

indicates from which of the six gold-standard summaries the sentence originated; the number

indicates the sentence number within the gold-standard summary. In each of the six sentences, a

portion is underlined, and in several of the six, another portion is italicized. The underlined

7
portions are grouped to form one SCU, while the italicized portions correspond to a second SCU

[13].

 Figure 2, also from Nenkova and Passonneau [13], shows the two SCUs that resulted

from the annotation in Figure 1.

Figure 2. Annotated SCUs.

 The first line of each SCU gives it a unique index (1, 2…), a weight from 1 to 6,

corresponding to the number of gold-standard summaries in which the SCU was found, and a

short descriptive label. SCU1, corresponding to the underlined portions of text in Figure 1,

occurred in some form in all six gold-standard summaries, and therefore, has a higher weight

than SCU2, corresponding to the italicized portions, which was only found in three of the six

summaries. Each of the lines below the bolded SCU number, beginning with a letter followed by

a number, correspond to the portion of each summary in which the SCU occurred. These lines

are referred to as contributors to the SCU to which they belong. Contributors are grouped to form

a single SCU based on the similarity of the content of each contributor.

8
In addition to the two SCUs shown in Figure 2, the remaining unformatted portions of the

six sentences shown in Figure 1 will be further annotated to produce more contributors to other

SCUs.

1.2.2 Building the Pyramid

A pyramid is built by annotating all of the sentences in each of the gold-standard

summaries into SCUs. After all sentences have been annotated, the SCUs are sorted by their

weights into a pyramid structure, in which the most highly weighted SCUs appear at the top, and

the SCUs with the lowest weight appear at the bottom of the pyramid. This relationship is

depicted in Figure 3, which shows a four-level pyramid constructed from four gold-standard

summaries.

Figure 3. Four-level pyramid constructed from four gold-standard summaries.

9
 The term pyramid is also descriptive of the observed Zipfian distribution of the SCUs

within the gold-standard summaries. The width of the pyramid levels is indicative of the number

of summaries that express each SCU. At the top of the pyramid, which contains the SCUs that

were expressed in all of the gold-standard summaries, there are relatively few SCUs. At the

bottom of the pyramid, which contains SCUs that were expressed in only one gold-standard

summary each [13].

1.2.3 Using the Pyramid

The pyramid can serve as a content model for evaluating the quality of ideas in peer

summaries, or those written by students, outside of the wise crowd. This process is called peer

annotation. Given a pyramid of order n, describing a pyramid with n levels, it is possible to

determine the optimal content in a peer summary with m contributors. The peer summary should

only include content from any of the lower levels of the pyramid, unless the SCUs in the upper

levels of the pyramid have all already been represented in the peer summary. For instance, if m is

less than the number of SCUs in the nth level of the pyramid, the peer summary is considered

optimal if and only if the pyramid contains only SCUs from the nth level. If m is greater than the

number of SCUs in the nth level of the pyramid, the peer summary must contain all of the SCUs

from the nth level, and as many as possible in the (n – 1)th level, and so on down the pyramid,

until all m contributors have been annotated. The score of a peer summary can calculated in

several ways, discussed in Section 1.2.4 [13].

10
1.2.4 Pyramid Scores

Nenkova and Passonneau [13] described the optimal content score of a peer summary in

Figure 4.

Figure 4. Optimal content score of a peer summary.

Suppose the scoring is based on an n level pyramid, and each level is denoted T1 through

Tn, where T1 is the lowest level and Tn is the highest level. The subscript denotes the weight of

the level. |Ti| indicates the number of SCUs in level i. j represents the lowest level from which

the peer summary will draw SCUs. Then the formula for the optimal content score of a peer

summary with X SCUs is shown in Figure 4, which simply states the summary will contain all of

the SCUs from the levels above j, and its remaining SCUs from level j. Its score is the sum of the

weights of the SCUs.

 Given the optimal score, the “pyramid score” or “quality score” of a peer summary is

simply the ratio of the sum of the weights of the SCUs, D, to Max. This score represents the

quality of the SCUs found in the peer summary, or the quality of the content in the summary,

according to the gold-standard summaries. A “coverage score” can be derived, roughly

indicating the quantity of the ideas in the peer summary, by substituting the average number of

SCUs in the gold-standard summaries for X in the equation in Figure 4. Thus, the coverage score

is calculated using the expected number of SCUs based on the gold-standard summaries, rather

11
than the number of SCUs found in the peer summary. Similarly, D is divided by the coverage

Max to determine the coverage score.

 These scores complement each other in reflecting different aspects of a high-quality

summary. For instance, a peer summary with only one SCU, of weight n for an n-level pyramid,

would have a quality score of 1. However, its coverage score would likely be low since the gold-

standard summaries likely contain more SCUs. Conversely, a peer summary with many weight 1

SCUs would have a high coverage score, but a low quality score. Neither of these summaries is

considered optimal when both scores are considered. The “comprehensive score” is calculated as

the harmonic mean of the quality and coverage scores, and reflects both the quality and quantity

of ideas in a peer summary. These scores can then be used to evaluate and provide feedback on

student summaries, and evaluate both the quality and depth of their written content in summaries.

However, it is still important to pair this content selection metric with a rubric for evaluating

linguistic qualities of the summary, such as the order the SCUs are presented in the summary

[13].

1.3 Pyramid Annotation Tools

Unfortunately, the pyramid annotation process is challenging to complete manually in

writing. There are several issues with this process, such as making sure all the content in each of

the gold-standard summaries has been annotated, keeping track of the sources of each SCU

contributor in the pyramid, and calculating the scores. For these reasons, a tool called DUCView

was developed to enable manual pyramid annotation through a virtual interface, as discussed in

12
Section 1.3.1. Several automated methods of pyramid creation also exist, such as PyrEval, which

is analyzed in Section 1.3.1.

1.3.1 Manual Methods of Summary Content Analysis: DUCView

Manual methods of pyramid creation require a person to use a tool, such as DUCView, to

perform the pyramid annotation. The DUCView pyramid annotation tool was created around

2005 by Sergey Sigelman at Columbia University [14].

DUCView has two main views: pyramid creation and peer annotation. The pyramid

interface is shown in Figure 5.

Figure 5. Pyramid creation in DUCView version 1.4.

13
The pyramid creation interface, shown in Figure 5, has two main text panes on the left

and the right. The left text pane loads all of the gold-standard summaries at once, separated by a

delimiter. The right text pane shows the pyramid, displayed in a tree format, in which there is an

implicit root node that is not displayed, and then each of the next level nodes are SCU labels (in

bold). The children of the SCU nodes are SCU contributors, with at most one SCU contributor

per gold-standard summary. Users create SCUs and contributors by highlighting text on the left

pane and using the buttons above the right pane to indicate the desired action. Finally, the

pyramid can be saved in an XML format for further processing or later use.

 The second main view involved in using DUCView is the peer annotation view, shown in

Figure 6.

Figure 6. Peer annotation in DUCView version 1.4.

14
 In the peer annotation view, there are three main text panes. The left pane displays the

peer summary to be annotated and scored; the center pane displays the pyramid, with SCU

contributors now representing contributors from the peer summary; and the right pane displays

the gold-standard summaries. Contributors can be added in a similar manner to the pyramid

annotation view, and the XML containing the pyramid can also be exported for further

processing or later use.

DUCView can automatically calculate the quality score (simply denoted as “Score”) and

the coverage score (listed as “Score using X SCUs”) given a completed peer annotation. The

score window is shown in Figure 7.

Figure 7. Peer annotation score in DUCView version 1.4.

DUCView enables annotators to manually create pyramids and peer annotations, which

can be used to evaluate content mastery in student summaries. In addition, these manual

annotations can be used to train models for automatically producing pyramids and peer

15
annotations. This application was involved in the creation of PyrEval [15], as discussed in

Section 1.3.2.

1.3.2 Automatic Methods of Summary Content Analysis: PyrEval

Even using DUCView, manual creation of pyramids can be time consuming, so a variety

of automatic methods for generating pyramids and peer annotations have been created. Other

methods of content evaluation exist that do not require the use of a pyramid at all; however, these

methods have several disadvantages compared to pyramid-based methods. For instance, the most

commonly used tool for evaluating machine generated summaries, called ROUGE, matches

substrings between model and target summaries. It is not reliable for scoring single summaries,

and does not provide information on the content in the summary, such as which ideas have been

included and which ones have been left out [15].

 PyrEval is a tool recently developed for automatic creation of pyramids and peer

annotations. In contrast to ROUGE, because it is based on a pyramid content model, it is

accurate for scoring single summaries, and can provide useful feedback, which makes it more

applicable in an educational setting. The PyrEval model has four parameters, which were tuned

by minimizing standard deviations for correlations with manual pyramids constructed in

DUCView. This tool has been tested on various human and machine datasets, and shown to

exhibit good correlation with scores calculated using manual pyramids [15].

16
1.4 Argument Annotation

While the process for content annotation of summaries has been well explored through

tools such as DUCView and PyrEval, annotation of argumentative essays is relatively

unexplored. The rest of Chapter 1 will discuss argument annotation.

1.4.1 Next Step in Content Annotation: Summaries versus Arguments

A system for content annotation of arguments would be of great interest to several

communities. For instance, just as DUCView and PyrEval can be used to create standardized,

wise crowd content rubrics to provide grading and feedback on summaries, a system for

argument annotation would enable grading and feedback on argumentative essays. As discussed

in Section 1.1, argumentative writing is a relatively poor style of writing for many children. An

argument content annotation tool could help educators teach argumentative writing by providing

thorough and timely feedback on student writing.

In addition, an argument content annotation tool could promote advances in the field of

argumentation mining. To understand argumentation mining, it is helpful to first understand

machine summarization. There are two primary classes of text summarizers: extractive and

abstractive summarizers. Extractive summarizers produce summaries that only consist of

information from the original text. In contrast, abstractive summarizers can produce summaries

with information that may not be found in the original text. Both types share a series of common

steps to produce a summary: they first create an intermediate representation of the original text

that captures only the most important features, then rank sentences in order of importance based

17
on the intermediate representation, and finally select the optimal combination of sentences from

the source to produce a new, short summary [16].

Argumentation mining is a process analogous to summarization: Lippi and Torroni

defined it as “automatically extracting structured arguments from unstructured textual

documents,” [17]. However, while summarization only considers details such as what people

think about a topic, argumentation mining considers why people think the way they do.

Summarization can roughly be accomplished without substantial regard to the logical order of

information in the summary, but argumentation relies on its structure of premise, conclusion, and

the details that link premise to conclusion. Therefore, it is generally a more challenging process

to extract arguments than it is to extract parts of summaries. However, it is an important field to

researchers for numerous reasons. For instance, argumentation mining could enhance legal

databases by tracing the argumentation of parties in legal texts, it could improve medical

decision-making about superior and inferior treatments, and it could be tremendously useful

from a commercial perspective by allowing businesses to analyze reasons why internet users like

or dislike their products [17], [18]. The aforementioned applications of argumentation mining

include just a few of the many potential benefits.

In order to complete argument annotation, it is necessary to build a content model

analogous to the pyramid method for summary content annotation. However, because the

structure of an argument is relevant to its meaning, SCUs are not suitable for annotation of

arguments. SCUs represent an idea, but do not convey a logical relationship between ideas as in

an argument. Instead, annotation of arguments relies on aggregations of several logically

connected ideas, called “argumentative discourse units.” Argumentative discourse units are

discussed in Section 1.4.3. In addition, each argumentative discourse unit is generally made up of

18
several “elementary discourse units” [19]. Elementary discourse units are discussed in Section

1.4.2.

1.4.2 Elementary Discourse Units

Elementary discourse units, or EDUs, arise from Rhetorical Structure Theory (RST), first

described in 1988 by William C. Mann and Sandra A. Thompson. RST provides a descriptive

framework for text that explains why text feels coherent. Mann and Thompson explained that

coherent text feels unified because every part of the text has some reason for its existence, and

the relationships among parts of the text can be represented in a hierarchal structure. Their 1988

paper defined a number of relation definitions, such as the simple “Evidence” relation depicted

in Figure 8, an excerpt from this paper [20].

Figure 8. Evidence relation in RST.

In Figure 8, two sentences extracted from a letter are shown, labelled as 1 and 2. From

these two sentences, three “Units” were derived. Units 2 and 3, both of which come from

19
sentence 2, serve as evidence for Unit 1 (from sentence 1), according to the diagram (called a

“discourse tree”) shown in the figure. Mann and Thompson defined many more similar relations

in their 1988 paper [20].

In Figure 8, the Units referred to by Mann and Thompson correspond to EDUs in the

present discussion. Units, or EDUs, are the basic building blocks of a discourse tree in RST. The

basic EDU is a clause. Some examples of clause-based EDUs are shown in Figure 1.9, extracted

from Carlson and Marcu’s “Discourse Tagging Manual” [21]. In Figure 9, each of the three

sentences numbered 9-11 contain two EDUs, each of which is contained within square brackets.

Figure 9. Sentences containing two clausal EDUs.

The bolded words, called discourse cues, give hints as to where to break up the sentences

to form EDUs. Sometimes, an EDU can consist of a phrasal expression rather than a clause, as

shown in Figure 10, also taken from the “Discourse Tagging Manual” [21]. In Figure 10, the

second EDU (denoted by the square brackets again), is not a clause, but the strong discourse cue

“without” justifies splitting the phrase as an EDU.

20

Figure 10. A sentence with a phrasal EDU.

 Therefore, the main difference between EDUs and SCUs is that EDUs have a

grammatical context and are generally a full clausal unit, whereas SCUs have no grammatical

context and may be as short as a single word, depending on the style of the annotator. EDUs are

formed based on sentence structure, while SCUs are formed based on semantic meaning. In

addition, SCUs are often made up of groups of contributors when the input is a group of

documents; in contrast, for this annotation task, EDU contributors are not grouped. This is

because the EDU contributors are not the final products of the annotation – the ADUs are the end

goal of annotation [13], [21].

 After all of the EDUs in an essay are annotated, it is possible to combine EDUs where

necessary to form argumentative discourse units [19]. These argumentative discourse units can

then be used to build a content model for argument annotation, as discussed in Section 1.4.3.

1.4.3 Argumentative Discourse Units

Annotation of argumentative discourse units, or ADUs, makes up the final step of

argument annotation. ADUs are the minimal units of analysis in an argumentative essay; while

EDUs convey meaning, a single EDU does not convey a part of an argument itself. The EDUs in

an argumentative essay must be joined with adjacent EDUs to form a composite ADU. ADUs

can then be classified by various metrics, according to the application [19]. For instance, ADUs

from several gold-standard essays can be used to build a content model, analogous to an SCU

21
pyramid, for scoring peer essays. In argumentation mining, ADUs can be classified, put into a

graph or tree structure to show the relationships among different ADUs in the original text, and

selected by some algorithm to produce an extractive argumentation, just as an extractive

summarizer would select relevant sentences to form a new summary [22].

1.4.4 Need for a Tool for Manual Content Annotation of Argumentative Writing

 As discussed throughout Section 1.4, annotation of argumentative writing would have

applications in fields such as education and argumentation mining. In order to facilitate

annotation of this kind, software tools for EDU and ADU content annotation would be useful. In

this paper, I discuss the development of a new tool, called SEAView, for EDU annotation. This

tool was created based on DUCView and will primarily be used to annotate content in essays

with a specific format. In particular, this special format includes a summary in the header of the

essay, followed by a body that makes an argument. Therefore, the first portion of the essays will

be annotated for SCUs, using a modified version of DUCView, as discussed in Chapter 2. The

second half of the essays, which contains the argumentative portion of the writing, will be

annotated for EDUs in SEAView, as discussed in Chapter 3. This annotation will then be passed

to ADU annotators to complete the argument annotation, and score the essays. Since the essays

contain both summaries and arguments, this tool will also be used to study the relationship

between summaries and arguments – namely, to explore the types of relationships that exist

between SCUs and EDUs. This will provide new insights into argumentation skills and may

facilitate argumentation mining.

22
Chapter 2

DUCView: A Tool for Summary Content Annotation

The DUCView pyramid annotation tool was created around 2005 by Sergey Sigelman at

Columbia University [14]. However, the original source code for the tool was lost. For this

project, several brief modifications to the tool were required for compatibility, so it was

necessary to decompile the classes in the JAR file to recover the original source code. In

addition, several modifications were made to the source code based on user feedback collected

after using the tool. The process of decompilation and restoration of the original code is

described in Section 2.1.

2.1 Decompilation of the DUCView JAR File

Saptarashmi Bandyopadhyay, from the Penn State Natural Language Processing Lab, was

able to decompile the DUCView JAR file using two decompilers. Decompilation was first

attempted using only JD-CORE [23], part of the Java Decompiler Project – a set of tools for

decompilation and analysis of Java 5 byte code. Apache Maven version 3.6.0 [24] was used to

handle JD-CORE dependencies, and the decompilation was completed in an Ubuntu 16.04

operating system. The decompilation was successfully completed with JD-CORE, yielding a ZIP

file containing Java source code files from the DUCView JAR file. However, attempting to

compile the recovered source code revealed 444 compilation time errors. 378 of these errors

were access restriction errors due to use of Swing to create the DUCView GUI. These errors

were fixed by adding **/* as a type access rule in the libraries section of the Java build path for

the project in Eclipse. However, 66 errors remained, cause by a variety of issues, such as

23
scrambled code or multiple instantiation of variables. In order to resolve the remaining errors, the

decompilation results from JD-CORE were cross-analyzed using the output from a second Java

decompiler, Luyten version 0.5.3 [25], in a Fedora 20 operating system. Cross-analysis of the

two decompiler outputs yielded functional, yet messy, source code, due to the lack of code

documentation available and the nature of the decompiler outputs [26].

2.2 Analysis of Decompiled DUCView Source Code

The decompiled DUCView source code initially contained nine Java source code files.

The purpose of each of the decompiled source code files is described in Table 1.

Table 1. Descriptions of DUCView source code files.

File Name Description

DucView.java • Contains the main function and calls

all the other classes except

DocumentRenderer.java

• Creates the application’s GUI using

the Java Swing library

• Parses and creates XML files, defines

the XML DTD

• Calculates peer summary scores

SCU.java • Defines an SCU with an ID, label, and

a comment

24
SCUContributor.java • Defines an SCU contributor from a

summary

• Includes a list of the contributor's

SCUContributorParts, which may be

non-adjacent in the text

SCUContributorPart.java • Defines a part of an SCU contributor

• Includes the starting and ending

indices of the SCU contributor in the

summary, as well as the text

SCUTextPane.java • Defines the text panes used by

DUCView to display essay text

• Handles interacting with text, such as

selecting and highlighting text

SCUTree.java • Defines a tree for the SCUs in a

pyramid or a peer annotation

• Includes functions for manipulation of

SCUs in the pyramid, such as

obtaining, ordering, comparing,

selecting, highlighting, dragging,

scrolling, and dropping SCUs

SearchDialog.java • Enables searching of text and SCU

labels

ScoreDialog.java • Displays the HTML of a summary's

score, generated in the DucView class

DocumentRenderer.java • Provides support for printing pyramids

25

2.3 Control Flow of DUCView

DUCView’s control flow is predominantly determined in the DucView.java class. This

class contains the main function which instantiates the Swing-based GUI. The GUI contains a

variety of buttons and menus that are primarily used to interact with DUCView. To create a

pyramid, a user must select a text file containing several gold-standard summaries, each of which

must be separated by a text delimiter. The delimiter must be specified as a RegEx expression in

the Options menu to let DUCView know the number of gold-standard summaries that are

contained with the text file. This allows DUCView to accurately calculate the coverage score of

a peer summary, and enables some error checking of SCUs, since it defines the bounds of each

summary. Therefore, DUCView can detect and prevent users from entering multiple SCU

contributors from the same gold-standard summary.

Once the text file containing the gold-standard summaries has been loaded into

DUCView, the gold-standard summaries will be displayed on the left, as shown in Figure 11.

26

Figure 11. Pyramid creation view in DUCView version 1.5.

Initially, during pyramid creation, an empty pyramid will appear on the right, to which

the user must use the buttons panel to add SCUs and their contributors to complete the pyramid.

The panel also contains several other useful buttons. The “Change Label” button enables a user

to set the SCU label, which is useful for clarifying the context of shorter SCUs such as dates. The

“Set SCU Label” button automatically changes the SCU label to match the currently selected

contributor. The “Remove” button is used to remove SCUs or individual contributors. The order

button automatically orders the pyramid tree by the SCU weights, but users can also create a

custom ordering by dragging SCUs up or down in the tree. The “Expand/Collapse” button

enables users to expand or collapse the pyramid tree. Finally, the comment button enables users

27
to comment SCU labels or contributors to record important notes or other information. Saving

the pyramid creates a *.pyr file, which contains an XML representation of the gold-standard

summaries and the pyramid tree, and can be loaded to view the pyramid later.

To start a new peer annotation, the user must have already created a pyramid using

several gold-standard summaries. Starting a new peer annotation will change the view in

DUCView to the three-pane view shown in Figure 12.

Figure 12. Peer annotation view in DUCView version 1.5.

Now the left pane contains the peer summary, the center pane contains SCU labels from

the pyramid (along with the SCU weights), and the right pane contains the gold-standard

28
summaries. Users must categorize the text in the peer summary into matching SCU labels to

annotate the peer summary. If text from the peer summary does not match any of the SCU labels

in the pyramid, users should add the text to the “All non-matching SCUs go here” label. After

annotating the peer summary, users can view the peer score, or save the peer annotation as a

*.pan file in an XML format that includes the gold-standard summaries, the pyramid, the peer

summary, and the matching and non-matching SCUs.

2.4 Modifications to DUCView

Although DUCView version 1.4 generally performed well for annotation tasks, several

modifications to the tool were made based on user feedback to create version 1.5. The source

code was also cleaned up and made available online at the Penn State Natural Processing Lab’s

GitHub page (https://github.com/psunlpgroup/DucView-1.5). The revisions made to the

DUCView source code for version 1.5 are described in Table 2.

Table 2. DUCView version 1.5 changes.

Task Description

Update help Previously, the help section only included

original programmer’s email and the year the

tool was updated. The help section was

updated with PSU NLP Lab information and

link to DUCView help site

Enable larger font sizes Enabled larger font sizes and fixed spacing

issues with large fonts on Mac.

https://github.com/psunlpgroup/DucView-1.5

29
Add file loading message and enhance status

bar visibility

Enlarged status bar font and changed color for

visibility; changed the window title to display

the current file.

Export score result in XML Included the score of a peer annotation in the

XML so it can be processed without entering

the tool to manually check the score for each

*.pan file. Also updated the score window to

include the comprehensive score, and

renamed several score categories to reflect the

proper nomenclature.

Read in a folder of *.txt Allowed users to load a folder of text files and

let DUCView automatically generate

delimiters for gold-standard summaries,

instead of the user having to concatenate the

summaries themselves.

Code documentation Commented code and created a README.

Remove unused features Remove print and auto-annotate features for

simplicity, since these features were unused

by previous annotators.

Add a second delimiter for

summary/argument format essays

Added a second RegEx delimiter so that users

can distinguish between summary and

argument portions of essays when making

pyramids.

 The version 1.4 and version 1.5 peer annotation score windows in DUCView are shown

on the left and right sides of Figure 13, respectively.

30

Figure 13. Comparison of version 1.4 and 1.5 score windows

 The DUCView version 1.5 score window primarily differs from the version 1.4 window

in that it now includes the comprehensive score and has renamed the “Score” and “Score using X

SCUs” categories to the quality score and coverage score respectively. Since these are the score

categories with which most users are primarily concerned, the font is italicized. In addition,

several minor categories have been moved or removed entirely. All of the items in this window

can be exported in an XML format in version 1.5 for processing of scores without having to open

DUCView.

31
Chapter 3

SEAView: A New Tool for Argument Content Annotation

After modifying the DUCView source code with several improvements, and for

compatibility with the new annotation task, design of the new tool was started. An introduction

for the justification for a new tool for argument content annotation was presented in Section

1.4.4. This new tool, called SEAView, was designed for EDU annotation of essays written in a

specific format. The essay format requires writers to read about a topic, and then write a two-part

essay. The first section of the essay contains a short summary about the topic, and in the second

part of the essay, the writers must make an argument about the topic. Therefore, the task to

annotate the content in these types of essays requires annotation of SCUs, EDUs, and ADUs.

While DUCView is largely suitable for SCU annotation of these essays, no tool existed

previously for the manual EDU or ADU annotation portions of these essays. SEAView enables

annotators to complete the first step of the essay annotation process by annotating EDUs in the

argument portion of the essays, and aligning those EDUs with SCUs annotated in DUCView.

3.1 Design of SEAView

SEAView was designed to represent one step in a three-step process for annotation of

these essays. A schematic detailing the three main steps is shown in Figure 14.

32

Figure 14. Essay annotation schematic

In Stage 1 of Figure 14, the wise crowd or gold-standard essays, are input into DUCView

version 1.5 for SCU annotation in order to build a pyramid content model. Each essay,

represented by gray rectangles stacked on top of each other, consists of two parts, “sum1” and

“arg1,” denoting the summary and argument portions of each gold-standard essay, as well as the

33
number of the essay. Only the sum portions of the essays are input into DUCView version 1.5,

since DUCView can only annotate the summary portions of the essays.

Then, in Stage 2, the arg portions of the gold-standard essays are input into SEAView to

create a “SEA (SCU-EDU alignment) table,” which contains all of the EDUs found in the gold-

standard essays. In addition, if the EDU from the argument essay portion has an SCU from the

DUCView-generated pyramid that has a similar meaning, the SCU is added to the row in the

SEA table. An EDU may or may not have a corresponding SCU from the summary. The SEA

table can then be used to analyze relationships between the SCUs and the EDUs, such as the

effect of SCU weight on its frequency in the SEA table. Finally, in Stage 3, in a tool to be built in

the future, a correspondence between EDUs and ADUs is annotated. This correspondence, plus

the EDU table and the SCU pyramid, can finally be used in tandem to score student essays.

3.2 Implementation of SEAView Design

The essay annotation workflow using SEAView and DUCView is described in Table 4,

based on the design schematic shown in Figure 14.

34
Table 3. Essay annotation workflow using DUCView and SEAView.

Step # Tool Used Task Description Input File Type(s) Output File Type

1 DUCView Annotate SCUs in gold-

standard essays to create

a pyramid

*.txt *.pyr

(pyramid)

2 DUCView Annotate SCUs in peer

essays

*.pyr (for pyramid)

*.txt (for peer essay)

*.pan

(peer annotation)

3 SEAView Annotate EDUs and align

with SCUs in gold-

standard essays to create

a table

*.pyr *.sea

(SEA table)

4 SEAView Annotate EDUs in peer

essays

*.sea (for table)

*.pan (for peer essay)

*.sep

(SEA peer

annotation)

The overall goal of this annotation task is to create a table with EDUs and SCUs, and a

pyramid with SCUs, from the model and peer summaries. In short, SCUs are annotated in

DUCView for the summary portions of both the gold-standard essays and the peer essays,

yielding a pyramid and a peer annotation, respectively. Next, EDUs are annotated in the

argument portion of the essays, and aligned with SCUs from the pyramid to create a table, called

an SCU-EDU Alignment table, or a SEA table. The output of this step is an XML file containing

the SEA table, as well as the pyramid and gold-standard essays text, called a *.sea file. Then,

35
once SEAView has a loaded SEA table, it can be used to annotate EDUs in peer essays. The

input peer essay comes from a *.pan (peer annotation) file completed in DUCView, which will

contain the peer summary, as well as the completed peer annotation. The final result is a SEA

Peer annotation, or SEP annotation (*.sep file). This file contains XML with the pyramid and

summary peer annotation, as well as the SEA table and SEP annotation.

With the goal of facilitating this workflow, SEAView was created by extending and

refactoring the DUCView source code. Since DUCView already included some useful GUI

elements and pyramid tree tools, it provided a helpful starting point for SEAView. However,

while DUCView’s control flow primarily depended on the DucView.java class, SEAView’s

control flow was passed primarily to the SEATable.java class. SEAView’s classes and their

primary functions are listed in Table 4. The source code is also available online at the Penn State

Natural Processing Lab’s GitHub page (https://github.com/psunlpgroup/SEAView).

Table 4. Primary functions of SEAView source code files.

File Name Description

SEAView.java • Contains the main function

• Creates the application’s GUI using

the Java Swing library

• Parses and creates XML files

• Handles loading and saving of files

• Error handling

SEATable.java • The SEA table

• Handles interactions with the table,

such as sorting and drag and drop

https://github.com/psunlpgroup/SEAView

36
Unit.java • Defines an SCU/ EDU, with an ID,

label, and a comment

UnitContributor.java • Defines an SCU/EDU contributor - a

portion of the text from a summary

that makes up an SCU/EDU

• Includes a list of the contributor's

SCUContributorParts, which may be

non-adjacent in the text

UnitContributorPart.java • Defines a part of an SCU/EDU

contributor

• Includes the starting and ending

indices of the SCU/EDU contributor

in the summary, as well as the text

SEAViewTextPane.java • Defines the left pane of SEAView that

contains the essay text

• Includes functions for displaying and

selecting text

UnitTree.java • Defines a tree for the SCUs in a

pyramid or a peer annotation

• Also defines the tree format for EDUs

in the EDU table

EssayAndSummaryNum.java • A helper class for finding a text

selection’s original essay number and

whether it came from a summary

37
3.3 Using SEAView

While DUCView contains two separate views depending on whether the user is

annotating gold-standard summaries or a peer summary, SEAView has simplified the annotation

process by using only one main view with three panes. The SEAView ready screen, which is

shown when no files have been loaded into the tool, is depicted in Figure 15.

Figure 15. SEAView ready screen

The left pane in SEAView is used to load the essay text, the center pane is used to display

the SEA table, and the right pane is used to display the pyramid of SCUs that was created in

DUCView during Step 1 of Table 3. SEAView also includes a status bar at the bottom, with the

text “Ready” in Figure 15. This status bar displays messages such as errors and annotation steps

during use. The menu bar along the top, below the SEAView title, contains three submenus. The

38
File submenu is primarily used to load and save files. The Options submenu contains

customization options for font sizes and themes, as well as options for specifying essay

delimiters. The Help submenu contains contact information for the Penn State Natural Language

Processing Lab.

After the pyramid of SCUs has been created in DUCView, annotation in SEAView

begins by loading the pyramid file into SEAView. This represents the beginning of Step 3 in

Table 3. Upon loading an essay, SEAView shows the view in Figure 16.

Figure 16. Pyramid loaded in SEAView.

In the view shown in Figure 16, the gold-standard essay text is now shown on the left

pane. Text that has been annotated is blue to show the user that the text unit has been accounted

39
for in the model. The pyramid is shown on the left. The pyramid can be expanded to view SCU

contributors, but is collapsed by default, since the contributors are excessive information for the

EDU annotation task. Each SCU in the pyramid has the following elements: an index, a weight

(in parentheses), and a label. The index is a temporary index assigned based on the SCU’s order

within the pyramid, and may change depending on the way the pyramid is sorted. The pyramid

can be sorted by weight (since SCUs of high weight are hypothesized to appear more frequently

in the table) or by alphabetical order (to enable users to find SCUs based on their content). In

addition, selecting a SCU in the pyramid, or selecting annotated text on the left pane, highlights

the text that has been annotated and the pyramid SCU that corresponds to the text, as shown in

Figure 17.

Figure 17. Selected SCU in SEAView.

40
The final step for users to complete before beginning annotation of the argument text is to

specify the regular expressions denoting the document delimiters (if they have not already been

specified in DUCView). One delimiter separates the summary from the argument, and the other

delimiter separates gold-standard essays from each other. This must be completed prior to

annotation so SEAView can perform error checking on EDU selections from the text. An

example error is shown in Figure 18.

Figure 18. An error during EDU creation in SEAView.

In Figure 18, a user has attempted to annotate an EDU from the summary of an essay.

EDUs may only come from the argument portion of the essay, so SEAView has displayed the

error message “Invalid EDU” to prevent annotation errors. The document delimiters also are

41
used to prevent users from adding EDU contributors from different essays and in sorting the

SEA table.

After specifying the delimiters, SEA annotation may begin. Users may add an EDU to the

table by highlighting text on the left pane and dragging the text into the desired table cell.

Similarly, users may add a SCU to the table by highlighting an SCU node in the pyramid on the

right pane and dragging the SCU into the table. An annotated EDU and a corresponding SCU are

shown in Figure 19.

Figure 19. An EDU and SCU annotated in SEAView

In Figure 19, the EDU “will reduce the price of insurance premiums” was first annotated

from the essay text, and then the corresponding SCU “David Williams claims autonomous

42
vehicles would lower insurance premiums” is added to the same table row. This indicates that the

EDU and SCU have similar meanings. The table displays the EDU with its contributor below it,

while the SCU only appears with its index, weight, and part of its label. The full label is not

displayed to reduce the amount of information in the table, since the user can easily reference the

SCU in the pyramid by its index. The EDU label is highlighted in Figure 19, which highlights

the source text on the left pane. In addition, if the label is selected, a user may remove the EDU

from the table or change its label using the buttons above the table. Changing labels is useful

since EDUs are not complete sentences, and therefore can lack context. In the EDU “will reduce

the price of insurance premiums,” it is unclear what will reduce the price of insurance premiums

based on the label. Therefore, a user could change the label to the label shown in Figure 20.

Figure 20. Changed EDU label in SEAView.

43
In Figure 20, the EDU label has been changed from “will reduce the price of insurance

premiums” to “Autonomous vehicles will reduce the price of insurance premiums.” This adds

context to the EDU when it is not clear from the initial text.

EDUs may or may not have a corresponding SCU. However, an SCU may not appear in

the table without a corresponding EDU. If a user attempts to add an SCU without an EDU,

SEAView will highlight the row to show the user that an EDU should be added. An invalid row

is depicted in Figure 21.

Figure 21. A SCU without a corresponding EDU in SEAView.

In Figure 21, several EDUs and SCUs have now been added to the SEA table. Some

EDUs, such as the ones in the first and fourth rows of the table, have a corresponding SCU,

44
while others do not, such as the EDUs in the second and third rows. In the last row of the table,

the user is prompted to add an EDU to the row because a SCU has been added without an EDU.

Once many EDUs have been added to the SEA table, it may become difficult to understand the

table. To organize the table, users can click the “Sort EDUs” button, which orders the table based

on the order in which the EDUs occur in the gold-standard summaries. An example of an ordered

SEA table is shown in Figure 20.

Figure 22. An ordered SEA table in SEAView.

In Figure 22, blue lines group table rows into sections based on the gold-standard essay

from which the row’s EDUs originated. This provides a visual representation of the number of

EDUs from each essay. Each EDU is also assigned an index of the form x.y, where x indicates

45
the essay from which the EDU originated, and y indicates the order in which the EDU occurred

in that essay relative to the other EDUs that have been annotated.

 At any point during annotation, the user can also view an SCU-EDU alignment window,

shown in Figure 21.

Figure 23. SCU-EDU alignment window.

 This window displays a list of SCUs in the table, along with the identities and number of

EDUs that each SCU appears with in the table. The table can be sorted by the SCU weight or by

the number of EDUs by clicking on the column headers. This window is useful for analyzing the

distribution of EDUs according to SCU weight.

When the SEA table is complete the composite table is sorted and separated into n wise

crowd SEA tables for n wise crowd essays. Users can then save the table as a *.sea file

containing the SEA tables, the alignment window shown in Figure 23, the pyramid, and the gold-

standard summaries. To complete the essay annotation task using a peer summary (step 4 in

Table 3), users can load a *.pan file created in DUCView. The SEA peer annotation view is

shown in Figure 24.

46

Figure 24. Peer annotation view in SEAView.

The peer annotation view is very similar to the gold-standard essay annotation view. The

primary differences are that the “Show model essays” button is now enabled and the pyramid

now shows peer SCU contributors instead of pyramid SCU contributors. The “Show model

essays” button opens a separate window which allows users to view the gold-standard essays that

have now been replaced by a peer essay on the left pane. This window is shown in Figure 25.

47

Figure 25. Model essays window in SEAView.

The model essays window shown in Figure 25 is useful for viewing the context of

pyramid SCUs, since the SCU labels may not convey the context in which the SCU occurred in

the text. Selecting an SCU in the pyramid will highlight the text in the model essays window to

enable users to understand the SCU’s full context. This window is hidden by default to avoid

cluttering the screen when users do not need to view this information.

SEA peer annotation proceeds similarly to SEA wise crowd annotation. Users highlight

and drag semantically similar EDUs and SCUs into the SEA table until the peer argument has

been completely annotated. The user can also view a SCU-EDU alignment, as in Figure 23, for

the SEA peer annotation. After annotating all of the EDUs in the peer summary, the user can

save the annotation as a *.sep file, containing the following elements: SEA peer table, SEA

tables from each wise crowd essay, SCU-EDU (peer and wise crowd) alignments, the pyramid,

and the DUCView peer annotation.

48
3.4 Analysis of SEAView Design

SEAView’s primary design goals include minimizing annotation time and reducing

visual clutter; SEAView minimizes annotation time by expediting the process of adding EDUs

and SCUs to the SEA table. In DUCView, to create an SCU, a user must highlight text on the left

pane, then move the cursor to the right of the window to press a button – either the “New SCU”

or “Add Contributor” button, depending on whether the text represents a new SCU or a

contributor to an existing SCU. Applying the DUCView approach to SEA table creation, a user

would have to select text, select a table cell, and then click a button to add an EDU to the SEA

table. In SEAView, users simply highlight text and drag the highlighted text into the SEA table.

This reduces the number of clicks and total mouse movement needed to create an EDU or SCU.

It also reduces the complexity of EDU creation by allowing users to create new EDUs and add

contributors in the same way, rather than requiring separate buttons as in DUCView. While this

reduction in mouse movement may appear insignificant, gathering useful data will require

annotators to annotate many EDUs and many SCUs across numerous essays. In addition, the

argument portions of the essays are longer than the summaries, and EDUs are more numerous

than SCUs. Therefore, small time savings in annotation of EDUs and SCUs – the most frequent

tasks in SEA table creation – can greatly enhance the user experience of SEAView.

The second design goal of SEAView is to minimize visual clutter. This was

accomplished through several design choices. For instance, replacing buttons with drag and drop

functionality decreases the complexity of SEAView’s appearance compared to DUCView. Non-

essential information is displayed in several pop-up windows, such as SCU-EDU alignments and

model essays during SEA peer annotation; these windows tailor the user experience according to

the level of detail required throughout the process. The table and pyramid also represent this

49
principle, by allowing users to expand and collapse trees to view or hide contributors. The table

also reduces redundancy by primarily identifying SCUs by their indices rather than labels.

Finally, the decision to display the SCU-EDU correspondences in a table format is successful

since there is a one-to-one or one-to-zero correspondence between SCUs and EDUs.

50
Chapter 4

Conclusions and Future Work

 In conclusion, DUCView has been modified, and SEAView has been created, to

complete the first two steps of the argument annotation process. Further development is required

to create an ADU annotation tool, which can be used to complete the third step of argument

annotation. SEAView can be used to support argument content analysis in student essays,

advances in argumentation mining, and automated argument content analysis developments.

SEAView can also be used to study the relationships between SCUs and EDUs using this special

essay format. For instance, this tool could be used to investigate whether a correlation exists

between weight of SCUs in the pyramid and the SCU’s frequency in the SEA table. This would

suggest more important content units play a larger role in arguments than less important content

units. It would therefore be possible that a model of content units, such as a pyramid, would

facilitate argumentation mining.

BIBLIOGRAPHY

[1] A. Glymph and S. Burg. “The Nation’s Report Card: A First Look: 2013 Mathematics

and Reading,” National Center for Education Statistics, Washington, D.C., Tech. Memo.

NCES 2014-451, Nov. 2013.

[2] A. Glymph. “The Nation’s Report Card: Writing 2011,” National Center for Education

Statistics, Washington, D.C., Tech. Memo. NCES 2012-470, Sep. 2012.

[3] S. Graham et al., “Teaching writing to middle school students: a national survey,”

Reading and Writing, vol. 27, no. 6, pp. 1015-1042, 2014.

[4] A. Gillespie et al., “High school teachers’ use of writing to support students’ learning: a

national survey,” Reading and Writing, vol. 27, no. 6, pp. 1043-1072, 2014.

[5] R. Passonneau et al., “Wise Crowd Content Assessment and Educational Rubrics,”

International Journal of Artificial Intelligence in Education, vol. 28, no. 1, pp. 29-55,

2018.

[6] J. Underwood and A. Tregidgo, “Improving Student Writing Through Effective

Feedback: Best Practices and Recommendations,” Journal of Teaching Writing, vol. 22,

no. 2, pp. 73-97, 2006.

[7] M. Kirkland and M. Saunders, “Maximizing Student Performance in Summary Writing:

Managing Cognitive Load,” TESOL Quarterly, vol. 25, no. 1, pp. 105-121, 1991.

[8] M. Crowhurst, “Teaching and Learning the Writing of Persuasive/Argumentative

Discourse,” Canadian Journal of Education, vol. 15, no. 4, pp. 348-359, 1990.

[9] D. Prater and W. Padia, “Effects of Mode of Discourse on Writing Performance in

Grades Four and Six,” Research in the Teaching of English, vol. 17, no. 2, pp. 127-134,

1983.

[10] H. Persky, M. Daane, and Y. Jin, “The Nation’s Report Card: Writing 2002,” National

Center for Education Statistics, Washington, D.C., Tech. Memo. NCES 2003-529, Jul.

2003.

[11] M. Dornisch and A. McLoughlin, “Limitations of web-based rubric resources:

Addressing the challenges,” Practical Assessment, Research & Evaluation, vol. 11, no. 3,

pp. 1-8, 2006.

[12] J. Surowiecki, The Wisdom of Crowds. New York, NY: Doubleday, 2004.

[13] A. Nenkova, R. Passonneau, and K. McKeown, “The Pyramid Method: Incorporating

human content selection variation in summarization evaluation,” ACM Transactions on

Speech and Language Processing, vol. 4, no. 2, 2007.

[14] S. Sigelman, “DUCView,” 2006. [Online] Available:

http://personal.psu.edu/rjp49/DUC2006/2006-pyramid-guidelines.html.

[15] Y. Gao, A. Warner, and R. Passonneau, “PyrEval: An automated method for summary

content analysis,” in Proceedings of the Eleventh International Conference on Language

Resources and Evaluation: LREC 2018, May 7-12, 2018, Miyazaki, Japan, H. Isahara et

al., Eds. Miyazaki: European Language Resources Association. pp. 3234-3239.

[16] A. Nenkova and K. McKeown, “A Survey of Text Summarization Techniques,” in

Mining Text Data, C. Aggarwal and C. Zhai, Eds. New York: Springer, 2012, pp. 43-76.

[17] M. Lippi and P. Torroni, “Argumentation Mining: State of the Art and Emerging

Trends,” ACM Transactions on Internet Technology, vol. 16, no. 2, 2016.

[18] A. Hunter and M. Williams, “Aggregating evidence about the positive and negative

effects of treatments,” Artificial Intelligence in Medicine, vol. 56, no. 3, pp. 173-190,

2012.

[19] A. Peldszus and M. Stede, “From Argument Diagrams to Argumentation Mining in

Texts: A Survey,” International Journal of Cognitive Informatics and Natural

Intelligence, vol. 7, no. 1, pp. 1-31, 2013.

[20] W. Mann and S. Thompson, “Rhetorical Structure Theory: Toward a functional theory of

text organization,” Text, vol. 8, no. 3, pp. 243-281, 1988.

[21] L. Carlson and D. Marcu, “Discourse Tagging Manual,” Information Sciences Institute,

University of Southern California, Tech. Report ISI-TR-545, Sep. 11, 2001.

[22] A. Peldszus and M. Stede, “Joint prediction in MST-style discourse parsing for

argumentation mining,” in Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, Sep. 17-21, 2015, Lisbon, Portugal, Lisbon: Association

for Computational Linguistics. pp. 938-948.

[23] Java Decompiler Project, “JD-CORE,” 2019. [Online] Available: http://java-

decompiler.github.io/.

[24] The Apache Software Foundation, “Apache Maven,” 2019. [Online] Available:

http://maven.apache.org/index.html.

[25] Deathmarine, “Luyten,” 2019. [Online] Available:

https://github.com/deathmarine/Luyten.

[26] S. Bandyopadhyay, NLP Lab Meeting Presentation, Topic: “Design of a New Tool for

Argument Annotation,” Pennsylvania State University, University Park, Pennsylvania,

Jan. 21, 2019.

ACADEMIC VITA
Alex Driban

adriban6@gmail.com
EDUCATION

The Pennsylvania State University | Schreyer Honors College
● B.S. with Honors in Computer Science May 2019
● B.S. in Biochemistry and Molecular Biology May 2019

EXPERIENCE

Penn State Natural Language Processing Lab
Undergraduate Researcher Jan. 2018 – Feb. 2018, Jan. 2019 – May 2019
● Created a new tool for manual markup of content in short summaries and essays
● Collaborated on a dataset for evaluation of PyrEval, an automated method for summary

content analysis

Penn State Center for Eukaryotic Gene Regulation
Undergraduate Researcher Oct. 2014 – Dec. 2018
● Researched structures of gene regulatory enzymes in Song Tan’s lab
● Presented at the Penn State Undergraduate Exhibition

Restek Corporation
Operations Technician June 2018 – Aug. 2018
● Evaluated inventory of 4,000+ raw materials to facilitate migration to new software system
● Increased accuracy of digital inventory records

HONORS AND AWARDS

Grants and Awards
● Phi Beta Kappa 2019
● Dean’s List, seven semesters 2014 – 2018
● Erickson Discovery Grant 2015
● The President’s Freshman Award 2015

Merit Scholarships
● Raytheon Scholarship in Computer Science 2016 – 2018
● Academic Excellence Scholarship 2014 – 2018
● Lum/Pethick/Strauss Engineering Scholarships 2014 – 2018

ACTIVITIES

● Captain, Relay for Life 2014 – 2015
● Player, Big Ten Chess League 2014 – 2015
● Volunteer, Special Olympics 2012 – 2015

	Chapter 1 Introduction
	1.1 Evaluation of Reading and Writing Skills
	1.1.1 Content Mastery
	1.1.2 Different Genres of Content Mastery
	1.1.3 Capturing Main Ideas: Rubric versus Wise Crowd Scoring

	1.2 Pyramid Method of Summary Content Annotation
	1.2.1 Summary Content Units
	1.2.2 Building the Pyramid
	1.2.3 Using the Pyramid
	1.2.4 Pyramid Scores

	1.3 Pyramid Annotation Tools
	1.3.1 Manual Methods of Summary Content Analysis: DUCView
	1.3.2 Automatic Methods of Summary Content Analysis: PyrEval

	1.4 Argument Annotation
	1.4.1 Next Step in Content Annotation: Summaries versus Arguments
	1.4.2 Elementary Discourse Units
	1.4.3 Argumentative Discourse Units
	1.4.4 Need for a Tool for Manual Content Annotation of Argumentative Writing

	Chapter 2 DUCView: A Tool for Summary Content Annotation
	2.1 Decompilation of the DUCView JAR File
	2.2 Analysis of Decompiled DUCView Source Code
	2.3 Control Flow of DUCView
	2.4 Modifications to DUCView

	Chapter 3 SEAView: A New Tool for Argument Content Annotation
	3.1 Design of SEAView
	3.2 Implementation of SEAView Design
	3.3 Using SEAView
	3.4 Analysis of SEAView Design

	Chapter 4 Conclusions and Future Work
	BIBLIOGRAPHY

