
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

COLLEGE OF INFORMATION SCIENCES AND TECHNOLOGY

APPLYING NAKAMOTO: ENABLING ALTERNATIVE METHODS OF FUNDING FOR

INDEPENDENT ONLINE CONTENT CREATORS

PHILIP CHWISTEK

SPRING 2019

A thesis

submitted in partial fulfillment

of the requirements

for baccalaureate degrees

in Information Sciences and Technology and English

with honors in Information Sciences and Technology

Reviewed and approved* by the following:

David Reitter

Associate Professor of Information Sciences and Technology

Thesis Supervisor

Steven Haynes

Teaching Professor of Information Sciences and Technology

Honors Adviser

* Signatures are on file in the Schreyer Honors College.

i

ABSTRACT

 This paper concerns itself with the question, “how can we apply blockchain technology to

develop an alternative subscription model for independent online creators?” The proposed

solution, Submerged, is a hybrid application that is a combination of traditional web technologies

and smart contracts, in the form of what is referred to in the blockchain space as a decentralized

application (dapp). Following EOSIO dapp general practices, Submerged integrates with

ScatterJS: a wallet software designed to specifically interact with dapps. Following the paradigm

described by Hevner as the “three-cycle view” of design research, this paper outlines the

problems and opportunities in the crowdfunding space, proposes an alternative form of

interaction between audiences and creators, provides an overview of an implemented minimally-

viable-product, and performs an evaluation to determine how Submerged improves on what

already exists in the crowdfunding domain. Having implemented and tested Submerged in a

staging environment, this paper concludes with a section detailing how the current iteration can

be improved.

ii

TABLE OF CONTENTS

LIST OF FIGURES .. iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Introduction ... 1

Purpose ... 1

Chapter 2 Literature Review .. 4

What is Money? ... 4
Blockchain ... 5
Bitcoin Protocol ... 6
Wallets and Accounts ... 8
Smart Contracts, Tokens, and Ethereum .. 9
EOSIO .. 11
Existing Decentralized Applications .. 14

Chapter 3 Methodology ... 17

Chapter 4 Submerged – Relevance Cycle .. 18

The Problem Domain ... 18
Technological Constraints/Dependencies .. 19

Chapter 5 Submerged – Design Cycle ... 21

Choosing a Blockchain .. 21
A New, Formalized Relationship Between Creators and Audiences 22
The SUBM Token .. 26
The Submerged Foundation ... 26
The Submerged Smart Contract ... 27
Who Pays? Users or the Developers? .. 33
The Submerged Application .. 34
The Submerged Application Walkthrough .. 36

Chapter 6 Submerged – Rigor Cycle ... 47

Methodology for Estimating Contract Costs .. 47
Estimating User Costs .. 47
Estimating Deployment Costs .. 50

iii

Depending on EOSIO .. 52
Issues Regarding User Experience ... 52
Security & Privacy ... 53

Chapter 7 Future Work .. 55

EOS Account System ... 55
Stable Coins ... 55
A Potential (Obstructed) Path to Launch ... 56

Chapter 8 Final Remarks ... 58

Submerged in Review .. 58
Implications .. 58

Appendix A Links to GitHub Repo and Relevant Documentation/Tools 61

Submerged Repository ... 61
EOSIO Repository ... 61
Scatter Documentation ... 61
NestJS Documentation ... 62
ReactJS Documentation ... 62
Redux Documentation .. 62

Appendix B Learning Resources .. 63

EOSIO .. 63
JavaScript Development... 63

BIBLIOGRAPHY .. 65

iv

LIST OF FIGURES

Figure 1. Gartner's Hype Cycle .. 2

Figure 2 A Merkle Tree ... 6

Figure 3 Diagram of Submerged Model .. 25

Figure 4 Contract Pseudocode ... 30

Figure 5 Submerged UML Sequence Diagram .. 35

Figure 6 Creating a Submerged Account ... 36

Figure 7 Linking Scatter to Submerged ... 37

Figure 8 Login into Submerged ... 37

Figure 9 Scatter Identity ... 37

Figure 10 Creating a Channel .. 38

Figure 11 Channel Summary ... 38

Figure 12 Scatter Modal ... 39

Figure 13 Scatter Create Channel Confirmation .. 39

Figure 14 Channel listed in Channels List ... 40

Figure 15 A User’s Channel View ... 40

Figure 16 Declaring a Project .. 41

Figure 17 Feed Populated with Declared Projects ... 42

Figure 18 Scatter Subscription Confirmation .. 42

Figure 19 Dashboard View Post Subscription ... 43

Figure 20 Feed Event For Delivered Project ... 43

Figure 21 Scatter Vote Confirmation ... 44

Figure 22 Channel Summary ... 45

Figure 23 Project Detail Modal with Incomplete Project .. 46

Figure 24 Project Detail Model with Delivered Project... 46

v

Figure 25 Submerged v. Patreon Equation .. 50

vi

LIST OF TABLES

Table 1 Submerged Terminology .. 22

Table 2 Multi-Index Tables in the Submerged Contract .. 29

Table 3 Smart Contract Actions ... 32

Table 4 EOS Allocation For Users/Creators .. 48

Table 5 EOS Resource Allocation for Deployment with 50,000 users 50

vii

ACKNOWLEDGEMENTS

 I would like to thank both Dr. David Reitter and Dr. Steven Haynes for not only advising

me through the thesis process but for also offering me numerous opportunities to work with them

independently during my undergraduate career. Without their guidance and wisdom, I would not

be in the same place where I am today. I would also like to thank my family, who have

encouraged me wholeheartedly through my education and continue to offer me their undying

support.

1

Chapter 1

Introduction

Purpose

 For most people, blockchain is synonymous with Bitcoin and other cryptocurrencies such

as Ether, Ripple, and Litecoin, or in other words, the speculative bubble that took place in late

2017. But beneath the headlines lies a technology that has substantial potential for reducing the

presence of intermediaries and facilitating the management of digital assets including identity,

voting, art, and of course, digital money. Despite attracting the likes of IBM, JP Morgan Chase,

and Mastercard, blockchain is still underdeveloped and has few practical, existing applications.

Startups promising blockchain-based electronic medical records, peer-to-peer energy grid

transactions, and decentralized corporate structures are frequently far-fetched, ignoring the

technical and legislative limitations that exist. The purpose of this research project is to

investigate the scalability and usability of using a blockchain infrastructure to support

subscriptions, escrow, and fund distribution. Acknowledging the realities of the blockchain in its

current form should help pave the way for more advanced applications such as those enumerated

above.

 At the time that this paper was written, general enthusiasm for blockchain-enabled

technologies and applications has been in decline, following the rapid collapse of the market

valuation for cryptocurrencies. Therefore, the current period can be identified as the “Trough of

Disillusionment” for blockchain-related technology according to Gartner’s Hype Cycle (see

2

figure 1) [1]. The “Peak of Inflated Expectations” parallels the peak of cryptocurrency valuations

in late 2017, where the price of Bitcoin hovered around $20,000 [2]. Ultimately, the end-goal of

this research is to provide a stepping stone in the path up the “Slope of Enlightenment.” To

provide a valuable example of a decentralized application, it is important to pursue an earnest

solution: not simply make a to-do list on the blockchain. For this reason, this project builds

around the question “how can we apply blockchain technology to develop an alternative

subscription model for independent online creators?”

Figure 1. Gartner's Hype Cycle [3]

Internet content creators have long struggled to monetize their work. Prior to the advent

of Patreon, content creators, especially YouTubers and podcasters, were limited to raising funds

through advertisers or through more informal donation avenues (PayPal). Since Patreon’s

inception in 2013, the crowdfunding space has expanded to include other fundraising methods

such as YouTube Channel Subscriptions. Nonetheless, these services are largely based on the

goodwill between audiences and creators. Submerged, a response to the research question above,

is a decentralized application that aims to improve on the existing crowdfunding domain by

reducing the fees paid by content creators, enforcing a creator’s self-determined production

3

schedule to provide subscribers with a guarantee of content, and compensating creators

proportionally to the traffic they bring to the platform.

4

Chapter 2

Literature Review

What is Money?

The answer seems obvious. We use it to buy things such as groceries, clothes, and books.

We use it to compensate the dogsitter. We use it to pay for our Netflix subscriptions. Even a

toddler running a play store knows that goods are exchanged for money. So why does the

definition of “money” even matter in the context of this paper?

Blockchain, the technology central to this project and foundational to cryptocurrencies

like Bitcoin, is ultimately supported and maintained by a system of financial incentives. To

understand blockchain, one must understand these incentives, which in turn require a deeper

understanding of money. When individuals are first exposed to the concept of a cryptocurrency,

one of their first inclinations may be to dismiss the concept as a fad and declare that

cryptocurrencies have “no intrinsic value.” This statement is indeed true, but paper money also

has no intrinsic value, yet we can use it at any retail location.

At the beginning of the turn of the twentieth century, policymakers around the world

debated over what the best monetary system would look like: gold, silver, bimetallism, et cetera.

George Friedrich Knapp, a German economist, published a seminal work that argued money can

and should exist without a metallic standard [4]. He postulated that any item could be used as a

currency as long as it gathered enough social consensus and had qualities that deemed it an

effective “item of exchange” and more precisely, an effective “means of payment.” The first

money-wielding humans used gold to fulfill transactions not because of its industrial worth (it

has little), but because it satisfied the requirements to be an effective item of exchange. Put

5

simply, precious metals are scarce, durable, and can be easily confirmed as authentic. Paper

money, too, with the help of a central bank, maintains scarcity, is produced in a manner that is

difficult to counterfeit, and can be verified as genuine. Therefore, our use of the United States

dollar is based on our trust in American institutions, not the amount of gold in Fort Knox that the

bill supposedly represents. If anything, the precious metals maintained by the US Treasury are

there as backup “exchange commodities” in case the dollar ever fails.

One can imagine a blockchain as a technological method of ensuring a digital asset’s

scarcity and verifiable authenticity – thus opening up the potential for such an asset to be

considered an effective “item of exchange.” Understanding social consensus as the most

important aspect of whether an item has value is key to understanding blockchain and, in a

broader sense, how decentralized applications, like the one outlined in this paper, work.

Blockchain

The first mention of a “block chain” appeared in a series of papers by Haber and

Stornetta in the early ’90s as a method to timestamp documents and ensure their integrity [5]. In

the original version of this proposed architecture, a server would receive a document from a

client and then create a digital certificate comprised of the previous document’s certificate (a

hash pointer) and the current time, thus creating a chain of documents. Any change to any of the

documents, retrospectively, would invalidate the chain. If copies of this document chain existed

across multiple clients, these clients could compare their certificates to establish a shared history.

Later, Haber and Stornetta improved on this schema to make it more computationally efficient to

verify documents. Instead of linking these timestamped documents linearly, it is more effective

6

to group documents into “blocks,” thus creating a “block chain,” where each block makes use of

a data structure known as a Merkle Tree (see figure 2) [6] [7]. In the case of Bitcoin, and other

Bitcoin-like cryptocurrencies, each hash is representative of a transaction.

Figure 2 A Merkle Tree [8]

Bitcoin Protocol

 Bitcoin, designed and implemented by an anonymous individual known by the name of

“Satoshi Nakamoto,” adapted the concepts of a blockchain from Haber and Stornetta to create a

global ledger system that supports digital money. Rather than timestamp documents, this

blockchain, which most people associate with the term, manages account balances and

transactions. Furthermore, there is no central location of this “blockchain.” Instead, thousands of

computers called nodes have their own local copy. These nodes work together to maintain their

copies and ensure consistency across the network. As a result, all transactions and account

balances are public. This redundancy ensures that when a user desires to spend x amount of

7

Bitcoin, the network can agree that this individual indeed has x amount of Bitcoin to spend. This

verification is key to solving the so-called “double-spending” problem: it prevents people from

spending Bitcoin they do not have [6].

 One of Nakamoto’s most significant contributions revolves around mining nodes and

consensus algorithms. Mining nodes, also referred to as miners, are responsible for validating

transactions and placing them into blocks. Once a transaction is placed within a block and

accepted by the network, the transaction is “executed.” For this effort, miners receive a reward

in the form of newly-minted Bitcoin: an inflationary pressure and incentive to maintain the

network [7]. Each Bitcoin can be traced back to its original block, ensuring its authenticity.

 To prevent too many Bitcoin from being minted and causing runaway inflation,

Nakamoto implemented a consensus algorithm called proof-of-work (POW). In order to delay

the production of new blocks, each miner must complete a puzzle via the hashcash protocol,

which was originally developed by Adam Black in 1997 as a proposal to limit email spam [9].

The puzzle involves discovering a value that, when hashed with the transactions in the block,

produces a satisfactory number of leading zero bits. Producing this value, called a nonce, can

only be done through trial-and-error and takes a significant amount of time. The difficulty of the

puzzle increases as more miners and more computational power enter the network [10].

Therefore, miners are in competition, computationally, with one another to create a new block

and generate a nonce value that satisfies the difficulty deemed by the protocol. Once a

satisfactory nonce is generated, the network accepts this new block and rewards the miner.

Besides issues of scalability, proof-of-work consensus algorithms have faced increasing criticism

for their waste of resources. If a miner does not succeed in being the first to generate an

appropriate nonce, then all the computation that they have gone through is effectively wasted.

8

PWC estimates that the Bitcoin network, alone, consumes roughly the same amount of energy in

a year as the whole country of Ireland [11].

 Transactions are also not necessarily executed in chronological order. Whenever a user

sends a transaction, they pay a transaction fee to incentivize a miner to place their transaction

within a block. The higher the transaction fee, then the faster the transaction will be executed.

Currently, the average transaction fee for Bitcoin is between 25 and 50 cents. During times of

peak traffic, such as during a panic sell-off in 2017, transaction fees jumped to $55 dollars [12].

Wallets and Accounts

 When someone “owns” a Bitcoin, they do not own it in the way that they might own a

piece of jewelry. More precisely, when someone “owns” a Bitcoin, they own the rights to send

that Bitcoin to someone else. All Bitcoins are tethered to the network and are associated with an

address (an account). This address is generated by a cryptocurrency wallet. Each address is

secured with public key cryptography. User addresses almost always correspond to a public key

that is used to receive funds, while the private key is needed to sign transactions from that

address [10]. Whenever someone sends Bitcoin, they use their private key to sign the transaction

to produce a unique signature that can only be created using the public and private key. A

transaction will be rejected by the network if it does not produce the correct signature. Therefore,

it is of upmost importance to keep a private key secure. Anyone who has access to an account’s

private key has access to use the funds associated with the account. A wallet is a piece of

software that manages these private and public keys for the user. A hot wallet refers to a wallet

that is connected to the internet; a cold wallet is not [13].

9

Smart Contracts, Tokens, and Ethereum

Other than Bitcoin, the most significant blockchain, architecturally speaking, is

Ethereum. Specifically, Ethereum introduced support for smart contracts. Originally theorized

by Nick Szabo, a smart contract “is a set of promises, specified in digital form, including

protocols within which the parties perform on these promises” [14]. However, this term is rather

misleading in our context because not all smart contracts on Ethereum perform the functions

described by Szabo. In reality, a smart contract is a piece of code appended to the blockchain.

When an application makes use of one or more smart contracts it is called a decentralized

application. Smart contracts also have their own addresses and, like transactions, are public. This

means that they can receive funds and can also be examined by other parties.

Smart contracts are useful for when two or more parties depend on some action to be

performed by a third party in a transparent manner. A classic example is gambling [13]. A smart

contract could be responsible for generating odds for a dice game, taking bets, and then

distributing funds accordingly. First, because the smart contract is public, users can examine the

code to make sure that odds are being fairly generated. Second, all these computations and

transactions are handled by miners who are separated from the actual event. Their job is to only

run the code in the contract. Therefore, once each party commits and sends funds to the contract,

they cannot withhold money from the winner or refuse to participate. Events will precipitate the

way they are described in the contract.

 One of the key problems facing smart contracts is described as the “oracle problem” [15].

A smart contract can execute a transaction given some kind of input, but how does one make

sure that this is input is correct? In our previous gambling example, the smart contract was self-

contained. But how would this smart contract work if parties were betting on an event exterior of

10

the blockchain, such as a boxing match? There are services that describe themselves as “oracles”

that execute smart contract events based on API calls, but these “oracles” rely on trust. Augur, a

decentralized prediction market on Ethereum, has set some groundwork by creating a democratic

solution based that allows users to “vote” on the truth [16].

Ethereum, which is self-described as a “programmable” blockchain, supports an isolated

runtime environment for smart contracts called the Ethereum Virtual Machine (EVM). Ethereum

smart contracts need to be compiled from a higher-level language, such as Solidity, into EVM

bytecode, where they are then uploaded to the Ethereum blockchain through an Ethereum client

(usually a specialized wallet) [17]. Ethereum’s native cryptocurrency is Ether, which acts as a

what Georg Friedrich Knapp would qualify as an “exchange commodity.” It can be used in the

same way as Bitcoin or any other cryptocurrency but is primarily intended to be a “fuel” for

smart contracts: an incentive for a miner to execute a smart contract. Quite literally, computation

is measured in units called “gas” [18]. The more computationally expensive the transaction, the

more Ether it will cost. Forcing individuals to pay gas costs prevents malicious or poorly-

designed code from disrupting the network. After all, due to the redundancy of the network, all

nodes will need to execute the code of the smart contract.

 One of the primary use cases of smart contracts is to create crypto-currencies that run on

top of an existing blockchain. These new cryptocurrencies are called tokens, in order to

differentiate them from cryptocurrencies with their own blockchains [19]. Not every blockchain-

powered application requires a completely new blockchain. Similarly, developing a community

of miners to support every blockchain-power application is infeasible. Therefore, Ethereum can

be imagined as a blockchain that supports smaller blockchains through the same generalized

mining community.

11

 Tokens can be used in a variety of ways. For some applications, a token acts like an in-

app currency. A hypothetical application, for example, could take no fees, but require its users to

use its token. Therefore, as the application becomes more popular, the demand for the token

increases and the token appreciates. The developers own a significant amount of the outstanding

tokens, allowing them to sell the tokens at exchanges as profit. Similarly, investors can buy a

token to speculate on its future worth. This phenomenon led to the 2017 boom of ICOs, or Initial

Coin Offerings, where startups would raise funds by selling off tokens that may have future

value [20]. Tokens can also be in more practical ways, such as tracking asset ownership or voting

power.

EOSIO

Ethereum is largely considered to be a “second-generation” blockchain because of its

introduction of “smart contracts” into the domain. However, there have been a number of newer

blockchains who describe themselves as the “third generation” [21]. These emerging blockchains

generally aim to iterate on the model provided by Ethereum to create better infrastructures for

decentralized applications. Of these, EOSIO has gained the most traction. Launched in mid-2018

by Block.one following a series of Ethereum ICOs that raised over 4 billion dollars [22], EOSIO

boasts feeless transactions, supports up to 5000 transactions per second, and consumes

significantly less energy than proof-of-work blockchains.

 These improvements are largely due to EOSIO’s unique mining protocol. Unlike

Ethereum and Bitcoin, where anyone can be a miner, there are only 21 miners at any time in the

network. These miners are called “block producers” and are, ideally, geographically distributed.

12

The mining rewards for each producer depend on their ranking within the top 21, using a

consensus algorithm known as proof-of-stake (POS) [23]. Typically, in proof-of-stake consensus

algorithms, all coins have already been “minted,” eliminating the mining rewards normally

associated with generating a block. In order to support a growing ecosystem, EOS has a flat 5%

yearly inflation rate. This inflation rate can be adjusted with proposals that are voted in by the

community. Correspondingly, 20% of the newly minted EOS tokens are allocated to the block

producers according to their ranking in the top 21. The remaining 80% of these new tokens are

reserved for “public” works. To offset this inflationary pressure, Dan Larimer, the CTO of

Block.one has suggested EOS can be removed from the market when purchasing resources or

domain names on the network.

 There are roughly one hundred block producer candidates in the EOSIO ecosystem.

Users vote periodically to elect the top 21 producers. Specifically, voting weight decreases every

one year, so re-casting votes is necessary to allow for a user to make full use of their voting

power. To make this process easier, a user can vote by proxy, or in other words, give their vote

to a leader in the community who can appropriately identify worthy block producers [24]. Block

producers earn the support of the community by creating tutorials, developing applications,

acting as advisories, and producing developer tools.

Furthermore, smart contract execution is not connected to gas. Instead, users “stake” their

EOS tokens to the network to purchase CPU, network bandwidth, and RAM. CPU and network

bandwidth resources regenerate over the course of three days, while RAM does not [25]. RAM

can only be regained by deleting a user’s data in the corresponding smart contract. While RAM

and network bandwidth are measured in bytes, CPU resources are measured in microseconds.

These resources decrease whenever a user sends funds or interacts with a smart contract.

13

Altogether, this resource allocation scheme makes it cheaper to maintain and interact with smart

contracts on EOSIO compared to smart contract platforms such as Ethereum. EOSIO smart

contracts are also written in C and C++, allowing developers to make use of the C++ standard

library and Boost. Similarly, rather than create its own bytecode protocol, the EOSIO compiler

compiles C++ to WebAssembly [26], an open-sourced bytecode for browsers supported by

Apple, Mozilla, Microsoft, and Google [27]. By relying on more established technologies,

EOSIO smart contracts are more robust than those supported by Ethereum: they are upgradable

[28], they support deferred (asynchronous) transactions [29], and have built-in support for

queryable table structures [30].

One of the idiosyncrasies of EOS is its dual key system that involves active and owner

keys. An owner key should be kept secret and holds ultimate authority over an account.

However, for the vast majority of instances, users make use of their “active” key [28]. The active

key is used to sign transactions such as fund transfers and contract actions. A user can also grant

smart contracts or other accounts access to use its active key permission. This allows smart

contracts to perform actions on behalf of the user. A user can revoke these permissions using

their owner key if need be. However, allowing smart contracts to, for example, withdraw a

subscription fee automatically from someone’s wallet, mitigates some of the challenges that

come with a traditionally “push” based technology. However, it is important to recognize that

this two-key system is not intuitive, and many users resort to using the same private key for their

active and owner permissions [32]. Even wallets, such as EOSLynx, only generate one private

key, setting individuals up for potential theft [33].

 Due to EOSIO’s unique mining protocol, many critics have described EOSIO as “not

really decentralized” and “not a blockchain” [34]. To an extent, this is true. EOSIO’s more

14

centralized nature is what allows for its greater scalability. What is more concerning, however, is

the apparent collusion between block producers and exchanges [35]. After all, exchanges control

the private keys of a number of accounts, allowing them to control the votes of potentially

thousands of users (as long as those wallets have positive EOS balances). Similarly, there have

been accusations of “vote buying” among Chinese block producers. Block.one recently released

a statement that they would use their own EOS to vote against producers guilty of collusion [36].

Existing Decentralized Applications

The decentralized application space is dominated by gambling applications. In part, this

is due to users’ desire to evade taxes and circumvent local gambling laws. Regardless, there are a

number of decentralized applications worth noting. In this section, we will cover two Ethereum-

based applications and one EOSIO application: Civil, Augur, and EOSBet, respectively.

Civil is a marketplace for journalism. Despite a failed ICO in late 2018, Civil presents a

solid example of how cryptocurrencies can be used to incentivize community engagement [37].

Civil has two main groups of users: people who simply read journalism and those involved in its

production. Civil’s founders split these two groups using a concept they describe as a

“Waterline.” Those “below” the Waterline, such as journalists, developers, and community

members are the prime users who make use of the CVL token.

There are three primary marketplaces supported by Civil: Newsrooms, Stations, and Fact-

checking-as-a-service. Newsrooms are created when CVL token holders pool their funds towards

coverage of a specific topic. The token holders can then be involved in the governance of this

newsroom by using their voting power to, for example, vote on which journalists will be

15

involved in covering the topic. Stations are journalist-driven projects catered towards an existing

audience — CVL token holders can use their funds to crowdfund the station’s operations.

Finally, CVL token holders can stake their tokens to challenge the journalism produced by

newsrooms and stations. If the community agrees that the piece(s) of journalism violate the Civil

Constitution or present incorrect information (i.e. fake news), then the newsroom or station could

face penalties or potential removal from the platform. Meanwhile, the individuals responsible for

the challenge are financially rewarded. The Civil platform also involves a number of other

initiatives and foundations that are intended to promote free, open journalism [38].

Augur is a prediction market based around the REP token. Users choose an event to bet

on, such as the winner of the next presidential election and then proceed to create a market where

people can set their bets. Once an event is over, a user can report the outcome of the event by

staking their REP tokens. Once a consensus is determined, winnings are accordingly distributed

and those who reported the event correctly, or rather, reported with the consensus, receive the

REP from reporters who did not report correctly. However, REP is not a token that can be traded

on Augur’s markets. It can only be earned through participation or by purchasing a set amount

on an exchange. After the reporting phase, all fees collected by Augur for a particular market are

distributed to the reporters according to the amount they staked when reporting.

Whenever a user creates a new market, they are required to designate a reporter and put

up a “no-show” bond. This reporter’s initial report, if received within three days, becomes the

tentative outcome. If the reporter does not provide an initial report in three days, the report is

opened to the market, and the first user to report an outcome receives the original reporter’s

bond. This first report also becomes the tentative outcome. During the next seven days, any user

who holds REP tokens can dispute the outcome. If the appropriate quantity of dispute stake is

16

raised (which involves crowdfunding), then the disputed outcome is accepted. After a successful

dispute, another dispute round is held. To incentivize successful disputes, the bond is designed in

such a way as to ensure a 50% ROI for disputing reporters. In the case where a dispute bond

amounts to more than 2.5% of all REP, Augur enters a fork state — freezing all other disputes —

in order to appropriately handle processing of REP distribution, which at this level involves

exterior coordination with exchanges and wallet software developers [16]. An example of the

issues that can be caused by Ethereum’s lack of scalability.

EOSBet Casino is a decentralized dice-betting game. Although the actual use case seems

trivial, the BET token demonstrates how a token can be used as a dividend and an incentive for

early adopters to come to the platform. Until all tokens are distributed, users receive 1 BET token

for every 20 EOS they wager. Owners of the BET token receive dividends according to their

percentage ownership relative to all BET tokens. However, owners of the BET token are not

only players but also developers and investors. Their dividends serve as an incentive for them to

continue supporting the project.

17

Chapter 3

Methodology

Because this project intends to provide a real, implemented example of a decentralized

application, its methodology is largely inspired by design research, specifically Hevner’s three-

cycle view of design research [39]. As such, my work can be broken down into three cycles:

relevance, design, and rigor. The relevance cycle involves analyzing the current application

domain and identifying problems and opportunities within it. The design cycle involves the

actual building of “artifacts.” The rigor cycle takes the artifacts created during the design cycle

and evaluates them according to various methods, theories, experience, and expertise. The next

few chapters of this paper correspond to these three cycles.

In the relevance chapter, I discuss the current experience of content creators trying to

monetize their work, the common components of a “dapp”, and the assumptions and constraints

of my project. In the design chapter, I provide an overview of my implemented solution,

Submerged. I begin with a higher-level overview of my proposed decentralized model of

interaction between content creators and audiences, a breakdown of the corresponding

Submerged smart contract, and a high-level mapping of the general application architecture. This

last component is especially important because it concerns what aspects of an application should

be decentralized and which should not. In the rigor chapter, I evaluate my project according to

mathematical methods and theories in user experience.

Hevner’s three-cycle view of design research, ultimately, is an iterative process. Thus,

this paper concludes with a section regarding future work as well as recommendations for other

developers looking to create a decentralized application.

18

Chapter 4

Submerged – Relevance Cycle

The Problem Domain

 Starting in December 2017, YouTube experienced what the community described as the

“adpocolypse” [40]. Following pressure from advertisers to prevent brands from being listed as

sponsors of, for example, ISIS recruitment videos, YouTube implemented an algorithmic

solution that screens videos and removes advertisements from videos that contain

“inappropriate” content. In the resulting fallout, videos that simply featured controversial topics

or vulgar language were flagged and demonetized, even in informational contexts. Philip

DeFranco, for example, a prominent YouTuber who runs daily news digests, claimed to have

experienced a drop of 80% in ad revenue [41].

 YouTube does support an appeals process that allows creators to challenge

demonetization on a case-by-case basis. However, considering that videos garner most of their

traffic within the first 3 days of going live, the window to generate the most ad revenue has

already passed by the time the appeals process concludes. Therefore, many creators see ad

revenue as an even more unreliable and unpredictable source than it once was, and have turned

to other solutions to monetize their work. Top Youtubers can rely on merchandise sales; most

rely on some sort of crowdfunding.

 The most popular third-party solution is a service called Patreon, which allows audiences

to pay a monthly subscription to a content creator (YouTuber, podcaster, blogger, artist).

19

However, this subscription, in reality, is more of a donation. It is not a payment for a service,

meaning that a creator is not obligated to actually create content. Most Patreon channels offer

various tiers of “subscription.” For example, three dollars a month for six months may earn the

subscriber a unique sticker that is mailed to their house. Six dollars a month for six months may

earn them a signed poster. In most cases, the benefits of subscribing are mainly these kinds of

“soft” benefits. Creators can also charge a fee per unit of content produced (e.g. per video), but

in turn, monthly payments can vary wildly depending on the creator’s production schedule [42].

On average, Patreon’s fee ranges between 10 and 15 percent of a creator’s earnings [43].

 To compete with Patreon and Twitch, YouTube launched its own “Channel Membership”

program that allows audiences to become “members” of a creator’s channel for $5 dollars a

month. In turn, subscribers can earn badges as well as other goods from the creator. However,

this feature is restricted to creators with more than 30,000 subscribers, is set at a fixed price of 5

dollars, and entitles YouTubers to only 70% of the funds they raise [44].

 This project is largely inspired by the services offered by Patreon but aims to improve on

the existing model by making use of blockchain technology to reduce transaction fees, formalize

the relationships between content creator and subscriber, and create a system of financial

incentives that promote engagement on the platform.

Technological Constraints/Dependencies

Most user-facing decentralized applications require users to sign transactions using their

private keys. There are many specialized wallets that offer users this functionality. This project

supports ScatterJS, a wallet that supports Ethereum, EOS, and TRON smart contract interactions.

20

Simultaneously, the wallet features a built in-exchange that allows users to exchange tokens on

the same blockchain without paying a fee. Inter-blockchain currency exchanges, such as BTC to

EOS, cost .5% of the total transaction. ScatterJS also supports the creation of identities that can

serve as OAuth and also provides both Desktop and Mobile support. For these reasons, ScatterJS

is by far the most popular wallet for EOS applications and is therefore supported by this MVP.

Storing all relevant application data on the blockchain is not feasible, nor a smart design

decision. This application, by its inherent nature, deals with a significant amount of video data,

and the decentralization of content-hosting is not one of the goals. Therefore, the application

depends on existing content-hosting services such as YouTube and Vimeo. Thankfully, YouTube

allows creators to restrict the domains where their videos can be embedded. Therefore, in our use

case, where creators may desire to create a video exclusive to Submerged, they can customize

the video’s privacy settings to achieve the desired effect.

21

Chapter 5

Submerged – Design Cycle

Choosing a Blockchain

The two most dominant infrastructures for smart contracts are Ethereum and EOSIO.

This project was implemented using EOSIO for a variety of reasons, but most of all, cost.

Ethereum requires a user to pay gas costs for every transaction (roughly 25 cents), while EOS

does not. Considering that one of the main goals of this project is to increase the amount of

money creators can take home from crowdfunding, this difference alone makes EOS more

attractive. Similarly, if one examines the amount of dapp activity across blockchains, EOS dapps

outperform every other protocol, with more users and higher engagement. It seems natural to

assume that this in large part due to users not needing to pay a gas fee for every transaction [45].

Simultaneously, writing smart contracts for EOSIO is a more manageable experience compared

to Ethereum. A developer can make use of virtually any existing C or C++ library. Contracts,

too, are not completely “immutable” and can be upgraded. Ethereum contracts, on the other

hand, are limited to the capabilities of Solidity, which is still a young and unrefined

programming language.

22

 A New, Formalized Relationship Between Creators and Audiences

Table 1 Submerged Terminology

Term Definition

Channel A creator’s “page” on Submerged. This is where creators deliver their

content and can make update posts.

Project A single piece of content produced by a creator (a podcast, a video, a song,

and so forth).

Submerged Foundation An elected body composed of 5 representatives from the community. 1 seat

is reserved, at least initially, for the developers.

On the Submerged platform, a creator’s channel cycles between four stages —

declaration, fulfillment, reporting, and settlement — every 30 days. At the beginning of the

cycle, in the declaration stage, creators declare the quantity, type, length, and deadline of the

monetizable projects they will produce in the coming 30 days. For example, a creator may

declare she will create two 15-minute episodes of her podcast due the 10th and 18th of the

coming month, respectively. Unless specified by the creator, this declaration will recur at the

beginning of the next cycle. Declarations must occur before the beginning of the billing period.

The declaration stage is first and foremost, a promise to a creator’s community and an

obligation to fulfill. It specifies exactly what a subscriber can expect to receive in turn for a

subscription. Although it may seem strict to force creators to adhere to a schedule, other

platforms, such as YouTube, already have built-in biases in the recommendation algorithm for

creators who upload multiple times a week. Similarly, other subscription-based services, such as

newspapers, magazines, and even Netflix, promise new content with some regularity. Therefore,

23

it is not unreasonable to expect regular content in exchange for regular payment.

After a creator has declared their projects for the upcoming cycle, they must fulfill, or

rather deliver, the content before the deadline they specified. If the creator does not deliver the

specified content on time, then the project is automatically forfeited for that billing cycle.

However, creators can petition their audience for a time extension three days prior to the due

date.

If the content is delivered on time, then reporting opens for a set period of time on that

specific project. If a project is delivered more than three days before the deadline, then reporting

lasts until the day of the deadline. Otherwise, reporting lasts for three days. Audience members

vote on whether this piece of content satisfies the declaration provided by the creator. If more

than 25% of all subscribers are dissatisfied by this content, meaning they do not believe it

satisfies the requirements set by the creator, then the project is rejected. Any campaign, such as

time extensions, operates on the same 25% principle.

This benchmark was adapted from the principle of a net-promoter score (NPS). NPS is a

measure used to determine how likely a person is to recommend a service to a friend or

colleague, but more generally, provides a solid indicator of a customer’s satisfaction with a

product [46]. An NPS of 0 represents a neutral disposition, where an NPS above 50 is considered

above average. Submerged uses this measure rather than a simple majority because it assumes

that a person who does not report is satisfied. At the end of the reporting phase, a project is either

accepted or rejected by the community.

A creator can appeal any project that is rejected by the community to the Submerged

Foundation. The Submerged foundation can then reverse the decision of the community if

deemed appropriate. Simultaneously, any subscriber can launch an appeal against a creator by

24

staking their tokens and opening an appeal to the Foundation.

After the last project of the billing cycle is fulfilled or rejected, a Channel enters the

settlement phase. During the settlement phase, a percentage is calculated based on the number of

fulfilled projects over the total declared projects for the billing cycle. Then, a creator receives the

corresponding percentage of the total amount subscribed to them during that billing cycle. In

other words, if a creator has a 100% fulfillment rate for a given cycle, they receive 100% of the

funds subscribed to them. Otherwise, subscribers are credited the difference. This process is

represented visually in Figure 3 below.

25

Figure 3 Diagram of Submerged Model

26

The SUBM Token

All subscriptions are currently fulfilled with EOS. In the future, this may be replaced by a

third-party stable coin. The proposed Submerged model does, however, support a token

(SUBM). The SUBM token is intended to incentivize engagement on the platform and attract

early adopters. Every quarter, the fees collected by Submerged (in EOS) are distributed as

dividends to token holders. The following token allocations are only tentative. To determine the

proper allocation would require an economic model based on the success of a token sale and

knowledge of the size of the initial community.

Tokens can be purchased or earned through activity on the platform. For example,

correctly reporting satisfaction earns the user 1 SUBM token. For every fulfilled project, a

creator receives 5 SUBM tokens per subscriber. If a creator is on a “streak,” or has fulfilled

every project for at least three months, they earn 7 SUBM tokens per subscriber. SUBM tokens

are also used to compensate members of the Foundation. Making an appeal to the foundation

requires 1000 SUBM. Requiring users to stake their tokens to appeal prevents an individual from

spamming the foundation and limits appeals to those with a proven dedication to the community.

The Submerged Foundation

The Submerged Foundation is composed of five representatives elected by the

community. Running for a seat requires candidates to stake SUBM tokens, proving their

contributions, either financial and/or participatory. The winners of the election receive the staked

tokens of those who were not elected. This elected body votes on appeals brought forward by

both creators and audiences alike. The staked tokens of each appeal are evenly distributed across

27

all members of the Foundation after a decision is made. If a member is inactive, meaning that

they have not voted for more than 10% of all appeals in a quarter, their seat will be put up for

election. The motivation for pursuing a governance model based on elected representatives,

rather than a completely democratic voting process, is twofold. First, audiences may disapprove

of a controversial video. It only takes an impassioned minority to qualify a video as

“unsatisfactory” (25%). After all, it is possible that those alienated by a creator’s content would

be more likely to share their disapproval than those of more neutral disposition. In such cases,

the community’s “rejection” is not due to a failure to deliver the content on time, or fulfill a

promise on content length. Therefore, rather than democratizing the solution, which would draw

attention from those who already expressed their dissatisfaction, representatives may be able to

provide a more objective decision.

Simultaneously, audiences may disclose content creator violations. For example, a user

may report a creator who uploads copyrighted content. In such instances, audience approval may

be very high, but the monetization of proprietary content legally threatens the existence of

Submerged as a whole. Thus, audiences, or concerned individuals, can bring forth appeals. If an

appeal against a content creator is successfully voted through, then the winning party is rewarded

with SUBM tokens from the Submerged developers. Content creators who appeal against their

audiences receive the funds put forth by their audiences for the initial subscription.

The Submerged Smart Contract

Dan Larimer, the CTO of Block.one, advises developers to create one contract rather than

separate concerns across multiple smart contracts [47]. One of the chief reasons for doing so is to

28

avoid network costs and make it easier to manage RAM and CPU costs. Following his guidance,

the Submerged blockchain back-end is one monolith contract. It supports creating channels,

declaring projects, audience reporting, fund distribution, timing, and applying for extensions.

The two features that are not included in this implementation are the SUBM token and

the appeals process/Foundation. All tokens on EOSIO are handled by the eosio.token contract, a

contract natively supported on EOSIO. Similarly, there are existing tools, such as EOSDrops,

that handle the process of “airdropping” tokens to specific users. Furthermore, since this

distribution would only take place until all tokens are distributed, this feature is not a permanent

aspect of the contract. The appeals process is not included in this implementation because it

requires a significant amount of input from content creators. Civil, for example, bases its own

“constitution” on conversations with free press activist organizations and institutions such as

NPR. Furthermore, because the Foundation is inherently rooted in user deliberations, it would be

difficult to evaluate the efficacy of such a form of governance given the scope of this project.

Similarly, it is assumed that the appeals process would only need to be considered for a small

proportion of all projects declared on the platform.

In terms of deployment, only one instance of the Submerged contract is uploaded to the

network. All Submerged users make use of the same contract. This is made possible through the

use of multi-index tables that are supported natively on EOSIO. Tables are maintained as long as

a user pays for the RAM they require. On EOSIO, tables can be additionally scoped to help

prevent concurrency issues and separate records. Put simply, a table may relate to a specific

content creator or the whole application.

29
Table 2 Multi-Index Tables in the Submerged Contract

Table Scope Purpose/Attributes

Channels contract The “channels” table holds general information

regarding each channel, such as price per billing cycle,

the number of declared projects, and the number of

fulfilled projects.

Channel Subscriptions creator Each “channel subscriptions” table is tied to a specific

channel. It lists all the subscribers for a channel and

whether or not they have paid their subscription. This

table is especially important when users opt-out of

sharing permissions to auto-recur their subscription.

Projects creator The “projects” table holds information related to each

project, such as its current status (failed, payment

pending, complete, etc), and its promised parameters.

Polls creator The “polls” table carries information related to any

vote, be it a creator asking for an extension or audience

members validating content.

Users contract The “users” table contains entries regarding a user’s

subscriptions and their settings, such as whether auto-

recur is allowed.

There are three components of the Submerged contract that are uploaded to the network:

the WASM (C++ compiled to WebAssembly) file, the ABI (Application Binary Interface) file,

and Ricardian contract. The ABI file is responsible for connecting the binary code (of the

WASM file) to specific human-readable commands. These commands are called through an RPC

(remote procedure call) API or command line. The Ricardian contract is a form of

documentation, technically required by Block.one (but not enforced) for any smart contract

uploaded to the mainnet, that informs a user of the purpose, function, and consequences of

interacting with a contract . For example, in our case, if a user wanted to create a channel using

the Submerged contract, they could look up the Ricardian clause for the “create channel”

command.

The EOSIO C++ compiler takes one .cpp file as input and compiles it into a smart

30

contract. Therefore, writing the smart contract to support all the features listed above required

unconventional C++ design choices. First of all, most of the contract’s logic was placed in

header files, using classes that were defined, rather than just declared. This not only made

development more manageable, but ensured that all the logic and data models could still be

aggregated into one cpp file and, consequently, one smart contract. Therefore, the actual cpp file

can be imagined as a façade for an underlying monolith system. The pseudo-code below outlines

how the cpp file takes shape:

#include EOSIO library

#include common structs, multi index tables, and controllers

#include header file for Submerged contract

// override Submerged header file, use ACTION annotation

ACTION submerged::openchannel(…parameters…) {

 the_channel_controller.open_channel(…parameters…)

}

ACTION submerged::fulfillproject(…parameters…) {

 the_project_controller.fulfill_project(…parameters…)

}

/* repeat the pattern above for every action */

/*

EOSIO custom ABI dispatcher (to listen for transactions from eosio.token)

*/

Figure 4 Contract Pseudocode

Unlike Ethereum, where Ether is attached with every transaction (to support gas), all

31

token transactions occur in the jurisdiction of the eosio.token contract. To connect with the

actions (sending, receiving tokens) of the eosio.token contract, the Submerged smart contract

includes a custom ABI dispatcher.

The ABI dispatcher connects action names to their respective methods in the Submerged

smart contract. However, we can also add custom logic to allow for the smart contract to listen to

events in the eosio.token contract. Therefore, the Submerged contract has its own “transfer”

action that reacts any time the Submerged contract is the receiver or sender of funds in the

eosio.token contract. The transfer action of the smart contract then intercepts the parameters of a

successful transfer, and, by parsing its memo, can appropriately allocate funds. Therefore, the

actual transfer of funds between subscribers and channels, and any subsequent withdrawals, all

make use of the eosio.token contract already implemented on the network.

Blockchain technologies, by their inherent design, are push based. Every transaction must

be authorized by a user and fired by a node. EOSIO works around the limitations of a being a

push-based technology by supporting deferred actions and a two-key system. Deferred actions,

as the name suggests, are transactions that fire after a certain period of time. This time delay can

be set by a user when they push a transaction, or as in this case, by the contract itself. Every

deferred transaction must fire within 45 days. The Submerged contract makes generous use of

the deferred action capability to set deadlines for its various actions. This way, the smart contract

does not depend on a server to push actions at various time intervals, allowing it to be self-

contained and more decentralized. However, deferred actions are not guaranteed to fire. If a

deferred action is set for 3 hours into the future and the contract (or the CPU/RAM payer) does

not have sufficient resources, then the action cannot be called. As recommended, the Submerged

contract supports certain actions to be called manually. However, when deploying, it would be of

32

utmost importance for the developers to ensure that enough EOS is staked to cover EOS resource

costs.

Table 3 Smart Contract Actions

Action Name Called By Description

version any user Prints the version number of the contract to the console

open creator Allows a user to open a channel and begin receiving

subscriptions

transfer subscriber Whenever a subscriber transfers money to the Submerged

contract, the contract records the transaction and parses the

memo to allocate the funds to the creator (can also be used to

credit an account)

recur contract The contract calls this method every billing cycle to allow for a

“real” subscription to occur

initproject creator Called by creators to “declare” a project and assign a due date

fulfill creator Called by creators when they have “fulfilled” their project

fail contract Called by the contract if a project is not delivered before the

deadline

closevoting contract Called by the contract to close the vote on an extension or

satisfaction measure

applyforext creator Called by the creator to change a deadline of a project

vote subscriber Pushed by subscribers to voice their opinion on an extension or

satisfaction measure

paychannel contract At the end of the billing cycle, the contract calls this method to

credit the channel

creditsubs contract At the end of the billing cycle, the contract calls this method to

credit subscribers if projects requirements have not been satisfied

unsub subscriber Subscribers call this method to unsubscribe from a channel

withdraw any user Allows a user to withdraw the funds that are credited to their

account and transfer them to their wallet

After pushing their initial subscriptions, users can give the Submerged contract

permission to recur the payment on a 30-day basis. This functionality is achieved by the user

33

giving permission to the smart contract to use the user’s active permission. This allows the smart

contract to withdraw the appropriate amount of EOS tokens from the user’s wallet every 30 days:

like a real subscription. Otherwise, users need to push the transaction themselves every 30 days.

If the user is ever concerned about these permissions, they can revoke access using their owner

key.

Who Pays? Users or the Developers?

 One of the benefits of decentralization is moving costs away from the smart contract to

the users. For example, a user could pay for their own RAM fees. In our case, it would be

cheaper for the developers to require a content creator to pay for the cost of maintaining their

project declarations and the subsequent reporting phase. Although this functionality can be

beneficial for applications such as a games, where a user pays for the storage of their inventory

items on the blockchain, it proves to be difficult to handle in our situation where multiple parties

rely on the same data tables. Due to the way multi-index table permissions are structured and due

to the reliance on deferred actions, delegating costs to users is not ideal. If the content creator

does not have enough RAM resources, then users’ subscriptions may not go through. This not

only disrupts the whole ecosystem but also demands that content creators worry about

maintaining proper resource allocations.

 By default, on the EOSIO network, all actions called by a user are paid for using the

user’s CPU and bandwidth resources. Only RAM costs can be delegated. However, all

subsequent actions called by the contract are paid for by the contract. In the case of the

Submerged contract, nearly all of the most computationally intensive actions are called by the

34

contract, thus decreasing the number of the user’s resources consumed. Regardless, building on

EOSIO requires users to have some EOS staked the network. Thankfully, the RAM costs are

completely covered by the contract, meaning that the only user resources consumed are re-

generable. The details regarding these upfront costs are taken into account during the rigor cycle.

The Submerged Application

Submerged’s overall architecture can be broken down into 4 layers: front-end, server,

database, and blockchain. The frontend-layer is composed of a single-page application built with

React/Redux that interacts with the ScatterJS API, EOSJS API, and the server layer.

The server is built using Nest.js, a Node.js framework built on Express that supports static typing

through TypeScript. The database, which connects to Google Firebase through the server, acts as

a NoSQL database for data not related to blockchain transactions. Finally, the blockchain layer is

composed of the Submerged contract components listed above. It manages all logic that

decentralizes the financial aspects of Submerged. The sequence diagram below (figure 5)

describes how these four layers (and ScatterJS) interact when a user subscribes to a channel for

the first time.

35

Figure 5 Submerged UML Sequence Diagram

 The most notable design choice, architecturally speaking, is the separation of financial

and social data. The Submerged smart contract only stores data relevant to financial transactions,

fund distributions, and governance. All other forms of data, such as user profiles, posts, and

icons, are stored using “traditional” databases. After all, RAM is a finite resource on the EOS

36

network. For the sake of cost savings for creators and audiences alike, it is best to minimize the

data stored on the chain to the bare minimum necessary.

The Submerged Application Walkthrough

The purpose of this section is to include screenshots from the implemented application to

illustrate how it works, and how the front-end serves as an abstraction of the smart contract.

Figure 6 Creating a Submerged Account

Before a user can interact with Submerged, they need to create an account with their

Scatter wallet. Scatter allows users to create identities populated with the user’s demographic

information, and allows applications to make use of this information as a kind of OAuth. At the

current moment, Submerged requires users to use a Scatter a wallet, and thus requires users to

sign-up with Scatter (Figure 6). Figures 7 and 8 depict how this sign-up takes place within the

Scatter app.

37

Figure 7 Linking Scatter to Submerged

Figure 8 Login into Submerged

Figure 9 Scatter Identity

38

 Figure 9 demonstrates how Submerged pulls information from the user’s Scatter identity, and also

displays which EOS account the user’s actions will be associated with.

Figure 10 Creating a Channel

 Submerged users are not required to create a channel, but to be able to receive funds,

users must create a channel that contains information that is split across the blockchain and

traditional database layers.

Figure 11 Channel Summary

 Figure 11 demonstrates the summary page after the user fills out the form for creating a

channel. The tags and channel name fields help other users search for a specific channel. The

price field is related to how much a content creator will charge per billing cycle.

39

Figure 12 Scatter Modal

 Figure 12 demonstrates the in-app modal that informs the user to change windows to the

Scatter wallet. Typically, Scatter window modals are “brought up to front,” but this in-app modal

ensures that the user is aware of the needed Scatter signature.

Figure 13 Scatter Create Channel Confirmation

40

 Figure 13 displays the Scatter modal that informs the user of the transaction they are

about to sign. All the necessary parameters are grabbed from the Submerged application and are

displayed for the user. In our case, this example is creating a channel under the “alice” account,

where the maximum number of projects in a cycle is 10 and the subscription is priced at 3 EOS.

The user proceeds by clicking the check button in the upper right-hand corner.

Figure 14 Channel listed in Channels List

 Once accepted by the smart contract, a channel is now officially opened on Submerged.

A user can find channels to subscribe to under the “channels” tab.

Figure 15 A User’s Channel View

41

 When a user views their own channel, they see a form where there they can post relevant

information to their audiences. There are four types of post: declaration, delivery, social, and

extension. Social posts are regular posts with no underlying connection to the blockchain. They

can be imagined, conceptually, as the same thing as Facebook posts. Declaration, delivery, and

extension posts all relate to a creator’s projects.

Figure 16 Declaring a Project

 Once a user fills out the declaration post, they must sign the transaction once again using

Scatter.

42

Figure 17 Feed Populated with Declared Projects

 Figure 17 depicts a Channel’s page from the perspective of a potential subscriber. Here,

there are 4 project declarations. In the bottom left-hand corner is a summary of the projects that a

content creator has declared and their current status.

Figure 18 Scatter Subscription Confirmation

When a user subscribes, they send their funds using the existing eosio.token transfer contract. The

memo contains the account name to which the channel belongs.

43

Figure 19 Dashboard View Post Subscription

 Figure 19 depicts the dashboard of a subscriber. The right-hand side contains a list of

their current subscriptions, and their social feed consists of posts made by the content creators

they are subscribed to. The form limits all their posts to “social” posts as they do not have a

channel.

Figure 20 Feed Event For Delivered Project

44

The screenshot above shows the prompt that appears beneath delivered projects that are

in “payment pending” status. It is here that a user votes on whether or not the content satisfied

the original promise made by the content creator. Figure 21 is the corresponding Scatter

confirmation.

Figure 21 Scatter Vote Confirmation

45

Figure 22 Channel Summary

Figure 22 depicts a channel summary with four projects with four different statuses. A

project with the “payment pending” status is a project that has been delivered, but is currently

taking votes from the community to assess its validity. A project “awaiting delivery” has been

declared but not delivered. A “failed” project is a project that was not delivered on time or was

rejected by the community. A project that has been delivered and accepted by the community is

marked as “delivered and approved” and will be counted for the creator at the end of the billing

cycle. Figures 23 and 24 show the modal detail view that is accessed when a user clicks one of

the projects in the summary or one of the posts in the feed. Doing so allows a user to check on a

project regardless of whether they’ve clicked on the declaration or delivery of a project.

46

Figure 23 Project Detail Modal with Incomplete Project

Figure 24 Project Detail Model with Delivered Project

47

Chapter 6

Submerged – Rigor Cycle

Methodology for Estimating Contract Costs

The data listed below comes from the logs produced by a local instance of the EOS

blockchain on a 2018 MacBook Pro. The RAM and bandwidth costs are identical to those that

would occur on a live network. The CPU costs, however, which are measured in microseconds,

are likely to be overestimated. EOSCharge, a service provided by EOS New York, shows that the

eosio.token transfer, on average, takes 1104 µs, while the eosio.token transfer on the local

instance takes between 1300 µs and 2000 µs [48]. This difference can be attributed to the cloud

infrastructure provided by block producers, which almost certainly offers more computational

power than a single MacBook. Each measure of an action’s length, in microseconds listed below,

was calculated by taking the average of 10 trials per action. The size of structs, measured in

bytes, was provided by the sizeof method from the stdio.h library. The current EOS resource

prices were provided by the EOS Resource Planner, another service provided by EOS New York.

The following evaluations assume that 1 EOS is equal to the price of $3.69.

Estimating User Costs

 Unlike most other blockchains, creating an account on the EOSIO network is not free.

The recommended resource allocations for a basic account are 4 KiB of RAM (RAM costs vary

48

based on market factors), .15 EOS dedicated to CPU, and .05 EOS dedicated towards network

bandwidth. Furthermore, an account must be created by an already existing account. Various

block producers offer open-source account creation services for a small fee. The most popular

account creation service, offered by EOSVibes, charges .7 EOS (roughly $2.60) for account

creation with the above resource allocations. To determine a conservative estimate of the upfront

costs a user would need to incur to create an account with enough resources to use Submerged,

we can rely on the following narrative:

 Alice creates an EOS account using EOSVibes, opens a Submerged channel, declares 4

projects, fulfills 4 projects, subscribes to 5 creators, and reports on 5 projects delivered by the

creators she is subscribed to, and adds credit to her account.

The above narrative assumes that these actions are all completed within a 24-hour time frame

and that we want to avoid any kind of hiccups where Alice lacks sufficient resources to fulfill

each action. Since all RAM costs are covered by the contract, only CPU and Bandwidth costs

remain for the initial actions that remain for Alice.

Table 4 EOS Allocation For Users/Creators

Action CPU Cost (µs) Bandwidth Cost

(bytes)

Quantity

Open Channel 467 120 1

Declare 530 168 4

Fulfill 680 152 4

Subscribe 1300 218 5

Vote 350 128 5

Transfer Credit 1210 218 1

49

CPU EOS (ms) cost = ~ .0025 [49]

Bandwidth (KiB) cost = ~ .0004 [49]

Total CPU (µs) cost = 467 + 530(4) + 680(4) + 1300 (5) + 350 (5) + 1210 = 14,676

Total Bandwidth (bytes) cost = 120 + 168(4) + 152(4) + 218(5) +128(5) + 218 = 3,348

Total needed EOS for CPU = .0025/1000 * 14676 = .0367

Total needed EOS for bandwidth = .0004/1000 * 3348 = .0013

 Based on the data in the table above, the initial allocations using the EOSVibes account

creation service are adequate to cover the actions mentioned in the narrative. However, it is

important to recognize that users consume the CPU resources provided by a specific block

producer (based on geography), and depending on traffic, may require users to stake more EOS

to properly cover this set of transactions. However, because unstaking CPU resources and

network bandwidth returns the same amount of EOS that was initially staked, users can stake

EOS from their balance if necessary without losing EOS. After all, if someone intends to use

Submerged, they will require a balance larger than .6 EOS if they wish to subscribe to other

creators. Considering that it is common for Patreon donations to be in the range of $1-5, we can

assume each subscription is 1 or 2 EOS. Therefore, for a new user, the initial purchase of

cryptocurrencies can be around 15 EOS, or roughly $55.40.

 Coinbase, the most popular exchange, charges a 1.49% fee when buying and selling

crypto-currencies, which is already a higher rate than other exchanges such as Binance and

Bitfinix, which charge a maximum of 1%. With conservative estimates, we can conclude that

Alice can pay $53.80 to fund her account with 13.5 EOS and stake enough EOS to cover her

transactions. Assuming that she owns no SUBM tokens, we can use the following function to

50

determine at what point Submerged becomes a more cost-effective option than Patreon if Alice

was a creator.

𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑎𝑚𝑜𝑢𝑛𝑡 𝑟𝑎𝑠𝑖𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠;

 𝑃𝐸𝑂𝑆 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝐸𝑂𝑆;

 𝑃𝑠𝑡𝑎𝑟𝑡𝑢𝑝 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑂𝑆 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛;

𝐸𝑓𝑒𝑒 = 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑒𝑒 (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐸𝑂𝑆 𝑎𝑛𝑑 𝑓𝑖𝑎𝑡)

𝑆𝑓𝑒𝑒 = 𝑆𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑑 𝑓𝑒𝑒

𝑃𝑎𝑡𝑟𝑒𝑜𝑛 𝑓𝑒𝑒 = .1

(𝑃𝐸𝑂𝑆)(𝑃𝑠𝑡𝑎𝑟𝑡𝑢𝑝)(1 + 𝐸𝑓𝑒𝑒) + (𝐸𝑓𝑒𝑒)(𝑥)(1 − 𝑆𝑓𝑒𝑒) = (.1)(𝑥)

Figure 25 Submerged v. Patreon Equation

If we input the most recent data, where the price of EOS is $3.69, the recommended allocation is

.7 EOS, the exchange fee of .015, and the Submerged fee at .02, we discover that a content creator begins

saving money after raising roughly $30.70.

Estimating Deployment Costs

The table below outlines the resource allocations that the deployers of the Submerged

contract require in order for the contract to function properly. We can assume that our

application has 1000 content creators with 24 projects each and with 50 unique backers per

creator, with total population of 50,000 users.

Table 5 EOS Resource Allocation for Deployment with 50,000 users

Resource Variables Calculations

RAM channel struct = 72 bytes

poll struct = 56 bytes

project struct = 80 bytes

Table RAM = 32 + (size)(struct bytes)(# of

tables)

51

channel_sub struct = 16 bytes

credit struct = 24 bytes

user struct = 32 bytes

size of WAST file = 98,856 bytes

RAM for code = 10 * size of WAST file

channels table == 72,032

polls table = 1,376,000

projects table = 1,952,000

channel subscriptions table = 832,000

credit table = 1,200,032

users table = 1,600,032

RAM total for code = 988,560

RAM total for tables = 6,200,096

Total RAM = 7,188,656 bytes

CPU Assumes 80% of content creators

have completely fulfilled their

obligations. CPU resources

regenerate after a day, so the

following calculations target the

distribution that occurs at the end

of the billing cycle.

Check if passed (closevoting) =

695 (µs)

Pay channels (paychannel) = 4000

(µs)

Credit subscribers (creditsubs) =

1030 (µs) per 15 subscribers

Total CPU = 1000(695) + 800(4000) +

200(4(1030)) + 4000) = 5,519,000 (µs)

Bandwidth Check if passed (closevoting) =

120 bytes

Pay channels (paychannel) = 218

bytes

Credit subscribers (every 15) =

120 bytes

Total bandwidth = 1000(120) + 1000(218) +

200(4)(120) = 434,000 bytes

EOS Costs RAM costs = ~ 0.0503 EOS per KiB [47]

CPU EOS (ms) cost = ~ .0025 EOS

Bandwidth (KiB) cost = ~ .0004 EOS

RAM costs = 7,188,656/1000 (.0503) = 361.80 EOS = ~1,335 dollars

CPU costs = 5,519,000/1000 (.0025) = 13.80 EOS = ~50.91 dollars

Bandwidth = 434,000/1000 (.0004) = .1736 EOS = ~ 0.64 dollars

 As expected, the most expensive resource to maintain for the contract is the RAM to

maintain user tables. However, it is important to consider that CPU costs, which are measured in

52

microseconds, can be highly variable depending on block producers and network traffic. When

deploying a contract, developers can choose to specify which block producer (of the top 21) they

would like to act as the primary node. If this block producer’s infrastructure goes down, then the

amount of EOS needed to stake the network will need to increase. For this reason, decentralized

applications typically partner with a block producer, such as EOS New York, to ensure that such

bottlenecks are minimized.

Depending on EOSIO

 At the current moment, the user and deployment costs are relatively cheap due to the

price of EOS relative to the computational power offered by block producers. However, as the

price of EOS will increase, so will the cost of these resources. At its speculative peak, the price

of EOS hovered around 20 dollars, meaning that .7 EOS, the amount needed for someone to use

Submerged, would be 14 dollars if the price of EOS to CPU/RAM/Bandwidth remained the

same, which would reduce the competitiveness of the platform compared to existing services.

Calculating CPU costs also involves an amount of guesswork, as the time to process transactions

is measured in microseconds. This inexact method of measuring computation, compared to

Ethereum’s standard unit of gas, makes it difficult to manage the optimal amount of staked EOS.

Issues Regarding User Experience

 Although Scatter makes it easier for individuals to use their EOS accounts, depending on

Scatter also brings some issues regarding user experience. For example, Scatter displays the

name and parameters of every action a user is about to sign. In theory, this is a great method to

53

inform the user about what information they are passing to the smart contract. However, recent

updates have removed the ability to view a smart contract’s Ricardian contract, a human-

readable explanation of a contract action. Furthermore, due to naming restraints on the EOS

network, the name of on action or its parameters may not map perfectly between what the user

imagines they are doing and the related contract action. Similarly, when a user is “creating an

account” on Submerged, Scatter asks them to “login.” These kinds of linguistic inconsistencies

are not completely avoidable and could lead to confusion for users who are already intimidated

by a “decentralized application.”

Security & Privacy

 At the current moment, there has not been any intensive security screening of the

Submerged contract. The only action open to the public is creating a channel and creating an

account. Both of these actions rely on an account’s individual CPU resource. However, RAM is

still paid for by the contract, meaning that any new additions to the tables would deplete the

contract’s resources. However, in the event of a DDOS-like attack, each new addition to the

contract would need to come from an account, and each account requires .7 EOS to be created

and functional in the first place. Similarly, any attacks on the users table would require the

malicious agent to subscribe to a channel, expending EOS. Still, this is not adequate protection

against a DDOS attack. Potential solutions could involve email confirmation of an identity,

where a user must verify their email, and thereafter a server, with Submerged’s active key, then

activates the user’s account in the channels table.

54

 For funds to be stolen from the Submerged contract, the contract’s active key or owner

key would need to be exposed. These keys could be exposed by inadvertent sharing of

permissions or some attack on the server. It could also be possible for a malicious agent to figure

out how to credit themselves within the contract’s tables. Otherwise, some security flaw in the

underlying eosio.token contract would have to be discovered.

 All data in the multi-index tables is public. The only real form of privacy that the

application offers is that all EOS accounts are pseudonymous, and all the user data is indexed

under these pseudonymous accounts. Other social data, such as posts, are intended to be public in

the first place, but are stored in a traditional database and therefore cannot be viewed by non-

subscribed users.

55

Chapter 7

Future Work

EOS Account System

One of the clearest ways to increase Submerged’s broader appeal is to move away from

depending on Scatter wallets. In other words, allowing users to create a conventional account

that is tied to a wallet controlled by Submerged. Ideally, a user could interact with the

Submerged application using either Scatter or this built-in wallet system, depending on the user’s

experience and opinions towards “decentralization.” This iteration of Submerged focused on

integrating with Scatter wallets because early-adopters would most likely be crypto-enthusiasts

and because of development constraints. Controlling users’ wallets would ostensibly translate to

building an exchange, or at least integrating with an existing one like Coinbase (Coinbase is yet

to support EOS). Managing the private keys of potentially thousands of accounts, from a server,

is a serious endeavor with significant security risks, as recent exchange-hacks have illustrated.

However, this level of abstraction seems like a logical step. It may seem unreasonable to the

average user to have to learn the difference between an active and owner key, how to stake EOS

tokens, and how to sign transactions.

Stable Coins

This current iteration of the Submerged contract relies on the native EOS token.

However, considering its price volatility, over the course of a 30-day cycle, the value of the

56

funds held in escrow could appreciate or depreciate over thirty percent. Thus, it would seem

logical to move to a stable coin solution, where value can be expected to be less volatile during

this period. As of the time this paper was written, there is still no leading stable coin in the EOS

space, and creating a stable coin specific to the Submerged platform is a significant undertaking

in engineering and economics.

A Potential (Obstructed) Path to Launch

As a decentralized application, one of the key aspects is community. Therefore, any real

launch would require an initial group of users to serve as Foundation members and creators. The

most logical method to acquire this initial community would be to invite existing creators to a

beta version of the application and offer them favorable token rewards for doing so. These initial

users could also help in developing the “Submerged constitution” which would lay down the

rules for Foundation appeals.

The initial capital for the SUBM token would need to be raised in an ICO or “token sale,”

ideally from a closed pool of investors rather than the public. Then, once a certain amount of

capital is raised, and there is some idea of the size of the community, token rewards can be

appropriately calculated.

The most significant challenge in potentially launching Submerged is the legal grey zone

surrounding cryptocurrencies. In this case, the SUBM token is indeed a security, as it intended to

deliver EOS dividends once a quarter. The lack of an existing framework on how to legally

implement such financial arrangements in the US through cryptocurrencies has prompted a

significant number of EOS blockchain-based companies to register in tax havens, such as the

57

Cayman Islands [50], Curaçao [51], the US State of Wyoming and the Cook Islands [52].

Although the SUBM token is not necessary to the Submerged model, it can serve as a method to

reward early adopters and can be a source of funding for the developers, both of which are key to

developing Submerged further.

58

Chapter 8

Final Remarks

Submerged in Review

Submerged is a decentralized application that offers audiences’ greater accountability and

transparency from independent content creators while presenting those same creators with a

method to take home more of the money they raise. The application makes use of traditional

front-end and server technologies while also relying on blockchain technologies to handle

deadlines, escrow, payment, voting, and the fulfillment of promises. Based on the evaluations

that took place in the rigor cycle, with the current price of EOS and EOS resources, creators, if

they switched from Patreon to Submerged, could begin to see savings after raising $30.70.

While these features are made possible by EOSIO, Submerged is simultaneously vulnerable to

shifts in the larger ecosystem. If the price of EOS rises and computational power does not scale

appropriately, then the cost savings offered by the application may dissipate. Future iterations of

Submerged will require action on both community-building and financial fronts, as the SUBM

token and the Submerged foundation require more community and investor input to be fully

implemented.

Implications

The most important lesson offered by Submerged is to not decentralize “everything.”

Indeed, this is one of the principles that allows for EOSIO to be much more scalable than other

59

infrastructures, and why it is the most “developer friendly.” Although decentralization may be

attractive in an ideological sense, requiring so much involvement from users is counterintuitive if

a user is simply looking for a service. This may be different when users are looking for a

community. Contracts should be made as lean as possible, and only support the key features that

a developer wishes to decentralize. In the case of Submerged, these features all surrounded

payment and fund distribution. As demonstrated in the evaluation, keeping tables small

minimizes the amount of RAM consumed by the contract. RAM, unlike CPU and network

bandwidth, is variable to market fluctuations and does not necessarily return the initial amount

staked. Minimizing the amount of RAM a contract uses, therefore, exposes developers to less

market volatility. With potentially thousands of EOS staked to support a contract, a fluctuation of

5% is significant. Developers also need to consider who pays for the contract’s tables. Requiring

individual users to pay for their own tables is a great way to offload expenses, but is really only

viable if each table is only used by the table owner. In cases where multiple parties are editing

the same tables, then, from a reliability standpoint, it is better for developers to take on these

costs themselves. However, doing so can expose developers to malicious agents who wish to

spam the contract and reduce the contract’s available RAM. Developers, on a similar note, can

make use of deferred actions (paid for by them) to minimize the amount of CPU resources a user

needs to interact with their contract. As much as developing a smart contract is “doable,”

allowing users to interface with it directly, such as through the Scatter wallet, can lead to

confusion or frustration. Not only do such wallets not share the same terminology as the

application, but they can expose users to technical details that may overwhelm them. If possible,

developers should consider creating their own abstracted interfaces instead of relying on third-

60

party wallets. Even better, they should aim to create experiences that are so familiar users are

unaware the underlying service makes use of a blockchain.

61

Appendix A

Links to GitHub Repo and Relevant Documentation/Tools

Submerged Repository

The attached repository contains all three components of the Submerged application:

contract, front-end, and server. The READMEs include instructions on how to start the

application locally.

• https://github.com/PChwistek/thesis

EOSIO Repository

The first link refers to the GitHub of EOSIO, where there are links to the relevant EOS

APIs and the EOS Contract Development Kit (eosio.cdt) that is responsible for compiling smart

contract. The other two links refer to EOS resource tools.

• https://github.com/EOSIO

• https://www.eoscharge.io/

• https://www.eosrp.io/

Scatter Documentation

Scatter provides friendly instructions on how to link apps to Scatter wallet. Conveniently,

the ScatterJS APIs is compatible with all Scatter wallets (desktop, mobile, extension, etc.).

• https://get-scatter.com/docs/getting-started

https://github.com/PChwistek/thesis
https://github.com/EOSIO
https://www.eoscharge.io/
https://www.eosrp.io/
https://get-scatter.com/docs/getting-started

62

NestJS Documentation

NestJS builds on top of Express, a server framework for Node.js. It provides a very

structured way of writing servers with support for static typing, and is a great framework for

beginners.

• https://docs.nestjs.com/

ReactJS Documentation

React has become an incredibly popular framework for web development in recent years.

I’ve also included links to React Router and React Semantic UI libraries, which are both used in

this project.

• https://reactjs.org/docs/getting-started.html

• https://reacttraining.com/react-router/core/guides/philosophy

• https://react.semantic-ui.com/

Redux Documentation

React is primarily meant for managing views. Redux helps us manage an applications

state, and allows us to connect each view to the application’s state. Redux Thunk helps us

manage asynchronous changes to state (API calls).

• https://redux.js.org/introduction/getting-started

• https://github.com/reduxjs/redux-thunk

https://docs.nestjs.com/
https://reactjs.org/docs/getting-started.html
https://reacttraining.com/react-router/core/guides/philosophy
https://react.semantic-ui.com/
https://redux.js.org/introduction/getting-started
https://github.com/reduxjs/redux-thunk

63

Appendix B

Learning Resources

EOSIO

The best way to learn about EOSIO is to go through the documentation on the EOSIO

site. The versioning can be a little confusing, but its still better than any other resource I’ve

viewed nonetheless. For development help, I’ve found the community at StackExchange to be

very helpful. EOS New York and EOS Canada provide good learning resources for

understanding the broader concepts of EOS.

• https://developers.eos.io/eosio-home/docs

• https://eosio.stackexchange.com/

• https://medium.com/eos-new-york

• https://www.eoscanada.com/

JavaScript Development

Since EMCAScript 6 entered the JavaScript ecosystem, it has made JavaScript a much more

predictable and developer-friendly language. I highly recommend Tyler McGinnis’s (core contributor to

React) online courses, as well as a Coursera course offered by The Hong Kong University of Science and

Technology as an introduction to JavaScript development. The book, “Secrets of the JavaScript Ninja,” is

a strong follow-up once one acquires intermediate knowledge of JavaScript.

• https://tylermcginnis.com/courses/

https://developers.eos.io/eosio-home/docs
https://eosio.stackexchange.com/
https://medium.com/eos-new-york
https://www.eoscanada.com/
https://tylermcginnis.com/courses/

64

• https://www.coursera.org/specializations/full-stack-react

• https://www.amazon.com/Secrets-JavaScript-Ninja-John-Resig/dp/193398869X

https://www.coursera.org/specializations/full-stack-react
https://www.amazon.com/Secrets-JavaScript-Ninja-John-Resig/dp/193398869X

BIBLIOGRAPHY

[

[1] Gartner, "Gartner Research Methadologies," 2019. [Online]. Available:

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle. [Accessed 25 March 2019].

[

[2] R. Brown, "Cryptocurrencies have shed almost $700 billion since January peak," CNBC, 23

November 2018.

[

[3] J. Kemp, "Wikimedia Commons," 27 December 2007. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Gartner_Hype_Cycle.svg. [Accessed 25 3 2019].

 [4] G. F. Knapp, The State Theory of Money.

[[5] S. Haber and S. Stornetta, "How to time-stamp a digital document," Journal of Cryptology, 1991.

[

[6] A. Narayanan, J. Bonneau, E. Felten, A. Miller and S. Goldfeder, Bitcoin and Cryptocurrency

Technologies, Woodstock: Princeton University Press, 2016.

 [7] The Economist, "The great chain of being sure about things," The Economist, 31 October 2015.

[

[8] Azaghal, "Wikimedia Commons," 25 January 2012. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Hash_Tree.svg. [Accessed 25 March 2019].

 [9] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008.

[

[10] A. M. Antonopoulos, Mastering Bitcoin: Programming the Open Blockchain, Sebastopol: O'Reilly

Media, Inc., 2017.

[[11] The Economist, "Why bitcoin uses so much energy," The Economist, 9 July 2018.

[[12] Bit Info Charts, "Bitcoin Avg. Transaction Fee historical chart," 24 1 2019. [Online]. Available:

https://bitinfocharts.com/comparison/bitcoin-transactionfees.html. [Accessed 24 1 2019].

[[13] I. Takashima, Ethereum: The Ultimate Guide to the World of Ethereum, Amazon, 2017.

[[14] N. Szabo, "Smart Contracts: Building Blocks for Digital Markets," 1996. [Online]. Available:

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool200

6/szabo.best.vwh.net/smart_contracts_2.html. [Accessed 24 1 2019].

 [15] Delphi, "The Oracle Problem," Medium, 15 July 2017.

[

[16] J. Peterson, J. Krug, M. Zoltu, A. K. Williams and S. Alexander, "Augur: a Decentralized Oracle

and Prediction Market Platform," Forcast Foundation, 2018.

[[17] Ethereum Community, "Ethereum Docs," 2016. [Online]. Available:

http://ethdocs.org/en/latest/introduction/what-is-ethereum.html. [Accessed 24 January 2018].

[[18] G. Wood, "ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION

LEDGER," 2014.

[[19] J. Frankenfield, "Crypto Token," Investopedia, 3 April 2018.

 [20] J. Biggs, "How to run a token sale," TechCrunch, 2017.

 [21] V. Gupta, "A Brief History of Blockchain," Harvard Business Review, 28 February 2017.

 [22] J. Liebkind, "Is EOS the New BTC? Pay Attention to Peter Thiel," Investopedia, 9 August 2018.

 [23] J. Kauffman, "What is the Role of a Block Producer," EOSCanada Blog, 23 April 2018.

[

[24] J. Kauffman, "How Do I Use My EOS Tokens to Vote for a Block Producer?," EOSCanada Blog,

24 March 2018.

[

[25] J. Kauffman, "What Does Staking and Unstaking EOS Tokens Mean?," EOSCanada Blog, 22

August 2018.

[

[26] EOSIO, "EOSIO.CDT (Contract Development Toolkit)," 15 January 2018. [Online]. Available:

https://github.com/EOSIO/eosio.cdt. [Accessed 25 January 2018].

]

[27] P. Bright, "The Web is getting its bytecode: WebAssembly," Ars Technica, 18 June 2015.

[

[28] EOSIO, "EOSIO Developer Portal - Upgrading the System Contract," 2019. [Online]. Available:

https://developers.eos.io/eosio-cpp/docs/upgrading-the-system-contract. [Accessed 25 January 2019].

[

[29] EOSIO, "EOSIO Developer Portal - Communication Model," 2019. [Online]. Available:

https://developers.eos.io/eosio-cpp/v1.3.1/docs/communication-model. [Accessed 25 January 2019].

[

[30] EOSIO, "EOSIO Developer Portal - Multi-Index DB API," 2019. [Online]. Available:

https://developers.eos.io/eosio-cpp/v1.3.1/docs/db-api. [Accessed 26 January 2019].

 [31] eostoolkit, "What are Active and Owner Keys and Permissions?," EOS Help Desk, 26 June 2018.

[

[32] R. Cannard, "Worst day of my Crypto Life.....never thought I would be scammed," Reddit, 26

January 2019. [Online]. Available:

https://www.reddit.com/r/eos/comments/ajzsor/worst_day_of_my_crypto_lifenever_thought_i_would/.

[Accessed 26 January 2019].

 [33] EOSLynx, [Online]. Available: https://eoslynx.com/.

[

[34] S. O'Neal, "EOS Proves Yet Again That Decentralization Is Not Its Priority," Cointelegraph, 15

November 2018.

[

[35] Finder, "“Shock” allegations of EOS block producer collusion shock no one," 2018. [Online].

Available: https://www.finder.com.au/shock-allegations-of-eos-block-producer-collusion-shock-no-one.

[Accessed 26 January 2019].

[

[36] Block.one, "Oct 1, 2018 Statement: EOS Public Blockchain Governance," Block.one Blog, 1

October 2018.

[

[37] K. Kelleher, "Civil, a Blockchain-Media Startup, Cancels Its ICO, Offering a Full Refund to Those

Who Bought Tokens," Fortune, 17 October 2018.

 [38] Civil, "Civil: Self-Sustaining Journalism," Civil Blog, 11 July 2017.

[[39] A. R. Hevner, "A Three Cycle of Design Science Research," Scandanivan Journal of Information

 Systems, 2007.

[40] P. Martinez, "Surviving the Adpocalypse: Why YouTube Creators Embrace Merch," 26 June 2018.

[41] J. Alexander, "The Yellow $: a comprehensive history of demonetization and YouTube’s war with

creators," Polygon, 10 May 2018.

[42] O. Seitz, "Patreon Blog," Patreon, 28 June 2018. [Online]. Available: https://blog.patreon.com/6-

membership-based-business-models-you-can-use-on-patreon-today. [Accessed 16 1 2019].

[43] "Patreon," 28 June 2018. [Online]. Available: https://www.patreon.com/. [Accessed 16 January

2019].

[44] "Channel memberships eligibility, policies, & guidelines," YouTube, 16 January 2019. [Online].

Available: https://support.google.com/youtube/answer/7636690?hl=en&ref_topic=9153998. [Accessed

16 January 2019].

[45] DappRadar, "Dapp Rankings," 17 February 2019. [Online]. Available:

https://dappradar.com/rankings. [Accessed 17 February 2019].

[46] Reichheld, Fred; Markey, Rob; Bain & Company, How Net Promoter Companies Thrive in a

Customer-Driven World, Bsoton: Harvard Business Review Press, 2011.

[47] D. Larimer, "Developing Efficient Contracts," 12 December 2018. [Online]. Available:

https://medium.com/@bytemaster/developing-efficient-contracts-8a8e62011c6d. [Accessed 25 March

2019].

[48] "EOS Charge," EOS New York, 25 March 2019. [Online]. Available: https://www.eoscharge.io/.

[Accessed 25 March 2019].

[

[49] "EOS Resource Planner," EOS New York, 25 March 2019. [Online]. Available:

https://www.eosrp.io/. [Accessed 25 March 2019].

[50] "Crunchbase," Crunchbase Inc., 25 March 2019. [Online]. Available:

https://www.crunchbase.com/organization/block-one. [Accessed 24 March 2019].

[

[51] EOSBet Casino, "EOSBet Gets Ready for Mainstream Adoption with Account System Launch,"

Medium, 4 January 2019.

[52] EOS New York, "EOS New York: Ownership Disclosure & Corporate Structure," January 2018.

[Online]. Available: https://steemit.com/eos/@eosnewyork/eos-new-york-ownership-disclosure-and-

corporate-structure. [Accessed 25 March 2019].

[53] D. Gerard, Attack of the 50 Foot Blockchain: Bitcoin, Blockchain, Ethereum & Smart Contracts,

Amazon, 2017.

[

[54] M. Iansiti and K. R. Lakhani, "The Truth About Blockchain," Harvard Business Review, February

2017.

[[55] A. Breen, "How and Why Developing for Ethereum Sucks," Medium, 19 January 2018.

[56] D. Sui, J. Pfeffer, J. Gillis and E. Muzzy, "A Retrospective of the EOS Token Sale," Consensys

Media, 25 October 2018.

 [57] M. Iles, "The Civil White Paper," Civil Blog, 11 May 2018.

 [58] EOSBet Casino, "EOSBet Update: Dividends!," Medium, 29 September 2018.

Philip Chwistek - Academic Vita
Education

Penn State University, Schreyer Honors College University Park, PA
B.S. Information Sciences and Technology | B.A. English August 2015 - Present

Maastricht University Maastricht, Netherlands
Study abroad concentrated on international business July 2016 - August 2016

Work Experience

Zuper Superannuation Sydney, Australia

Junior Developer (Remote) September 2018 – Present

▪ Coordinated with design team to create a jQuery lookup widget compatible with Instapage

▪ Improved load times (3x) of client side rendered tree maps

▪ Created a web-based personality/financial profiling tool with a behavioral psychologist

Software Development Intern | Sage Corps Fellow July 2018 – August 2018

▪ Created responsive React/Sass components for Contentful (CMS) models

▪ Implemented UI improvements for onboarding process

ServiceDock Dublin, Ireland

Full-Stack Development Intern | Sage Corps Fellow July 2017 – August 2017

▪ Designed and implemented a web-based data visualization solution for customer feedback

o CEO demoed functionality to franchises, such as Centra (convenience store chain)

Center For American Literary Studies University Park, PA

Undergraduate Research Assistant August 2017 – May 2018

▪ Wrote a book review that aired on local NPR station, aided in planning of graduate symposia

College of IST University Park, PA

Learning Assistant (Introduction to Programming) August – December 2016

▪ Assisted instructor with creating assessments, performed 1-1 instruction

▪ Graded student tests and problem sets

College of IST University Park, PA

Undergraduate Research Assistant April – August 2016

▪ Improved a recommender system prototype funded by a FBI grant

Fox Chase Cancer Center Philadelphia, PA

Bioinformatics Intern June – August 2014

▪ Wrote Python scripts to analyze human DNA and RNA using BioPython

Skills and Technologies

▪ Languages/technologies: Proficient in Java, JavaScript; Familiar with Python; previously used React,
Node.js, Spring MVC, Solidity, Sass, C++. Experienced with Git, Sketch, and UML.

▪ Strong analytical and creative writing, fluent in Polish

Publications

▪ Bagby, John W., David Reitter & Philip Chwistek, An Emerging Political Economy Of The Blockchain:
Enhancing Regulatory Opportunities, 88 UMKC L.Rev. 1-54 (Sept.2019)

Independent Projects

Clairvoyance Warrington, PA

Full-Stack Developer December 2017 - Present

▪ Developed a dapp for users to bet Ether on eSports games (React, Node.js, Solidity)

Awards, Grants, and Honors

▪ Edward M. Frymoyer Honors Scholarship 2018

▪ IST Honors Scholarship 2018

▪ Ann Goode Moore and Howard R. Moore Jr. Scholarship in English 2018

▪ Schreyer Travel and Research Grant ($2500) 2018

▪ College of Liberal Arts Enrichment Grant ($1500) 2018

▪ College of Liberal Arts Enrichment Grant ($1850) 2017

▪ Penn State Student Engagement Network Grant ($2000) 2017

▪ Schreyer Travel and Research Grant ($1250) 2017

▪ MC for the IST Donor Dinner 2016

▪ National AP Scholar 2015

▪ Frederick Douglass and Susan B. Anthony Award for Social Understanding 2014

