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ABSTRACT 

 

 This paper concerns itself with the question, “how can we apply blockchain technology to 

develop an alternative subscription model for independent online creators?” The proposed 

solution, Submerged, is a hybrid application that is a combination of traditional web technologies 

and smart contracts, in the form of what is referred to in the blockchain space as a decentralized 

application (dapp). Following EOSIO dapp general practices, Submerged integrates with 

ScatterJS: a wallet software designed to specifically interact with dapps. Following the paradigm 

described by Hevner as the “three-cycle view” of design research, this paper outlines the 

problems and opportunities in the crowdfunding space, proposes an alternative form of 

interaction between audiences and creators, provides an overview of an implemented minimally-

viable-product, and performs an evaluation to determine how Submerged improves on what 

already exists in the crowdfunding domain. Having implemented and tested Submerged in a 

staging environment, this paper concludes with a section detailing how the current iteration can 

be improved.  
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Chapter 1  
 

Introduction 

Purpose 

 For most people, blockchain is synonymous with Bitcoin and other cryptocurrencies such 

as Ether, Ripple, and Litecoin, or in other words, the speculative bubble that took place in late 

2017. But beneath the headlines lies a technology that has substantial potential for reducing the 

presence of intermediaries and facilitating the management of digital assets including identity, 

voting, art, and of course, digital money. Despite attracting the likes of IBM, JP Morgan Chase, 

and Mastercard, blockchain is still underdeveloped and has few practical, existing applications. 

Startups promising blockchain-based electronic medical records, peer-to-peer energy grid 

transactions, and decentralized corporate structures are frequently far-fetched, ignoring the 

technical and legislative limitations that exist. The purpose of this research project is to 

investigate the scalability and usability of using a blockchain infrastructure to support 

subscriptions, escrow, and fund distribution. Acknowledging the realities of the blockchain in its 

current form should help pave the way for more advanced applications such as those enumerated 

above.  

 At the time that this paper was written, general enthusiasm for blockchain-enabled 

technologies and applications has been in decline, following the rapid collapse of the market 

valuation for cryptocurrencies. Therefore, the current period can be identified as the “Trough of 

Disillusionment” for blockchain-related technology according to Gartner’s Hype Cycle (see 
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figure 1) [1]. The “Peak of Inflated Expectations” parallels the peak of cryptocurrency valuations 

in late 2017, where the price of Bitcoin hovered around $20,000 [2]. Ultimately, the end-goal of 

this research is to provide a stepping stone in the path up the “Slope of Enlightenment.”  To 

provide a valuable example of a decentralized application, it is important to pursue an earnest 

solution: not simply make a to-do list on the blockchain. For this reason, this project builds 

around the question “how can we apply blockchain technology to develop an alternative 

subscription model for independent online creators?” 

 

 

Figure 1. Gartner's Hype Cycle [3] 

Internet content creators have long struggled to monetize their work. Prior to the advent 

of Patreon, content creators, especially YouTubers and podcasters, were limited to raising funds 

through advertisers or through more informal donation avenues (PayPal). Since Patreon’s 

inception in 2013, the crowdfunding space has expanded to include other fundraising methods 

such as YouTube Channel Subscriptions. Nonetheless, these services are largely based on the 

goodwill between audiences and creators. Submerged, a response to the research question above, 

is a decentralized application that aims to improve on the existing crowdfunding domain by 

reducing the fees paid by content creators, enforcing a creator’s self-determined production 
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schedule to provide subscribers with a guarantee of content, and compensating creators 

proportionally to the traffic they bring to the platform.  
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Chapter 2  
 

Literature Review 

What is Money? 

The answer seems obvious. We use it to buy things such as groceries, clothes, and books. 

We use it to compensate the dogsitter. We use it to pay for our Netflix subscriptions. Even a 

toddler running a play store knows that goods are exchanged for money. So why does the 

definition of “money” even matter in the context of this paper?  

Blockchain, the technology central to this project and foundational to cryptocurrencies 

like Bitcoin, is ultimately supported and maintained by a system of financial incentives. To 

understand blockchain, one must understand these incentives, which in turn require a deeper 

understanding of money. When individuals are first exposed to the concept of a cryptocurrency, 

one of their first inclinations may be to dismiss the concept as a fad and declare that 

cryptocurrencies have “no intrinsic value.” This statement is indeed true, but paper money also 

has no intrinsic value, yet we can use it at any retail location.  

At the beginning of the turn of the twentieth century, policymakers around the world 

debated over what the best monetary system would look like: gold, silver, bimetallism, et cetera. 

George Friedrich Knapp, a German economist, published a seminal work that argued money can 

and should exist without a metallic standard [4]. He postulated that any item could be used as a 

currency as long as it gathered enough social consensus and had qualities that deemed it an 

effective “item of exchange” and more precisely, an effective “means of payment.”  The first 

money-wielding humans used gold to fulfill transactions not because of its industrial worth (it 

has little), but because it satisfied the requirements to be an effective item of exchange. Put 
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simply, precious metals are scarce, durable, and can be easily confirmed as authentic.  Paper 

money, too, with the help of a central bank, maintains scarcity, is produced in a manner that is 

difficult to counterfeit, and can be verified as genuine. Therefore, our use of the United States 

dollar is based on our trust in American institutions, not the amount of gold in Fort Knox that the 

bill supposedly represents. If anything, the precious metals maintained by the US Treasury are 

there as backup “exchange commodities” in case the dollar ever fails.  

One can imagine a blockchain as a technological method of ensuring a digital asset’s 

scarcity and verifiable authenticity – thus opening up the potential for such an asset to be 

considered an effective “item of exchange.” Understanding social consensus as the most 

important aspect of whether an item has value is key to understanding blockchain and, in a 

broader sense, how decentralized applications, like the one outlined in this paper, work.  

Blockchain 

The first mention of a “block chain” appeared in a series of papers by Haber and 

Stornetta in the early ’90s as a method to timestamp documents and ensure their integrity [5]. In 

the original version of this proposed architecture, a server would receive a document from a 

client and then create a digital certificate comprised of the previous document’s certificate (a 

hash pointer) and the current time, thus creating a chain of documents. Any change to any of the 

documents, retrospectively, would invalidate the chain. If copies of this document chain existed 

across multiple clients, these clients could compare their certificates to establish a shared history. 

Later, Haber and Stornetta improved on this schema to make it more computationally efficient to 

verify documents. Instead of linking these timestamped documents linearly, it is more effective 
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to group documents into “blocks,” thus creating a “block chain,” where each block makes use of 

a data structure known as a Merkle Tree (see figure 2) [6] [7]. In the case of Bitcoin, and other 

Bitcoin-like cryptocurrencies, each hash is representative of a transaction.  

 

Figure 2 A Merkle Tree [8] 

Bitcoin Protocol 

 Bitcoin, designed and implemented by an anonymous individual known by the name of 

“Satoshi Nakamoto,” adapted the concepts of a blockchain from Haber and Stornetta to create a 

global ledger system that supports digital money. Rather than timestamp documents, this 

blockchain, which most people associate with the term, manages account balances and 

transactions. Furthermore, there is no central location of this “blockchain.” Instead, thousands of 

computers called nodes have their own local copy. These nodes work together to maintain their 

copies and ensure consistency across the network. As a result, all transactions and account 

balances are public. This redundancy ensures that when a user desires to spend x amount of 
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Bitcoin, the network can agree that this individual indeed has x amount of Bitcoin to spend. This 

verification is key to solving the so-called “double-spending” problem: it prevents people from 

spending Bitcoin they do not have [6].  

 One of Nakamoto’s most significant contributions revolves around mining nodes and 

consensus algorithms. Mining nodes, also referred to as miners, are responsible for validating 

transactions and placing them into blocks. Once a transaction is placed within a block and 

accepted by the network, the transaction is “executed.”  For this effort, miners receive a reward 

in the form of newly-minted Bitcoin: an inflationary pressure and incentive to maintain the 

network [7]. Each Bitcoin can be traced back to its original block, ensuring its authenticity.   

 To prevent too many Bitcoin from being minted and causing runaway inflation, 

Nakamoto implemented a consensus algorithm called proof-of-work (POW). In order to delay 

the production of new blocks, each miner must complete a puzzle via the hashcash protocol, 

which was originally developed by Adam Black in 1997 as a proposal to limit email spam [9]. 

The puzzle involves discovering a value that, when hashed with the transactions in the block, 

produces a satisfactory number of leading zero bits. Producing this value, called a nonce, can 

only be done through trial-and-error and takes a significant amount of time. The difficulty of the 

puzzle increases as more miners and more computational power enter the network [10]. 

Therefore, miners are in competition, computationally, with one another to create a new block 

and generate a nonce value that satisfies the difficulty deemed by the protocol. Once a 

satisfactory nonce is generated, the network accepts this new block and rewards the miner. 

Besides issues of scalability, proof-of-work consensus algorithms have faced increasing criticism 

for their waste of resources. If a miner does not succeed in being the first to generate an 

appropriate nonce, then all the computation that they have gone through is effectively wasted. 
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PWC estimates that the Bitcoin network, alone, consumes roughly the same amount of energy in 

a year as the whole country of Ireland [11]. 

 Transactions are also not necessarily executed in chronological order. Whenever a user 

sends a transaction, they pay a transaction fee to incentivize a miner to place their transaction 

within a block. The higher the transaction fee, then the faster the transaction will be executed. 

Currently, the average transaction fee for Bitcoin is between 25 and 50 cents. During times of 

peak traffic, such as during a panic sell-off in 2017, transaction fees jumped to $55 dollars [12]. 

Wallets and Accounts 

 When someone “owns” a Bitcoin, they do not own it in the way that they might own a 

piece of jewelry. More precisely, when someone “owns” a Bitcoin, they own the rights to send 

that Bitcoin to someone else. All Bitcoins are tethered to the network and are associated with an 

address (an account). This address is generated by a cryptocurrency wallet. Each address is 

secured with public key cryptography. User addresses almost always correspond to a public key 

that is used to receive funds, while the private key is needed to sign transactions from that 

address [10]. Whenever someone sends Bitcoin, they use their private key to sign the transaction 

to produce a unique signature that can only be created using the public and private key. A 

transaction will be rejected by the network if it does not produce the correct signature. Therefore, 

it is of upmost importance to keep a private key secure. Anyone who has access to an account’s 

private key has access to use the funds associated with the account. A wallet is a piece of 

software that manages these private and public keys for the user. A hot wallet refers to a wallet 

that is connected to the internet; a cold wallet is not [13].  
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Smart Contracts, Tokens, and Ethereum 

Other than Bitcoin, the most significant blockchain, architecturally speaking, is 

Ethereum. Specifically, Ethereum introduced support for smart contracts. Originally theorized 

by Nick Szabo, a smart contract “is a set of promises, specified in digital form, including 

protocols within which the parties perform on these promises” [14]. However, this term is rather 

misleading in our context because not all smart contracts on Ethereum perform the functions 

described by Szabo. In reality, a smart contract is a piece of code appended to the blockchain. 

When an application makes use of one or more smart contracts it is called a decentralized 

application. Smart contracts also have their own addresses and, like transactions, are public. This 

means that they can receive funds and can also be examined by other parties.  

Smart contracts are useful for when two or more parties depend on some action to be 

performed by a third party in a transparent manner. A classic example is gambling [13]. A smart 

contract could be responsible for generating odds for a dice game, taking bets, and then 

distributing funds accordingly.  First, because the smart contract is public, users can examine the 

code to make sure that odds are being fairly generated. Second, all these computations and 

transactions are handled by miners who are separated from the actual event. Their job is to only 

run the code in the contract. Therefore, once each party commits and sends funds to the contract, 

they cannot withhold money from the winner or refuse to participate. Events will precipitate the 

way they are described in the contract. 

 One of the key problems facing smart contracts is described as the “oracle problem” [15]. 

A smart contract can execute a transaction given some kind of input, but how does one make 

sure that this is input is correct? In our previous gambling example, the smart contract was self-

contained. But how would this smart contract work if parties were betting on an event exterior of 
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the blockchain, such as a boxing match? There are services that describe themselves as “oracles” 

that execute smart contract events based on API calls, but these “oracles” rely on trust. Augur, a 

decentralized prediction market on Ethereum, has set some groundwork by creating a democratic 

solution based that allows users to “vote” on the truth [16]. 

Ethereum, which is self-described as a “programmable” blockchain, supports an isolated 

runtime environment for smart contracts called the Ethereum Virtual Machine (EVM). Ethereum 

smart contracts need to be compiled from a higher-level language, such as Solidity, into EVM 

bytecode, where they are then uploaded to the Ethereum blockchain through an Ethereum client 

(usually a specialized wallet) [17]. Ethereum’s native cryptocurrency is Ether, which acts as a 

what Georg Friedrich Knapp would qualify as an “exchange commodity.” It can be used in the 

same way as Bitcoin or any other cryptocurrency but is primarily intended to be a “fuel” for 

smart contracts: an incentive for a miner to execute a smart contract. Quite literally, computation 

is measured in units called “gas” [18]. The more computationally expensive the transaction, the 

more Ether it will cost. Forcing individuals to pay gas costs prevents malicious or poorly-

designed code from disrupting the network. After all, due to the redundancy of the network, all 

nodes will need to execute the code of the smart contract.  

 One of the primary use cases of smart contracts is to create crypto-currencies that run on 

top of an existing blockchain. These new cryptocurrencies are called tokens, in order to 

differentiate them from cryptocurrencies with their own blockchains [19]. Not every blockchain-

powered application requires a completely new blockchain. Similarly, developing a community 

of miners to support every blockchain-power application is infeasible. Therefore, Ethereum can 

be imagined as a blockchain that supports smaller blockchains through the same generalized 

mining community.  
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 Tokens can be used in a variety of ways. For some applications, a token acts like an in-

app currency. A hypothetical application, for example, could take no fees, but require its users to 

use its token. Therefore, as the application becomes more popular, the demand for the token 

increases and the token appreciates. The developers own a significant amount of the outstanding 

tokens, allowing them to sell the tokens at exchanges as profit. Similarly, investors can buy a 

token to speculate on its future worth. This phenomenon led to the 2017 boom of ICOs, or Initial 

Coin Offerings, where startups would raise funds by selling off tokens that may have future 

value [20]. Tokens can also be in more practical ways, such as tracking asset ownership or voting 

power.  

EOSIO 

Ethereum is largely considered to be a “second-generation” blockchain because of its 

introduction of “smart contracts” into the domain. However, there have been a number of newer 

blockchains who describe themselves as the “third generation” [21]. These emerging blockchains 

generally aim to iterate on the model provided by Ethereum to create better infrastructures for 

decentralized applications. Of these, EOSIO has gained the most traction. Launched in mid-2018 

by Block.one following a series of Ethereum ICOs that raised over 4 billion dollars [22], EOSIO 

boasts feeless transactions, supports up to 5000 transactions per second, and consumes 

significantly less energy than proof-of-work blockchains. 

 These improvements are largely due to EOSIO’s unique mining protocol. Unlike 

Ethereum and Bitcoin, where anyone can be a miner, there are only 21 miners at any time in the 

network. These miners are called “block producers” and are, ideally, geographically distributed. 
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The mining rewards for each producer depend on their ranking within the top 21, using a 

consensus algorithm known as proof-of-stake (POS) [23]. Typically, in proof-of-stake consensus 

algorithms, all coins have already been “minted,” eliminating the mining rewards normally 

associated with generating a block. In order to support a growing ecosystem, EOS has a flat 5% 

yearly inflation rate. This inflation rate can be adjusted with proposals that are voted in by the 

community. Correspondingly, 20% of the newly minted EOS tokens are allocated to the block 

producers according to their ranking in the top 21. The remaining 80% of these new tokens are 

reserved for “public” works. To offset this inflationary pressure, Dan Larimer, the CTO of 

Block.one has suggested EOS can be removed from the market when purchasing resources or 

domain names on the network.  

 There are roughly one hundred block producer candidates in the EOSIO ecosystem. 

Users vote periodically to elect the top 21 producers. Specifically, voting weight decreases every 

one year, so re-casting votes is necessary to allow for a user to make full use of their voting 

power. To make this process easier, a user can vote by proxy, or in other words, give their vote 

to a leader in the community who can appropriately identify worthy block producers [24]. Block 

producers earn the support of the community by creating tutorials, developing applications, 

acting as advisories, and producing developer tools. 

Furthermore, smart contract execution is not connected to gas. Instead, users “stake” their 

EOS tokens to the network to purchase CPU, network bandwidth, and RAM. CPU and network 

bandwidth resources regenerate over the course of three days, while RAM does not [25]. RAM 

can only be regained by deleting a user’s data in the corresponding smart contract. While RAM 

and network bandwidth are measured in bytes, CPU resources are measured in microseconds. 

These resources decrease whenever a user sends funds or interacts with a smart contract. 
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Altogether, this resource allocation scheme makes it cheaper to maintain and interact with smart 

contracts on EOSIO compared to smart contract platforms such as Ethereum. EOSIO smart 

contracts are also written in C and C++, allowing developers to make use of the C++ standard 

library and Boost. Similarly, rather than create its own bytecode protocol, the EOSIO compiler 

compiles  C++ to WebAssembly [26], an open-sourced bytecode for browsers supported by 

Apple, Mozilla, Microsoft, and Google [27]. By relying on more established technologies, 

EOSIO smart contracts are more robust than those supported by Ethereum: they are upgradable 

[28], they support deferred (asynchronous) transactions [29], and have built-in support for 

queryable table structures [30].  

One of the idiosyncrasies of EOS is its dual key system that involves active and owner 

keys. An owner key should be kept secret and holds ultimate authority over an account. 

However, for the vast majority of instances, users make use of their “active” key [28]. The active 

key is used to sign transactions such as fund transfers and contract actions. A user can also grant 

smart contracts or other accounts access to use its active key permission. This allows smart 

contracts to perform actions on behalf of the user. A user can revoke these permissions using 

their owner key if need be. However, allowing smart contracts to, for example, withdraw a 

subscription fee automatically from someone’s wallet, mitigates some of the challenges that 

come with a traditionally “push” based technology. However, it is important to recognize that 

this two-key system is not intuitive, and many users resort to using the same private key for their 

active and owner permissions [32]. Even wallets, such as EOSLynx, only generate one private 

key, setting individuals up for potential theft [33].  

 Due to EOSIO’s unique mining protocol, many critics have described EOSIO as “not 

really decentralized” and “not a blockchain” [34]. To an extent, this is true. EOSIO’s more 
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centralized nature is what allows for its greater scalability. What is more concerning, however, is 

the apparent collusion between block producers and exchanges [35]. After all, exchanges control 

the private keys of a number of accounts, allowing them to control the votes of potentially 

thousands of users (as long as those wallets have positive EOS balances). Similarly, there have 

been accusations of “vote buying” among Chinese block producers. Block.one recently released 

a statement that they would use their own EOS to vote against producers guilty of collusion [36].  

Existing Decentralized Applications 

The decentralized application space is dominated by gambling applications. In part, this 

is due to users’ desire to evade taxes and circumvent local gambling laws. Regardless, there are a 

number of decentralized applications worth noting. In this section, we will cover two Ethereum-

based applications and one EOSIO application: Civil, Augur, and EOSBet, respectively.  

Civil is a marketplace for journalism. Despite a failed ICO in late 2018, Civil presents a 

solid example of how cryptocurrencies can be used to incentivize community engagement [37]. 

Civil has two main groups of users: people who simply read journalism and those involved in its 

production. Civil’s founders split these two groups using a concept they describe as a 

“Waterline.” Those “below” the Waterline, such as journalists, developers, and community 

members are the prime users who make use of the CVL token.  

There are three primary marketplaces supported by Civil: Newsrooms, Stations, and Fact-

checking-as-a-service. Newsrooms are created when CVL token holders pool their funds towards 

coverage of a specific topic. The token holders can then be involved in the governance of this 

newsroom by using their voting power to, for example, vote on which journalists will be 
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involved in covering the topic. Stations are journalist-driven projects catered towards an existing 

audience — CVL token holders can use their funds to crowdfund the station’s operations. 

Finally, CVL token holders can stake their tokens to challenge the journalism produced by 

newsrooms and stations. If the community agrees that the piece(s) of journalism violate the Civil 

Constitution or present incorrect information (i.e. fake news), then the newsroom or station could 

face penalties or potential removal from the platform. Meanwhile, the individuals responsible for 

the challenge are financially rewarded. The Civil platform also involves a number of other 

initiatives and foundations that are intended to promote free, open journalism [38].  

Augur is a prediction market based around the REP token. Users choose an event to bet 

on, such as the winner of the next presidential election and then proceed to create a market where 

people can set their bets. Once an event is over, a user can report the outcome of the event by 

staking their REP tokens. Once a consensus is determined, winnings are accordingly distributed 

and those who reported the event correctly, or rather, reported with the consensus, receive the 

REP from reporters who did not report correctly. However, REP is not a token that can be traded 

on Augur’s markets. It can only be earned through participation or by purchasing a set amount 

on an exchange. After the reporting phase, all fees collected by Augur for a particular market are 

distributed to the reporters according to the amount they staked when reporting.  

Whenever a user creates a new market, they are required to designate a reporter and put 

up a “no-show” bond. This reporter’s initial report, if received within three days, becomes the 

tentative outcome. If the reporter does not provide an initial report in three days, the report is 

opened to the market, and the first user to report an outcome receives the original reporter’s 

bond. This first report also becomes the tentative outcome. During the next seven days, any user 

who holds REP tokens can dispute the outcome. If the appropriate quantity of dispute stake is 
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raised (which involves crowdfunding), then the disputed outcome is accepted. After a successful 

dispute, another dispute round is held. To incentivize successful disputes, the bond is designed in 

such a way as to ensure a 50% ROI for disputing reporters. In the case where a dispute bond 

amounts to more than 2.5% of all REP, Augur enters a fork state — freezing all other disputes — 

in order to appropriately handle processing of REP distribution, which at this level involves 

exterior coordination with exchanges and wallet software developers [16]. An example of the 

issues that can be caused by Ethereum’s lack of scalability.  

EOSBet Casino is a decentralized dice-betting game. Although the actual use case seems 

trivial, the BET token demonstrates how a token can be used as a dividend and an incentive for 

early adopters to come to the platform. Until all tokens are distributed, users receive 1 BET token 

for every 20 EOS they wager. Owners of the BET token receive dividends according to their 

percentage ownership relative to all BET tokens. However, owners of the BET token are not 

only players but also developers and investors. Their dividends serve as an incentive for them to 

continue supporting the project. 
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Chapter 3  
 

Methodology 

Because this project intends to provide a real, implemented example of a decentralized 

application, its methodology is largely inspired by design research, specifically Hevner’s three-

cycle view of design research [39]. As such, my work can be broken down into three cycles: 

relevance, design, and rigor. The relevance cycle involves analyzing the current application 

domain and identifying problems and opportunities within it. The design cycle involves the 

actual building of “artifacts.” The rigor cycle takes the artifacts created during the design cycle 

and evaluates them according to various methods, theories, experience, and expertise. The next 

few chapters of this paper correspond to these three cycles. 

In the relevance chapter, I discuss the current experience of content creators trying to 

monetize their work, the common components of a “dapp”, and the assumptions and constraints 

of my project. In the design chapter, I provide an overview of my implemented solution, 

Submerged. I begin with a higher-level overview of my proposed decentralized model of 

interaction between content creators and audiences, a breakdown of the corresponding 

Submerged smart contract, and a high-level mapping of the general application architecture. This 

last component is especially important because it concerns what aspects of an application should 

be decentralized and which should not. In the rigor chapter, I evaluate my project according to 

mathematical methods and theories in user experience.  

Hevner’s three-cycle view of design research, ultimately, is an iterative process. Thus, 

this paper concludes with a section regarding future work as well as recommendations for other 

developers looking to create a decentralized application.  
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Chapter 4  
 

Submerged – Relevance Cycle 

The Problem Domain 

 Starting in December 2017, YouTube experienced what the community described as the 

“adpocolypse” [40]. Following pressure from advertisers to prevent brands from being listed as 

sponsors of, for example, ISIS recruitment videos, YouTube implemented an algorithmic 

solution that screens videos and removes advertisements from videos that contain 

“inappropriate” content. In the resulting fallout, videos that simply featured controversial topics 

or vulgar language were flagged and demonetized, even in informational contexts. Philip 

DeFranco, for example, a prominent YouTuber who runs daily news digests, claimed to have 

experienced a drop of 80% in ad revenue [41].  

 YouTube does support an appeals process that allows creators to challenge 

demonetization on a case-by-case basis. However, considering that videos garner most of their 

traffic within the first 3 days of going live, the window to generate the most ad revenue has 

already passed by the time the appeals process concludes. Therefore, many creators see ad 

revenue as an even more unreliable and unpredictable source than it once was, and have turned 

to other solutions to monetize their work. Top Youtubers can rely on merchandise sales; most 

rely on some sort of crowdfunding.  

 The most popular third-party solution is a service called Patreon, which allows audiences 

to pay a monthly subscription to a content creator (YouTuber, podcaster, blogger, artist). 
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However, this subscription, in reality, is more of a donation. It is not a payment for a service, 

meaning that a creator is not obligated to actually create content. Most Patreon channels offer 

various tiers of “subscription.” For example, three dollars a month for six months may earn the 

subscriber a unique sticker that is mailed to their house. Six dollars a month for six months may 

earn them a signed poster. In most cases, the benefits of subscribing are mainly these kinds of 

“soft” benefits. Creators can also charge a fee per unit of content produced (e.g. per video), but 

in turn, monthly payments can vary wildly depending on the creator’s production schedule [42]. 

On average, Patreon’s fee ranges between 10 and 15 percent of a creator’s earnings [43].  

 To compete with Patreon and Twitch, YouTube launched its own “Channel Membership” 

program that allows audiences to become “members” of a creator’s channel for $5 dollars a 

month. In turn, subscribers can earn badges as well as other goods from the creator. However, 

this feature is restricted to creators with more than 30,000 subscribers, is set at a fixed price of 5 

dollars, and entitles YouTubers to only 70% of the funds they raise [44]. 

 This project is largely inspired by the services offered by Patreon but aims to improve on 

the existing model by making use of blockchain technology to reduce transaction fees, formalize 

the relationships between content creator and subscriber, and create a system of financial 

incentives that promote engagement on the platform.  

Technological Constraints/Dependencies 

Most user-facing decentralized applications require users to sign transactions using their 

private keys. There are many specialized wallets that offer users this functionality. This project 

supports ScatterJS, a wallet that supports Ethereum, EOS, and TRON smart contract interactions. 
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Simultaneously, the wallet features a built in-exchange that allows users to exchange tokens on 

the same blockchain without paying a fee. Inter-blockchain currency exchanges, such as BTC to 

EOS, cost .5% of the total transaction. ScatterJS also supports the creation of identities that can 

serve as OAuth and also provides both Desktop and Mobile support. For these reasons, ScatterJS 

is by far the most popular wallet for EOS applications and is therefore supported by this MVP.  

Storing all relevant application data on the blockchain is not feasible, nor a smart design 

decision. This application, by its inherent nature, deals with a significant amount of video data, 

and the decentralization of content-hosting is not one of the goals. Therefore, the application 

depends on existing content-hosting services such as YouTube and Vimeo. Thankfully, YouTube 

allows creators to restrict the domains where their videos can be embedded. Therefore, in our use 

case, where creators may desire to create a video exclusive to Submerged, they can customize 

the video’s privacy settings to achieve the desired effect. 
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Chapter 5  
 

Submerged – Design Cycle 

Choosing a Blockchain 

The two most dominant infrastructures for smart contracts are Ethereum and EOSIO. 

This project was implemented using EOSIO for a variety of reasons, but most of all, cost. 

Ethereum requires a user to pay gas costs for every transaction (roughly 25 cents), while EOS 

does not. Considering that one of the main goals of this project is to increase the amount of 

money creators can take home from crowdfunding, this difference alone makes EOS more 

attractive. Similarly, if one examines the amount of dapp activity across blockchains, EOS dapps 

outperform every other protocol, with more users and higher engagement. It seems natural to 

assume that this in large part due to users not needing to pay a gas fee for every transaction [45]. 

Simultaneously, writing smart contracts for EOSIO is a more manageable experience compared 

to Ethereum. A developer can make use of virtually any existing C or C++ library. Contracts, 

too, are not completely “immutable” and can be upgraded. Ethereum contracts, on the other 

hand, are limited to the capabilities of Solidity, which is still a young and unrefined 

programming language.  
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 A New, Formalized Relationship Between Creators and Audiences 

Table 1 Submerged Terminology 

Term Definition 

Channel A creator’s “page” on Submerged. This is where creators deliver their 

content and can make update posts. 

Project A single piece of content produced by a creator (a podcast, a video, a song, 

and so forth). 

Submerged Foundation An elected body composed of 5 representatives from the community. 1 seat 

is reserved, at least initially, for the developers.  

 

 

On the Submerged platform, a creator’s channel cycles between four stages — 

declaration, fulfillment, reporting, and settlement — every 30 days. At the beginning of the 

cycle, in the declaration stage, creators declare the quantity, type, length, and deadline of the 

monetizable projects they will produce in the coming 30 days. For example, a creator may 

declare she will create two 15-minute episodes of her podcast due the 10th and 18th of the 

coming month, respectively. Unless specified by the creator, this declaration will recur at the 

beginning of the next cycle. Declarations must occur before the beginning of the billing period.  

The declaration stage is first and foremost, a promise to a creator’s community and an 

obligation to fulfill. It specifies exactly what a subscriber can expect to receive in turn for a 

subscription. Although it may seem strict to force creators to adhere to a schedule, other 

platforms, such as YouTube, already have built-in biases in the recommendation algorithm for 

creators who upload multiple times a week. Similarly, other subscription-based services, such as 

newspapers, magazines, and even Netflix, promise new content with some regularity. Therefore, 
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it is not unreasonable to expect regular content in exchange for regular payment.  

After a creator has declared their projects for the upcoming cycle, they must fulfill, or 

rather deliver, the content before the deadline they specified. If the creator does not deliver the 

specified content on time, then the project is automatically forfeited for that billing cycle. 

However, creators can petition their audience for a time extension three days prior to the due 

date.  

If the content is delivered on time, then reporting opens for a set period of time on that 

specific project. If a project is delivered more than three days before the deadline, then reporting 

lasts until the day of the deadline. Otherwise, reporting lasts for three days. Audience members 

vote on whether this piece of content satisfies the declaration provided by the creator. If more 

than 25% of all subscribers are dissatisfied by this content, meaning they do not believe it 

satisfies the requirements set by the creator, then the project is rejected. Any campaign, such as 

time extensions, operates on the same 25% principle.  

This benchmark was adapted from the principle of a net-promoter score (NPS). NPS is a 

measure used to determine how likely a person is to recommend a service to a friend or 

colleague, but more generally, provides a solid indicator of a customer’s satisfaction with a 

product [46]. An NPS of 0 represents a neutral disposition, where an NPS above 50 is considered 

above average. Submerged uses this measure rather than a simple majority because it assumes 

that a person who does not report is satisfied. At the end of the reporting phase, a project is either 

accepted or rejected by the community.  

A creator can appeal any project that is rejected by the community to the Submerged 

Foundation. The Submerged foundation can then reverse the decision of the community if 

deemed appropriate. Simultaneously, any subscriber can launch an appeal against a creator by 
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staking their tokens and opening an appeal to the Foundation.  

After the last project of the billing cycle is fulfilled or rejected, a Channel enters the 

settlement phase. During the settlement phase, a percentage is calculated based on the number of 

fulfilled projects over the total declared projects for the billing cycle. Then, a creator receives the 

corresponding percentage of the total amount subscribed to them during that billing cycle. In 

other words, if a creator has a 100% fulfillment rate for a given cycle, they receive 100% of the 

funds subscribed to them. Otherwise, subscribers are credited the difference. This process is 

represented visually in Figure 3 below. 
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Figure 3 Diagram of Submerged Model 
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The SUBM Token 

All subscriptions are currently fulfilled with EOS. In the future, this may be replaced by a 

third-party stable coin. The proposed Submerged model does, however, support a token 

(SUBM). The SUBM token is intended to incentivize engagement on the platform and attract 

early adopters. Every quarter, the fees collected by Submerged (in EOS) are distributed as 

dividends to token holders. The following token allocations are only tentative. To determine the 

proper allocation would require an economic model based on the success of a token sale and 

knowledge of the size of the initial community. 

Tokens can be purchased or earned through activity on the platform. For example, 

correctly reporting satisfaction earns the user 1 SUBM token. For every fulfilled project, a 

creator receives 5 SUBM tokens per subscriber. If a creator is on a “streak,” or has fulfilled 

every project for at least three months, they earn 7 SUBM tokens per subscriber. SUBM tokens 

are also used to compensate members of the Foundation. Making an appeal to the foundation 

requires 1000 SUBM. Requiring users to stake their tokens to appeal prevents an individual from 

spamming the foundation and limits appeals to those with a proven dedication to the community.  

The Submerged Foundation 

The Submerged Foundation is composed of five representatives elected by the 

community. Running for a seat requires candidates to stake SUBM tokens, proving their 

contributions, either financial and/or participatory. The winners of the election receive the staked 

tokens of those who were not elected. This elected body votes on appeals brought forward by 

both creators and audiences alike. The staked tokens of each appeal are evenly distributed across 
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all members of the Foundation after a decision is made. If a member is inactive, meaning that 

they have not voted for more than 10% of all appeals in a quarter, their seat will be put up for 

election. The motivation for pursuing a governance model based on elected representatives, 

rather than a completely democratic voting process, is twofold. First, audiences may disapprove 

of a controversial video. It only takes an impassioned minority to qualify a video as 

“unsatisfactory” (25%). After all, it is possible that those alienated by a creator’s content would 

be more likely to share their disapproval than those of more neutral disposition.  In such cases, 

the community’s “rejection” is not due to a failure to deliver the content on time, or fulfill a 

promise on content length. Therefore, rather than democratizing the solution, which would draw 

attention from those who already expressed their dissatisfaction, representatives may be able to 

provide a more objective decision. 

Simultaneously, audiences may disclose content creator violations. For example, a user 

may report a creator who uploads copyrighted content. In such instances, audience approval may 

be very high, but the monetization of proprietary content legally threatens the existence of 

Submerged as a whole. Thus, audiences, or concerned individuals, can bring forth appeals. If an 

appeal against a content creator is successfully voted through, then the winning party is rewarded 

with SUBM tokens from the Submerged developers. Content creators who appeal against their 

audiences receive the funds put forth by their audiences for the initial subscription.  

The Submerged Smart Contract 

Dan Larimer, the CTO of Block.one, advises developers to create one contract rather than 

separate concerns across multiple smart contracts [47]. One of the chief reasons for doing so is to 
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avoid network costs and make it easier to manage RAM and CPU costs. Following his guidance, 

the Submerged blockchain back-end is one monolith contract. It supports creating channels, 

declaring projects, audience reporting, fund distribution, timing, and applying for extensions.  

The two features that are not included in this implementation are the SUBM token and 

the appeals process/Foundation. All tokens on EOSIO are handled by the eosio.token contract, a 

contract natively supported on EOSIO. Similarly, there are existing tools, such as EOSDrops, 

that handle the process of “airdropping” tokens to specific users. Furthermore, since this 

distribution would only take place until all tokens are distributed, this feature is not a permanent 

aspect of the contract. The appeals process is not included in this implementation because it 

requires a significant amount of input from content creators. Civil, for example, bases its own 

“constitution” on conversations with free press activist organizations and institutions such as 

NPR. Furthermore, because the Foundation is inherently rooted in user deliberations, it would be 

difficult to evaluate the efficacy of such a form of governance given the scope of this project. 

Similarly, it is assumed that the appeals process would only need to be considered for a small 

proportion of all projects declared on the platform. 

In terms of deployment, only one instance of the Submerged contract is uploaded to the 

network. All Submerged users make use of the same contract. This is made possible through the 

use of multi-index tables that are supported natively on EOSIO. Tables are maintained as long as 

a user pays for the RAM they require. On EOSIO, tables can be additionally scoped to help 

prevent concurrency issues and separate records. Put simply, a table may relate to a specific 

content creator or the whole application. 
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Table 2 Multi-Index Tables in the Submerged Contract 

Table Scope Purpose/Attributes 

Channels contract The “channels” table holds general information 

regarding each channel, such as price per billing cycle, 

the number of declared projects, and the number of 

fulfilled projects. 

Channel Subscriptions creator Each “channel subscriptions” table is tied to a specific 

channel. It lists all the subscribers for a channel and 

whether or not they have paid their subscription. This 

table is especially important when users opt-out of 

sharing permissions to auto-recur their subscription. 

Projects creator The “projects” table holds information related to each 

project, such as its current status (failed, payment 

pending, complete, etc), and its promised parameters. 

Polls creator The “polls” table carries information related to any 

vote, be it a creator asking for an extension or audience 

members validating content.  

Users contract The “users” table contains entries regarding a user’s 

subscriptions and their settings, such as whether auto-

recur is allowed. 

 

There are three components of the Submerged contract that are uploaded to the network: 

the WASM (C++ compiled to WebAssembly) file, the ABI (Application Binary Interface) file, 

and Ricardian contract. The ABI file is responsible for connecting the binary code (of the 

WASM file) to specific human-readable commands. These commands are called through an RPC 

(remote procedure call) API or command line. The Ricardian contract is a form of 

documentation, technically required by Block.one (but not enforced) for any smart contract 

uploaded to the mainnet, that informs a user of the purpose, function, and consequences of 

interacting with a contract . For example, in our case, if a user wanted to create a channel using 

the Submerged contract, they could look up the Ricardian clause for the “create channel” 

command.  

The EOSIO C++ compiler takes one .cpp file as input and compiles it into a smart 
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contract. Therefore, writing the smart contract to support all the features listed above required 

unconventional C++ design choices. First of all, most of the contract’s logic was placed in 

header files, using classes that were defined, rather than just declared. This not only made 

development more manageable, but ensured that all the logic and data models could still be 

aggregated into one cpp file and, consequently, one smart contract. Therefore, the actual cpp file 

can be imagined as a façade for an underlying monolith system. The pseudo-code below outlines 

how the cpp file takes shape:  

#include EOSIO library 

#include common structs, multi index tables, and controllers 

#include header file for Submerged contract 

 

// override Submerged header file, use ACTION annotation 

ACTION submerged::openchannel( …parameters… ) { 

 the_channel_controller.open_channel(…parameters…) 

} 

 

ACTION submerged::fulfillproject( …parameters… ) { 

 the_project_controller.fulfill_project(…parameters…) 

} 

 

/* repeat the pattern above for every action */  

 

/* 

EOSIO custom ABI dispatcher (to listen for transactions from eosio.token) 

*/ 

 

Figure 4 Contract Pseudocode 

Unlike Ethereum, where Ether is attached with every transaction (to support gas), all 
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token transactions occur in the jurisdiction of the eosio.token contract. To connect with the 

actions (sending, receiving tokens) of the eosio.token contract, the Submerged smart contract 

includes a custom ABI dispatcher.  

The ABI dispatcher connects action names to their respective methods in the Submerged 

smart contract. However, we can also add custom logic to allow for the smart contract to listen to 

events in the eosio.token contract. Therefore, the Submerged contract has its own “transfer” 

action that reacts any time the Submerged contract is the receiver or sender of funds in the 

eosio.token contract. The transfer action of the smart contract then intercepts the parameters of a 

successful transfer, and, by parsing its memo, can appropriately allocate funds. Therefore, the 

actual transfer of funds between subscribers and channels, and any subsequent withdrawals, all 

make use of the eosio.token contract already implemented on the network.  

Blockchain technologies, by their inherent design, are push based. Every transaction must 

be authorized by a user and fired by a node. EOSIO works around the limitations of a being a 

push-based technology by supporting deferred actions and a two-key system. Deferred actions, 

as the name suggests, are transactions that fire after a certain period of time. This time delay can 

be set by a user when they push a transaction, or as in this case, by the contract itself. Every 

deferred transaction must fire within 45 days. The Submerged contract makes generous use of 

the deferred action capability to set deadlines for its various actions. This way, the smart contract 

does not depend on a server to push actions at various time intervals, allowing it to be self-

contained and more decentralized. However, deferred actions are not guaranteed to fire. If a 

deferred action is set for 3 hours into the future and the contract (or the CPU/RAM payer) does 

not have sufficient resources, then the action cannot be called. As recommended, the Submerged 

contract supports certain actions to be called manually. However, when deploying, it would be of 
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utmost importance for the developers to ensure that enough EOS is staked to cover EOS resource 

costs. 

 

Table 3 Smart Contract Actions 

Action Name Called By Description 

version any user Prints the version number of the contract to the console 

open creator Allows a user to open a channel and begin receiving 

subscriptions 

transfer subscriber Whenever a subscriber transfers money to the Submerged 

contract, the contract records the transaction and parses the 

memo to allocate the funds to the creator (can also be used to 

credit an account) 

recur contract The contract calls this method every billing cycle to allow for a 

“real” subscription to occur 

initproject creator Called by creators to “declare” a project and assign a due date 

fulfill creator Called by creators when they have “fulfilled” their project 

fail contract Called by the contract if a project is not delivered before the 

deadline 

closevoting contract Called by the contract to close the vote on an extension or 

satisfaction measure 

applyforext creator Called by the creator to change a deadline of a project 

vote subscriber Pushed by subscribers to voice their opinion on an extension or 

satisfaction measure 

paychannel contract At the end of the billing cycle, the contract calls this method to 

credit the channel 

creditsubs contract At the end of the billing cycle, the contract calls this method to 

credit subscribers if projects requirements have not been satisfied 

unsub subscriber Subscribers call this method to unsubscribe from a channel 

withdraw any user Allows a user to withdraw the funds that are credited to their 

account and transfer them to their wallet 

 

After pushing their initial subscriptions, users can give the Submerged contract 

permission to recur the payment on a 30-day basis. This functionality is achieved by the user 
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giving permission to the smart contract to use the user’s active permission. This allows the smart 

contract to withdraw the appropriate amount of EOS tokens from the user’s wallet every 30 days: 

like a real subscription. Otherwise, users need to push the transaction themselves every 30 days. 

If the user is ever concerned about these permissions, they can revoke access using their owner 

key.  

Who Pays? Users or the Developers? 

 One of the benefits of decentralization is moving costs away from the smart contract to 

the users. For example, a user could pay for their own RAM fees. In our case, it would be 

cheaper for the developers to require a content creator to pay for the cost of maintaining their 

project declarations and the subsequent reporting phase. Although this functionality can be 

beneficial for applications such as a games, where a user pays for the storage of their inventory 

items on the blockchain, it proves to be difficult to handle in our situation where multiple parties 

rely on the same data tables. Due to the way multi-index table permissions are structured and due 

to the reliance on deferred actions, delegating costs to users is not ideal. If the content creator 

does not have enough RAM resources, then users’ subscriptions may not go through. This not 

only disrupts the whole ecosystem but also demands that content creators worry about 

maintaining proper resource allocations.  

 By default, on the EOSIO network, all actions called by a user are paid for using the 

user’s CPU and bandwidth resources. Only RAM costs can be delegated. However, all 

subsequent actions called by the contract are paid for by the contract. In the case of the 

Submerged contract, nearly all of the most computationally intensive actions are called by the 
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contract, thus decreasing the number of the user’s resources consumed. Regardless, building on 

EOSIO requires users to have some EOS staked the network. Thankfully, the RAM costs are 

completely covered by the contract, meaning that the only user resources consumed are re-

generable. The details regarding these upfront costs are taken into account during the rigor cycle.  

The Submerged Application 

Submerged’s overall architecture can be broken down into 4 layers: front-end, server, 

database, and blockchain. The frontend-layer is composed of a single-page application built with 

React/Redux that interacts with the ScatterJS API, EOSJS API, and the server layer.  

The server is built using Nest.js, a Node.js framework built on Express that supports static typing 

through TypeScript. The database, which connects to Google Firebase through the server, acts as 

a NoSQL database for data not related to blockchain transactions. Finally, the blockchain layer is 

composed of the Submerged contract components listed above. It manages all logic that 

decentralizes the financial aspects of Submerged. The sequence diagram below (figure 5) 

describes how these four layers (and ScatterJS) interact when a user subscribes to a channel for 

the first time.  
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Figure 5 Submerged UML Sequence Diagram 

 

 The most notable design choice, architecturally speaking, is the separation of financial 

and social data. The Submerged smart contract only stores data relevant to financial transactions, 

fund distributions, and governance. All other forms of data, such as user profiles, posts, and 

icons, are stored using “traditional” databases. After all, RAM is a finite resource on the EOS 
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network. For the sake of cost savings for creators and audiences alike, it is best to minimize the 

data stored on the chain to the bare minimum necessary.  

The Submerged Application Walkthrough 

The purpose of this section is to include screenshots from the implemented application to 

illustrate how it works, and how the front-end serves as an abstraction of the smart contract. 

 

 

Figure 6 Creating a Submerged Account 

Before a user can interact with Submerged, they need to create an account with their 

Scatter wallet. Scatter allows users to create identities populated with the user’s demographic 

information, and allows applications to make use of this information as a kind of OAuth. At the 

current moment, Submerged requires users to use a Scatter a wallet, and thus requires users to 

sign-up with Scatter (Figure 6). Figures 7 and 8 depict how this sign-up takes place within the 

Scatter app. 
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Figure 7 Linking Scatter to Submerged 

 

Figure 8 Login into Submerged  

 

 

Figure 9 Scatter Identity 
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 Figure 9 demonstrates how Submerged pulls information from the user’s Scatter identity, and also 

displays which EOS account the user’s actions will be associated with. 

 

 

Figure 10 Creating a Channel 

 Submerged users are not required to create a channel, but to be able to receive funds, 

users must create a channel that contains information that is split across the blockchain and 

traditional database layers. 

 

 

Figure 11 Channel Summary  

 Figure 11 demonstrates the summary page after the user fills out the form for creating a 

channel. The tags and channel name fields help other users search for a specific channel. The 

price field is related to how much a content creator will charge per billing cycle.  
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Figure 12 Scatter Modal 

 Figure 12 demonstrates the in-app modal that informs the user to change windows to the 

Scatter wallet. Typically, Scatter window modals are “brought up to front,” but this in-app modal 

ensures that the user is aware of the needed Scatter signature. 

 

Figure 13 Scatter Create Channel Confirmation 
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 Figure 13 displays the Scatter modal that informs the user of the transaction they are 

about to sign. All the necessary parameters are grabbed from the Submerged application and are 

displayed for the user. In our case, this example is creating a channel under the “alice” account, 

where the maximum number of projects in a cycle is 10 and the subscription is priced at 3 EOS. 

The user proceeds by clicking the check button in the upper right-hand corner.  

 

 

Figure 14 Channel listed in Channels List 

 Once accepted by the smart contract, a channel is now officially opened on Submerged. 

A user can find channels to subscribe to under the “channels” tab.  

 

 

Figure 15 A User’s Channel View 
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 When a user views their own channel, they see a form where there they can post relevant 

information to their audiences. There are four types of post: declaration, delivery, social, and 

extension. Social posts are regular posts with no underlying connection to the blockchain. They 

can be imagined, conceptually, as the same thing as Facebook posts. Declaration, delivery, and 

extension posts all relate to a creator’s projects.  

 

Figure 16 Declaring a Project 

 Once a user fills out the declaration post, they must sign the transaction once again using 

Scatter. 
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Figure 17 Feed Populated with Declared Projects 

 Figure 17 depicts a Channel’s page from the perspective of a potential subscriber. Here, 

there are 4 project declarations. In the bottom left-hand corner is a summary of the projects that a 

content creator has declared and their current status.  

 

Figure 18 Scatter Subscription Confirmation 

When a user subscribes, they send their funds using the existing eosio.token transfer contract. The 

memo contains the account name to which the channel belongs. 
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Figure 19 Dashboard View Post Subscription 

 Figure 19 depicts the dashboard of a subscriber. The right-hand side contains a list of 

their current subscriptions, and their social feed consists of posts made by the content creators 

they are subscribed to. The form limits all their posts to “social” posts as they do not have a 

channel. 

 

Figure 20 Feed Event For Delivered Project 
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The screenshot above shows the prompt that appears beneath delivered projects that are 

in “payment pending” status. It is here that a user votes on whether or not the content satisfied 

the original promise made by the content creator. Figure 21 is the corresponding Scatter 

confirmation. 

 

 

Figure 21 Scatter Vote Confirmation 
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Figure 22 Channel Summary  

Figure 22 depicts a channel summary with four projects with four different statuses. A 

project with the “payment pending” status is a project that has been delivered, but is currently 

taking votes from the community to assess its validity. A project “awaiting delivery” has been 

declared but not delivered. A “failed” project is a project that was not delivered on time or was 

rejected by the community. A project that has been delivered and accepted by the community is 

marked as “delivered and approved” and will be counted for the creator at the end of the billing 

cycle. Figures 23 and 24 show the modal detail view that is accessed when a user clicks one of 

the projects in the summary or one of the posts in the feed. Doing so allows a user to check on a 

project regardless of whether they’ve clicked on the declaration or delivery of a project. 
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Figure 23 Project Detail Modal with Incomplete Project 

 

Figure 24 Project Detail Model with Delivered Project 
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Chapter 6  
 

Submerged – Rigor Cycle 

Methodology for Estimating Contract Costs 

The data listed below comes from the logs produced by a local instance of the EOS 

blockchain on a 2018 MacBook Pro. The RAM and bandwidth costs are identical to those that 

would occur on a live network. The CPU costs, however, which are measured in microseconds, 

are likely to be overestimated. EOSCharge, a service provided by EOS New York, shows that the 

eosio.token transfer, on average, takes 1104 µs, while the eosio.token transfer on the local 

instance takes between 1300 µs and 2000 µs [48]. This difference can be attributed to the cloud 

infrastructure provided by block producers, which almost certainly offers more computational 

power than a single MacBook. Each measure of an action’s length, in microseconds listed below, 

was calculated by taking the average of 10 trials per action. The size of structs, measured in 

bytes, was provided by the sizeof method from the stdio.h library. The current EOS resource 

prices were provided by the EOS Resource Planner, another service provided by EOS New York. 

The following evaluations assume that 1 EOS is equal to the price of $3.69. 

Estimating User Costs 

 Unlike most other blockchains, creating an account on the EOSIO network is not free. 

The recommended resource allocations for a basic account are 4 KiB of RAM (RAM costs vary 
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based on market factors), .15 EOS dedicated to CPU, and .05 EOS dedicated towards network 

bandwidth. Furthermore, an account must be created by an already existing account. Various 

block producers offer open-source account creation services for a small fee. The most popular 

account creation service, offered by EOSVibes, charges .7 EOS (roughly $2.60) for account 

creation with the above resource allocations. To determine a conservative estimate of the upfront 

costs a user would need to incur to create an account with enough resources to use Submerged, 

we can rely on the following narrative: 

 Alice creates an EOS account using EOSVibes, opens a Submerged channel, declares 4 

projects, fulfills 4 projects, subscribes to 5 creators, and reports on 5 projects delivered by the 

creators she is subscribed to, and adds credit to her account. 

The above narrative assumes that these actions are all completed within a 24-hour time frame 

and that we want to avoid any kind of hiccups where Alice lacks sufficient resources to fulfill 

each action. Since all RAM costs are covered by the contract, only CPU and Bandwidth costs 

remain for the initial actions that remain for Alice. 

Table 4 EOS Allocation For Users/Creators 

Action CPU Cost (µs) Bandwidth Cost 

(bytes) 

Quantity 

Open Channel 467 120 1 

Declare 530 168 4 

Fulfill 680 152 4 

Subscribe 1300 218 5 

Vote 350 128 5 

Transfer Credit 1210 218 1 
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CPU EOS (ms) cost = ~ .0025 [49] 

Bandwidth (KiB) cost = ~ .0004  [49] 

Total CPU (µs) cost =  467 + 530(4) + 680(4) + 1300 (5) + 350 (5) + 1210 = 14,676 

Total Bandwidth (bytes) cost = 120 + 168(4) + 152(4) + 218(5) +128(5) + 218 = 3,348 

Total needed EOS for CPU = .0025/1000 * 14676   = .0367 

Total needed EOS for bandwidth = .0004/1000 * 3348  = .0013 

 

 Based on the data in the table above, the initial allocations using the EOSVibes account 

creation service are adequate to cover the actions mentioned in the narrative. However, it is 

important to recognize that users consume the CPU resources provided by a specific block 

producer (based on geography), and depending on traffic, may require users to stake more EOS 

to properly cover this set of transactions. However, because unstaking CPU resources and 

network bandwidth returns the same amount of EOS that was initially staked, users can stake 

EOS from their balance if necessary without losing EOS. After all, if someone intends to use 

Submerged, they will require a balance larger than .6 EOS if they wish to subscribe to other 

creators. Considering that it is common for Patreon donations to be in the range of $1-5, we can 

assume each subscription is 1 or 2 EOS. Therefore, for a new user, the initial purchase of 

cryptocurrencies can be around 15 EOS, or roughly $55.40.  

 Coinbase, the most popular exchange, charges a 1.49% fee when buying and selling 

crypto-currencies, which is already a higher rate than other exchanges such as Binance and 

Bitfinix, which charge a maximum of 1%. With conservative estimates, we can conclude that 

Alice can pay $53.80 to fund her account with 13.5 EOS and stake enough EOS to cover her 

transactions. Assuming that she owns no SUBM tokens, we can use the following function to 
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determine at what point Submerged becomes a more cost-effective option than Patreon if Alice 

was a creator.  

𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑎𝑚𝑜𝑢𝑛𝑡 𝑟𝑎𝑠𝑖𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠;  

 𝑃𝐸𝑂𝑆 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝐸𝑂𝑆;  

 𝑃𝑠𝑡𝑎𝑟𝑡𝑢𝑝 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐸𝑂𝑆 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛; 

𝐸𝑓𝑒𝑒 = 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑒𝑒 (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐸𝑂𝑆 𝑎𝑛𝑑 𝑓𝑖𝑎𝑡) 

𝑆𝑓𝑒𝑒 = 𝑆𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑑 𝑓𝑒𝑒 

𝑃𝑎𝑡𝑟𝑒𝑜𝑛 𝑓𝑒𝑒 =  .1 

(𝑃𝐸𝑂𝑆)(𝑃𝑠𝑡𝑎𝑟𝑡𝑢𝑝)(1 + 𝐸𝑓𝑒𝑒) + (𝐸𝑓𝑒𝑒)(𝑥)(1 − 𝑆𝑓𝑒𝑒) = (.1)(𝑥) 

Figure 25 Submerged v. Patreon Equation 

If we input the most recent data, where the price of EOS is $3.69, the recommended allocation is 

.7 EOS, the exchange fee of .015, and the Submerged fee at .02, we discover that a content creator begins 

saving money after raising roughly $30.70.  

Estimating Deployment Costs 

The table below outlines the resource allocations that the deployers of the Submerged 

contract require in order for the contract to function properly. We can assume that our 

application has 1000 content creators with 24 projects each and with 50 unique backers per 

creator, with total population of 50,000 users. 

Table 5 EOS Resource Allocation for Deployment with 50,000 users 

Resource Variables Calculations 

RAM channel struct = 72 bytes 

poll struct = 56 bytes 

project struct = 80 bytes 

Table RAM = 32 + (size)(struct bytes)(# of 

tables) 
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channel_sub struct = 16 bytes 

credit struct = 24 bytes 

user struct = 32 bytes 

size of WAST file = 98,856 bytes 

RAM for code = 10 * size of WAST file 

channels table == 72,032 

polls table = 1,376,000 

projects table = 1,952,000 

channel subscriptions table = 832,000 

credit table = 1,200,032 

users table = 1,600,032 

 

RAM total for code = 988,560 

RAM total for tables = 6,200,096   

Total RAM = 7,188,656 bytes 
 

CPU Assumes 80% of content creators 

have completely fulfilled their 

obligations. CPU resources 

regenerate after a day, so the 

following calculations target the 

distribution that occurs at the end 

of the billing cycle. 

 

Check if passed (closevoting) = 

695 (µs) 

Pay channels (paychannel) = 4000 

(µs) 

Credit subscribers (creditsubs) = 

1030 (µs) per 15 subscribers 

Total CPU = 1000(695) + 800(4000) + 

200(4(1030)) + 4000) = 5,519,000 (µs) 

Bandwidth Check if passed (closevoting) = 

120 bytes 

Pay channels (paychannel) = 218 

bytes 

Credit subscribers (every 15) =  

120 bytes 

Total bandwidth = 1000(120) + 1000(218) + 

200(4)(120) = 434,000 bytes 

 

EOS Costs RAM costs = ~ 0.0503 EOS per KiB [47] 

CPU EOS (ms) cost = ~ .0025 EOS  

Bandwidth (KiB) cost = ~ .0004  EOS 

 

RAM costs = 7,188,656/1000 (.0503) = 361.80 EOS = ~1,335 dollars 

CPU costs = 5,519,000/1000 (.0025) = 13.80 EOS = ~50.91 dollars 

Bandwidth = 434,000/1000 (.0004) = .1736 EOS = ~ 0.64 dollars 
 

 As expected, the most expensive resource to maintain for the contract is the RAM to 

maintain user tables. However, it is important to consider that CPU costs, which are measured in 
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microseconds, can be highly variable depending on block producers and network traffic. When 

deploying a contract, developers can choose to specify which block producer (of the top 21) they 

would like to act as the primary node. If this block producer’s infrastructure goes down, then the 

amount of EOS needed to stake the network will need to increase. For this reason, decentralized 

applications typically partner with a block producer, such as EOS New York, to ensure that such 

bottlenecks are minimized.  

Depending on EOSIO 

 At the current moment, the user and deployment costs are relatively cheap due to the 

price of EOS relative to the computational power offered by block producers. However, as the 

price of EOS will increase, so will the cost of these resources. At its speculative peak, the price 

of EOS hovered around 20 dollars, meaning that .7 EOS, the amount needed for someone to use 

Submerged, would be 14 dollars if the price of EOS to CPU/RAM/Bandwidth remained the 

same, which would reduce the competitiveness of the platform compared to existing services. 

Calculating CPU costs also involves an amount of guesswork, as the time to process transactions 

is measured in microseconds. This inexact method of measuring computation, compared to 

Ethereum’s standard unit of gas, makes it difficult to manage the optimal amount of staked EOS.   

Issues Regarding User Experience 

 Although Scatter makes it easier for individuals to use their EOS accounts, depending on 

Scatter also brings some issues regarding user experience. For example, Scatter displays the 

name and parameters of every action a user is about to sign. In theory, this is a great method to 
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inform the user about what information they are passing to the smart contract. However, recent 

updates have removed the ability to view a smart contract’s Ricardian contract, a human-

readable explanation of a contract action. Furthermore, due to naming restraints on the EOS 

network, the name of on action or its parameters may not map perfectly between what the user 

imagines they are doing and the related contract action. Similarly, when a user is “creating an 

account” on Submerged, Scatter asks them to “login.” These kinds of linguistic inconsistencies 

are not completely avoidable and could lead to confusion for users who are already intimidated 

by a “decentralized application.”  

Security & Privacy 

 At the current moment, there has not been any intensive security screening of the 

Submerged contract. The only action open to the public is creating a channel and creating an 

account. Both of these actions rely on an account’s individual CPU resource. However, RAM is 

still paid for by the contract, meaning that any new additions to the tables would deplete the 

contract’s resources. However, in the event of a DDOS-like attack, each new addition to the 

contract would need to come from an account, and each account requires .7 EOS to be created 

and functional in the first place. Similarly, any attacks on the users table would require the 

malicious agent to subscribe to a channel, expending EOS. Still, this is not adequate protection 

against a DDOS attack. Potential solutions could involve email confirmation of an identity, 

where a user must verify their email, and thereafter a server, with Submerged’s active key, then 

activates the user’s account in the channels table. 
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 For funds to be stolen from the Submerged contract, the contract’s active key or owner 

key would need to be exposed. These keys could be exposed by inadvertent sharing of 

permissions or some attack on the server. It could also be possible for a malicious agent to figure 

out how to credit themselves within the contract’s tables. Otherwise, some security flaw in the 

underlying eosio.token contract would have to be discovered. 

 All data in the multi-index tables is public. The only real form of privacy that the 

application offers is that all EOS accounts are pseudonymous, and all the user data is indexed 

under these pseudonymous accounts. Other social data, such as posts, are intended to be public in 

the first place, but are stored in a traditional database and therefore cannot be viewed by non-

subscribed users.  
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Chapter 7  
 

Future Work 

EOS Account System 

One of the clearest ways to increase Submerged’s broader appeal is to move away from 

depending on Scatter wallets. In other words, allowing users to create a conventional account 

that is tied to a wallet controlled by Submerged. Ideally, a user could interact with the 

Submerged application using either Scatter or this built-in wallet system, depending on the user’s 

experience and opinions towards “decentralization.” This iteration of Submerged focused on 

integrating with Scatter wallets because early-adopters would most likely be crypto-enthusiasts 

and because of development constraints. Controlling users’ wallets would ostensibly translate to 

building an exchange, or at least integrating with an existing one like Coinbase (Coinbase is yet 

to support EOS). Managing the private keys of potentially thousands of accounts, from a server, 

is a serious endeavor with significant security risks, as recent exchange-hacks have illustrated. 

However, this level of abstraction seems like a logical step. It may seem unreasonable to the 

average user to have to learn the difference between an active and owner key, how to stake EOS 

tokens, and how to sign transactions.  

Stable Coins 

This current iteration of the Submerged contract relies on the native EOS token. 

However, considering its price volatility, over the course of a 30-day cycle, the value of the 
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funds held in escrow could appreciate or depreciate over thirty percent. Thus, it would seem 

logical to move to a stable coin solution, where value can be expected to be less volatile during 

this period. As of the time this paper was written, there is still no leading stable coin in the EOS 

space, and creating a stable coin specific to the Submerged platform is a significant undertaking 

in engineering and economics.  

A Potential (Obstructed) Path to Launch 

As a decentralized application, one of the key aspects is community. Therefore, any real 

launch would require an initial group of users to serve as Foundation members and creators. The 

most logical method to acquire this initial community would be to invite existing creators to a 

beta version of the application and offer them favorable token rewards for doing so. These initial 

users could also help in developing the “Submerged constitution” which would lay down the 

rules for Foundation appeals.  

The initial capital for the SUBM token would need to be raised in an ICO or “token sale,” 

ideally from a closed pool of investors rather than the public. Then, once a certain amount of 

capital is raised, and there is some idea of the size of the community, token rewards can be 

appropriately calculated. 

The most significant challenge in potentially launching Submerged is the legal grey zone 

surrounding cryptocurrencies. In this case, the SUBM token is indeed a security, as it intended to 

deliver EOS dividends once a quarter. The lack of an existing framework on how to legally 

implement such financial arrangements in the US through cryptocurrencies has prompted a 

significant number of EOS blockchain-based companies to register in tax havens, such as the 
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Cayman Islands [50], Curaçao [51],  the US State of Wyoming and the Cook Islands [52]. 

Although the SUBM token is not necessary to the Submerged model, it can serve as a method to 

reward early adopters and can be a source of funding for the developers, both of which are key to 

developing Submerged further. 
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Chapter 8  
 

Final Remarks 

Submerged in Review 

Submerged is a decentralized application that offers audiences’ greater accountability and 

transparency from independent content creators while presenting those same creators with a 

method to take home more of the money they raise. The application makes use of traditional 

front-end and server technologies while also relying on blockchain technologies to handle 

deadlines, escrow, payment, voting, and the fulfillment of promises. Based on the evaluations 

that took place in the rigor cycle, with the current price of EOS and EOS resources, creators, if 

they switched from Patreon to Submerged, could begin to see savings after raising $30.70.  

While these features are made possible by EOSIO, Submerged is simultaneously vulnerable to 

shifts in the larger ecosystem. If the price of EOS rises and computational power does not scale 

appropriately, then the cost savings offered by the application may dissipate. Future iterations of 

Submerged will require action on both community-building and financial fronts, as the SUBM 

token and the Submerged foundation require more community and investor input to be fully 

implemented.  

Implications 

The most important lesson offered by Submerged is to not decentralize “everything.” 

Indeed, this is one of the principles that allows for EOSIO to be much more scalable than other 
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infrastructures, and why it is the most “developer friendly.” Although decentralization may be 

attractive in an ideological sense, requiring so much involvement from users is counterintuitive if 

a user is simply looking for a service. This may be different when users are looking for a 

community. Contracts should be made as lean as possible, and only support the key features that 

a developer wishes to decentralize. In the case of Submerged, these features all surrounded 

payment and fund distribution. As demonstrated in the evaluation, keeping tables small 

minimizes the amount of RAM consumed by the contract. RAM, unlike CPU and network 

bandwidth, is variable to market fluctuations and does not necessarily return the initial amount 

staked. Minimizing the amount of RAM a contract uses, therefore, exposes developers to less 

market volatility. With potentially thousands of EOS staked to support a contract, a fluctuation of 

5% is significant. Developers also need to consider who pays for the contract’s tables. Requiring 

individual users to pay for their own tables is a great way to offload expenses, but is really only 

viable if each table is only used by the table owner. In cases where multiple parties are editing 

the same tables, then, from a reliability standpoint, it is better for developers to take on these 

costs themselves. However, doing so can expose developers to malicious agents who wish to 

spam the contract and reduce the contract’s available RAM. Developers, on a similar note, can 

make use of deferred actions (paid for by them) to minimize the amount of CPU resources a user 

needs to interact with their contract. As much as developing a smart contract is “doable,” 

allowing users to interface with it directly, such as through the Scatter wallet, can lead to 

confusion or frustration. Not only do such wallets not share the same terminology as the 

application, but they can expose users to technical details that may overwhelm them. If possible, 

developers should consider creating their own abstracted interfaces instead of relying on third-
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party wallets. Even better, they should aim to create experiences that are so familiar users are 

unaware the underlying service makes use of a blockchain.  
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Appendix A 

 

Links to GitHub Repo and Relevant Documentation/Tools 

Submerged Repository 

The attached repository contains all three components of the Submerged application: 

contract, front-end, and server. The READMEs include instructions on how to start the 

application locally. 

• https://github.com/PChwistek/thesis 

EOSIO Repository 

The first link refers to the GitHub of EOSIO, where there are links to the relevant EOS 

APIs and the EOS Contract Development Kit (eosio.cdt) that is responsible for compiling smart 

contract. The other two links refer to EOS resource tools. 

• https://github.com/EOSIO 

• https://www.eoscharge.io/ 

• https://www.eosrp.io/ 

Scatter Documentation 

Scatter provides friendly instructions on how to link apps to Scatter wallet. Conveniently, 

the ScatterJS APIs is compatible with all Scatter wallets (desktop, mobile, extension, etc.). 

• https://get-scatter.com/docs/getting-started 

https://github.com/PChwistek/thesis
https://github.com/EOSIO
https://www.eoscharge.io/
https://www.eosrp.io/
https://get-scatter.com/docs/getting-started
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NestJS Documentation 

NestJS builds on top of Express, a server framework for Node.js. It provides a very 

structured way of writing servers with support for static typing, and is a great framework for 

beginners. 

• https://docs.nestjs.com/ 

ReactJS Documentation 

React has become an incredibly popular framework for web development in recent years. 

I’ve also included links to React Router and React Semantic UI libraries, which are both used in 

this project. 

• https://reactjs.org/docs/getting-started.html 

• https://reacttraining.com/react-router/core/guides/philosophy 

• https://react.semantic-ui.com/ 

Redux Documentation 

React is primarily meant for managing views. Redux helps us manage an applications 

state, and allows us to connect each view to the application’s state. Redux Thunk helps us 

manage asynchronous changes to state (API calls).  

• https://redux.js.org/introduction/getting-started 

• https://github.com/reduxjs/redux-thunk 

https://docs.nestjs.com/
https://reactjs.org/docs/getting-started.html
https://reacttraining.com/react-router/core/guides/philosophy
https://react.semantic-ui.com/
https://redux.js.org/introduction/getting-started
https://github.com/reduxjs/redux-thunk
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Appendix B 

 

Learning Resources 

EOSIO 

The best way to learn about EOSIO is to go through the documentation on the EOSIO 

site. The versioning can be a little confusing, but its still better than any other resource I’ve 

viewed nonetheless. For development help, I’ve found the community at StackExchange to be 

very helpful. EOS New York and EOS Canada provide good learning resources for 

understanding the broader concepts of EOS.  

• https://developers.eos.io/eosio-home/docs 

• https://eosio.stackexchange.com/ 

• https://medium.com/eos-new-york 

• https://www.eoscanada.com/ 

JavaScript Development 

Since EMCAScript 6 entered the JavaScript ecosystem, it has made JavaScript a much more 

predictable and developer-friendly language. I highly recommend Tyler McGinnis’s (core contributor to 

React) online courses, as well as a Coursera course offered by The Hong Kong University of Science and 

Technology as an introduction to JavaScript development. The book, “Secrets of the JavaScript Ninja,” is 

a strong follow-up once one acquires intermediate knowledge of JavaScript. 

• https://tylermcginnis.com/courses/ 

https://developers.eos.io/eosio-home/docs
https://eosio.stackexchange.com/
https://medium.com/eos-new-york
https://www.eoscanada.com/
https://tylermcginnis.com/courses/
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• https://www.coursera.org/specializations/full-stack-react 

• https://www.amazon.com/Secrets-JavaScript-Ninja-John-Resig/dp/193398869X 

https://www.coursera.org/specializations/full-stack-react
https://www.amazon.com/Secrets-JavaScript-Ninja-John-Resig/dp/193398869X
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