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Abstract

This document introduces a new planar billiards, first coined symplectic billiards in [1]. Sym-
plectic billiards, when applied to polygonal boundaries, offers complicated behaviors with respect
to periodicity. Various polygons are considered here, with progress made specifically in describing
the behaviors in the affine space of quadrilaterals.
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Chapter 1

Introduction to Symplectic Billiards
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1.1 Billiards as a Dynamical System
A billiard is a dynamical system that can be interpreted as the motion of a particle within

or around a domain with a boundary. The particle follows an orbit, throughout which it is sent
through either a finite or an infinite number of positions. Every billiard follows a particular rule
for assigning the next location in a particle’s orbit, and it is the differences in these rules and
boundaries that explain the vast differences in behaviors between billiards.

The prototypical billiard example: the Birkhoff billiard, has been studied extensively. Its rule is
identical to that of usual optics; a particle traveling from point x reflects elastically off of a bound-
ary at point y so that the tangential component of its velocity is preserved while the perpendicular
component alternates in sign, eventually finding the boundary again at point z. This is what physi-
cists refer to when they say “the angle of incidence equals the angle of reflection.” An example of
Birkhoff billiards is displayed in Figure 1.1.

y

xz

θi

θt
y

x

z

Figure 1.1: Left, the Birkhoff billiard, where θi = θt implies the segment xy reflects to the segment
yz. Right, the Symplectic billiard, where xz is parallel to the tangent line of the curve at point y
implies xy reflects to yz.

One way to interpret the Birkhoff billiard is via its variational formulation: for fixed points
x and z, the quantity |xy| + |yz| is extremal for y along the boundary of the curve for precisely
the y reflecting x to z in the billiard process [1]. Having a formula like this suggests that other
variational formulations could produce different geometric rules for billiards. In fact, let’s alter
our billiards rule so that for fixed x and z, the point y is such that the area of the triangle xyz is
extremal. This rule defines (and provides the namesake for) symplectic billiards. Geometrically,
we can understand this rule to be as follows: a particle traveling from boundary points x to y will
reflect towards point z if the line xz is parallel to the tangent line of the curve at point y.

Moving forward, we will agree that by billiard, we are referring to the symplectic billiard. If
the boundary of the billiard curve is γ, an initial condition will consist of the pair (x0, u0), with x0
a point along γ describing the initial position of the particle and u0 a vector in R2 describing its
initial velocity. The trajectory of an initial condition will be notated by

Trajectoryγ (x0, u0) = {(x0, u0), (x1, u1), (x2, u2), ...} ⊂ γ × R2.

Alternatively, an initial condition can be given by (x0, x1) ∈ γ×γ, where {x0 + tu0 : t ∈ R}∩γ =
{x0, x1}. The orbit of an initial condition will be denoted

Oribtγ (x0, x1) = {x0, x1, x2, ...} .

Sometimes the subscript γ will be dropped whenever a particular γ is implicitly obvious.
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1.2 Symplectic Billiards
We will more formally define the symplectic billiard. We will be considering smooth, strictly

convex, closed, positively oriented curves, denoted by γ. By convexity, for each x ∈ γ there exists
a unique x∗ ∈ γ such that

Txγ = Tx∗γ ⊂ R2.

The operation ∗ is obviously an involution. If η is the operator taking points on γ to their normal
vector to γ, then we have the equivalence:

Txγ = Tyγ if and only if ω (ηx, ηy) = 0, (1.1)

where ω is the area form, defined on the tangent space of γ. The comparison x < y < z is
well-defined as γ is oriented, so we can define

Pγ := {(x, y) ∈ γ × γ : x < y < x∗} = {(x, y) : y∗ < x < y} = {(x, y) : ω (ηx, ηy) > 0} ,

which we call the open, positive part of phase space to the symplectic billiard map Φγ . This map
is defined below.

Definition 1.2.1. Let γ be a smooth, strictly convex, closed, positively oriented curve. For (x, y) ∈
P , define the symplectic billiard map Φγ : P → P , Φγ(x, y) = (y, z), where z is the unique point
in γ such that z − x ∈ Tyγ.

We are obligated to show that Φ (dropping the subscript for ease of notation) is well-defined.
Note first that (x, y) ∈ P implies that their tangent spaces are transversal. And γ being convex
implies that

(x+ Tyγ) ∩ γ = {x, z}.

But z is distinct from x. Otherwise, Tyγ = Tzγ = Txγ, and so by Equation (1.1), ω (ηx, ηy) = 0, a
contradiction to (x, y) ∈ P . Thus, we at least have that z− x is an element of Tyγ. We still should
explain why (y, z) ∈ P . There are two main observations: first, that if x is sufficiently close to y,
then z is close to y as well, meaning ω (ηx, ηy) > 0 implies ω (ηy, ηz) > 0 in this case; and second,
ω is continuous. So if x < y < x∗ yet ω (ηy, ηz) ≤ 0, then as we move y closer to x, the continuity
of ω allows us to find a y such that ω (ηy, ηz) = 0. But then again by Equation (1.1), we have
Tyγ = Tzγ, so x = y, a contradiction.

Following the discussion of [1], we know have that Φ continuously extends to the entire phase
space, including

Φ (x, x) = lim
y→x

Φ(x, y) = (x, x),

Φ (x, x∗) = lim
y→x∗

Φ(x, y) = (x∗, x).
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Chapter 2

Introduction to Polygonal Symplectic
Billiards
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2.1 Affine Polygons
A competing name for the symplectic billiard is the affine billiard, because this dynamical

system commutes with all affine transformations of the plane. Reconsider the defining rule of
affine billiards: nowhere does absolute scale or position explicitly matter in constructing an orbit,
only the notion of parallel lines.

Lemma 2.1.1. Any affine transformation f of the billiard table commutes with the symplectic
billiard map in the following way: if x, y ∈ γ are such that Φ(x, y) = (y, z), then

Φ(f(x), f(y)) = (f(y), f(z)).

Proof. Any affine transformation f may be written as the composition of a linear map g and a
translation h, i.e. f = h ◦ g. Therefore, it is sufficient to show h ◦ Φ = Φ ◦ h and g ◦ Φ = Φ ◦ g,
since

Φ ◦ f = Φ ◦ (h ◦ g) = h ◦ Φ ◦ g = h ◦ g ◦ Φ = f ◦ Φ.

Let h(x) = x + α for fixed α ∈ R2. Suppose that x, y, z ∈ γ so that Φ(x, y) = (y, z), meaning z
is the unique point in γ so that z − x ∈ Tyγ. Notice that since x− z ∈ Tyγ, then it must be that

g(z)− g(x) = g(z − x) ∈ Tg(y)g(γ).

So Φ (g(x), g(y)) = (g(y), g(z)). Next, we see that

h(z)− h(x) = (z + α)− (x+ α) = z − x ∈ Tyγ = Ty+α (γ + α) = Th(y)h(γ).

Therefore, Φ (h(x), h(y)) = (h(y), h(z)). We are done.

Now, we must remark that having γ be a polygon does not satisfy the strict-convexity nor the
smoothness condition of Definition 1.2.1. However, we can describe the scenarios in which the
symplectic billiard map is undefined on a closed, convex, positively oriented polygon γ. The first
case is that Φ is not well-defined if x or y is a vertex of the polygon. Second, the map is not defined
for chord xy if x and y lie on parallel edges of the polygon. A minor but useful result helps to ease
our concerns about such cases:

Lemma 2.1.2. For convex polygon γ, so long as Φ(x, y) = (y, z) is well-defined, and if x and y
do not lie on parallel edges of γ, then y and z will not lie on parallel edges of γ.

Proof. Suppose otherwise. By definition,

z − x ∈ Tyγ = Tzγ =⇒ x ∈ Tzγ.

Thus, Txγ = Tzγ = Tyγ, a contradiction. Moreover,

We note that even if Φ(x, y) = (y, z) is well-defined, it may be that Φ(y, z) is not. This is
only possible if z is a vertex of γ. We can characterize the set of (x, y) ∈ γ × γ such that, if
Φ(x, y) = (y, z) exists, z is vertex. Fix edge k, and let z be a vertex of γ. Take y an interior point
of edge k. If

# [((z + Tyγ) ∩ γ) \ {z}] = 1,
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then take x as its only element. This guarantees that (x, y) has its first image as (y, z) for z a vertex
of γ. Any preimages of (x, y) will eventually have an image terminating at a vertex. However, and
obviously, there are finitely many vertices of γ, and only one x per edge for fixed vertex; so the set
of all (x, y) ∈ γ × γ that eventually terminate in a vertex is of Lebesgue measure zero.

We conclude this section by describing the phase space of Φ for a convex polygonal γ. The
phase space is a subset of the torus γ × γ, which decomposes into rectangles representing the
product of pairs of edges on γ. If two edges are parallel on γ, then their respective rectangle does
not lie in the phase space. There may also exist horizontal or vertical lines within these rectangles
where Φ is undefined because they eventually terminate in a vertex.

2.2 Regular Affine Polygons
Our analysis of regular polygons shall make use of their symmetries. First, we agree to index

the sides of the n-gon cyclically in the positive direction, from 0 to n − 1. Label the vertices in
the natural way, starting with v0 and v1 on edge 0, and so on. We may assume without loss of
generality that the initial segment runs from edge 0 to edge k, with 1 ≤ k ≤ b(n− 1)/2c. The
quantity k is traditionally called the rotation number of the orbit [1]. Albers and Tabachnikov
produce the following result in [1].

Theorem 2.2.1. (i) The rotation number of an orbit is constant across each step in the orbit,
sending a point on edge i to the edge labeled i+ k mod n.

(ii) Define
g(n, k) :=

n

gcd(n, 2k)
.

Then, generically,

(a) Every orbit of rotation number k with g(n, k) even is periodic with period 2g(n, k).

(b) Every orbit of rotation number k with g(n, k) odd is periodic with period 4g(n, k).

Proof. (i) Let us enumerate the vertices of the polygon 0, ..., n − 1, following the same orien-
tation as γ, with edge 0 labelled by 0 1, etc. Let x0 and x1 denote the first and second point
in the orbit of x0, respectively. Point x0 lies on edge 0 and x1 lies on edge k. A fact about
regular polygons is that for 1 ≤ k < b(n− 1)/2c, the quadrilateral [0, 1, 2k, (2k + 1)] is a
trapezoid, with 1 2k and 0 (2k + 1) both parallel to the k-th side of γ. Therefore, there exists
some x2 on edge 2k such that

x2 − x0 ∈ Tx1γ.

This establishes that every point on edge k maps to the same edge k + k = 2k. By dihedral
symmetry, this implies every point on edge i maps to the same edge i + k. Note, that if n is
odd and k = (n − 1)/2, then the quadrilateral is degenerately a triangle [0, 1, 2k]. Still, the
edge 1 2k is parallel to edge k, and the line parallel to these and passing through edge 0 only
intersects γ at 0. Therefore, edge k maps onto edge 2k, and our argument still applies.

(ii) Take an orbit x0, x1, ..., and assume without any loss of generality that x0 lies on edge labeled
0, and x1 on edge k. By (i), xi lies on edge i · k. We notice that the segments connecting x0
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with x2, x2 with x4, etc. are each parallel to an edge of γ, and similarly for x1, x3, x5, etc.
We call these two polygonal lines even and odd, respectively.

We claim that the symmetry of a regular polygon implies the even and odd polygonal lines
are actually Birkhoff billiard orbits. If `i denotes the edge of γ on which xi lies, with end-
points v`i and v`i+1, then by the same argument as (i), the quadrilaterals

[x0, v`1 , v`1+1, x2] and [x2, v`3 , v`3+1, x4]

are both trapezoids, since, for example, x2−x0 ∈ Tx1γ. We notice that, by dihedral symme-
try, x0 and x2 have complementary positions on their their respective edges. I.e. if si is such
that

xi = si · v`i+1 + (1− si) · v`i ,

then s2 = 1 − s0. Thus, s4 = 1 − s2 = s0. Because x4 lies on side 4k, it must be that the
two trapezoids are congruent, and so the even polygonal line is a Birkhoff orbit. The same
applies to the odd orbit.

Now let us restrict our attention to the particular initial conditions: x0 and x1 as midpoints of
their respective edges. These conditions imply that xi is the midpoint of edge i · k for each
i. The even Birkhoff orbit connects midpoint of edge 0 to that of edge 2k, so it has period

n

gcd (n, 2k)
= g(n, k).

For any other choice of x0, the even trajectory will be a parallel trajectory to the midpoint
trajectory, but will either have period g(n, k) if g(n, k) is even, or 2g(n, k) if g(n, k) is odd.
This follows from the previous observation that x2m and x2(m+1) take on complementary
positions. Obviously, then, the even orbit only depends on choice of x0, while the odd orbit
only depends on the choice of x1. So the even and odd orbits are generally distinct. In
general, we see that the period of the (symplectic) orbit x0, x1, ... is 2g(n, k) if g(n, k) is
even, and 4g(n, k) if g(n, k) is odd.

The above argument is notable for two reasons. First, it identifies the usual (Birkhoff) billiard
lurking within the symplectic billiard in a regular affine polygon, an unexpected connection be-
tween the two. Second, it establishes that while there may exist unusual orbits within a regular
polygon that do not satisfy the theorem, those orbits comprise a set of measure zero in the phase
space. Nevertheless, these orbits will all be periodic, perhaps with smaller period due to an overlap
between the even and odd orbits. For example, every triangle has a 3-periodic orbit connecting the
midpoints of its edges.
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Figure 2.1: Left, a 12-periodic symplectic orbit in a triangle of k = 1. Right, a 4-periodic sym-
plectic orbit in a square of k = 1. Gray orbits are Birkhoff.

Figure 2.2: Left, a 20-periodic symplectic orbit in a regular pentagon of k = 1. Right, a 12-periodic
symplectic orbit in a regular hexagon of k = 1. Gray orbits are Birkhoff.

2.3 Periodicity within Affine Polygons

Let us denote the n-periodic, symplectic, polygonal orbit by (x0, x1, ..., xn−1). Call `i the line
parallel to xi−1xi+1 through xi.

We may consider a nearby orbit (x0, x1, ...) made from x0 ∈ `0 and x1 ∈ `1, and immediately
decouple its even and odd orbits. In particular, the even orbit is generated by projecting x0 along
`1 to `2, then along `3 to `4, etc.; and similar for x1. We denote by πi the projection along `i of `i−1
to `i+1.

Call αi the angle between `i and `i+1. And define dli as the length element on `i. Then we
describe how the affine projection πi distorts length by the factor

d`i+1

d`i−1
=

sinαi−1
sinαi

.



9

Theorem 2.3.1. For n odd, any n-periodic symplectic orbit has an open neighborhood in phase
space for which each neighbor is 4n-periodic.

Proof. The first time that a neighboring x0 returns to `0 is after n projections, precisely

πeven = πn−1 ◦ · · · ◦ π2 ◦ π0 ◦ πn−2 ◦ · · · ◦ π1.

Their composition is affine, reverses orientation, and is an isometry since the overall distortion
factor is

n−1∏
i=0

d`i+1

d`i−1
=

n−1∏
i=0

sinαi−1
sinαi

= 1,

where `−1 = `n−1. Thus, π2
even = id. Applying a similar argument for x1, we have that the

even and odd orbits each consist of 2n points, so the orbit of (x0, x1) is 4n-periodic. Because
π2

even = πodd = id, there exists an open neighborhood so that all neighbors of (x0, x1) in phase
space have the same 4n-periodicity.

This result implies that no polygonal γ may have a sequence of odd-periodic orbits that are
arbitrarily close in phase-space, even if they are of the same period. It is natural to ask what we
can say about even-periodic orbits now.

Theorem 2.3.2. If n ≥ 6 is even, then an n-periodic orbit on a generic polygon will be isolated,
yet stable under any small perturbations of the polygon.

Proof. The first time that a neighboring x0 returns to `0 is after n
2

projections, precisely

πeven = πn−1 ◦ · · · ◦ π3 ◦ π1.

The corresponding set of projections for x1 is

πodd = π0 ◦ · · · ◦ π4 ◦ π2.

If either of these affine maps’ distortion factors∏
i odd mod n

sinαi−1
sinαi

,
∏

i even mod n

sinαi−1
sinαi

is different from 1 (a generic property), then the n-periodic point (x0, x1) is isolated, since x0 is iso-
lated for the first quantity different than 1, and x1 is isolated for the second quantity different than
1. It is a generic property that points with both distortion factors different than 1 (i.e. hyperbolic
fixed points) do not vanish under small perturbations of the map, and hence the polygon.



10

Chapter 3

Convex Affine Quadrilaterals
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3.1 Space of Convex Affine Quadrilaterals
A corollary of Theorem 2.2.1 is that all symplectic orbits on a triangle are 12-periodic, since

every triangle is affine-equivalent [2] (in particular, to an equilateral triangle) and Φ commutes
with any affine transformation according to Lemma 2.1.1.

It is natural to next consider the behavior of symplectic billiards on quadrilaterals. We already
have a strong result on the subclass of quadrilaterals affine-equivalent to a square. We first note
that the affine space of quadrilaterals on the plane is two-dimensional. So we can imagine rep-
resentatives from each affine-equivalence class by fixing two adjacent edges of a square, each of
length 1, to the origin and oriented on the positive axes, with a final vertex free to roam part of
the plane. Taking into account reflections, we can reduce the affine space of quadrilaterals to the
region between the angles of 0 and π

4
. Moreover, because we require convexity, it must be that

the fourth point lies above y = 1− x. This is not the full reduction of the plane into a one-to-one
representation of the affine space of quadrilaterals. Such a space is more complicated: for example,
given P , it is possible to find a family of affine maps mapping the original P -quadrilateral to an
AP -quadrilateral whose edges adjacent to AP are of unit length and perpendicular, AP lies in the
region, and the AP -quadrilateral is congruent to the P -quadrilateral. More analysis can be taken
to refine this space.

Keeping in mind the previous point, the following Figure 3.1 illustrates a redundant space of
affine, convex quadrilaterals, which we call Q.

0.5 1 1.5 2 2.5 3

1

2

3

P

Figure 3.1: The affine space of convex quadrilaterals Q. P is the only free point. The point
P = (1, 1) corresponds to the class of affine squares. Either of the lines x = 1 or y = 1 represent
all affine trapezoids. And the line y = x represents all kites.

3.2 Affine Trapezoids
Another positive result coming from [1] regards trapezoids. The authors first ask that trapezoid

ABCD is adjusted by an affine transformation to be isosceles. Next, assume that the lower hori-
zontal side AB of trapezoid ABCD is longer than upper horizontal CD. They define the modulus
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of a ABCD as follows: ⌊
|AB|

|AB| − |CD|

⌋
∈ N.

They describe a trapezoid as generic if |AB| / (|AB| − |CD|) is not an integer.

Theorem 3.2.1. Every orbit on a generic trapezoid of modulus n is periodic, with period either
16n− 4, 16n+ 4, or 16n+ 12.

Proof. First, we shall define a map F along the boundary of the trapezoid. If X is an interior point
of a side of the trapezoid, notice that there pass two lines through X that are each parallel to a side
of the trapezoid. We may arbitrarily choose one of them, and follow that ray until it intersects with
the boundary again at point Y . Again, if Y is an interior point, then there pass two lines parallel
to sides of the trapezoid, one of which was the originally chosen segment XY . We choose the
remaining line and find where it intersects the boundary again at Z. Continuing this process, we
have described the map F : X 7→ Y 7→ Z 7→ · · · .

Notice that every orbit of F within a trapezoid visits every edge, so we can limit our starting
conditions to X ∈ BC, and move horizontally left towards Y ∈ AD. Then it must be that
Z ∈ AB. Once here, the behavior of F guarantees a certain number of oscillations between the
top and bottom edges. Eventually, some point on AB heads in the direction parallel to AD and
intersects BC. We let T be the return map describing the first iterate of X under F on BC.

The number of bouncing moves between AB and CD under T depends on the position of X
along BC. In fact, there exists interior point E of BC so that T (E) = C and if X ∈ EC, then
the number of bouncing moves is 2(n − 1), while if X ∈ BE, it equals 2n. To find E, simply
backtrack from C via a line parallel to AD and continue by applying F until intersecting BC.

A B

CD

E

M

X = T 2(X)

T (X)

Figure 3.2: To find the break point E of the trapezoid ABCD, retreat from C parallel to AD, then
retreat again parallel to BC, and continue until reaching AD, where you retreat parallel to AB,
finding E along BC. In the illustration, n = 2. If M is the midpoint of segment EC, then T is the
reflection in M for X on EC.

F must act an odd number of times in order to reach BC again, and so T reverses orientation.
Moreover, we can see that T is a local isometry, as moves between the top and bottom sides have
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distortion factor 1, and the two moves AD to AB and AB to BC distort with reciprocal factors.
Thus, T must be a reflection in a point; a quick check shows that that point is either in the midpoint
of BE or the midpoint of EC. This is enough to conclude that the period of X under T equals
4n+ 2 if X ∈ EC, and 4n+ 6 if X ∈ BE, since there are 3 points beyond the bouncing for each
of the two cycles.

With this, we consider a symplectic billiard orbit x0, x1, ... in the trapezoid. Breaking the orbit
into its even and odd parts, whose segments between adjacent points are parallel to the edges of
the trapezoid, we see that both the even and odd parts are finite and so the orbit is periodic. To
calculate the period of the orbit, we must consider some cases.

We consider the orbits of x0 and x1 under F : either may be short or long (distinguished by
whether they have length 4n + 2 or 4n + 6, respectively). Therefore, and aligned with the termi-
nology of [1], we shall consider three cases: short-short, short-long, and long-long. Each will have
different periods.

A B

CD

E

Figure 3.3: Example of a short-short orbit. The orbit is drawn in orange, even orbit in green, odd
orbit in red, and break point lines in purple. This is a 28-periodic symplectic orbit in an isosceles
trapezoid where |AB| /(|AB| − |CD|) = 2.1, so n = 2, and 28 = 16(2)− 4.

In Figure 3.3, we notice that a short-short orbit in general appears very disorderly, even for
n = 2. Yet, we can simplify our illustration by aligning the F -orbits of x0 and x1 and by beginning
at M : the midpoint of EC and fixed point of T ; and note that this simplification will reduce the
number of points in the orbit to a quarter of the non-aligned case. The combined F -orbit of x0 and
x1 has 2n + 1 vertices, with one on M and one on the corresponding midpoint on DA, n on AB,
and n− 1 on the above CD. Suppose these points are labeled as displayed in Figure 3.4.
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A B

CD

MN

1

2

3

Figure 3.4: The simplified diagram for short-short.

We see that the symplectic billiard orbit is 4n − 1 periodic with the following sequence of
points:

(1,M, 2, N, 3,M, 4, ..., (2n− 1),M,N) .

In Figure 3.4, this sequence is (1,M, 2, N, 3,M,N). Now we consider the generic short-short
orbit: it will have four times as many points, so a generic short-short period is 16n− 4 periodic.

One can analyze the long-long case in an analogous manner, taking into account the four extra
oscillations for the F -orbits of x0 and x1, which quadruple to 16 additional points along the orbit
than the short-short case. So the long-long case corresponds to 16n+12 periodic symplectic orbits.

Finally, the short-long case is slightly more complicated. It may be summarized by a similar
sequence of points after simplifying the shape by aligning the F -orbits and similar positioning
about the midpoints of segments defined by the breaking points on each side-edge. It can be seen
that the symbolic orbit may be written as

(N, I,M, II, N, III,M, ..., (2n− 1)I,M, P, 1, Q, 2, P, 3, Q, 4, ..., (2n+ 1), Q).

This generally offers 8n + 2 points. The orbit doubles in size for the generic case, and thereby
shows short-long orbits have period 16n+ 4.

3.3 General Convex Affine Quadrilaterals
The remainder of this paper shall focus on the unstudied cases of quadrilaterals that are not

parallelograms or trapezoids. We notice immediately that for any orbit satisfying the generic con-
ditions of Theorem 2.3.2 along a trapezoid, a small perturbation in the shape will not remove the
periodic orbit (since the periodicity of orbits along a trapezoid are no smaller than 12). Moreover,
for any orbit satisfying the generic conditions of Theorem 2.3.2 along a triangle, a small pertur-
bation of the triangle into a quadrilateral will not remove the 12-periodic orbit. Analyzing the
general quadrilateral, though, is not a simple task, as much of the symmetry present in squares and
trapezoids is lost in the general case. The dihedral symmetry of a regular polygon, and our ability
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to have F be a well-defined map with only one or two options at each point along a trapezoid, are
specifically what we lose in the larger scope of Q.

A natural way to break up our analysis of quadrilaterals will be as follows. Label the vertices of
our quadrilaterals fromQ by 0, 1, 2, 3, where 0 lies on the origin, 1 at (1, 0), 2 at P , and 3 at (0, 1).
The angles at vertices 1 and 3 are very relevant to the behavior of orbits along γ. In particular,
we care whether these angles are acute (A) or obtuse (B). In the case both are acute, we label the
resulting quadrilateral as coming from AA ⊂ Q. Likewise, if the angle at 1 is obtuse and the angle
at 3 is acute, we label this BA. And both obtuse corresponds to BB.

0.5 1 1.5 2 2.5 3

1

2

3

BAAA

BB

Figure 3.5: The affine space of convex quadrilateralsQ decomposed into its three subregions: AA,
BA, and BB.

Any refinement of Q (as mentioned in the beginning of the section) would respect these three
regions, meaning equivalence classes of points would be separated into these regions. The follow-
ing result holds for a small class of orbits onAA andBA quadrilaterals (but we restrict ourselves to
the case of BA for simplicity. The extension to AA is exactly the same but with an extra condition
on the maximum value of the first coordinates).

Theorem 3.3.1. Let us suppose γ is a quadrilateral from BA, whose fourth vertex is P = (a, b),
where a+ 2b < 2. If α is defined as

α =
a

1− b
− 1,

and t, s are such that
α

1 + α
< t, s <

1

1 + α
,

then the orbit resulting from the initial conditions

x0 = (0, t), x1 = ((1 + α) (1− s) , s)

will be 12-periodic.

Proof. We notice that 0 < α < 1 by construction. Define the triangle

T = {(0, 0), (1 + α, 0), (0, 1)}.
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This triangle encompasses the bottom edge of the quadrilateral, but extends to the point (1 +α, 0).
It also encompasses the top edge, meeting point P and continuing to (0, 1). Finally, the triangle
shares its left edge with that of the quadrilateral.

Such t, s exist as specified in the statement of the theorem because α < 1. What is really
happening here is that the entirety of the orbit will lie on the parts of the edges 0, 2 and 3 that are
in common with T . And because every orbit on a triangle is 12-periodic, the same will be true for
this orbit. In order to see this behavior, one can explicitly calculate the 12 coordinates along the
orbit: what will be important to check is that maximum of the first coordinate for each point does
not exceed 1. Assuming the orbit stays within these parts, the coordinates of the full orbit are as
follows:

x0 = (0, t), x1 = ((1 + α)(1− s), s), x2 = (t(1 + α), 0),
x3 = (0, s), x4 = (t(1 + α), 1− t), x5 = ((1 + α)s, 0),

x6 = (0, 1− t), x7 = ((1 + α)s, 1− s), x8 = ((1− t)(1 + α), 0),
x9 = (0, 1− s), x10 = ((1− t)(1 + α), t), x11 = ((1− s)(1 + α), 0).

Notice that the maximum values of each coordinate include t(1 +α), s(1 +α), (1− t)(1 +α),
(1 − s)(1 + α). By our choice of t and s, all four of these quantities are strictly less than 1.
Therefore, we have that this orbit is well-defined and is a consequence of the dynamics of the
triangle T .

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

T

α

P

Figure 3.6: The dynamics of the triangle T apply to this orbit on this quadrilateral because the
orbit lies only on sides touching T .

Moreover, it is true that any symplectic orbit strictly containing points along three edges will
necessarily be 12-periodic. Below is an example of a quadrilateral beyond the statement of Theo-
rem 3.3.1 with a 12-periodic orbit staying on three edges.



17

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Figure 3.7: An orbit along this quadrilateral remains on the same three sides. Thus, we can imagine
the orbit lying along a triangle, and hence is 12-periodic. The initial conditions for this image were
P = (3, 0.55), t0 = 1.2609, and θ0 = 17◦.

Similar analyses of certain quadrilaterals and their orbits are possible, but are likely not suffi-
cient to describe the entire space of affine quadrilaterals Q. Now we present the phase space of
each type of quadrilateral, as well as those for a square and trapezoid for better comparison. We
label each region of the phase spaces, on which Φ restricts to an affine map, with the corresponding
edge to which an initial condition from this region would be sent. So, for a cell in column i and
row j, filled in with k, we read this as x1 on edge j sends x0 from edge i to x2 on edge k. Any
splits in the cells represent that x0 is either sent to one of these two edges (but there is a dividing
E along edge i that separates these two possibilities). Moreover, we can provide a second table
summarizing the 2-step process, i.e. the location of x3 given x0 and x1.

3 2 1 0 0
2 3 3 1 0
1 3 2 0 0
0 3 3 2 1

x1/x0 0 1 2 3

3 1 0 0 2 1 2 1
2 0 0 0 3
1 0 3 3 3
0 2 1 2 1 3 3 2

x1/x0 0 1 2 3

Figure 3.8: The 1-step and 2-step phase spaces for quadrilaterals of acute-acute (AA) type.
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3 2 2 1 0
2 3 3 1 0
1 2 0 3 2
0 3 3 2 1

x1/x0 0 1 2 3

3 1 0 1 0 2 2 1
2 1 0 1 0 0 3 3
1 3 3 2 3
0 2 2 3 2

x1/x0 0 1 2 3

Figure 3.9: The 1-step and 2-step phase spaces for quadrilaterals of obtuse-acute (BA) type.

3 2 2 1 0
2 1 0 3 1
1 2 0 3 2
0 3 2 1 1

x1/x0 0 1 2 3

3 1 1 2 1
2 0 3 1 1 0 0 3
1 0 3 3 2 2 0 3
0 2 1 2 2

x1/x0 0 1 2 3

Figure 3.10: The 1-step and 2-step phase spaces for quadrilaterals of obtuse-obtuse (BB) type.

3 1 0
2 1 0
1 3 2
0 3 2

x1/x0 0 1 2 3

3 2 2
2 3 3
1 0 0
0 1 1

x1/x0 0 1 2 3

Figure 3.11: The 1-step and 2-step phase spaces for squares (type ⊥⊥).
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3 2 2 1 0
2 3 1
1 2 0 3 2
0 3 1

x1/x0 0 1 2 3

3 1 1 2 1
2 1 0 0 3
1 3 3 2 3
0 2 2

x1/x0 0 1 2 3

Figure 3.12: The 1-step and 2-step phase spaces for trapezoids of perp-obtuse (⊥ B) type. These
are equivalent to considering those of acute-perp type.

These tables provide a summary of the dynamics for the even and odd orbits as well. The
simplicity of the charts for squares and trapezoids is just enough to make them predictable, but it is
unlikely that the dynamics of general quadrilaterals will be totally explainable. It may very well be
that this problem resembles another problem from billiards: that of finding periodic Birkhoff orbits
within triangles. While these two problems may seem like natural questions to investigate, solving
them may bring us no closer to understanding the dynamics. Moreover, the following section will
show calculated results about quadrilaterals that suggest a variety of behaviors are possible. It may
be possible to show that there exists some standard dynamical system lurking within the dynamics
of the general quadrilaterals, the same way we found Birkhoff billiards occurring within regular
polygons, or the particular codes in the case of the trapezoids, but it will likely depend on the
defined types of quadrilaterals: AA, BA, and BB.
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Chapter 4

Computational Approach
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4.1 Computing a Symplectic Orbit
In order to implement a computer program that can generate the symplectic orbit of given

initial conditions for a particular polygon, I have chosen to use Python. An N -sided polygon is
represented by a list of vectors (i.e. a PolyVector) that designate the vertices of the polygon γ.
Initial conditions are provided in the form (t0, ū0), where t0 ∈ [0, N) and ū0 is a vector in R2. The
datum t0 represents the temporal position along γ where the initial position x0 = x(t0) lies. The
unit digit of t (i.e., btc) represents which edge the point lies on. The fractional part is the linear
interpolator of the two endpoints vbtc and vbtc+1. For corresponding t ∈ [0, N) and x on edge i, we
have the correspondence

x(t) = vi+1 · t+ vi · (1− t)↔ t(x) =
x− vi
vi+1 − vi

, i = btc .

We begin the orbit process by finding t1: the temporal position of x1. We say

x1 = γ ∩ {s · û0 + x0 : s ∈ R} \ {x0}.

Computationally, we define a routine findIntersectionwhich can locate the intersection of a
line and the polygonal curve. The method iterates over each edge γi and calculates the intersection
point between the two lines. If the intersection point occurs at a point between the two endpoints
(i.e. at a time between i and i + 1), then the intersection point is returned. Otherwise, the method
continues until finding one. Convexity of the polygonal curve implies that this method behaves
well.

Now, given t0 and t1, we define û1 = Txt1γ, the unit vector parallel to the side on which
x1 = x(t1) lies, i.e. γbt1c. Then we set

x2 = γ ∩ {s · û1 + x0 : s ∈ R} .

Again, this intersection point is calculated with findIntersection. Continuing, we define

xn = γ ∩ {s · ûn−1 + xn−2 : s ∈ R} .

Now we must describe the exiting conditions for this symplectic orbit method.

• If there is to exist an n ∈ N so that tn ≈ t0, tn+1 ≈ t1, ..., and tn+Z ≈ tZ for Z ∈ N, then
we conclude that the orbit (x0, x1) is periodic of period n. Equality is judged by setting the
parameter ε that measures proximity: i.e.

t ≈ t′ ⇐⇒ |t′ − t| < ε.

We let Z be large in order to ensure the orbit is truly repeating itself.

• If there is to exist an n ∈ N and k ∈ {0, ..., N − 1} so that tn ≈v k, then we conclude that
the orbit has landed at a vertex, making the orbit process undefined beyond this point. We
measure proximity to a singularity by εv > 0, where

t ≈v t′ ⇐⇒ |t′ − t| < εv.
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• If initial conditions are such that Tx0γ = Tx1γ, then no next point may be found. So the
process is terminated.

• Finally, if no other catches halt the process, we implement an artificial condition that prevents
the program from continuing along a non-periodic orbit indefinitely. We define M ∈ N, so
that any orbit having already taken M steps without hitting a singularity nor being reported
as periodic is reported as non-periodic up to M steps.

xi xi+1x0 = x(t0)

x1 = x(t1)

x2 = x(t2)

x3 = x(t3)

û0
û1

û2

Figure 4.1: An example of the first few steps of calculating the orbit given initial conditions x0 =
x(t0) and û0 on this heptagon. For every j > 0, ûj is the unit vector based at xj−1 = x(tj−1) and
parallel to the edge of the polygon on which xj = x(tj) lies, intersecting the polygonal boundary
again at xj+1 = x(tj+1).

4.2 Sampling Procedure
With such a program, we may conduct a sample of the space of affine quadrilateralsQ and an-

alyze the behavior of our candidates. Below we will explain the general procedure of sampling this
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domain, and then we will review some findings. Recall that Q is defined as the region satisfying

Q := {y > 0, y ≤ x, y > 1− x}.

Every sample will consist of choosing S ∈ N many candidates for the fourth coordinate of the
quadrilateral P , where the vertices of the quadrilateral are {(0, 0), (1, 0), P, (0, 1)}. We define
R > 1/

√
2 as the maximum modulus of the fourth coordinate P . For each quadrilateral, we will

produce T ∈ N many initial conditions (t0, θ0) ∈ [0, 4)× [0, 2π), where û0 = (cos(θ0), sin(θ0)).

• A Random sample will select P from a uniform distribution ofQ (up to maximum modulus
R).

• A Rational Angles sample will specifically consider P so that the internal angles of
the resulting quadrilateral are commensurable π. Specifically, a quadrilateral is produced for
each positive rational number less than 1, having denominator 1 ≤ q ≤ Q.

• A Kite sample will specifically consider P along the line y = x, whose corresponding
quadrilateral is, in fact, a kite.

4.3 Observed Behaviors
A variety of behaviors can be exhibited from simply the space of affine quadrilaterals under

symplectic billiards.
The following Figure 4.2 will compare two orbits along the same quadrilateral that resem-

bles a trapezoid. The first will be periodic and correspond to a periodic orbit along a resembling
trapezoid, while the other orbit will be non-periodic up to M = 1, 000 steps. This example will
strongly suggest the possibility for a quadrilateral to possess both periodic and non-periodic orbits,
a complex behavior.

0.5 1 1.5

0.5

1

x0

x1

0.5 1 1.5

0.5

1

x0

x1

Figure 4.2: Both quadrilaterals are identical: P = (1.62, 0.89), resembling a trapezoid of similar
xP ≈ 1.62 and yP = 1. The initial condition on the left (t0 = 0.5652, θ0 = 334◦) produces a 28-
periodic orbit. The initial condition on the right (t0 = 0.7065, θ0 = 334◦) produces a non-periodic
orbit up to M = 1, 000. Only the first 100 steps are displayed in this figure for convenience.
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The following Figure 4.3 illustrates how non-periodic orbits arise on kites.

0.5 1 1.5 2

0.5

1

1.5

2

x0

x1

Figure 4.3: An example of a kite (P = (2.1, 2.1)) without any indication of periodicity up to
M = 1, 000. Initial conditions to create this figure were t0 = 1.1034 and θ0 = 1.

After tens of thousands of tests, no example of a periodic orbit along a kite has been found.
Even kites with integral coordinates exhibited the same behavior. It is reasonable to assume that
one could prove a non-periodicity result on this simple shape, but if so, it is not yet obvious why
no periodic orbit could exist on a kite.

It is worth noting that this computational method is best at hunting for non-isolated periodic
points in phase space. So these results do not speak to isolated periodic orbits.

Next, we sample quadrilaterals with rational angles. We again notice a multitude of behaviors.
First, we do find quadrilaterals possessing periodic orbits. Two examples are provided in Figure
4.4.

0.5 1 1.5 2

0.5

1

x0

x1

0.5 1 1.5

0.5

1

x0

x1

Figure 4.4: Two examples of periodic orbits on a quadrilaterals of rational angles. Left, a quadrilat-
eral made of angles π/2, 53π/60, π/5, and 5π/12 (so P ≈ (2.123, 0.431)), with initial conditions
t0 = 2.6630 and θ0 = 175◦. The orbit is 36-periodic. Right, a quadrilateral made of angles
π/2, 11π/6, 7π/16, and 3π/8 (so P ≈ (1.3066, 0.4588)), with initial conditions t0 = 3.4142 and
θ0 = 273◦. The orbit is 132-periodic.



25

However, there are numerous examples where a quadrilateral of rational angles exhibits non-
periodic orbits (up to M = 1, 000). In fact, none of the combinations of rational angles tested
produced quadrilaterals which had no non-periodic orbits (in other words, every tested quadri-
lateral possessed a non-periodic orbit). In fact, taking the second example from Figure 4.4, any
minute alteration made to the initial conditions made a non-periodic orbit, showing how relatively
isolated that example is on that quadrilateral. Some shapes were more likely to produce periodic
orbits than others. We will present those sets of angles by two internal angles: those adjacent to
the right angle, and the value of the third angle (opposite the right angle) will be implied from the
rest. Those sets of angles for which orbits were often periodic included:

(α, β) ∈
{(

7π

12
,
35π

48

)
,

(
7π

12
,
7π

12

)}
.

Obviously, not many exhibited this property. Some of the sets of angles that provided some of the
worst conditions for producing periodic orbits included:

(α, β) ∈
{(

5π

12
,
29π

36

)
,

(
5π

12
,
9π

16

)
,

(
5π

12
,
23π

30

)
,

(
7π

12
,
5π

8

)
,

(
7π

12
,
π

2

)
,

(
3π

8
,
11π

16

)}
.

There is no obvious way to discern between these two sets yet, but regardless, we note that each
quadrilateral of rational slope seems to provide both types of periodicity.

This property extends to the full space of affine quadrilaterals. Periodicity appears to be a
special property for an initial condition on a generic quadrilateral. However, this property appears
often enough to suggest that it does not just occur on a set of measure zero. Its abundance seems to
exist around 18% in random conditions, but the ability to verify these results for larger maximum
modulus R of P quickly dissolves, so this will have to be verified in another effort.
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