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Abstract

Recent achievements by AlphaGo have inspired many interests in training sophisticated agents
to excel in more challenging games. This paper aims to aid the reinforcement learning agent by
providing it a more accurate predictor of game outcome which can effectively improve the reward
function of the agent. The supervised predictor trained uses deep learning techniques, especially
RNNs, on the replay data. While this is for StarCraft 2 replays specifically, the analysis and
learning model of replay observations can extend to other video games with little modifications.
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Chapter 1

Introduction
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1.1 Background
DeepMind’s success in the board game GO [1] has proved reinforcement learning to be a

useful and powerful mechanism in complex games with the astronomical number of states [2].
However, they were not fully successful when dealing with partially observed games. StarCraft 2
is a competitive Real Time Strategy (RTS) game that requires both macro- and micromanagement
in a partially observed environment. This means that unlike GO, in which enemy’s every single
move is observed accurately and players take turns to move, StarCraft 2 requires the players to
react to events and encounters in the game in real time despite the uncertainties caused by the
”Fog of War.” This has been a big challenge for a conventional agent. DeepMind has trained a
memory-less supervised model to predict the game outcome and has achieved a 65% accuracy
at 15 min mark of the game. However, it may be insufficient to use that model to support their
reinforcement learning agent’s value function as they noted. Furthermore, despite the most recent
victory of DeepMind’s AlphaStar over a professional StarCraft 2 player [3], AphaStar’s access to
the raw game states still backfires its credibility. The project of this paper attempts to train a better
supervised-model for the prediction of the game only to better support the value functions of the
reinforcement learning agent’s training so that the game state can be pre-learned and thus reducing
the reliance on the access to raw game states provided by the API.

1.2 Related Works
Many researchers have poured their interests into the RTS game StarCraft 2. Tstar by Tencent

AI lab [4] has developed the first AI that learns a human-designed composition of an army in the
game until AphaStar came, whereas some have also mined replays for supervised learning in build
strategies [5] or used Bayesian models to do Opening prediction [6]. However, very little, if not
none of any well-established game outcome predictor is found other than in DeepMind’s work
[2]. While it may seem less important considering the balance StarCraft 2 has, an accurate game
outcome predictor will be extremely useful for the Multi-Agent Reinforcement Learning structure
of AlphaStar.

1.3 Replays as Training Data
The data comes from the replays provided by the game company Blizzard. The replay of

StarCraft 2 is a compact way of storing game history. Exploiting the fully deterministic nature
of the game, a replay of StarCraft 2 minimizes its size by only recording the initial information
and the events occurring throughout the game at a discrete time step. In other words, the replays
provide the minimum required information to reproduced the battle rather than recording every
details [7]. The training replays come from the game replays provided by the Starcraft 2 game
platform’s competitive matches. There were 800K anonymous replays available for download
and the number of replays increases steadily. Pysc2 API, developed by the concerted effort of
Deepmind and Blizzard Entertainment(the company which StarCraft 2 belong to), provides the
un-rendered screen of the gameplay for training purpose as shown in the Figure 1.1
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Figure 1.1: A screenshot of the screen generated by Pysc2 API. It provides each unit’s position
with a label and relative size in the circle.

While the replay provides both player’s statistics (e.g., supplies, armies), only one player’s
view should be used to train the model as partial observability is a standard condition in a normal
game. One observation at any given time consist of the followings:

• Camera screen: An unrendered camera view of the player pointing at a portion of the map.
It consists of spatial and unit information. The resolution is 64 × 64.

• Mini-map: An overview of the entire battlefield. Regions with the vision of the player’s
unit will be highlighted while the rest will be obscured by the ”Fog of War”(shaded). The
resolution is also 64 × 64.

• Player stats: They are the numerical values of the resources and the supplies the player
currently has. The values will be integers. Additionally, the actions available to the player is
also part of the non-spatial stats.

1.4 Data Extraction from Replays
While the replay file ’x.SC2Replay’ is very small, the extraction of replay observations are less

friendly. To reproduce the exact same scenario, the extraction goes through the following stages.

1.4.1 Setting Up the Running Environment
The following must be set up before obtaining observations from replays:

• The main game engine version must match exactly with the replay file’s game version.

• The map data for the replay are available.
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• Related APIs are installed (e.g., PySC2).

• The Internet is available to connect to the game server.

1.4.2 Extracting Observations
Since the replay file is only a record of events, the replay can only start from the beginning

and is not reversible. The local game engine sends every event to the game server and collects
the resulting observations for rendering. This delayed communication and response become too
significant overhead for data generator described in Figure 1.2.

Figure 1.2: Version 1 generator with low space requirement but takes longer time.

Therefore, the replay data is extracted before the training to reduce the time cost as shown in
Figure 1.3. However, the memory space that the data set used is nearly 200 GB after extraction
(24.2MB/replay), and it was very cumbersome to move the data set around, although the training
speed now depends on the speed of which the machine accesses the memory.



5

Figure 1.3: Version 2 generator with faster speed but takes a larger amount of space on disk.
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Chapter 2

Existing Approach
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2.1 DeepMind’s FullyConv Architecture
The DeepMind’s model was trained with mini-batches of 64 observations randomly taken from

all replays (data) uniformly. Although the mini-map and screen capture the spatial features, spe-
cific stats on screen are fetched directly from the API provided by the game engine. The three
components from one observation is first concatenated to create a state summary and then fed into
the neural network shown in Figure 2.1 and 2.2.

Figure 2.1: A visual representation of the neural network’s flow[1]
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Figure 2.2: A detailed visual representation of the neural network’s layers and structure.

2.2 Replicating DeepMind’s Result
The trained neural network model should take a single observation at a time and predict the

outcome of the game (win/lose).
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2.2.1 Preparation
• The commonly found implementations are in TensorFlow. For simplification and clarity, the

implementation is rewritten into Keras —- an abstraction Application Interface(API)[8]. The
Keras uses TensorFlow back-end and hence is expected to produce similar results as direct
TensorFlow implementation.

• The non-spatial data of every observation was fitted into a tensor using the Python package
’Numpy’ in order to feed into the neural network.

• Due to limited computing resources, the observation number for each replay is reduced given
the number of replays and GPU memory available.

• While an on-the-run data generator was created at the early stage of this research Figure 1.2,
the response lag between the game server and the client game engine scaled up and signifi-
cantly increased the training time of the model. Hence the observations were obtained before
the training to reduce the training time as Figure 1.3.

• While the replay data set is enormous, a portion of it is not good for training because they
are either:

– too short (less than 1 minute of game duration) for analysis,

– incorrect game version, or

– corrupted replay

A total of 6,440 bad replays were identified and the final available data set becomes 57,956
replays.

• The DeepMind’s FullyConv model generated on Keras is shown in Figure 2.3
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Figure 2.3: Keras’s auto-generated network structure

• Due to the limited disk space and time for extracting replay data, only about 12K of the
replays observations were obtained.

2.2.2 Training outcome
While the DeepMind claimed the accuracy could reach 65% with the network structure de-

scribed above, trained on a well balanced 10K sub-data-set (win: lose = 50.05:49.95), the model’s
accuracy of prediction was at most 51% validation accuracy regardless of the time in the game
(randomly sampled observation). Further training of the FullyConv network led to over-fitting
and reduction in validation losses and accuracy. However, it should also be noted that this result
may be caused by the significant difference in computing resources available for training. Since
DeepMind has not yet released any source code or pre-trained model, this accuracy will be used to
evaluate against the proposed model.
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Chapter 3

Alternative Approach



12

3.1 Proposed Alternative
A recurrent neural network (RNN) model may fit better for this particular problem. RNN

uniquely possesses the memory to comprehend past events by its ability to retain information. A
few characteristics also implied that it is best solved using a model with temporal properties.

• Balanced until major events: An RNN network has memories which will have a higher
chance to capture main events that affect the outcome than any standalone observation. For
example, an observation taken in a surprise attack might make a trained standalone inter-
preter believe that the defender is at a disadvantage while a temporal RNN model might
have captured the costly defense units that were built much earlier which could counter the
attack easily. The two models would hence predict differently, with the latter one being more
informed.

• Chronological Ordering: The inputs always comes in chronological order if there are more
than one observations. It would be more natural as a solution to capture the ordering of the
inputs since it is an important feature of the input data.

3.1.1 Problem Formulation
The problem can be formulated as the following to fit the RNN model.

Input : Σ{(α1, β1, γ1), (α2, β2, γ2), ..., (α20, β20, γ20)}
where αt, βt, and γt are the t th screen tensor (64x64x17), the tth minimap tensor(64x64x7), and
the tth non-spatial vector (1x552) respectively from the extraction.

Output: The winner of the game (0/1) and the probability p.

In Deepmind’s work, the model was trained based on 64 standalone observations taken at
random from a single replay. However, for the proposed RNN network, the observations need to
be arranged in chronological order, with this additional constraint, the model is ready to be trained.

3.2 Measure of Success
While the probability of the winning is substantial, the fact that the data-set came from a

ranked-games makes the accuracy more important. Unlike professional league competition, in
a ranked game, both players should have approximately similar skill, and hence the victory may
only be achieved after the final combat of the game. This may not be captured by the random sam-
pling method described in section 2. The goal of this model is to learn the accumulated advantages
that hint the advantage in major events instead of the mistakes in battles (which out of the scope of
this project).

Additionally, the probability of winning may fluctuate significantly depending on many factors
which may not be captured by the simple model proposed here. Further study may be required in
that case.

Therefore, the accuracy of the final prediction will be used as the primary measurement of the
model’s success in this paper.
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3.3 Constructing the RNN model
In the DeepMind’s work proposed a baseline LSTM structure, however, as suggested by Jun-

young et al., GRU’s outperforms LSTM most of the cases in practice[9]. Hence, this project will
adopt GRU gates for performance sake. The prepossessing of the screen data and minimap data
followed the original architecture in the FullyConv and had slight modifications to fit with the RNN
and improve the model prediction accuracy. The network structure is shown below 3.1

Figure 3.1: An auto-generated visual representation of the network’s flow by Keras.

3.4 Choices in the model

3.4.1 The Dying ReLU Problem
During preliminary training on the Parameter Tuning dataset 3.1, the model often stuck to

a constant validation accuracy; we noticed that the predictions were either all win or all lose.
Upon further investigations, we noticed that this was known as the ”Dying ReLU Problem.” Dying
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ReLU problem refers to the cells that learned too many biases and thus causing the cells to become
insensitive to any input. This is usually caused by inappropriate learning rate.

The dying ReLU problem is particularly tricky to handle with the limited computing power
available. While one known solution is to lower the learning rate, the training time becomes too
long to beat even the 50% accuracy. To avoid the dying ReLU problem, though not solving it, the
activation functions were changed to ’tanh’ to speed up the training. Finally, the Sigmoid activation
and the binary-cross-entropy loss function were used to output the classification.

3.4.2 Optimizer
Many optimizers were tested with SGD being the fastest to learn without over-fitting as shown

below. 3.2

Figure 3.2: SGD optimizer with default parameters

3.4.3 GRU Layers
Additional Gaussian noise and dropout in the GRU layer were used to prevent over-fitting.
According to Keras documentation, the implementation of GRU was based on Cho’s work [10]

[11] and Gal’s work [12] for dropout in particular.

3.5 Training the RNN model
The data set was partitioned into the following:
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Table 3.1.

Function Size
Final Training 9K

Final Evaluation 1K

Test Training 1K

Parameter Tuning 500

Tuning V alidation 300

Total 11.8K

Table 3.1: Data-set Partition Details

The model was first trained on the ’Parameter Tuning’ data-set and then evaluated on the ’Tun-
ing Validation’ validation data-set to allow fast parameter tuning. The following parameters were
updated manually with respect to the small validation data-set:

Hyper-parameter Usage
obs Number of random observations from a replay (in chronoloical order)

bSize the number of replays per batch

dr the rate of dropout for the dropout layers and the RNN layers

lr learning rate of the optimizer

epc number of training epochs

Table 3.2: Data-set Partition Details

It is worth noting that during parameter tuning, the batch size and observation numbers both
improve the accuracy in which the batch size is more significant. The observation number is
reduced due to the limited memory of the training GPU. The ideal training parameter should be 64
or more observations and 64 replays per batch.

3.5.1 Configurations
Additionally, the mode was trained on two computers. One with GPU model GTX 1080 with

8GB of memory, CPU of i7-7700k@4.20GHz, RAM of 16GB, x64 Windows 10 operating system;
and the other with GPU model GTX 1080 with 10GB of memory, Ubuntu 16 operating system.
The TensorFlow version is 1.9.0 and Keras version is 2.2.2.

All codes are implemented in Python 3.7 except for the Keras data generator’s fetch function.
The fetch function was recompiled to Cython code to speed up the input assembly process. The
final code and a pre-trained model with 58.5% accuracy can be found here:
https://github.com/lusensama/SC2-replays-learning

The project follows the workflow described below. 3.3 should provide a better overview of the
project.

https://github.com/lusensama/SC2-replays-learning
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Figure 3.3: An overview of the project flow.
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Chapter 4

Evaluation of Model
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4.1 Performance
Figure 4.1 shows the final training results. Additional iterations of the training data lead to

over-fitting, and hence epoch numbers were fixed to 10 after some trial-and-error.

Figure 4.1: Final training

The training results for different partition of the data-set is as follow:

Data Set Highest Validation Accuracy Average Validation Accuracy
Parameter Tuning 0.5123 0.4971

Test Training 0.56 0.53

Final Training 0.5925 0.585

Table 4.1: Training with obs=16, bSize=64, dr=0.2, lr=0.0001, epc=10 15 (over-
fitting was obvious on smaller data-set and hence reduced)

The training result is as following for the final model:
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4.2 Ablation Study and Evaluation

4.2.1 Set Up
• Base: The base model takes all inputs, flattens and uses a Dense layer of one unit. The

layer’s activation function is ’sigmoid.’

• Conv3D: Two Con3D layers are added after both minimap tensor and screen tensor. The
filter size=16, kernel size=(1,5,5), strides=1, activation=’tanh.’

• MaxPooling: Two max-pooling layers are added after the Conv3D. The pool size is (1,2,2).

• Dense/Fully Connected: The Dense layers are added to all inputs. Both spatial inputs
(minimap and screen) get 32 units, and the player stats get 256 units as output.

• Gaussian Noise: The Gaussian noise layers are inserted immediately after the inputs and
after the Dense layer. The noise rate is 0.2 for all inputs.

• Dropout: The Dropout layers are inserted immediately after the inputs and after the Dense
layer similar to Gaussian Noise layers but with the Gaussian noise layers removed. The
dropout rate is 0.2 for all layers.

• Bidirectional GRU: This layer is added after the concatenation of all inputs processed thus
far. The GRU layer has 128 units and does not return sequence (i.e., only returns final state).

• Tuning: The initializers, the number of observations, batch size, and learning rate of the
SGD are tuned to increase the validation accuracy.

All the above mentioned network structure are compiled to SGD optimizer after final dense
layer with ’sigmoid’ activation similar to that of the Base network.

4.2.2 Result
The table below shows the accuracy of training the model for 4 epochs after stacking them in

the following order. The accuracy is calculated from five runs.
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Layer Average Accuracy
Tuning 0.5453 (+0.0013)

Bidirectional GRU 0.5444 (+0.0261)

∗Dropout 0.5074 (+0.002)
GaussianNoise 0.5183 (+0.0129)

Dense 0.5054 (+0.0154)

Conv3D 0.4963 (+0.0182)

Base 0.4781

Table 4.2: Trained on Final Training and validated on Final Evaluation with
default hyper-parameters, where Tuning uses the configurations described in section
4.1.
∗ The Dropout layer replaced the Gaussian Noise layer instead of stacking on top.

4.2.3 Analysis
While it is common to use the Dropout layer, the Gaussian Noise layer performed better in the

role of preventing over-fitting as shown by the average accuracy. The Dropout layer’s accuracy
was provided only for reference. It does not affect the final model’s accuracy.

The changes in accuracy are the greatest after adding the Conv3D layers (+0.0182) and the
GRU layer(+0.0261). Both layers’ impacts are expected as they are the core of this model. The
Conv3D layers interpret the spatial inputs while GRU learns the temporal relations of all features.

While the tuning seems to be ineffective, the number of epochs may be a potential factor
affecting its impact.

4.2.4 Limitations
The accuracy of the final model is still low compared to that achieved by DeepMind’s model.

While the parameters can be further fine-tuned to improve the accuracy, we also did not fully
exploit the data-set available due to the computing resources available. For example, the data size
could be easily doubled by, for example, observing the opposing player’s camera. Additionally,
although the average was calculated, only 6 times were run in total due to the time constraint.
Hence there might be an unexpected variance that made the accuracy appeared to be worse or
better than records shown here. Lastly, the irregular sampling of the inputs of RNN is simplified
and assumed as regular, because the regular sampling may require a more complex analysis of the
player’s behaviors and game property. This property may introduce potential problems that this
project overlooks.



21

Chapter 5

Conclusion
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5.1 Conclusion
While the final model is still less competent than the DeepMind’s FullyConv model which

achieved 65% accuracy, the locally trained FullyConv model using the same computing resources
only barely beats the random guesser. However, on the other hand, the proposed alternative model
achieved approximately 58% accuracy with an easily accessible GPU model GTX 1080. This result
has proven the appropriateness of RNN as a potential solution to the game prediction problem.

5.2 Future Works
The limitations stated in the previous chapter should be addressed and may potentially increase

accuracy. Naturally, the next step is to incorporate this model to the RL agent and serves as part of
the scoring function input. Since the observations are all based on a single player’s camera view,
this should fit into the RL agent’s framework with ease and thus improves the agent’s capability
overall.
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