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Abstract

We survey previous work on quantum mechanical definitions of bond order between two atoms
in a molecule and discuss how the definitions are related. We discuss a definition applicable to
single-determinant ab initio wavefunctions. This definition has a clear physical interpretation in
terms of correlated charge fluctuations. The basis set issues of previous methods such as the
Wiberg and Mayer bond orders are resolved by using intrinsic atomic orbitals. A formula in terms
of density matrices is given for calculating the bond order in practice. Bond orders calculated using
the new definition are compared to those calculated using previous definitions.
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Introduction
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The ubiquitous chemical concept of bond order is correlated with bond dissociation energies
and lengths of bonds[1, 2] and used to rationalize the electronic structure of molecules. Being able
to properly define and calculate bond orders helps in making qualitative chemical interpretations
from otherwise-opaque, quantitative molecular wave functions obtained by modern computational
methods. Like other intuitively-appealing, systematizing ”classical” chemical concepts such as
atomic orbitals, atoms within molecules, hardness and softness, partial charges, and aromaticity,[3]
bond order is not a quantum mechanical observable and has no unique definition as the expectation
value of an operator. The quantum mechanical meaning of bond order is neither widely known nor
agreed upon.[4, 5, 6]

The simplest definition of bond order is the usual, widely-taught one for diatomic molecules,
1/2(Nb − Na) where Nb is the number of electrons in bonding orbitals and Na is the number
of electrons in anti-bonding orbitals.[7, 8] This definition cannot be used for more complicated
systems.[4, 9] It relies on the assumption that each spin-orbital is either occupied or unoccupied
by one electron and so does not work for molecules undergoing dissociation.

The first definition of bond order applicable to more general single-determinant electronic
structure methods was given by Wiberg in a footnote to a 1968 paper. It is applicable to semi-
empirical quantum chemistry methods using orthonormal atomic orbital basis sets.[10] Wiberg’s
definition was generalized to ab initio methods using non-orthogonal basis sets by Mayer in 1984,
employing Mulliken population analysis.[11, 12] Population analysis methods themselves do not
give bond orders of the expected multiplicity of 0 to 3.[13] Also, if an orthonormal basis is used,
the Mulliken overlap population is 0. The quantitative Mayer and Wiberg definitions are likely the
most often-used bond order definitions,[9, 14, 15, 16] but their physical background is not widely-
recognized.[17, 4, 18, 9]

In 1985, Giambiagi et al. gave a more general, statistical definition of bond order, relating
bond order to instantaneous correlated charge fluctuations between atoms in a molecule.[19] We
propose a modification of the bond order of Giambiagi et al.. Their definition and physical inter-
pretation of bond order is not often used,[20] nor is its generality widely-recognized. Any partial
charge definition, one based on either real (three-dimensional, physical) space or Hilbert space
(orbital) analysis, can be used in the Giambiagi bond order definition. We derive the equations for
its practical evaluation from Hartree-Fock and Kohn-Sham DFT wave functions. We show that if
Löwdin charges or Mulliken charges are used in the Giambiagi bond order definition, the Wiberg
and Mayer bond orders, respectively, are obtained.[20]

We explain and illustrate the physical picture motivating the Giambiagi definition. The Gi-
ambiagi bond order makes apparent that the Wiberg and Mayer definitions are not arbitrary, but
instead physically justified.

If partial charges calculated using Intrinsic Atomic Orbitals (IAOs)[21] are used, the basis set
issues of bond order definitions that correspond to various other charge definitions with unphysi-
cal basis set dependence (such as the widely-used Mulliken or Löwdin charges) are avoided.[22]
Mulliken and Löwdin charges encounter problems with diffuse and non-atom-centered basis func-
tions or periodic systems.[23, 24, 7, 6, 25, 16, 22] These Hilbert space partition schemes assign
too much physical significance to basis functions, even if they are diffuse or not atom-centered.
A basis function may be centered on one atom but describe electron density on a second atom,
and then this electron density will be erroneously attributed to the first atom.[23] As the basis set
quality increases, the wave function should eventually no longer change qualitatively, yet the usual
Mulliken and Löwdin charges may give erratic values. In contrast, IAO charges, computed with



3

IAOs clearly associated with each atom, remain stable as the basis set quality increases. Conse-
quently, bond orders calculated with IAO charges are much less basis set-dependent than bond
orders calculated with the usual Löwdin or Mulliken charges.
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Chapter 2

Charge Fluctuations and Covalent Bonds
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Correlated charge fluctuations from the mean define covalent bonding.[4, 26] If electron density
increases on one atom, it must decrease on the other bonded atom. The strength of this correlation
indicates the bond order. The Giambiagi bond order is based upon this physical picture.[19] The
concept is illustrated most simply in the H2 molecule, containing the ideal covalent bond. We show
this here for illustration and discuss the mathematical generalization to arbitrary molecules and
basis sets in the next section. We employ a minimal basis set at the Hartree-Fock level. Given an

orthonormal, minimal basis set of two 1s AOs χ1 and χ2, the bonding spatial MO φ is
1√
2
(χ1+χ2).

Then the H2 wave function can be written as the determinant

|φ(1)φ(2)〉 = 1√
2
(φ(1)φ(2)− φ(1)φ(2))

where φ , φ indicate spin-up and spin-down spin-orbitals, respectively. Inserting φ in terms of the
AOs, we obtain

|φ(1)φ(2)〉 = 1

2
(|χ1(1)χ1(2)〉+ |χ1(1)χ2(2)〉

+ |χ2(1)χ1(2)〉+ |χ2(1)χ2(2)〉).

Hence the covalent wave function is a linear combination of two ionic (|χ(1)χ(1)〉, |χ(2)χ(2)〉)
and two radical (|χ(1)χ(2)〉, |χ(2)χ(1)〉) determinants (Figure 2.1), all four with equal weights.
The covalent wave function includes instantaneous, correlated charge fluctuations. In contrast,
in an ionic configurations, both electrons simply remain at one center. So ionic or non-bonding
character is characterized by average charge, while covalent bonding is characterized by correlated
charge fluctuation from the mean. Arguments similar to the one for the H2 bond can be made for
arbitrary two-center bonds in any molecule described by a single determinant.

Figure 2.1: H2
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Chapter 3

Statistical Covariance Bond Order
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3.1 Statistical Covariance Formulation
Most single-determinant wave functions cannot be efficiently decomposed in the pictorial fash-

ion described in the previous section. Instead, a numerically-evaluable definition of bond order
consistent with the correlated charge fluctuation picture was given by Giambiagi et al. as the
covariance of charge on atoms A and B,

IAB = −2
〈
(q̂A −

〈
q̂A
〉
)(q̂B −

〈
q̂B
〉
)
〉

(3.1)

where q̂I is some charge operator. This bond order indicates the strength of correlation of charge
fluctuations away from the average partial charges on atoms A and B.[19] Giambiagi and cowork-
ers did not prescribe how to calculate their bond order in practice, specify the charge operator,
provide test calculations, or relate their bond order to pre-existing bond order definitions. We
investigate these neglected points here.

3.2 Equations for Single-Determinant Wave Functions
We derive a practical formula for the covariance bond order in terms of density matrices of

single-determinant wave functions. Let µνρσ denote a possibly non-orthogonal basis set. We use
”mixed” second quantization for a non-orthogonal basis.[11, 19, 20, 27]
We have the general charge operator

〈
q̂I
〉
=
∑

ρσ

〈
Êρ
σ

〉
nIρσ, and Êµ

ν = χ̂†µ ˆ̃χν = χ̂†µ(S
−1)νρχ̂ρ so

that [χ̂†µ, ˆ̃χν ] = δνµ. Then

IAB = −2
〈
(q̂A − qA)(q̂B − qB)

〉
= −2(

〈
q̂Aq̂B

〉
− qAqB)

= −2
∑
ρστν

〈
Êρ
σÊ

τ
ν

〉
nAρσn

B
τν −

〈
Êρ
σ

〉
nAρσ

〈
Êτ
ν

〉
nBτν

= −2
∑
ρστν

nAρσn
B
τν(δ

τ
σ −

〈
Êρτ
νσ

〉
−
〈
Êρ
σ

〉〈
Êτ
ν

〉
)

= −2
∑
ρστν

nAρσn
B
τν(δ

τ
σ − (〈Eρ

ν〉 〈Eτ
σ〉 − 〈Eρ

σ〉 〈Eτ
ν 〉)−

〈
Êρ
σ

〉〈
Êτ
ν

〉
)

= −2
∑
ρστν

nAρσn
B
τν(δ

τ
σ − 〈Eρ

ν〉 〈Eτ
σ〉)

(= 2
∑
ρστν

nAρσn
B
τν 〈Eρ

ν〉 〈Eτ
σ〉)

if A 6= B.

3.3 Relationship to Wiberg/Mayer Definitions
It has been shown previously that the Mayer bond order is a special case of the Giambiagi

one.[20, 28] Also, the Wiberg definition is a special case of the Mayer definition.[11] For the
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Mayer bond order, we use the Mulliken charge operator definition in a non-orthogonal basis. For
the Wiberg bond order, we use the Löwdin charge operator definition in a symmetrically orthogo-
nalized basis. Proofs are given here to emphasize the generality of the correlated charge fluctuation
bond order definition.

IAB = −2
∑
µνρσ

nAρσn
B
τνγ

ρνητσ

= −2
∑

ρ,ν∈B,σ,τ∈A

SρσSτνγ
ρνητσ

(= 2
∑

ν∈B,σ∈A

[γ · S]νσ[γ · S]σν for Mayer/Wiberg)

(= 2
∑

ν∈B,σ∈A

γνσγ
σ
ν for Wiberg)

Alternatively, if γµν is the 1-particle density matrix, ηρσ = 2Sρσ − γρσ, the 1-hole density ma-
trix, Sρσ = [~S−1]ρσ is an inverse overlap matrix, and qAµρ = Sµρ

∣∣∣
ρ∈A

, then we obtain the Wiberg

definition bond order:

WAB =
∑
ν∈A

∑
ρ∈B

(∑
µ

γµνSµρ

)(∑
σ

ηρσSνσ

)
(3.2)

=
∑
ν∈A

∑
ρ∈B

γνργ
ρ
ν (3.3)

Table 3.1 and Table 3.2 support the claim made in Chapter 1 that when partial charges are
computed using IAOs instead of the original basis set, the charges are independent of basis set
quality, as are the bond orders. Given that the calculations with larger basis sets produce almost
quantitatively-correct wave functions, differences in charge and bond order values for different
basis sets have no physical meaning. The drastic differences in charge and bond order values
between basis sets only occur when the Löwdin/Mulliken charge definitions are used with the
original basis set and not IAOs. All bond orders were computed using the Giambiagi bond order
definition with Löwdin or Mulliken charge operators.
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basis set Löwdin Mulliken IAO (Löwdin) IAO (Mulliken)
def2-SV(P) −0.459 −0.065 −0.089 −0.245
def2-SVP −0.173 0.218 −0.106 −0.271
def2-TZVP −0.539 −0.073 −0.115 −0.294
def2-TZVPP −0.156 0.039 −0.116 −0.296
def2-QZVP 0.029 0.024 −0.116 −0.296
def2-QZVPP 0.029 0.024 −0.116 −0.296
cc-pVDZ −0.252 0.157 −0.116 −0.293
cc-pVTZ −0.069 −0.011 −0.117 −0.297
cc-pVQZ 0.017 0.116 −0.116 −0.296
cc-pV5Z 0.071 0.206 −0.116 −0.296
aug-cc-pVDZ −0.140 0.883 −0.118 −0.299
aug-cc-pVTZ 0.156 −0.626 −0.117 −0.297
aug-cc-pVQZ 0.461 −0.396 −0.116 −0.297
aug-cc-pV5Z 0.593 −0.336 −0.116 −0.297

Table 3.1: Basis set dependence of partial charge on C in CH3OH for Löwdin, Mul-
liken, IAO-Löwdin, and IAO-Mulliken definitions

basis set Löwdin (Wiberg) Mulliken (Mayer) IAO (Löwdin) IAO (Mulliken)
def2-SV(P) 1.175 0.849 0.973 0.819
def2-SVP 1.129 0.862 0.973 0.817
def2-TZVP 1.593 0.840 0.966 0.799
def2-TZVPP 1.405 0.846 0.966 0.799
def2-QZVP 1.543 0.828 0.965 0.796
def2-QZVPP 1.544 0.828 0.965 0.796
cc-pVDZ 1.143 0.943 0.973 0.809
cc-pVTZ 1.299 0.928 0.967 0.801
cc-pVQZ 1.482 0.923 0.965 0.798
cc-pV5Z 1.582 0.951 0.965 0.796
aug-cc-pVDZ 1.508 0.538 0.966 0.797
aug-cc-pVTZ 1.628 0.619 0.964 0.796
aug-cc-pVQZ 1.704 0.646 0.964 0.796
aug-cc-pV5Z 1.731 0.888 0.964 0.796

Table 3.2: Basis set dependence of C-O bond order in CH3OH using Giambiagi bond
order and Löwdin, Mulliken, IAO-Löwdin, and IAO-Mulliken charges
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