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ABSTRACT

Symmetry exists all around us in our natural world and embeds a wealth of valuable informa-
tion to be interpreted. Human brains are hardwired to seek out and catalog symmetries in order
to distill the massive quantity of visual signals constantly being received. Group theory and com-
puter vision have already been used in conjunction to detect and interpret various visual symmetries
found naturally and synthetically, bringing machine perception closer to human perception. This
work examines the possibility of intuitive mapping of symmetry groups from visual to auditory
domain, specifically to music. Secondary visual characteristics such as color, shapeliness, and
frequency, among others, are also mapped to music generation parameters. The effectiveness of
mapping 2D visual images, especially its symmetry structure and texture, to sound was demon-
strated. Various types of audio mappings were devised and tested, with the goal of maximizing
discernment among different symmetry groups and also secondary characteristics within symmetry
groups. These mappings were implemented in real-time using a synthetic image set. Specifically,
a melody motif-based mapping was developed and achieved better discernibility through listening
tests than baseline mappings. This experimental method suggests some degree of linkage between
visual and auditory symmetry pattern perception in the brain that can be explored through future
work.
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Chapter 1

Introduction
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1.1 Symmetry
Symmetry exists in virtually all aspects of the natural world, from organic structures to galaxies.

Human perception relies heavily on pattern recognition and recall. With the sheer magnitude of
sensory input entering the brain, pattern recognition is a key way the brain can perform information
abstraction and formulate higher understanding. The human brain discerns symmetry features pre-
attentively, suggesting that the information embedded by symmetry holds significant value for
higher level perception functions, such as object recognition.

Although different branches of mathematics will have their own formal definitions of symme-
try, the one most relevant to perception is as follows: Given a structured object, a symmetry is a
transformation on that object which maps it back to itself and preserves the structure. Weyl de-
scribes the idea as starting with the vague notion of symmetry equaling harmony of proportion and
expanding it to say that symmetry is the invariance of elements under a group of automorphic trans-
formations [1]. Informally, a symmetric object is one that is made up of smaller interchangeable
objects.

Figure 1.1: Snowflakes: a real world example of objects that contain similar symmetry rules but
unique instantiations.

The human senses of sight, hearing, and touch all distinguish symmetries and contribute to the
overall goal of object/entity recognition. Although details regarding the neurological pathways that
facilitate these functions are beyond the scope of this thesis, there is interest in whether any level of
connection exists between symmetries of different senses. Through functional magnetic resonance
imaging, it has been determined that visual symmetries are processed in the occipital lobe and
register as quickly as 50 milliseconds after stimuli presentation [2]. However, there exists little
to no prior work on whether visual and auditory symmetries share any amount of neurological
common space, and this thesis aims to explore through experimental means if any value can be
derived from a system that utilizes both.
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Figure 1.2: Examples of visual (left) and auditory (right) symmetries

1.2 Wallpaper Symmetry Groups
Liu provides a formal definition of spatial symmetry [3]:

More formally, in a metric space M , a symmetry g ∈ G of a set S ⊆ M is an isom-
etry (a distance preserving transformation) that maps S to itself (an automorphism),
g(S) = S. The transformation g keeps S invariant as a whole while permuting its
parts. Symmetries G of S form a mathematical group {G, ∗}, closed under the trans-
formation composition ∗, called the symmetry group of S.

Additionally, for all periodic patterns in Rn for any n, it was discovered that there is only a
relatively small finite number of symmetry groups, referred to as crystallographic groups [3]. In
two-dimensional (2D) euclidean space, translation, rotation, reflection, and glide-reflection serve
as the primitive symmetries. In conjunction, they build the seventeen symmetry groups of 2D space
often labeled as the wallpaper symmetry groups. Any instance of symmetry in 2D space (of which
there are infinite) belongs to one of the seventeen wallpaper groups.

1.2.1 Wallpaper Patterns

(a) CM (b) P6 (c) PM

Figure 1.3: Example synthesized patterns from the CM (left), P6 (middle), and PM (right) wallpa-
per groups
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All translationally symmetric patterns can be generated by a pair of vectors t1 and t2, which are
linearly independent and shortest among all possible vectors. These two vectors define the shape,
size, and orientation of a unit lattice tile that can span the entire pattern space. Certain pairs of
vectors define the true underlying symmetry better than others. If rotation symmetries are present,
tiles centered on rotation centers usually reflect the symmetry most completely. As defined by Liu,
”A motif of a wallpaper pattern is a tile that is cut out by a lattice whose unit is centered on the
fixed point of the largest stabilizer group”, where stabilizer group here is a symmetry group that
leaves a single point invariant [3].

Figure 1.4: The unit lattice for each of the seventeen wallpaper groups, where the diamond, tri-
angle, square, and hexagon icons indicate the locations of 2-,3-,4-, and 6-fold rotation centers,
respectively.

Figure 1.5: An example wallpaper pattern from each of the seventeen wallpaper group, courtesy
of [4]
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1.2.2 Intra-Group Characteristics
Although there is a finite number of symmetry groups, there are an infinite number of possible

patterns of each symmetry group, with potential differences in texture, shape, color, just to name a
few characteristics. Since a wallpaper pattern is the repeated tiling of a unit lattice in 2-dimensions,
the unit lattice itself contains all of the defining characteristics of that specific pattern.

1.3 Musical Symmetry
Music can also be thought of a collection of symmetries (or near symmetries) that exist along

the time axis. A typical music track has rhythm and melodies arranged into repeated blocks,
played by a collection of real and virtual instruments. Auditory symmetries are defined by am-
plitude over time. Musical symmetry exists in a space defined by sounds over time, where the
sounds themselves are composed of auditory symmetries. Layered auditory symmetries ultimately
dictate the timbre of a sound, while layered musical symmetries form the structure of a piece of
music. Although both are vital to how a piece of music sounds, they can be independently de-
scribed (acoustic characterization of violin sound vs. violin sheet music). Auditory symmetries
contribute to the brains ability to distinctly identify and catalog different sounds and form higher
level associations. Musical symmetries support the cohesiveness of a single musical work and
assists the brain in compressing/remembering musical ideas.

Figure 1.6: The symmetry present in waveforms of individual sounds (top), courtesy of [5], and
the symmetry present in music structure (bottom), courtesy of [6]. This is a specific example of
melodic pitch symmetry.
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1.4 Musical Structure
Modern music has become quite similar in song structure, even across multiple genres. Instead

of using seconds, the timeline of a track uses beats as the base unit of subdivision. Usually, the
percussion parts will establish the tempo and the underlying heartbeat of the track, giving the
listener a clear sense for the equally spaced beats. Every four beats are grouped together to form a
measure. Every eight or sixteen measures will form a phrase, the musical equivalent of a sentence.
Usually, a complete melodic idea is expressed within a phrase. A self-contained track will group
phrases into different sections that vary in energy and feel. Some common groups of phrases
include the verse, which roughly corresponds to a poetic stanza, and the chorus, which is a section
of the music that is often high energy, familiar, and gives a sense of return. A chord progression
usually spans an entire phrase and gives the song a chromatic foundation, with each chord within
the chord progression lasting one or two phrases. A song may contain a handful of different
repeated chord progressions. From the percussion, to melodies, to chords, there is a high level of
translational symmetry at every level of abstraction within a song.
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Chapter 2

Approach
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2.1 Wallpaper Symmetry Group Synthesizer
The system presented by this thesis takes a visual input belonging to a wallpaper symmetry

group and generates music accordingly, capturing as much detail regarding to the input as pos-
sible. Dubbed WallpaperSynth, this prototype system is comprised of two parts: a module that
performs the actual music generation given a visual input, and a means for performing human as-
sessment on the effectiveness of the visual to musical mapping. Since intuitiveness is a subjective
measurement, the main assessment is how well a user can select the correct input given a gen-
erated song, which provides some quantitative measure of mapping effectiveness. To narrow the
scope of implementation, the system only includes a subset of the seventeen 2D wallpaper sym-
metry groups, but can be scaled up to cover all seventeen. This system is ported as both a local
application, for integration with other systems, and a web application, for ease of data collection.

The music generation module has a straightforward pipeline. Given an input image which con-
tains an instance of a wallpaper symmetry group, a routine classifies the symmetry group. This is
done using the lattice detection technique as described by Liu in [3]. Additionally, the secondary
visual characteristics are analyzed and this set of parameters are passed into the synthesis routine.
The synthesis process uses the determined symmetry group for song structure generation and the
secondary parameters for tonal formation and modification. The music generation happens con-
tinuously in real-time, meaning that for any sequence of inputs, the music remains continuous and
transitions on-rhythm between the corresponding melody sequences. As long as there is an input
present, the module will output music in the form of one continuous song.

2.2 Input Images
For both development and human assessment, the same synthetic wallpaper pattern imageset is

used. This imageset spans all seventeen symmetry groups and contains 500 wallpaper images per
symmetry group, 8,500 in total. Each image is tiled from a randomly generated grayscale motif
and has 256x256 pixels. Examples of the images can be seen in Figure 1.3. The entire imageset is
normalized for better classifier performance. Additionally, each image is filtered with a 3x3 pixel
Gaussian and histogram equalized.

2.2.1 Secondary Characteristic Augmentation
All the images within each wallpaper group are visibly different. Frequency analysis of the im-

ages reveals that all of the images have the same narrow bands of frequencies (and their multiples),
as evident in Figure 2.1. The dominant frequency components come from the the size of the unit
lattice, not the contents of the lattice itself. The entire imageset is grayscale so for development
involving color mappings, color features are augmented in real-time pre-processing.
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(a) P1 Pattern (b) FFT

Figure 2.1: Frequency analysis of wallpaper pattern from the P1 group. Right is pattern, left is
FFT of the pattern

2.3 Base Mapping
In order to establish baseline performance, a naive symmetry group to musical structure map-

ping was conceived. This mapping, which covers seven of the seventeen wallpaper groups, simply
assigns a note to each of the groups. These notes span a single octave from C4 to B4 in the key
of C Major. No secondary visual characteristics are mapped and the tonal qualities of the sound
are instead also mapped from the symmetry group. Each group is assigned a different synthesizer,
with sounds ranging from plucks to detuned jabs. There are two versions of the base mapping, one
for the local application and one for the web application, which only differ in synthesizer sounds
because the two environments have different music coding libraries.

Wallpaper Group Note Synthesizer Synthesizer Description
P1 C4 pretty-bell Pretty bell sound
P2 D4 tri A simple triangle wave
PM E4 hoover Classic early 90’s rave synth
PG F4 hollow A hollow breathy sound (from noise)
CM G4 piano A basic piano sound

PMM A4 pluck A Karplus-Strong synthesized pluck
PMG B4 zawa Saw wave with oscillating timbre

Table 2.1: Overview of the base mapping for local application (base mapping v1)
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Wallpaper Group Note Synthesizer Synthesizer Description
P1 C4 Synth A simple oscillator
P2 D4 AMSynth A simple amplitude modulation synth
PM E4 DuoSynth Two parallel synths linked by frequency ratio
PG F4 FMSynth A simple frequency modulation synth
CM G4 MetalSynth A inharmonic and spectrally complex source

PMM A4 PluckSynth A Karplus-Strong synthesized pluck
PMG B4 MembraneSynth Kick and tom drum sounds

Table 2.2: Overview of the base mapping for web application (base mapping v2)

Figure 2.2: The rhythm for all melodies of both versions of the base mapping. The note pitch value
corresponds to the P1 group.

The sound is played as a repeated 8th note in a 4/4 time signature. Due to the arbitrary na-
ture of this mapping, it is hypothesized to be difficult for a user to form correspondences. Even
consciously, perfect pitch is required to discern the differences between the notes, and more con-
sequentially by extension, the symmetry groups they were mapped from.

2.4 Musical Motif-Based Mapping
Instead of mapping each symmetry group to a repeated note, each symmetry group is repre-

sented by a measure-long musical motif. This motif-based mapping leverages the fact that a short
melodic word can contain symmetries that provide an intuitive correspondence to a visual sym-
metry group. Five out of the seventeen wallpaper groups are included with this mapping. Groups
with differing maximum rotation center magnitudes are chosen for this mapping, as this improves
perceptive separability between the groups, and gives more flexibility in musical motif represen-
tation. This mapping tests the perception of musical symmetries and whether they can intuitively
correspond to visual symmetries. To isolate the effects of melodic and rhythmic symmetry from
timbre, all musical motifs are played using the same synthesizer sound, a simple sine tone.
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Wallpaper Group Maximum Rotation Center Dominant Notes
P1 2-fold 8th and dotted-quarter notes
P2 2-fold 8th and dotted-quarter notes
P3 3-fold Half note triplets
P4 4-fold Quarter notes
P6 6-fold Quarter note triplets

Table 2.3: Overview of motif-based mapping and the dominant note type for the subset of five
symmetry groups.

Wallpaper
Group Repeated Melodic Motif

P1

P2

P3

P4

P6

Table 2.4: The repeated measure-long melodies of motif mapping v1
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Each of the melodies are hand-designed, and not generated procedurally from the geometry
of the wallpaper group. Since wallpaper groups are defined in 2D Euclidean space and musical
symmetries are defined in auditory events over time (1D), there is an inherent spatial mismatch that
inhibits the creation of a direct mathematical mapping. Instead, the motifs are created subjectively
by examining the perceived effect of the maximum magnitude rotation center for each wallpaper
group, in essence finding a combination pitch and rhythm sequence that alludes to the geometry
of the visual symmetry. For example, the P6 group has 6-fold rotation centers which makes its
hexagonal symmetry stand out. The hexagon shape, with its six equal sides, is evocative of quarter
note triplets, which splits a measure into six equal time divisions. The triplets sound distinct since
the underlying times signature is in four. The P4 group on the other hand has 4-fold rotation centers
and gives the patterns an overall square structure. This intuitively alludes to a melody with quarter
note rhythm. The other musical motifs are created using similar design rationales.

2.5 Accompaniment
For the generated song to sound realistic, accompanying parts are played as a backing for the

mapped melody. The accompaniment loops constantly regardless of melody changes. This gives
the generated song a continuous cohesiveness, which should sound pleasant for the listener.

2.5.1 Chords
A chord progression is used to establish phrasing in the generated song and gives the track

a harmonic foundation. Since all the generated melodies are in the key of C major, a common
4-part chord progression is used: Cmaj, Amin, Dmin, Fmaj. Each chord lasts for the duration of a
measure and the entire sequence loops indefinitely.

Figure 2.3: Musical notation of the accompanying chord progression (Cmaj, Amin, Dmin, Fmaj).

The local application uses the blade synthesizer, which produces a 80’s style synth lead sound,
while the web application uses a 6-voice polyphonic amplitude modulation synthesizer that has a
slightly more airy sound than the blade synthesizer. The chords are mixed at a quarter volume of
the main melody.
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2.5.2 Percussion
In order to keep the pulse of the track, a simple drum pattern is implemented with kick, snare,

hi-hat, and rim sounds. The percussion part is especially crucial for distinguishing between four-
beat and triplet melody rhythms. A very typical measure-long pattern is implemented with no
complicated rhythms.

Figure 2.4: Musical notation of the accompanying percussion part, a four on the floor pattern.

Having a kick drum, the most prominent percussion sound, on each beat gives the track non-
distracting yet strong rhythmic foundation. This four on the floor pattern is very popular with
electronic music, which fits the overall synthesized nature of the track. Snare sounds are present
on the 2nd and 4th beats. 8th note hi-hats are present along with a rim hit on the last 8th note of
the measure. The sounds all come from the iconic 808 synthesizer, which is accurately emulated
on both the local and web applications. The 808 sounds are ubiquitous to the world of electronic
music and provides a non-distracting tone.

2.6 Secondary Parameter Mapping
Secondary visual characteristics, such as texture and color, also have a large influence on the

way an image is perceived. There is value in exploring how these characteristics, which are con-
tinuous relative to discrete wallpaper groups, can map to an auditory parameter.

2.6.1 Texture
In the case of wallpaper patterns, a texture is defined by the size and shape of the repeated motif

as well as the actual design of the motif. To better explore the textural impact of the motif design
itself, all of the wallpaper patterns in the input imageset have roughly the same size and shape unit
lattices. This isolates the effect of the pattern from the effect of the scale.

Gray-level co-occurence matrix (GLCM) is a statistical technique for quantifying texture char-
acteristcs such as entropy, contrast, and homogeneity [7]. The technique can be thought of building
up joint probability distribution P , where P [x1, x2] represents the number of times a pixel has gray
level x1 and a pixel that is a fixed displacement away has the gray level x2. Essentially, this is
measuring the gray levels separated by a fixed displacement throughout the entire image.

For a given input image I and displacement vector d = [dx, dy], P is built up in the following
manner:
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1. Scan the image row by row from the top left to bottom right.

2. Given the current pixel (Ix, Iy) has a gray level of m and the pixel (Ix+dx , Iy+dy) has a gray
level of n, increment P [m,n] by one.

3. Repeat for all pixels in I .

The GLCM P is a MxM matrix where M is the number of gray levels in the image. The input
images are all 8-bit grayscale images which is 256 gray levels. To distill the texture information
into a smaller GLCM, the images are re-quantized on the fly to 4 bits, which results in a 16 by 16
GLCM. The following metrics can be determined once P is estimated:

• Entropy - has maximum value when P is uniform (random texture) and minimum value
when distribution is deterministic (uniform texture).

Entropy = −
M−1∑
i=0

M−1∑
j=0

P [i, j]log2P [i, j] (2.1)

• Energy - has smallest value when all values in P are the same (random texture) and maxi-
mum value if P is only populated in one cell.

Energy =
M−1∑
i=0

M−1∑
j=0

P [i, j]2 (2.2)

• Contrast - low in magnitude if the values along the diagonal of P are large (regions of
uniform gray levels), and large in magnitude otherwise.

Contrast =
M−1∑
i=0

M−1∑
j=0

(i− j)2.P [i, j] (2.3)

• Homogeneity - Opposite of contrast, high value when P mostly populated along diagonal
and low in value otherwise.

Homogeneity =

∑M−1
i=0

∑M−1
j=0 P [i, j]

1+ | i− j |
(2.4)

Entropy and contrast are used as inputs for the music generation module. Entropy is mapped
to a flanger effect node and contrast is mapped to a reverb effect node, in serial. These nodes are
placed after the base song generation, which means all sounds pass through both modules. The
magnitudes of the metrics are directly mapped to the dry/wet ratio of the effect, which determines
the relative levels of dry (un-effected) and wet (effected) signals. A higher contrast means more
randomness and a strong flanger effect subjectively gives off the impression of randomness. A
higher contrast means smaller uniform gray level areas, which is subjectively alluded to by high
reverberations. These mapping decisions are have no mathematical basis and act as an experimen-
tal starting point.
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2.6.2 Color
Although the perception of color is complex and nonlinear, a rudimentary mapping may pro-

vide some degree of color discernment through auditory means. For an input image, the average
intensities of the red, green, and blue channels are measured, and mapped to a 3-part oscillator.
This oscillator synthesizer plays the same notes of the chords and contains a sine wave, saw tooth
wave, and square wave. The relative mixed levels of these sub-oscillators are determined by the
relative ratio of color intensities. Since color is largely separable from texture and structure visu-
ally, it is mapped to a tonal quality of the sound that doesn’t interfere with the main melody or
chord progression. It simply changes the timbre of one accompaniment part.

2.7 Listening Tests
In order to test the discernment of wallpaper groups from the above mappings, a series of

audio-visual listening tests are devised. These tests ask the user to choose the wallpaper patterns
that corresponds to the generated songs. These tests are distributed through the web application
which allows a broad collection of people to be reached, with varying levels of musicality.

Before the test is administered, the user is instructed to spend roughly five to ten minutes with
the WallpaperSynth player, which randomly loops through different wallpaper patterns and plays
the continuously generated song in response. The user controls when the player switches to the
next random pattern so they can spend as much or little time on each pattern as they need. The
users are not informed of the specific mapping and are encouraged to build any correspondences
that they naturally percieve, regardless of whether they are actually relevant or not. This ensures
that the test truly measures the intuitiveness of the mapping and not how well a user can pinpoint
symmetries only after being instructed. It is hoped that the generated song will be naturally mapped
to the visual symmetries.

For the two base mappings and the motif mapping, the following test format is used:

• For each question a wallpaper group is chosen as the correct answer.

• The corresponding generated song is played according to the mapping under test.

• The user is presented with a binary choice between two wallpaper patterns, one of which
comes from the correct wallpaper group and one does not.

• Once the user chooses an answer, the choice and the time taken on the question are anony-
mously recorded and the above steps are repeated for twenty total questions.

The users are not informed of the fact that time taken on each question is recorded. An unlim-
ited practice test is also available to the user as a way of practicing the test format. It is identical in
configuration to the real listening test above but can be answered indefinitely (questions are contin-
uously generated) and feedback is provided on what the correct answer is. The questions, answers,
user choices, and time spent on each question are all still recorded. The users are not informed that
these results are recorded. Twenty questions is a balance between a short, manageable test, and
ensuring that each wallpaper group appears enough times in the test.
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Chapter 3

Software Design
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3.1 Approach
The software behind this project spans multiple scopes from computer vision functions to au-

dio generation and processing. Cross-compatibility and active support are the main criteria for
selecting libraries as all the source code needs to readily incorporate into real platforms. The target
integration platform for future systems stemming from WallpaperSynth is Linux-based and has
processing power comparable to a microcomputer such as a RaspberryPi. However, streamlined
data collection is also a goal and therefore requires WallpaperSynth to be deployable as a web
application.

Local Application Web Application
Integrable Well-designed UI

High performance Streamlined for data collection
Complete features Informative

Table 3.1: The distinguishing software design requirements for local vs. web ports

This dual requirement stemmed the following pick-and-roll type of software development:
First, any prototyping is done locally using desktop frameworks and languages. Once a feature
is ready to be integrated to the data collection stage, the functionality is ported over to a web
framework and deployed for ease of data collection. Anyone with access to a browser and the link
should be able to access WallpaperSynth and its discernment listening tests. After data is collected
and the validity of the feature is verified, it is incorporated back into the local application and
flushed out for completeness and robustness. This ensures that the local application, which is the
most essential deliverable, stays ready for use as an integrable module. A major requirement for
both the local and web application is that the music generation module must support the ability
to output one continuously generated song while changing the characteristics and structure of the
song in real-time.

3.2 Modules
The overall functionality of WallpaperSynth can be divided into the modules seen in Figure

3.1. The discernment test module is for mapping research and development purposes only and
would not be included in an actual system integration.

Figure 3.1: WallpaperSynth modules pipeline
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3.2.1 Wallpaper Group Classifier Module

Figure 3.2: Wallpaper group classifier module pipeline

The purpose of this module is to extract and output visual characteristics from the input image,
most importantly the wallpaper group of the dominant region of symmetry. The specific algorithms
for symmetry and wallpaper group classification are interchangeable. Additional image processing
extracts secondary characteristics from the input image. This entire set of features is passed along
to the music generation module.

3.2.2 Music Generation Module

Figure 3.3: Music generation module pipeline

The main music generation module performs the pre-designed mapping from visual charac-
teristics to music generation. Playback, song structure generation, and tonal control, are all re-
sponsibilities of this module. This module keeps the entire generated track on a looping timeline
that abstracts away real time. The track consists of synthesized instruments playing sequences of
notes and asynchronous programming is leveraged to change both the sequence and tone of the
synthesized instruments depending on the visual characteristics output from the Wallpaper Group
Classifier Module.
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Figure 3.4: Screenshot of the WallpaperSynth web player user interface.

3.2.3 Discernment Test Module

Figure 3.5: Discernment test module pipeline

This module generates and controls the listening tests for evaluating mapping effectiveness.
It wraps around the music generation module by feeding it ground truth values for visual char-
acteristics while simultaneously displaying the potential visual inputs that make up the current
multiple-choice question. It handles user choice selection and persists the raw test results at test
completion.
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Figure 3.6: Screenshot of the WallpaperSynth web practice test user interface. Feedback is given
for the correct answer.

Figure 3.7: Screenshot of the WallpaperSynth web discernment test user interface.
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3.3 Local Application
The local version of the WallpaperSynth application is a inter-dependent set of souce code,

frameworks, and local servers that implement the functionality of the wallpaper group classifier,
music generation, and discernment test modules.

Figure 3.8: Local application software stack

3.3.1 Main Control Module (Python + Kivy)
Python was chosen as the language for the main control module for its versatility and abun-

dant compatibility with other frameworks. Kivy, a user-interface library for Python, is used to
create a GUI that presents the operation of WallpaperSynth and allows a user to control the local
application. The overall pipeline of the application, along with the discernment listener tests, is
implemented by this control module.

3.3.2 Music Coding Environment (Sonic-Pi)
In order to avoid reinventing the wheel, a music coding environment is needed to programmat-

ically express the generation of digital music. Instead of working at the audio buffer and waveform
level, a music coding environment works at the note, rhythm, and instrument level. Sonic-Pi is
a live music coding environment built using the Ruby language and exposes a OSC server which
allows easy connection from the control module via OSC client. Its live nature and cue/sync sup-
port means it has strong support for continuous song generation with real-time on-rhythm changes
to structure or tonal characteristics. Under the hood, it is built on top of the SuperCollider audio
synthesis engine.

3.3.3 Image Processing (OpenCV)
The pipeline starts with the classification and characterization of the input image. This is done

by the OpenCV library which provides efficient and powerful implementations of common image
processing functions. Most importantly, the music generation module uses OpenCV to classify
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the image to a wallpaper group, but it also extracts and quantifies secondary visual characteristics.
This library is accessed through bindings in the main Python control module.

3.4 Web Application
The web version of the WallpaperSynth application is a full-stack web application, and still

implements the functionality of the wallpaper group classifier, music generation, and discernment
test modules. The frontend, which runs entirely in-browser, serves the same purpose of the desktop
application while the backend provides a create, read, update, destroy (CRUD) API for discernment
listening test results. The entire stack is hosted on AWS and accessible at www.wallpapersynth.com.

Figure 3.9: Web application software stack

3.4.1 Main Control Module (Javascript + React + Bootstrap)
With Javascript being the dominant in-browser language at the moment, it is used for writing

the main control module of the application. React is a component-based frontend framework for the
web and its one-way data binding philosophy works well with WallpaperSynth. Through React, the
user interface is able to achieve the same level of responsiveness as the native desktop application.
The Bootstrap CSS framework ensures that the user interface is responsive and dynamic on both
desktop and mobile browsers. The entire frontend app is built as a static site and deployed using
an AWS S3 Bucket.

3.4.2 Mosic Coding Environment (Tone.js)
Since the music generation needs to occur entirely in the browser, Tone.js is a great fit as it

provides the same depth of high-level music synthesis as the Sonic-Pi library does. Tone.js is
a Javascript library built on top of the Web Audio API, a platform for audio control included
in nearly every single modern browser. Through Tone.js, which schedules sound events on a
shared timeline called the Transport, a continuous song is generated with capabilities for real-time
seamless changes to virtually any component of the song. This is integrated into the frontend app
as an npm module.

http://www.wallpapersynth.com
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3.4.3 Image Processing (OpenCV)
The OpenCV library is again utilized for the image processing components of the pipeline.

OpenCV provides a subset of its full feature set through Javascript bindings. This allows for effi-
cient wallpaper group classification and secondary feature characterization directly in the browser.
This is integrated into the frontend app as an npm module.

3.4.4 Song Test Api (Ruby on Rails)
The discernment listening test results are stored through a RESTful API created using Ruby

on Rails. The API stores the created tests in a PostgreSQL database. Test results can be retrieved
individually, all at once, or grouped by test type, which enables continual monitoring and analysis
of the data collection results. This backend application is deployed on an AWS EC2 instance and
is served up by a Phusion Passenger + NGINX web server. The backend database is deployed on
an RDS instance using the PostgreSQL 10.6 engine.
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Chapter 4

Results
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4.1 Variability and External Factors
The discernment listening tests provide insight on how well the correspondences are formed in

a user’s mind, in terms of both accuracy and time needed for recognition. Due to the binary nature
of the test format, the hard baseline is 50% accuracy, which represents the expected outcome over
multiple tests if the users simply guessed between the two choices. It is harder to determine a
hard baseline for time taken on each question, but comparative analysis can reveal the relative time
spent on different wallpaper groups on average.

Due to the crowd-sourcing nature of the test distribution, there isn’t strict control on testing
environment. This was a deliberate trade-off decision to increase response and acquire a larger,
more representative sample of test results. The fact that the test is distributed as a web application
that is accessible from both desktop and mobile browsers increases a large degree of variability that
influences both accuracy and time spent on each question. The difference between using mouse and
touchscreen may be minor but definitely present. There is no control on the listening environment
either. Although headphone use is recommended, there is nothing blocking non-headphone users
from completing the test. Without headphones, different speakers from different devices have
varying sound signatures, and could affect the way the generated song is perceived.

There are many factors that may specifically affect accuracy on a per question and per user
basis, many of which are human-related. For example, a question may present two symmetry pat-
terns that are from different groups but look very similar due to the textures. If the correspondence
formed in the user’s mind leans more towards textures than symmetry, then the user may have
to resort to a random guess. Additionally, a user may learn more about the correspondence and
gain confidence while doing the practice test and therefore answer a higher proportion correct as
the test progresses. The external factors that influence accuracy are not limited to these exam-
ples. However, given a large enough set of people taking the tests, the average accuracy should be
representative of the true level of effectiveness.

Many factors also affect the time spent on each question, and again they are human related.
This is especially variable because the users don’t know their time is being recorded as a metric.
As users answer more questions on an exam, they may feel more comfortable with the format and
answer faster. Once the they know the layout of the buttons and know where to look, they may
spend less time on each question. They may speed up towards the end simply because they want
to finish the test. The user may need to step away from the assessment in the middle of a question
and come back, leading to an outlier. Again, with a large enough set of people taking the test, the
normalized average elapsed times will provide meaninful comparison.

4.2 Testing Demographic
The web app was sent to friends, family, and Laboratory for Perception, Action, and Cognition

members. Although no demographic information was explicitly collected, the set of people who
the test was sent out to have varying ranges of musical ability, a good representation of genders,
and a wide variety of backgrounds. Most of the participants were college students.
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4.3 Overview
Accuracy for a given test is as follows:

accuracy =
number of correct answers
number of total answers

(4.1)

Accuracy provides a basic measure of mapping effectiveness through level of discernment.

Test Type Response Count Average Accuracy Questions per Test
base-mapping-v1 5 0.48 10
base-mapping-v2 10 0.50 20
base-mapping-v2-practice 8 0.53 Variable
motif-mapping-v1 17 0.61 20
motif-mapping-v1-practice 21 0.62 Variable

Table 4.1: Overview of accuracy and number of responses by test type.

Although the base mappings are at the hard baseline, the motif mapping shows a roughly
10% accuracy improvement over random guessing. On average the base mappings essentially
provide no notable correspondence, while the motif mapping does offer some level of intuitive
correspondence.

Figure 4.1: The distribution of question counts for tests in the two practice test mappings. The
number of questions to answer during a practice test session is completely up to the user.

On average, users spent a higher number of questions on the practice test for the base mapping
over the motif mapping. This suggests it takes longer for the users to feel confident (or as confident
as possible) about the correspondences they are forming for the base mapping compared to the
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motif mapping. No question count distribution is shown for the actual tests because they have a
fixed number of questions.

Test Type P1 P2 PM PG CM PMM PMG
base-mapping-v1 5 2 5 10 12 6 10
base-mapping-v2 30 34 33 27 25 24 27
base-mapping-v2-practice 25 26 24 21 16 19 13

Table 4.2: The total number of times each wallpaper group appeared as the correct answer across
all base mapping tests

Test Type P1 P2 P3 P4 P6
motif-mapping-v1 51 73 73 73 70
motif-mapping-v1-practice 38 38 45 56 38

Table 4.3: The total number of times each wallpaper group appeared as the correct answer across
all motif mapping tests

4.4 Accuracy by Test Type
Comparison of accuracy distributions reveals a significant amount of information about map-

ping effectiveness. Base mapping v1 only has five samples and therefore is not as representative
of the population as the other mappings.

Figure 4.2: The distributions of per-test accuracy by test type.

A narrow spread, as is the case for base mapping v2, means that the sampled users performed
similarly to each other. The mapping likely had similar effectiveness on all users who took the
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base mapping v2 version of the discernment test. The fact that the accuracies are centered around
0.50 suggests users didn’t build a much better or worse correspondence than random guessing.
Motif mapping v1 has a relatively larger spread which means that the mapping had a wider range
of effectiveness on users. The first quartile is located at 0.50 and the median is at 0.60, which is
indicative of stronger discriminatory capabilities for some users and essentially random guessing
for others. With the third quartile at 0.70 and even a perfect score outlier, a handful of users
developed a very strong discernment from motif mapping v1.

4.4.1 Base Mapping v2 vs. Motif Mapping v1 T-test
A two-tailed t-test for populations with different variances was carried out between the test

samples from base mapping v2 and motif mapping v1. The null hypothesis is that users achieve
the same mean accuracy on tests from these two mappings and the alternate hypothesis is they do
not. A t value of −1.92 and a p value of 0.068 were acquired. Using a valid significance value of
0.10, this is enough to reject the null hypothesis. However, using a significance value of 0.05, the
null hypothesis would fail to be rejected. This mounts enough evidence to believe that users are
able to, on average, achieve a better identification accuracy through the motif mapping than the
base mapping. The motif mapping is an experimental demonstration showing users are capable
of build some level of symmetry correspondence between visual and auditory perception in an
undirected manner.

4.5 Accuracy by Wallpaper Group Within Test Type
With a large enough sample size of test responses, each specific wallpaper group mapping

within the whole mapping can be evaluated independently. These relative accuracies reveal which
wallpaper groups were easier or harder to discern for the user, and can pinpoint the specific sub-
mappings that should be targeted for improvement. The accuracy for a specific group for a single
test is calculated by dividing the number of times that group both appeared as the correct answer
and was answered correctly by the number of times the group appeared as the correct answer. The
overall average accuracies by wallpaper group are found in Tables 4.4 and 4.5. The distributions
of single test accuracies by wallpaper group are found in Figures 4.3 and 4.4

4.5.1 Base Mappings

Test Type P1 P2 PM PG CM PMM PMG
base-mapping-v1 0.60 0.00 0.60 0.60 0.17 0.50 0.70
base-mapping-v2 0.47 0.44 0.52 0.59 0.40 0.46 0.63
base-mapping-v2-practice 0.64 0.35 0.46 0.71 0.44 0.47 0.77

Table 4.4: The average accuracies by wallpaper group for the base mappings.
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Figure 4.3: The distributions of single-test accuracies by wallpaper group for base mapping v2
(right) and the corresponding practice test (left).

Although the single-test accuracy distributions have too much variability due to the fact that
each group only appears in each test as the right answer on average two to three times, the overall
average accuracies by group definitely reveal that certain groups were easier to identify than others.
For base mapping v2, the average accuracies follow similar trends for the real test and practice
test. The PMG and PG groups are identified more accurately than other groups, for both real and
practice tests. For most groups, the average accuracy is higher for the practice test, likely due to
the fact that the user recieves feedback on the correct choice immediately after each question. The
user could potentially use trial and error techniques to perform better on the practice test. This is
a highly interesting result especially since each group is represented by a different pitch with the
same tonal qualities and rhythm and only a minute percentage of people have perfect pitch.
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4.5.2 Motif Mapping

Test Type P1 P2 P3 P4 P6
motif-mapping-v1 0.55 0.62 0.58 0.68 0.60
motif-mapping-v1-practice 0.55 0.68 0.58 0.68 0.61

Table 4.5: The average accuracies by wallpaper group for the motif mapping.

Figure 4.4: The distributions of single-test accuracies by wallpaper group for motif mapping v1
(right) and the corresponding practice test (left).
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The motif mapping has nearly congruent average accuracies by group between the real test and
the practice test. This indicates that the correctness feedback after each question on the practice test
has relatively low effect on identification accuracy. The only group that had a major difference was
P2, where the practice test had a higher average accuracy. This could imply that P2 is identified
more accurately when prior correct examples of P2 patterns are seen within the same test. Based
on average accuracies, the P4 group had the most discriminative mapping. It could also simply
imply that the P4 wallpaper group has a more distinct symmetry than the other groups.

The single-test accuracy distributions are more meaningful for the real test than for the practice
test. The practice test has a user-determined length and could result in certain groups not not
even showing up at all as the correct answer on short tests. The distributions reflect the overall
accuracies well for the real test with the exception of the P4 and P6 groups. These discrepancies
likely stem from low group representation in specific tests which leads to random variance.

4.6 Duration By Test Type

Test Type Average Test Duration (Seconds)
base-mapping-v1 65.96
base-mapping-v2 71.75
motif-mapping-v1 135.17

Table 4.6: The average test duration for the test types with a fixed number of questions.

The only valid comparison to be made is between the base mapping v2 and motif mapping v1
average durations, as they have the same number of questions per test (20). The motif mapping
tests took much longer likely due to the fact that the distinguishing melodical element lasts for an
entire measure, compared to an 8th note for the base mapping.
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Figure 4.5: The distributions of per-test duration by test type.

However, the box plots in Figure 4.5 reveal that the average duration is being pulled up by a
number of outliers. The same phenomenon is observed when comparing medians so the above
conclusion still holds.

4.7 Elapsed Times By Test Type
As seen in Table 4.7, the average elapsed times per question are much higher for the two

practice tests compared to the real tests, likely due to users not strictly focused on the questions
the entire time. Once it came time for the real test, they likely focused better. After all, they don’t
know that elapsed times are being recorded, which was an intentional trade-off decision. Again,
the average elapsed time for the real motif mapping v1 test is higher than for the real base mapping
v2 test because the distinguishing melodical element lasts longer. It takes longer for a user to hear
the entire motif and then make a decision.

Test Type Average Elapsed Time Per Question (Seconds)
base-mapping-v1 6.60
base-mapping-v2 3.59
base-mapping-v2-practice 42.59
motif-mapping-v1 6.76
motif-mapping-v1-practice 62.70

Table 4.7: The average time spent on a question (in seconds) by test type.
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Figure 4.6: The distributions of per-question elapsed time by test type visualized as a joint his-
togram. The outliers for the practice tests have skewed the distribution

Figure 4.7: The distributions of per-question elapsed time by test type.

Although some outliers still exist, there is much smaller variance in elapsed time for the real
tests compared to the practice tests. This suggests that users had slightly differing attitudes between
the two categories and truly treated the practice test as a unpressured opportunity to practice.

4.8 Elapsed Times by Wallpaper Group Within Test Type
Comparing the effectiveness of different wallpaper groups within a mapping is done by looking

at the time spent on a per-question basis and the aggregate statistics surrounding those elapsed
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times. Though the raw elapsed times can provide some insight (Table 4.8 and 4.10), it is more
useful to compare elapsed times that have been normalized on a per-test basis (Table 4.9 and 4.11).
This is so individual tendencies are taken into account and a valid comparison can be made between
wallpaper groups. The values are normalized so that all elapsed times for a single test add up to 1.

For base mapping v2 and motif mapping v1, spending equal amounts of time on each question
would result in a normalized average of 0.05 since there are twenty questions per test. For base
mapping v1, spending equal amounts of time on each question would result in a normalized average
of 0.10 since there are ten questions per test. For the real tests of the two base mappings, there
appears to be no significant difference in average elapsed times. There are a number of outliers
for base mapping v2, and may represent times where a user felt stumped. The CM, PMM, and
PMG groups all had a couple of outliers, suggesting that when offered as the correct answer, songs
generated from these groups may yield a more difficult correspondence.

4.8.1 Base Mappings

Test Type P1 P2 PM PG CM PMM PMG
base-mapping-v1 6.36 6.31 4.47 7.04 7.48 7.21 5.96
base-mapping-v2 5.67 3.07 2.70 3.29 3.61 3.41 3.45
base-mapping-v2-practice 43.05 47.04 34.86 44.67 49.09 36.39 44.77

Table 4.8: The average per-question elapsed times (seconds) by wallpaper group for the base
mappings.

Test Type P1 P2 PM PG CM PMM PMG
base-mapping-v1 0.092 0.106 0.068 0.107 0.115 0.114 0.086
base-mapping-v2 0.053 0.047 0.044 0.041 0.048 0.055 0.064

Table 4.9: The average per-question elapsed times (seconds) by wallpaper group for the base
mappings, normalized on a per-test basis.
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Figure 4.8: The distribution of normalized per-question elapsed times for base mapping v1.

Figure 4.9: The distribution of normalized per-question elapsed times for base mapping v2.
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4.8.2 Motif Mapping
There appears to be no significant variation in average elapsed times for the motif mapping

either, although the P4 groups and P6 groups had slightly shorter times than the expected baseline.
This may suggest that the P4 and P6 groups lead to slightly faster and more confident identification
than the others. Subjectively, it seems as though the patterns from these two groups are more
distinct than patterns from the other three, due to the way the 4- and 6-fold rotation centers stand
out. This could also suggest the generated melody motifs for P4 and P6 are more distinct than the
others.

Test Type P1 P2 P3 P4 P6
motif-mapping-v1 8.21 6.52 6.65 7.02 5.79
motif-mapping-v1-practice 62.29 62.49 68.52 53.73 69.64

Table 4.10: The average per-question elapsed times (seconds) by wallpaper group for the motif
mapping.

Test Type P1 P2 P3 P4 P6
motif-mapping-v1 0.056 0.050 0.052 0.048 0.045

Table 4.11: The average per-question elapsed times (seconds) by wallpaper group for the motif
mapping, normalized on a per-test basis.

Figure 4.10: The distribution of normalized per-question elapsed times for motif mapping v1.
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Chapter 5

Conclusion
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5.1 Outcomes
This thesis has resulted in the following set of outcomes:

• A prototype system to continuously generate music in response to the symmetry and sec-
ondary visual characteristics present in an input image.

• An efficient, crowd-sourced means to test the absolute and comparative discernment power
of various visual to auditory mappings.

• A specific melody motif-based mapping that offers statistically significant improvement over
a hard baseline discernment level, which suggests some level of natural linkage between
visual and auditory symmetry perception.

Due to the lack of regulation for the testing environment and a number of factors that are
intrinsic and extrinsic to the design of the tests, the results derived from this thesis should be
treated as what they are: an exploratory approach that uses experimental means to observe the
effects of a audio-visual symmetry mapping.

5.2 Future Work

5.2.1 Improved Mappings
The motif mapping presented in this work is extremely rudimentary compared to the limitless

possibilities afforded by the world of music. With modern synthesizers and effects, a much more
sophisticated collection of sounds and musical elements can be produced. These details, though
subtle, are similar in nature to the level of detail and style perception humans have with vision.
Future work would focus on increasing the complexity and depth of mapping coherence, without
sacrificing intuitiveness. Ultimately, the apex goal would be to find a mapping technique that
enables the auditory perception of visual elements at native levels of detail.

5.2.2 Rethinking of Approach
The discernment listening tests presented by this thesis may not be the ideal way to test the

effectiveness of the mappings. It is not grounded in any neurological basis, and instead treats
human perception as a black box. Given the prior work on the neural basis of visual symmetries
[2] and visual cortex representation of wallpaper symmetries [8], it would be interesting to use a
more direct physiological approach to analyze actual neurological linkage for symmetry perception
instead of relying on speculation.

5.2.3 Machine Learning
Machine learning can be employed to help build mappings and test the effectiveness of map-

pings. Although limited prior work exists on this technique, GANs could be trained to generate
music automatically from a set of desired parameters. A neural network that mirrors human hear-
ing (Gammatone filterbank + LSTM Autoencoder) [9] could help determine the effectiveness of
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new mappings in an automoted way. Finally, evolutionary algorithms can be used to automate the
process of synthesizing and evaluating new mappings. This technique does not have to detract
from the benefits provided by the manual creation of mappings, but instead could embed rules that
ensure the mappings are musical and human-friendly.

5.3 Conclusion
There is abundant value to be derived in researching groups of human perceptive senses in

conjunction, not just independently. While investigating the differences between perceptive senses
can bring more understanding about the specific potential of each sense, investigating the similar-
ities and connectivity can reveal more about human perception as a whole. Visual perception is
extremely detailed and and plays a disproportionately large role in object recognition and classifi-
cation. The human brain’s ability to pre-attentively recognize symmetry highlights the importance
of information abstraction and the hierarchy of information retrieval from perception. By relating
high-level visual symmetries to high-level musical symmetries, the way the brain processes general
symmetry was explored experimentally.

A system was devised to generate a continuous musical track in response to the symmetries
and secondary visual characteristics present in an input image. A melody motif-based mapping
was invented for this system that provides correspondence between wallpaper symmetry groups
and the generated song. This mapping demonstrated an effectiveness level above baseline levels
in human discernment tests, and proves the possibility of mapping between visual and auditory
perception. The use of audio and music as a means of letting one perceive symmetries and textures
in a general manner has valuable research and practical applications that could make the world a
more accessible and dynamic place for all humans.
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