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ABSTRACT 

 

During a disease outbreak, healthcare professionals are essential to treat patients and prevent new 

cases. However, these healthcare professionals are themselves susceptible to contracting the disease. As 

more healthcare workers get infected, fewer are available to provide care for others, and the overall 

quality of care available to patients diminishes. This depletion of healthcare workers may contribute to the 

severity of the epidemic. To examine this decline in quality of care, we explicitly include a quality of care 

term in a differential equation-based SIRV model.  We assume quality of care for a health force declines 

as the proportion of healthy healthcare workers declines. We analyze the resulting time series dynamics, 

cumulative cases and mortality during an outbreak. We assume that vaccination, recovery, and survival 

rates are impacted by the quality of care function. We compare 4 models: 1) a standard SIRV model, 2) 

an SIRV model with a separate class for healthcare workers, 3) an SIRV model where transitions are 

dependent on a quality of care function, and 4) an SIRV model with a separate class of healthcare workers 

and where transitions are dependent on a quality of care function. Quality of care is described by a 

function with two shape parameters: the loss impact parameter, which defines the negative impact on the 

quality of care arising from the loss of a single healthcare worker; and the redundancy parameter, which 

defines the number of healthcare workers that may be lost before collapse in the healthcare system.  

By comparing these models, we show that explicitly modelling healthcare workers and 

accounting for declining quality of care changes our predictions of epidemic outcomes. Our results show 

an increase in the number of individuals who get infected in both models that consider the quality of care 

function, with a greater increase occurring when healthcare workers are considered separately from the 

general population. The models also project larger epidemic outcomes when the healthcare system is 

fragile. This occurs when the loss impact parameter is high (i.e. each lost healthcare worker has a 

relatively large negative impact on the quality of care) and the redundancy parameter is low (i.e. when 
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there is little built-in redundancy in the healthcare system). These differences between the models show 

the importance of including quality of care in epidemic models that include management techniques. As 

more notable differences were seen when healthcare workers were considered separately, our full model 

(IV) can likely best be used to inform health policy that may differ for healthcare workers and the general 

population. This may help to improve the choice of management interventions considered to mitigate the 

effects of a future outbreak. 
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Chapter 1  
 

Introduction 

In 2014, an Ebola epidemic ravaged western Africa. Over the course of this epidemic, healthcare 

access and quality became increasingly limited1. According to the World Health Organization (WHO), 

the weight of the Ebola burden caused the already limited healthcare systems of the affected countries to 

collapse1,2  and many people were not able to receive the medical aid they needed1,3. Specifically, quality 

of care provided to patients declined dramatically as an unprecedented number of healthcare workers got 

infected1,4. For example, in the Kenema Hospital in Sierra Leone, deaths among healthcare workers, 

already in short supply, pushed the hospital to the verge of collapse, as the Ebola epidemic progressed5. 

Clinic closures, personal protective equipment shortages and overcrowding of hospitals in the midst of the 

epidemic resulted from a progressively limited health force1. The survival rates for individuals without 

healthcare access were dramatically lower than they were for individuals with healthcare access3.  

Each year dozens of potentially lethal outbreaks affect populations around the world. For 

example, annual epidemics of seasonal influenza kill thousands of people6, and emergent strains of 

pandemic influenza (e.g. the 2009 H1N1 pandemic) may have even higher mortality burden7. 

Additionally, outbreaks sparked by translocated infectious diseases can have especially high burdens 

(cases and deaths) and overwhelm existing health systems in the locations where they emerge. Zika 

emerged in the Americas starting in Brazil in 2015 and was quickly declared a public health emergency 

by the WHO8. Dozens of other infectious diseases have recently caused lethal outbreaks, including 

cholera, Nipah virus, Rift Valley Fever, Yellow Fever, and measles9. As the primary source of care, 

healthcare workers are essential to providing care during such outbreaks. However, their exposure means 

they may also become victims of the outbreak, due to their frequent contact with infected individuals. 

Infection hinders their ability to provide care10, either because policy forbids them to work, or because 
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they are too sick to work effectively, or because they die. Access to healthcare is already a bottleneck for 

public health in many parts of the world11. As healthcare workers become infected during an outbreak, 

healthcare access perforce becomes limited as the system is overwhelmed, which causes the quality of 

care that can be offered to the average individual to decline.  

Reduced quality of care may have several effects on epidemic outcomes. The absolute number of 

cases and disease-induced deaths could be impacted by a declining quality of care function, as healthcare 

workers are essential for providing vaccinations to prevent the disease from spreading and the necessary 

care to reduce cases and deaths. Treating patients may either reduce the duration during which the 

individual is infectious or reduce the probability that the patient dies from infection. At the population 

level, reduced healthcare thus likely translates into fewer administered doses of vaccine (if one exists), 

longer duration of infection, and increased case fatality ratios. Thus, not only does a decline in quality of 

care affect individual outcomes including duration of infection and likelihood of death, it poses problems 

for controlling the epidemic at a population scale, likely increasing the number of cases, the number of 

deaths, and the severity and duration of the outbreak. 

Conventional epidemic models fail to take into consideration that epidemic rates may change 

over the course of the outbreak, and thus neglect the potential impact of a declining quality of care12. As a 

result, such models may underestimate epidemic burdens, especially when quality of care has the 

potential to decrease dramatically over the course of the epidemic. To assess the impact of a declining 

quality of care function, we develop four epidemiological models based on a compartmental differential 

equation model, where the classes of individuals are susceptible, S, infected, I, recovered, R, and 

vaccinated, V. Model I is an SIR-type13 model with vaccination (SIRV). In model II, we extend model I to 

include healthcare workers as a separate sub-population.  In model III, we instead extend model I to 

include a quality of care function, which depends on the proportion of uninfected individuals in the total 

population. Finally, in model IV, we combine models II and III to simultaneously model healthcare 
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workers as a separate sub population and to include a quality of care function that now depends on the 

proportion of uninfected healthcare workers in the sub population of healthcare workers.  

The decline in quality of care over the course of a general epidemic is difficult to characterize 

empirically and is likely context-specific. Thus, for the purposes of our models, and to maintain 

generality, we model the quality of care function with a sigmoidal function, as this function can 

incorporate both linear and exponential changes to the quality of care as the proportion of uninfected 

individuals or uninfected healthcare workers change. We here examine the effect of the specific 

parameterization of the quality of care function on epidemic burdens, specifically case counts and 

mortality, in terms of both the loss impact parameter, which quantifies how much quality of care declines 

if a single healthcare worker becomes infected, and the system redundancy, which quantifies how many 

healthcare workers can be lost before quality of care sees serious decline. We compare outcomes produce 

by our four models to assess the differences in predictions yielded by explicit consideration of healthcare 

as a dynamic resource. We show that the inclusion of the quality of care does matter and impacts 

epidemic outcomes, by showing conventional models may underestimate resulting case counts and 

mortality. 

 



Chapter 2  
 

Methods 

We aim to investigate the direct impact of the loss of healthcare workers (HCWs) on outbreak 

outcomes. To this end, we developed four SIR-type models in order to account for the following four 

scenarios. In model I, we take HCWs to be some fraction of the general population (Fig. 1A). However, 

in some cases, HCWs may have higher infection rates, associated with more frequent contact with 

infected individuals14, and may also be priority targets for interventions such as vaccines3. Therefore, in 

model II, we describe HCWs as a separate population (Fig. 1B). In model I and model II we do not 

account for the quality of care delivered by HCWs through an outbreak, which may affect recovery rates 

and likelihood of survival, thus these models provide a baseline representative of current modeling 

practice. Models III (Fig. 1C) and IV (Fig. 1D) are extensions of models I and II, respectively, in which 

we model quality of care as a function of infection prevalence. In the following we outline each of these 

models and discuss specifically how we model quality of care as a function of healthcare worker 

population, for models III and IV. 
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Figure 1: Model schematic comparison of the four distinct compartmental models that are used.  

β (Beta) is the rate of transmission, γ (gamma) is the recovery rate, ρ (survival parameter) is the probability of 

survival, and v (vaccination rate) is the rate of a fully effective vaccine. Rates for both systems in models II and IV are the 

same between both sets of individuals. 

A: Illustration of Model I where healthcare workers are part of the general population 

B: Illustration of Model II where the healthcare workers are a separate group from the rest of the population. 

The classes for healthcare workers are denoted with an h-subscript 

C: Illustration of Model III where healthcare workers are part of the general population and the dotted lines are 

rates affected by a proportional quality of care function 

D: Illustration of Model IV where the healthcare workers are a separate group from the rest of the population 

and the dotted lines are rates affected by a proportional quality of care function 

For all models we apply the following parameterization. Susceptible individuals, S, are infected at 

a rate . Infected individuals, I, may die with probability ρ or recover with probability 1-ρ, at recovery 

rate γ. We assume that once infected individuals have recovered, R, they are no longer susceptible. 

Further, we assume that vaccines grant lasting immunity to the disease as well, so the susceptible 

individuals, vaccinated at rate ν, will remain in the vaccinated class, at least for the duration of the 

outbreak under consideration as vaccinated individuals, V. Model I is a SIR-type model with an additional 
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vaccinated class, shown schematically in Fig. 1A. This model is described by the following system of 

differential equations: 

�̇�(𝑡) = −
𝛽(𝐼(𝑡))

𝑁(𝑡)
𝑆(𝑡) −   𝑣𝑆(𝑡)        (𝐸𝑞 1) 

𝐼(̇𝑡) =
𝛽(𝐼(𝑡))

𝑁(𝑡)
𝑆(𝑡) − 

𝛾𝐼(𝑡)

(1 − 𝜌)
         (𝐸𝑞 2) 

�̇�(𝑡) = 𝛾𝐼(𝑡)    𝐸𝑞(3) 

�̇�(𝑡) = 𝑣𝑆(𝑡)     𝐸𝑞(4) 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝑉(𝑡)     𝐸𝑞(5) 

For each class of susceptible (S), infected (I), recovered (R) and vaccinated (V), individuals may 

enter and leave the classes at the rates seen in the equations. In model II, we extend model I to capture 

distinct dynamics between the general population and HCWs separately. In principle, due to the nature of 

work done by HCWs, such as frequent involvement with infected individuals, infection dynamics 

parameters may differ between HCWs and non-HCWs. Classes to account for the susceptible, infected, 

recovered and vaccinated population of HCWs have been added in addition to the previous four classes, 

which allows for them to possibly be parameterized differently compared to the rest of the population. 

Additionally, both HCWs and the general population may contribute to the transmission of infection. 

Classes related to the HCWs are denoted with a subscript, h. The system of differential equations for 

model II becomes: 

�̇�(𝑡) = −
𝛽(𝐼(𝑡) + 𝐼ℎ(𝑡))

𝑁(𝑡)
𝑆(𝑡) −  𝑣𝑆(𝑡)  (𝐸𝑞7) 

𝐼(̇𝑡) =
𝛽(𝐼(𝑡) + 𝐼ℎ(𝑡))

𝑁(𝑡)
𝑆(𝑡) −  

𝛾𝐼(𝑡)

(1 − 𝜌)
 (𝐸𝑞8) 

�̇�(𝑡) = 𝛾𝐼(𝑡) (𝐸𝑞9) 

�̇�(𝑡) = 𝑣𝑆(𝑡) (𝐸𝑞10) 

�̇�ℎ(𝑡) = −
𝛽ℎ(𝐼(𝑡) + 𝐼ℎ(𝑡))

𝑁(𝑡)
𝑆ℎ(𝑡) −   𝑣𝑆ℎ(𝑡) (𝐸𝑞11) 
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𝐼ℎ̇(𝑡) =
𝛽ℎ(𝐼(𝑡) + 𝐼ℎ(𝑡))

𝑁(𝑡)
𝑆ℎ(𝑡) − 

𝛾𝐼ℎ(𝑡)

(1 − 𝜌)
  (𝐸𝑞12) 

�̇�ℎ(𝑡) = 𝛾𝐼ℎ(𝑡) (𝐸𝑞13) 

�̇�ℎ(𝑡) = 𝑣𝑆ℎ(𝑡) (𝐸𝑞14) 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝑉(𝑡) + 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡) + 𝑉ℎ(𝑡)  (𝐸𝑞15) 

There is no prioritization of vaccination in our model parameterization and both population 

groups are vaccinated at the same rate in all variations of the model. We make the distinction between 

models I and II, which account for the HCW population as a separate population denoted by subscript h, 

in preparation for modeling quality of care delivered in the course of an outbreak, which will affect 

recovery rates and likelihood of survival. We will take the quality of care as a function of the fraction 

uninfected individuals in the population, extending model I, or uninfected fraction of HCWs, extending 

model II. 

Quality of Care Function 

Conventional models do not take a declining quality of care provided by HCWs into 

consideration. However, the quality of care given to infected individuals likely affects epidemic 

outcomes, since the care provided can, for example, improve recovery rates and reduce mortality. Here 

we describe how we model quality of care, as we are interested in understanding how the inclusion of 

quality of care impacts epidemic outcomes.  

We model the quality of care, Q(P(t)), as a function of the proportion of HCWs, P(t), that are 

uninfected and able to provide care. We construe the two shape parameters associated with Q(P(t)), k and 

m, as describing loss impact (k) and the health system redundancy (m). We choose Q(P(t)) to be a 

sigmoidal function, 1 (1 + 𝑒−𝑘(𝑃(𝑡)−𝑚))⁄ ,  that is normalized to range from 0 to 1. This allows us to 

showcase healthcare systems working at levels from 0% to 100%. 
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𝑄(𝑡) = 𝑄(𝑃(𝑡)) =

1
1 + 𝑒−𝑘(𝑃(𝑡)−𝑚) −

1
1 + 𝑒𝑘𝑚

1
1 + 𝑒−𝑘(1−𝑚) −

1
1 + 𝑒𝑘𝑚

.        (𝐸𝑞 16) 

When all HCWs are infected (P(t)=0), the healthcare system can provide no care (Q(P)=0) and is 

said to be operating at 0%, while if no HCWs are infected (P(t)=1), the quality of care that the health 

system can provide is its best (Q(P)=1) and is operating at its full capacity of 100%. We choose a 

sigmoidal function because of the range of dynamics it captures via the shape parameters, m and k. 

Examples of the quality of care function, for a few shape parameterizations, are provided in Figure 2.  

 

Figure 2: This figure illustrates a few shapes the quality of care function can be which depend on the value of the 

loss impact parameter and the redundancy parameter.  

Additionally, each curve illustrates one sample quality of care function belonging to each quadrant in Fig. 4. 

Mathematically, the loss impact parameter (k) is could be related to each healthcare worker’s 

impact on the health force system. When this parameter is larger, a steeper decline is evident in the 

healthcare system for each healthcare worker that is infected, as seen in the black curves in Fig. 2 (see 

also Fig. S1 in the supplement). The health system redundancy parameter (m) accounts for the minimum 

health system provision, which is the minimum number of healthcare workers needed to provide adequate 

care. A higher health system redundancy parameter represents a healthcare system that is safeguarded 
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compared to a lower redundancy parameter, as it is able to withstand the loss of more healthcare workers 

before it cannot provide adequate care, as shown in Fig. 2. When considered simultaneously, we find that 

the high redundancy parameter overall leads a stronger quality of care provided by the health force 

compared to systems with a low redundancy parameter. Collectively, these two shape parameters can 

represent a robust healthcare system (high loss impact k, high robustness m), a fragile system (high k, low 

m) and other combinations in between as seen in Figure 2. Due to the normalization of the quality of care 

function to bound the values between 0 and 1, this normalization leads to a counter-intuitive response to 

the loss impact parameter. While we would expect a higher loss impact parameter to pertain to a weaker 

health system, the normalization means that when k is high, there is little change in quality of care until 

some threshold, corresponding to m, is reached. We explore this further in the supplemental figures. 

Through these two shape parameters, the quality of care function Q(t) can describe multiple modes of 

decline. This flexibility is important as the function itself has no empirical estimate, and no supporting 

observations. As shown in Figure 4, we consider loss impact parameter values (k) between 0-5 and 

redundancy parameter values (m) between 0 and 1, and we test the sensitivity of epidemic outcomes as a 

function of k and m. 

Since the quality of care Q(P(t)) directly relates to the number of HCWs that are able to provide 

care, parameters describing the recovery rate and mortality risk for infected individuals, and population 

vaccination rate, may be modulated by the quality of care function. We assume that the decline in quality 

of care will affect all of these parameters simultaneously. 

Models III & IV 

We complement Models I and II with Models III and IV, which are distinguished by the inclusion 

of a quality of care function, which allows us to explore the different dynamics resulting from the 

inclusion of quality of care. Model III extends model I, and assumes that quality of care provided depends 
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on the fraction of the prevalence of infection in the population. This is represented in the quality of care 

function, Q(P(t)), as 𝑃(𝑡) = (
𝑆+𝑅+𝑉

𝑆(0)+𝐼(0)+𝑅(0)+𝑉(0)
), the fraction of uninfected individuals relative to the 

initial population.  

As the quality of care function relates to the care that HCWs may provide, it will directly impact 

the rate at which the susceptible population is vaccinated, v. Further, the quality of care function affects 

the probability of dying as well as the rate at which individuals recover, as the stronger quality of care 

function suggests a higher likelihood of survival and recovery from the epidemic. Therefore, our extended 

model III differential equations are: 

�̇�(𝑡) = −
𝛽(𝐼(𝑡))

𝑁(𝑡)
𝑆(𝑡) −   𝑄(𝑃(𝑡))𝑣𝑆(𝑡)        (𝐸𝑞 17) 

𝐼(̇𝑡) =
𝛽(𝐼(𝑡))

𝑁(𝑡)
𝑆(𝑡) −  

𝛾𝐼(𝑡)𝑄(𝑃(𝑡))

(1 − 𝜌)𝑄(𝑃(𝑡))
         (𝐸𝑞 18) 

�̇�(𝑡) = 𝑄(𝑃(𝑡))𝛾𝐼(𝑡)    𝐸𝑞(19) 

�̇�(𝑡) = 𝑄(𝑃(𝑡))𝑣𝑆(𝑡)     𝐸𝑞(20) 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝑉(𝑡)    𝐸𝑞(21) 

Healthcare workers are often subject to different dynamics, for example more frequent exposure 

to infected individuals or higher vaccination rates. To capture these differences in model IV, we extend 

model II to include a proportional quality of care function Q(P(t)); however, Q(P(t)) is now driven by the 

proportion of uninfected healthcare workers. Thus for model IV, for Q(P(t)), P is given by the proportion 

of uninfected HCWs, 𝑃(𝑡) = (
𝑆ℎ+𝑅ℎ+𝑉ℎ

𝑆ℎ(0)+𝐼ℎ(0)+𝑅ℎ(0)+𝑉ℎ(0)
) , the fraction of uninfected HCWs relative to the 

initial HCW population. We extend the quality of care function to impact the same parameters in the same 

manner as in model III for the four additional healthcare worker classes. The extended system of 

differential equations for model IV is: 

�̇�(𝑡) = −
𝛽(𝐼(𝑡) + 𝐼ℎ(𝑡))

𝑁(𝑡)
𝑆(𝑡) −   𝑄(𝑃(𝑡))𝑣𝑆(𝑡) (𝐸𝑞 22) 
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𝐼(̇𝑡) =
𝛽(𝐼(𝑡) + 𝐼ℎ(𝑡))

𝑁(𝑡)
𝑆(𝑡) −  

𝛾𝐼(𝑡)𝑄(𝑃(𝑡))

(1 − 𝜌)𝑄(𝑃(𝑡))
(𝐸𝑞 23) 

�̇�(𝑡) = 𝑄(𝑃(𝑡))𝛾𝐼(𝑡)  (𝐸𝑞 24) 

�̇�(𝑡) = 𝑄(𝑃(𝑡))𝑣𝑆(𝑡)   (𝐸𝑞 25) 

�̇�ℎ(𝑡) = −
𝛽ℎ(𝐼(𝑡) + 𝐼ℎ(𝑡))

𝑁(𝑡)
−   𝑄(𝑃(𝑡))𝑣𝑆ℎ(𝑡) (𝐸𝑞 26) 

𝐼ℎ̇(𝑡) =
𝛽ℎ(𝐼(𝑡) + 𝐼ℎ(𝑡))

𝑁(𝑡)
−  

𝛾𝑄(𝑃(𝑡))𝐼ℎ(𝑡)

(1 − 𝜌)𝑄(𝑃(𝑡))
   (𝐸𝑞 27) 

�̇�ℎ(𝑡) = 𝑄(𝑃(𝑡))𝛾𝐼ℎ(𝑡)  (𝐸𝑞 28) 

�̇�ℎ(𝑡) = 𝑄(𝑃(𝑡))𝑣𝑆ℎ(𝑡) (𝐸𝑞 29) 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝑉(𝑡) + 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡) + 𝑉ℎ(𝑡)   (𝐸𝑞 30)   

In summary, we will discuss epidemic outcome predictions of four models, wherein we consider 

either HCWs as mixed in to the general population, or as a distinct population that may, in general, have 

its own dynamics, for example, a higher infection rate, associated with more frequent contact with 

infected individuals, along with epidemic dynamics neglecting or accounting for the impact of infection 

on quality of care (Figure 1). The equations in model III describe a system that gets overwhelmed as 

patient saturation increases in general, while the equations in model IV describe a system that is 

overwhelmed only when the saturation of healthcare workers increases. Comparing these four models will 

allow us to explicitly consider whether and to what extent the quality of care matters in epidemic models. 

Parameter Assumptions and Initial Conditions 

The complete set of initial conditions and parameters are provided in Table 1. We assume that we 

have a basic reproduction ratio, R0, of roughly 2.5, a mid-range value for a range of outbreak-prone 

diseases, such as Ebola15, pandemic flu16, SARS17. Further, we assume the probability of dying from 

disease is 0.2, another mid-range value between extremes of the same diseases: Ebola 0.718 and SARS 
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0.1519. We model disease dynamics assuming an initial population of 1000 individuals, while 2% of the 

population are healthcare workers in models III and IV, an intermediate value chosen from data provided 

by the WHO20. We assume that the outbreak is triggered by a single initial infected individual, and that 

this first case is in the general population, i.e., not an HCW. 

Symbol Parameter Baseline value [range] Meaning 

𝑣 Vaccination rate 0.02 weeks-1 Rate of vaccination 

𝛽 Transmission rate 5 weeks-1 Rate of transmission 

𝛽ℎ Transmission rate for HCW 5 weeks-1 Rate of transmission 

𝛾 Recovery rate 2 weeks-1 Rate of recovery 

𝜌 Probability of Dying 0.2 Probability of dying once 

infected (see text) 18,19 

Q(t) Quality of Care Function [0,1] Quality of Care function  - 

HCW ratio 

k Loss impact parameter 4 [0-5] Affects how steep sigmoid 

function is 

m Redundancy parameter 0.1 [0-1] Affects midpoint of sigmoid 

function 

N(0) Population 1000 Starting total population 

S(0) Susceptible Gen Pop 979 Initial number of susceptible 

general group 

I(0) Infected Gen Pop 1 Initial number of infected 

general group 

R(0) Recovered Gen Pop 0 Initial number of recovered 

general group 

V(0) Vaccinated Gen Pop 0 Initial number of vaccinated 

general group 

Sh(0) Susceptible Med Pop 20 Initial number of susceptible 

HCWs (see text) 

Ih(0) Infected Med Pop 0 Initial number of infected 

HCWs 

Rh(0) Recovered Med Pop 0 Initial number of recovered 

HCWs 

Vh(0) Vaccinated Med Pop 0 Initial number of vaccinated 

HCWs 
Table 1: Model IV Baseline Parameters and Initial Conditions 

 

 



Chapter 3  
 

Results 

Underestimated Epidemic Outcomes (Cases & Deaths) 

Of the four models we consider, models I, Eq(1-5) and II, Eq(7-15), represent conventional 

epidemic models with no explicit dependence on quality of care, while models III, Eq(17-21), and IV, 

Eq(22-30), represent the modified model which includes consideration of the quality of care. When both 

HCWs and the general population are assumed to have the same dynamics, i.e., have the same model 

parameters (Fig. 3A), models I and II - with no proportional quality of care - generate the same outcomes. 

The same is true for models III and IV, which include proportional quality of care, since disease dynamics 

are described by the same vaccination, recovery and mortality rates. Models that consider quality of care 

(models III and IV) generate different outcomes than models that do not (models I and II). Notably, the 

projected range of total cases increases when declining quality of care is included, as a lower quality of 

care function leads can lead to up to a 15% increase in infections for the baseline parameterization (Table 

1) seen in Figure 3A.  
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Figure 3: The number of cumulative infections for different models are shown below in two scenarios. 

A: The cloud shows the range of cumulative infections that result for parameter combinations of the loss impact 

parameter and the redundancy parameter when a proportional quality of care function is included. Parameters for both 

population groups are the same. 

B: The cloud shows the range of cumulative infections that result from parameter combinations of shape 

parameters when a proportional quality of care function is included. In this simulation, the transmission rate has been 

increased by 50% for healthcare workers only. All other parameter combinations for both groups are the same. 

In Figure 3 we present a range of outcomes corresponding to a range of quality of care functions 

(that is, we considered a range of redundancy parameters and loss impact parameters in Q(t)). In Figure 

3A, we present cumulative infections for models with no proportional care component, where we do not 

consider quality of care (black line), and cumulative infections for all parameterizations of the quality of 

care function we considered for models with proportional care (grey cloud). In Figure 3B, the light grey 

cloud (which is overlapped by the grey cloud down to the dotted black line), we present cumulative 

infections for all combinations of k and m of the quality of care function considered from model IV, while 

assuming infection rates are 50% higher for healthcare workers compared to the general population, 

achieved by assuming that the infection rate, 𝛽ℎ, is 150% greater for HCWs than for the general 

population. We also compare this to a result from model II where we make the same assumption (dark 

grey line in Figure 3B, nearly overlapped by the dotted black line). This illustrates scenarios where 
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healthcare workers are at greater risk of infection due to increased contact amongst infected individuals, 

with the assumption that this increases their likelihood of getting infected. A higher infection rate, 

associated with increased exposure to infected individuals, may explain the scenario in which an 

unprecedented number of healthcare workers have been infected1.  The choice of quality of care function, 

driven by the uninfected population or uninfected HCW saturation, results in a higher number of 

cumulative infections when healthcare workers have a higher infection rate. This corresponds to the light 

grey region of the cloud (Fig. 3B), while the grey region relates to the model where parameters are the 

same for each group of the population as they are modeled as one group. Regardless of the assumptions 

on infection dynamics in the healthcare worker population (model III vs model IV), it is apparent that the 

inclusion of quality of care has a substantial impact on the resulting epidemic outcomes as this showcases 

a range of total cases, instead of one singular outcome for each model. 

 The quality of care function shows a range of behaviors as it spans a concave to convex region 

which can be used to capture healthcare systems of varying strengths (Fig. 2). A high loss impact 

parameter and low redundancy parameter result in a quality of care that declines steeply after just a few 

healthcare workers are infected (solid black line Fig. 2). A high loss impact parameter and high 

redundancy parameter mean that quality of care declines gradually until many healthcare workers are 

infected, and then declines steeply (dotted black line Fig. 2). A low loss impact parameter gives quality of 

care that declines in an intermediate manner regardless of the redundancy parameter (solid and dotted 

grey lines Fig. 2).  
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Shape Parameter Impacts on Case Counts and Deaths 

 

Figure 4: Each panel shows the epidemic burden resulting from each combination of the loss impact parameter 

and the redundancy parameters in the quality of care function. 

Each panel is split into 4 quadrants representing choices of the quality of care function for model IV: The top 

left relates to a quality of care function with a high loss impact parameter and low redundancy parameter, the top right 

has a high loss impact parameter and high redundancy parameter, the bottom left has low loss impact and low 

redundancy while the bottom right has a low loss impact and high redundancy. 

When compared to the sample quality of care functions included in the methods, each quadrant of 

the contour panels in figure 4 relates to one of the four sample quality of care functions – the upper right 
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quadrant corresponds to the dotted black line in Figure 2, the lower right corresponds to the solid grey 

line in Figure 2, the lower left corresponds to the dotted grey line in Figure 2, and the upper left 

corresponds to the solid black line in Figure 2. We investigate the impact that quality of care parameters k 

and m, representing loss impact and redundancy respectively, have on epidemic burdens. A high loss 

parameter paired with a low redundancy parameter causes the most severe epidemic outcomes with 

respect to case counts and mortality, as this represents a weak health system that has a rapid decrease in 

quality of care as few healthcare workers are infected (solid black line in Figure 3, upper left corner in 

Figure 4). Conversely, the mildest epidemic outcomes all result from a combination of a high loss 

parameter along with a high redundancy parameter, as this represents a strong health system, due to the 

normalization process used (dotted black line in Figure 3, upper right corner in Figure 4). This is because 

there is a minimal decrease in quality of care until nearly all healthcare workers are infected, when there 

is a rapid decrease in quality of care. As that many healthcare workers are rarely infected, this means 

quality of care is rarely significantly reduced.  

In Figure 4, we show the final epidemic size (Fig. 4A), mortality (Fig. 4B), and case fatality ratio 

(cfr) (Fig. 4C), predicted using model IV (assuming the transmission rate is the same between healthcare 

workers and the general population) for each combination of the two shape parameters in the quality of 

care function. Lighter regions indicate milder epidemic outcomes while darker regions indicate severe 

epidemic regions for each of the three panels on. The high loss impact suggests a large decline in 

performance of the healthcare system as an additional healthcare worker is infected. This paired with a 

low redundancy parameter means that the healthcare system is not well safeguarded, so a few infections 

amongst HCWs will cause the system to collapse. If this combination is representative of the current 

system, the system can mitigate epidemic burdens by either reducing the loss impact parameter or 

increasing redundancy in the system. It is important to note that the strongest system has both high loss 

parameter and high redundancy, so it would be better suited to focus improvement towards increasing 

redundancy, as due to the normalization process implemented to scale Q(t), the high loss impact 
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parameter results in little change until some threshold number, corresponding to m, of HCWs are infected. 

For the mildest predicted epidemic outcomes, while the high loss impact parameter remains, the high 

redundancy parameter suggests that the healthcare system is robust enough to withstand a large number of 

infections prior to rapid collapse once a very high proportion of HCWs are infected, which is indicative of 

a robust system. 

Parameters Impacted by Infected HCWs 

 

Figure 5: Impacts of the quality of care function are shown to relevant parameters as uninfected health care 

worker population declines. 

A: Comparison between healthy healthcare worker ratio and the rates affected by the proportional quality of care 

function and rates when the Quality of Care Function is set to be maximal (1). Setting the quality of care function to 1 is 

the same as excluding it in the simulation. The model considered uses a quality of care function representing a weak 

healthcare system, ie high loss impact (k) and low redundancy parameter (m) 

B: Cumulative deaths resulting from the simulation for the four sample sigmoidal quality of care functions from figure 3 

are shown in addition to the amount of deaths resulting from having the quality of care 1, equivalent to models that do 

not consider it.  This subfigure highlights the range of differences resulting from the shape of the quality of care function 

considered.  
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In Figure 5A, as the epidemic progresses, inclusion of the dynamic quality of care function 

clearly leads to drastic differences compared to the model excluding it. When decline in the quality of 

care is considered, the number of cumulative deaths increase by 274%, the number of vaccinations 

administered decreases by 40% and the number of individuals that recover decreases by 52%, using 

baseline parameters (Table 1). The quality of care used in Figure 5A, is one that is representative of a 

weak health force system with a high loss impact parameter and low redundancy parameter, which is the 

dotted black line seen in Figure 3. Figure 5B shows the impact inclusion of quality of care has on 

cumulative deaths for the four quality of care functions shown in Figure 3 and compares it to the resulting 

epidemic burdens when quality of care is not considered to be dynamic. While the increase in cumulative 

deaths that result from the inclusion of the quality of care function are not all as severe as seen in Figure 

5A, the inclusion does further showcase the impact its consideration has on epidemic burdens.  
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Chapter 4  
 

Discussion 

Conventional epidemic models generally do not consider quality of care that changes as a disease 

outbreak proceeds, yet loss of healthcare workers and other impacts on quality of care could potentially 

radically affect disease dynamics, as it may have in the 2014 Ebola outbreak1,21. In this paper, we 

demonstrate that evolving quality of care impacts disease dynamics, and that inclusion of declining 

quality of care negatively impacts epidemic burdens.  

If quality of care is considered to be static, this results in an underestimation of epidemic burdens. 

The magnitude of the impact declining quality of care on disease dynamics depends strongly on the way 

in which quality of care declines in response to the proportion of HCWs affected; a wide range of 

relatively mild to severe epidemic impacts may arise. Explicit consideration of healthcare worker 

dynamics (in contrast to assuming HCWs are well-mixed with the general population) also generally 

leads to more severe outcomes, suggesting that modeling them separately is necessary. We have shown 

that failing to include either of these aspects in epidemic models will cause one to underestimate, in some 

cases severely, epidemic burdens. 

Knowing the empirical response of the healthcare system to loss of HCWs during the course of a 

serious outbreak would be ideal, but such trajectories are highly dependent on both context and pathogen. 

We avoid this issue by assuming that quality of care declines according to different, but plausible, 

functional forms. We specifically consider the loss impact (each healthcare worker’s impact on the health 

system) and the level of built-in redundancy in the health system (the minimum number of health care 

workers required to provide adequate care); both are important, but redundancy dominates outcomes, as 

seen in Figure 3.  

Models that explicitly incorporate dynamic quality of care may aid decision-making to control an 

epidemic. By anticipating the degree to which declining care quality might impact disease dynamics, 

control methods may be tailored to mitigate a healthcare system’s redundancy and/or factors affecting 
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loss impact, depending on the existing structure of the healthcare system. For example, the redundancy 

component of our quality of care scenarios did dominate outcomes and therefore is a likely initial target 

for improvements. This could be useful for management; for example, the level of effort put in to 

recruiting/training healthcare volunteers could be increased, which in turn would cause the system’s 

redundancy to improve. It also may be beneficial to manage healthcare workers differently from the rest 

of the population to attempt to slow the decline in quality of care. Arguments are already made to 

prioritize healthcare workers for vaccination and/or other medical interventions as they are the primary 

source of care in epidemics22 and often are faced with higher rates of infections compared to the general 

population23. Careful exploration of other dynamic quality of care scenarios may also lead to the 

identification of alternative management interventions. For example, information about quality of care 

decline may inform outside interventions, such as how many and when HCWs from NGOs are usefully to 

be deployed to assist in times of crisis, as seen in health care worker shortage during the Kenema Hospital 

collapse5 (e.g. in terms of when system collapse is anticipated). This model is capable of distinguishing 

between these strategies, and thus is able to estimate the efficacy of a wider range of potential strategies. 

Future Considerations  

We used a sigmoidal function to describe quality of care; in the future we could consider other 

non-linear functional forms bounded between 0 and 1, for example the “Hill” function24. It is important to 

note that quality of care is likely context specific, due to the global heterogeneity in healthcare access; 

results may thus depend on local circumstances. Furthermore, the way in which the most complex models 

differentiate HCWs from the general population is deserving of further exploration; we did not fully 

consider how HCWs differ in infection risk and care received. As mentioned earlier, empirical data would 

be immensely informative, but difficult to obtain in advance. Nevertheless, with sufficient information it 

might even be possible to address multiple subclasses of HCWs (e.g. physicians, nurses, janitorial staff, 
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midwives, volunteers) with different quality of care responses and different transmission dynamics based 

on their roles25. This would further allow us to explore various prioritization methods for healthcare 

workers to minimize impacts on quality of care provided26.  

The quality of care function might also be improved by including information on healthcare 

workers behavioral responses to the status of an epidemic. As an epidemic progresses further, the 

personal risk of working increases for healthcare workers. Behavioral avoidance of risk by HCWs, 

especially volunteer HCWs, may accelerate system collapse in extreme situations21. Applying game 

theoretic approaches may usefully address these tensions between personal and population-level benefits 

and costs/risks as HCW risk preferences may vary over the course of an epidemic27,28. Due to the severity 

and nature of the HIV outbreak in the 1980’s, there were cases where healthcare workers felt 

overwhelmed, and in some cases avoided practicing, due to fears and burdens of the disease29. 

Accounting for behavioral or related tendencies which may impact healthcare worker participation in the 

work force is essential to consider their impacts to quality of care provided. 

Our present work focuses on the healthcare system as it pertains to the management of one 

disease, but clearly there are ramifications for the quality of care provided for other public health issues. 

As healthcare declines, levels of care for other patients, affected by other issues, will also suffer30. For 

example, health seeking-behavior for malaria was impacted by concerns about Ebola31,32. In this case, the 

implications of failing to consider a declining quality of care function would be multiplied, and could be 

used to address a potential major gap in standard epidemiological modelling approaches. 

Conclusion 

We here demonstrate that consideration of the potential for declining quality of care affects 

epidemic outcomes, in some cases quite significantly. Addressing such declines in quality of care 

explicitly will allow epidemiologists to anticipate, plan for and mitigate changes in epidemic dynamics 
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over the course of an epidemic. While much work remains to be done, addressing these critical issues 

offers significant potential public health benefits.  



Appendix A 

 

Supplemental Figures 

  

  

SF1: One shape parameter is fixed in each figure while the other is varied for low/high combinations of both, 

per the figure titles listed. 

To bound the values of the quality of care function between 0 and 1, the function was normalized, 

which led to counterintuitive behavior in the high loss parameter in the quality of care function. It would 
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be assumed that a higher loss impact per worker would lead to a worse quality of care function, but this is 

the opposite of what is observed, due to the fact that the redundancy parameter dominates outcomes as a 

result of the normalization process implemented. Cases to better understand the relationship between the 

two shape parameters, when one is fixed and the other is varied are explained below for the Supplemental 

Figure shown above. 

For a fixed high redundancy parameter and varying the loss impact parameter, we observe that 

the higher loss impact parameter leads to the largest quality of care while a lower loss impact leads to the 

worst quality of care for a fixed redundancy parameter. For a fixed low redundancy parameter and 

varying the loss impact parameter, we see that a higher loss impact parameter now leads to the worst 

quality of care of the figure, while the lower loss impact now is the best quality of care. It should be noted 

that all of the resulting quality of care functions shown here are worse than those for the fixed high 

redundancy parameter. 

When we have a fixed high loss impact parameter and varying the redundancy parameter, it can 

be seen that the quality of care provided decreases as the redundancy parameter worsens, i.e., the higher 

redundancy parameter led to the best quality of care for any HCW proportion compared to the lower 

redundancy parameter led to the worst quality of care for any HCW proportion. Additionally, for a fixed 

low loss impact parameter and varying the redundancy parameter, once again the best resultant quality of 

care function for any HCW proportion is induced by the higher redundancy parameter while the worst is 

caused by the lower redundancy parameter. It is important to note that the quality of care for the two 

highest redundancy parameter levels was stronger when the loss parameter was fixed to a high value, but 

for the lower redundancy parameter values, the higher quality of care functions belonged to cases where 

the loss parameter was fixed to a lower value.  

The inclusion of the normalization parameter seems to contradict the assumption behind the loss 

impact parameter expected in the decline of the quality of care function. This has been showcased in the 
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breakdown of the 4 scenarios shown in the supplemental figure. It also becomes apparent that with the 

inclusion of the normalization, the redundancy parameter care function will decline. 
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Applied Mathematics REU - Pennsylvania State University                Summer 2016 
 
•Learned to use R to develop infectious disease models, which would be used in an independent 

project. 

 

•Currently conducting an independent project analyzing how changes in the health status of health 

care workers impacts epidemic burdens. 

 

•Spent a summer continuing this project work after being accepted into the Applied Mathematics 

REU at Penn State during the summer of 2016. 

 

•Manuscript has been written with the intent to submit to Epidemics, and will also serve as my 

honors thesis. 

 
Independent Study – Dr. Christopher Byrne                  The Pennsylvania State University 



 

 
 
•Conducting a project related to a repeated prisoner’s dilemma scenario            Sept 2018-Present 
 
•Through the use of differential equations, we are challenging assumptions made by an earlier 

Foster and Young paper, as we believe they do not have the correct basis of attraction in their 

model. 
 
 

Conferences 
 
Annual Biomedical Research Conference for Minority Students (ABRCMS)       Phoenix, AZ 
             
•Presented my independent project conducted in the Shea Lab as a poster presentation     November 

2017. 

 

•Awarded a top presentation award in the category of Computational Biology. 
 
All-In Conference                     The Pennsylvania State University 
 
•I presented my work from the Shea lab as a representative of the Millennium Scholars Program 

to various faculty members from Penn State. 

 

•This conference highlighted work that was done by individuals in STEM minority groups at Penn 

State University. 
 

 Working Papers 
 
Analyzing how Changes in the Health Status of Healthcare Workers Impacts Epidemic 
Burdens 
 
•Manuscript in progress with aim to submit by the end of 2018 
  
 Efficacy of control in a spatially dynamic model of White Nose Syndrome 
 
•Manuscript in progress with aim to submit in 2019 
  
 Transboundary Disease Management Under Alternative Objectives 
 
•Manuscript in progress with aim to submit in 2019 
 

Work Experience 
 
Lincoln Financial Group – Actuarial Intern in Life-Inforce Optimization      Greensboro, NC 
 
•Utilized VBA to reduce human error and time of processes from hours to minutes.  Summer 2017     

      

•Revised calculator with frasierization process to find Joint-Life policies suited for Enhanced Cash 

Surrender Value. 



 

 

 

•Created a groundwork process for the development of new tracking database for IFO for 

thousands of entries. 

 

•Adapted Retention Basis Calculator to work with new sets of policy data. 

 

•Validated PLT Rates with current assumptions and summarized data in monthly workbooks. 

 

•Passed P, FM & MFE actuarial exams and completed all VEE credits 
 
Mehta Prep Academy – Mathematics/Economics Chair           The Pennsylvania State University 
 
•Led tutoring sessions for various math and economic classes weekly           January 2016-Present 

 

•Involved in company decisions as a board member of start‐up 

 

•Helped streamline process to reduce training time for new tutors as well as formally training tutors 

 

•Our company aims to help students get through their entrance to major classes so they can succeed 

on their respective major paths. 

 
Millennium Scholars Program – Peer Tutor                        The Pennsylvania State University 
•Tutored fellow peers in the Millennium Scholars Program weekly.               January 2016-Present 

 

•Helped incoming freshman and sophomores learn the introductory math classes they struggled in 

to prepare them for their future work 
 

Leadership and Extracurricular  
 
Millennium Scholars Program – Cohort Council President (2017-2018)  
 
•Highly selective program for high achieving STEM students pursuing higher education 
accompanied with a $15,000 per year scholarship for 4 years. 
 
•Member of search committee for new director along with deans from the colleges associated with 
the program. 
 
•Led and participated in science outreach days for cub scouts to teach and increase interest in 
science among young children through simple experiments. 
 
•Mentor in the mentoring program to offer guidance and advice to underclassmen peers in the 
Millennium Scholars Program to ensure their future success.  
 
Actuarial Science Club                     The Pennsylvania State University 
•Attended professional workshops geared towards professional development and networking.   
 
THON Dancer Relations Committee Member                          The Pennsylvania State University 



 

 
 
•Assisted and motivated dancers as a volunteer for THON 2016, 2017 & 2018            2016-Present 
   
Assistant Scoutmaster  
 
•Supervised and was responsible for Boy Scouts in Troop 60 during outing        Aug 2015-Present 
 

Honors/Awards 
 
Eagle Scout - August 2014 
 
•Highest award attained in Boy Scouts of America 
 
Schreyer Academic Excellence Award - August 2015 
 
•Academic Merit Scholarship awarded to individuals admitted into the Schreyer Honors College 

at Pennsylvania State University - $4,500/year. 
 
Pennsylvania State University Provost Award - August 2015 
 

•Academic Merit Scholarship awarded to individuals based on merit upon admission into 

Pennsylvania State University - $4,000/year. 
 
Pennsylvania State University Outstanding Student in Economics Award - October 2018 
 

•Awarded to high achieving individuals in the major of economics at Pennsylvania State  

University - $2,000. 
 
Skills - Advanced in R, Excel, Word & PowerPoint; Proficient in Python, Matlab, LaTeX & VBA; 
Novice in Access, SQL, STATA & SAS 
 


