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Abstract

This thesis discusses and verifies a control strategy to achieve autonomous dynamic soaring
for small fixed wing aircraft in numerical simulation. Dynamic soaring is a bio-inspired flight
technique that allows an aerial vehicle to fly without engine power. With proper flight maneuver,
the vehicle is able to convert wind energy to kinetic energy. A numerical simulation for a small
fixed-wing aircraft soaring in a shear wind-field is built first. An autonomous control policy is
found by numerical optimization over control inputs at each time step in the numerical wind shear
environment. The performance of this control strategy is then assessed based on its sustainability
and the total energy harvested.
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Chapter 1

Introduction to Dynamic Soaring

1.1 Dynamic Soaring and Motivation
Dynamic soaring is a flying technique by which an aerial vehicle maintains energy-neutral

flight without any power input by repetitively crossing the wind shear[1]. Dynamic soaring is
considered a strategy to achieve engine-less long-endurance high-speed flight for autonomous fixed
wing aircraft [2]. By harvesting energy from wind, a small unmanned aerial vehicle (UAV) similar
to the small glider shown in 1.1 can better perform missions such as wildlife monitoring, weather
surveillance [3], and search and rescue operations [4]. Taking one step further from the energy-
neutral flight, dynamics soaring shows its potential in energy extraction and power regeneration
for UAV [4]. To the author’s knowledge, dynamic soaring has not yet been demonstrated by an
autonomous aircraft. However, with continuing advances in small aircraft, embedded computation,
and lightweight sensor systems, autonomous dynamic soaring will be possible in the near future.

Dynamic soaring is bio-inspired. It was first described in 1883 by Lord Rayleigh, who ob-
served that some birds can stay aloft without flapping their wings and proposed a mechanism by
which they maintain flight [5] [3]. In fact, albatrosses—a sea bird shown in Figure 1.2—can travel
thousands of kilometers with minimum muscle work [6]. There are flight recordings [7] indicating
distances of 15,200 km travelled in a single foraging trip. They can also maintain a high flight
speed by taking advantage of favorable winds. The ground speeds can be greater than 127 km/h
for more than 8 hours [8]. The flight records of the albatross are impressive and it is therefore
tempting to apply the same flight strategy to a UAV.
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Figure 1.1: Radio-controlled Dynamic Glider at Weldon, California

Figure 1.2: Albatross Soaring above the Sea

Dynamic soaring exploits spatial gradients in a steady wind field. Typically, vertical gradients
(more specifically, gradients where the wind speed increases with altitude) are used in dynamic
soaring. These gradients occur near flat terrain (or over open ocean), at the leeward side of ridges,
and (to a lesser extent) when there is a sudden change in wind speed across a temperature inversion.
Deittert et al.[9] state the boundary layer shear of sufficient strength to permit dynamic soaring by
albatrosses occurs over 90% of the time over the southern oceans.

1.2 Types of Dynamic Soaring
The first type of dynamic soaring forms a closed loop trajectory, which is referred to the circular

dynamic soaring trajectory in this thesis. An example is shown in Figure 1.3. With a circular
trajectory, the aerial vehicle can stay in altitude by repetitively crossing the wind shear. For every
circular dynamic soaring cycle, the aerial vehicle starts at the low point of the trajectory with
its heading direction perpendicular to the horizontal wind. It then turn into the wind and climbs
through the wind shear at the same time. As the vehicle reaches the high point of the trajectory, it
turns away from the wind and dives back to the start point. Circular dynamic soaring is valuable
in energy generation mission. With the wind field remains largely unchanged for every flight
cycle, the aerial vehicle can obtain better estimation of the wind field and possibly find a better
control policy to extract more energy. This dynamic soaring mode is typical of that flown by
radio-controlled glider pilots.
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Figure 1.3: Circular Trajectory

While the first type of dynamic soaring is ubiquitous in the literature, the second type is the
main concern of this thesis. It is a periodic trajectory that allows the aerial vehicle to fly forward in
the direction perpendicular to the horizontal wind and extract energy simultaneously. An example
is shown in 1.4. It is termed as the asymptotic dynamic soaring trajectory [10]. The required
maneuver for asymptotic dynamic soaring is similar to circular dynamic soaring in the beginning.
The vehicle starts at the same location and flies into the wind and climb. As it reaches the high
point of the trajectory, it turns away from the wind and dive. It then instead banks away from the
initial point and fly forward to the next low point. It is the strategy albatrosses are observed to use
to travel in a long range. Unlike circular dynamic soaring, asymptotic dynamic soaring is more
valuable in travel. However, it is also more difficult, because as the aerial vehicle progresses, the
wind field is likely to be different than that in its start location. The goal of this thesis is to verify
an optimization process that can find solution to asymptotic dynamic soaring.
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Figure 1.4: Asymptotic Trajectory

Note that other dynamic soaring trajectories exist (for example, a figure 8-trajectory, as in
Figure 1.5). However, they are out of the scope of this thesis.

Figure 1.5: Figure 8 Shape Trajectory
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1.3 Related work
The study in dynamic soaring has started a century ago and is still ongoing. Back in 1883,

Lord Rayleigh [5] correctly developed a model to show how birds can convert energy from the
wind field and proposed a dynamics soaring strategy called the Rayleigh’s cycle, which justifies
dynamic soaring mathematically in the first time. Later, researches [10][6][4] take advantages
of the numerical method. A dynamic soaring solution can be achieved numerically with the full
knowledge of a steady wind profile. Recently, dynamics soaring research is actively filling more
details in dynamic soaring. Bird [3] estimates the map of wind field with which the dynamics soar-
ing is planned. Sachs [6] discusses the maximum travel speed by dynamic soaring and its relation
to the wind speed. Long [4] shows the possibility power regeneration over flat terrains by dynamic
soaring, an indirect way to achieve a long endurance mission. Garvilovic [11] investigates stochas-
tic wind field and found that the wind with higher turbulence intensity potentially provides more
energy for transfer. There are also a few novel approaches to solve dynamic soaring. Montella[12]
use deep Q learning in reinforcement learning to approach the dynamic soaring problem. More
energy can be extracted from the environment by learning algorithm.

1.4 Summary of Contributions
The main focus of this work is the development and verification of a method to compute dy-

namic soaring trajectories in a fixed wind shear environment. In addition, this work:

• outlines the equations of motion of an aircraft flying in a spatially-varying wind field

• outlines two mathematical models of wind shear

• proposes control inputs that can be easily implemented on currently-available autopilot hard-
ware

• implements a trajectory optimization algorithm that enables energy-neutral flight

• demonstrates the utility of the proposed approach in simulation.

1.5 Reader’s Guide
• Chapter 2 formulates the equations of motion of the soaring dynamics, with their assump-

tions listed and discussed. It also provides a wind field function to model the wind shear
applicable to dynamic soaring. An algorithm for numerical simulation is also setup.

• Chapter 3 set up the optimization by defining the optimization variables, cost functions, and
constraint. It then shows and discusses the simulated results with the solution found by the
optimizer.

• Chapter 4 concludes this thesis and illustrates future study in dynamics soaring.
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Chapter 2

Problem Statement and System Models

In this chapter, a mathematical model is first introduced in section 2.1 in order to study dynamic
soaring rigorously. Assumption and simplification are discussed and justified. Equations of motion
will be shown and examined. Wind field is then modeled in a separated section 2.2. Several wind
shear models will be discussed with a focus on the sigmoid function based wind shear model,
which is eventually applied in the numerical simulation. With the mathematical model developed
in first two sections, section 2.3 will transform the model from continuous space to discrete space,
in which numerical simulation can be performed. The last section will formally state the dynamic
soaring problem in term of the model and simulation developed in this chapter.

2.1 Aircraft Model
The aircraft model used in this work is described in Hendricks [13] and later used either directly

or with minor changes by many recent researches in dynamic soaring [2] [4] [6] [10] [14]. The
main assumption made is the point mass assumption, which simplifies the dynamics for study and
implementation. It also allows further generalize the result[4]. It is assumed that all the forces
and moment act on the center of mass of the aircraft. Thus, equations of motion with 3 degrees of
freedom is expected. The second important assumption is that the wind blows in a fixed direction—
in this thesis, parallel to the inertial y-axis. It is considered a reasonable assumption for dynamic
soaring in a quasi-steady shear flows [14]. Then, the wind velocity vector can be expressed as
w = −w(z)ŷ, where w is the magnitude of the wind as a function of the altitude z. A detailed
discussion about the selection of this wind field function can be found in the next section. Thirdly,
since it is a glider intending to achieve dynamic soaring, thrust is set to be zero.
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There are total three forces acting on the aircraft. They are the aerodynamic lift L, drag D, and

gravity mg. The equation of motions in the inertial frame of reference can be written as

m(v̇ − ẇ) = −mgẑ + L + D (2.1)

where v is the air velocity vector. It is convenient to create a non-inertial “wind-fixed” reference
frame[14], which is composed by the first axis coincident with the air velocity vector, the second
axis in the inertial vertical plane and orthogonal with the first axis, the third orthogonal with both
the first and second axis, as shown in Figure 2.1

Figure 2.1: Wind-fixed Reference Frame

Writing the equation of motions (equation 2.1) in the “wind-fixed” reference frame by kine-
matics,

mv̇ = −D −mg sin γ +mẇ cos γ sinψ
mV γ̇ = L cosφ−mg cos γ −mẇ sin γ sinψ

mV ψ̇ cos γ = L sinφ+mẇ cosψ
(2.2)

where the L, D, and v are the magnitude of lift, drag, and air velocity respectively. φ, γ, and ψ are
the bank angle, flight path angle, and heading angle. Notice that equation 2.2 is a nonlinear system
of ordinary differential equations with respect to time, with three states of v, γ, and ψ. Also note
that, the system is not complete by itself—it contains variables other than its three states. Those
“missing pieces” are ẇ, L, D, and φ.
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ẇ is the time derivative of the wind speed experienced by the aircraft. By the chain rule, it can

be expressed in terms of ż, which can also be obtained by kinematics.

ż = V sin γ (2.3)

ẇ =
dw

dz
ż =

dw

dz
V sin γ (2.4)

Although the other two spatial states x and y in an inertial frame are not required to solve the
system 2.2, they are calculated for future evaluation and better understanding of the simulation.
By kinematics,

ẋ = v cos γ cosψ (2.5)
ẏ = −w + v cos γ sinψ (2.6)

Lift L and drag D are the two forces required to solve the nonlinear system 2.2. They are
modeled by an empirical method. Lift is modeled by the product of the dynamic pressure 1/2ρv2,
wing area S, and the lift coefficient. That is

L =
1

2
ρv2SCL

where the lift coefficient CL is calculated by a linear model as

CL = CLα(θ − γ) + CLo (2.7)

where the difference between the pitch angle θ and flight path angle γ is angle of attack. In another
word, the lift coefficient is proportional to the angle of attack in a slope of CLα with empirical
intercept CLo . CLα can be obtained by experiments or approximated with the wing aspect ratio
AR and an efficiency term τe obtained from the lifting line theory.

CLα =
2π

1 + 2π
πτeAR

The aerodynamics drag D is modeled similar to the lift. D is the product of the dynamic pressure,
wing area, and the drag coefficient CD,

CD = (Cdo +
C2
L

πAReo
)

which is composed of a constant profile drag coefficient Cdo found empirically and a term that
incorporates the components of drag that are dependent of lift coefficient. eo is the Oswald’s
efficiency.

The last two missing variables in the nonlinear system 2.2 are the pitch angle θ and the bank
angle φ. They are the control inputs. In the numerical simulation, the dynamic soaring control
law produces φ(t) and θ(t) and feed them into the equations of motion 2.2. For potential flight in
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reality, pitch angle θ can be controlled by the elevator on the glider and the bank angle φ can be
controlled by the ailerons. Note that standard autopilot modules such as the Pixhawk allow direct
control over bank angle and pitch angle, which makes this formulation amenable to hardware
implementation. Now, the dynamics model for the aircraft is complete.

2.2 Wind Shear Model

In this section, the wind field function w(z) is defined. As shown in section 2.1, ẇ(z) plays
an important role in the nonlinear system. It is also the key for to success of dynamic soaring—
energy harvesting from wind field. The wind field in reality is stochastic, which makes the study
of dynamic soaring difficult. The steady wind profile is assumed to simplify the problem. There
are several types of wind field used by different researchers in dynamic soaring. The first type of
the wind field function is following,

wnd =
wo

1 + e−
z
δ

(2.8)

where wnd is dimensionless wind field profile. Notice that wnd is a sigmoid function scaling by the
wind intensity factor wo. This wind field will be referred as the sigmoid wind field in this thesis.
δ is the wind shear term. A large δ results in a weaker wind shear—smaller velocity gradient
with respect to z. The wind field intensity wo and the shear strength δ are the two features that
determine the wind field. To obtain the dimensional wind field function w(z), the w is scaling by
a characteristic speed Vc. Vc is the speed flown at a lift coefficient of 1. Note that its magnitude is
determined by the glider’s wing loading.

W = wndVC = w(
2mg

ρS
)
1
2 (2.9)
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(a) fixed wo = 1 with different δ (b) fixed δ = 1 with different wo

Figure 2.2: Sigmoid Wind Field

To demonstrate the sigmoid wind field function, Figure 2.2 shows the wind profile with different
shear factor δ and intensity factorwo chosen. As expected, with a smaller wind shear strength factor
δ, the wind speed profile changes more rapidly with the altitude. With a larger wind intensity factor
wo, the magnitude of the wind speed profile becomes larger. Note that the mean speed of the wind
field is located at the datum z = 0, which is above the ground. The wind shear is largest also at
the datum z = 0. With the altitude z deviates from the datum, the wind shear drops asymptotically
to zero. The region in wind field with significant wind shear is usually referred as the shear layer,
whose center is located at z = 0 for the sigmoid wind field. In this sigmoid wind field, the shear
layer is where most of the energy is extracted from the wind field. The sigmoid wind field can
approximate the wind field behind the ridge as shown in Figure 2.3 [2]. The sigmoid wind field is
implemented in this thesis and some other dynamics soaring researches as well [10] [2].
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Figure 2.3: Ridge Dynamic Soaring[2]

Two sigmoid wind field in dimensional speed is shown in Figure 2.4.They will be applied in the
simulation later in this thesis.

Figure 2.4: Dimensional Wind Field Examples

The other major wind field model for dynamic soaring is a logarithmic model [6] [15]. Wind
speed profile is modeled as a logarithmic function scaling by a constant. An example wind speed
profile is shown in Figure 2.5. Note that the maximum wind speed gradient is at altitude h = 0
and the wind speed grows unbounded. The shape of the wind profile is similar to the boundary
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layer over a flat plate in the classic of fluid mechanics. The logarithmic model well approximates
the wind field of dynamic soaring in flat terrains and above the sea, shown earlier in Figure 1.4.

Figure 2.5: Logarithmic Wind Profile[6]

2.3 Numerical Simulation
The dynamics model in section 2.1 is a non-linear system of ODEs. An analytical solution can

be found in certain steady-state (i.e. constant speed) cases, but an analytic solution for dynamic
soaring has not yet been found. A numerical method is applied in this thesis to practically tackle
the dynamic soaring problem. With both the model in dynamics and wind field developed, it is not
difficult to find a numerical solution of the system. Although there are many sophisticated methods
to solve ODE system, the most straight-forward method—forward Euler method—is applied for
efficient computation. The entire dynamic algorithm is shown in Algorithm1.

Algorithm 1: Dynamics Simulation
Result: States x in each time step
initialize x0;
for t0, t1, t2, .., ti, .., tfinal do

φi, θi = controller(xi) ;
Wi = windfield(zi) ;
calculate ẋi by equation of motion 2.2, 2.3, 2.5, 2.6;
xi+1 = xi + ∆t× ẋi ;
if meet stop conditions then

break;
end

end
The algorithm takes the initial states x0 as input, which is the initial state vector< x0, y0, z0, V0, γ0, ψ0 >
and yields states for all the following time steps {xi|i = 1, 2, 3, ..., f inal}. For each time step i,
the algorithm first obtains the control input—bank angle φi and pitch angle θi from the controller.
In the numerical simulation, the wind speed in ith step is found by the wind profile model shown
in equation 2.8 and 2.9. Then, the state derivative terms ẋi is calculated by the equations of motion
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2.2, 2.3, 2.5, 2.6. The state xi+1 in the following time step is found by forward Euler integration.
With the for-loop iterating through all time steps, states in every time step can be found. Stop con-
ditions for the simulation can be formulated to early stop of the algorithm, for example, a lower
bound for the altitude can be set for ground clearance. Without otherwise notification, the model
parameter selected for the simulation in this thesis is chosen as shown in Table 2.1. The aircraft
parameters are chosen based on the size of the potential UAV glider in application to dynamic
soaring.

Model Parameter Values in Simulation
m 1.0kg

S 0.3m2

Cdo 0.0125

eo 0.53

AR 12

τe 0.8

CLo 0.2

∆t 0.02sec.

Table 2.1: Model Parameters

2.4 Problem Statement and Summary
In this chapter, the mathematical model for the soaring dynamics and wind field is formulated.

A numerical simulation is also set up. The problem addressed in this thesis can be stated for-
mally. Recall the ultimate goal is to achieve long-endurance flight for small fixed-wing glider by
implementing dynamic soaring flight strategy. To achieve the goal, an intelligent system should
be developed to control the vehicle to exploit the energy harvested from the wind field. The more
energy the vehicle gained from the wind shear, a longer flight mission can be achieved. It thus
becomes an optimization problem of a nonlinear ODE system over the control policy φ(t) and
θ(t). A goal that is compatible with the mathematical model can be rigorously formulated into a
cost function. A few candidate cost functions can be easily formulated. One of them is the total
time the vehicle stays in altitude. It is a direct measures of the quality of the control policy and it
fits the need in realistic application well. The cost function can be also formulated indirectly by
introducing the total energy of the vehicle. Instead of measuring the total time a vehicle can stay
on mission given a initial condition, the energy cost function examine the intelligent system’s con-
trol policy indirectly by the total energy, which is a function of states and therefore applicable to
every time step during the simulation. The energy cost function is eventually chosen in this thesis.
Details about the choice of cost functions with their limitations and advantages can be found in
section 3.2. The next chapter proposes a solution for this optimization problem.
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Chapter 3

Trajectory Optimization

3.1 Design of the Solution
As demonstrated in Chapter 2, the dynamics system has two control inputs, namely, the bank

angle φ(t) and the pitch angle θ(t) as functions of time. The final goal is to find appropriate
functions φ(t) and θ(t) that can achieve dynamic soaring. There are a few criteria that these
functions have to meet that is helpful to reduce the solution space for searching. First, both φ(t)
and θ(t) are bounded. Depends on the aircraft, bank angle φ(t) and pitch angle θ(t) can range
from −45◦ to 45◦ and from −20◦ and 20◦. Second, since the pitch and bank angles are physically
impossible to change rapidly or jump back and forth, φ(t) and θ(t) have to be continuous functions.
Moreover, dynamic soaring should be sustainable, i.e. the average total energy should not decrease.
To achieve that, the glider should choose a repetitive trajectory, which implies the control input φ(t)
and θ(t) should be periodic functions. To solve the dynamic soaring problem, functions of φ(t)
and θ(t) that satisfy the requirement above should be found.

Given the complexity of the model, it is not easy to find analytical functions of φ(t) and θ(t)
that can achieve dynamic soaring. A control strategy can be considered to approach the problem. It
is to discretize φ(t) and θ(t) into sequences corresponding to sequential small time steps. In other
word, θ(t) and φ(t) are approximated by affine linear interpolation functions. It reduces the solu-
tion space by representing continuous functions with countable many points of control inputs.
Discretization of control input function also make it more compatible with the discrete numerical
model. Many previous researches [8][15][6][2][4] apply this method and solve the dynamic soaring
problem by optimizing the total energy over φi and θi, where i = 1, 2, 3, ..., N are the index for
each time step in a flight period.
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3.2 Optimization Setup
Section 2.4 states that dynamic soaring problem is a nonlinear system optimization problem. In

this section, optimization is set up. To define the optimization variable χ, recall that the optimizer
would search optimal control input φ(ti) and θ(ti) for each time step ti. Then the solutions of
the input φ(t) and θ(t) are piecewise affine function of time t. Since the total time for a period is
unknown, the time step size ∆t is also included as one of the optimization variables. They can be
summarized as

χ = (φ1, φ2, ...., φn, θ1, θ2, ...θn,∆t) (3.1)

where n is the number of time steps for one period of dynamic soaring flight. There are a total
2n + 1 optimization variables. To set up a cost function J , note that the states y, z, ψ, γ, V must
be the same in their initial and final time steps to make sure the dynamic soaring is sustainable by
flying in the same trajectory for the following period. Then a candidate cost function J1 can be
defined as

J1(χ) = s1
TWs1 (3.2)

where,
s1 = [y0 − yn, z0 − zn, ψ0 − ψn, γ0 − γn, v0 − vn]T

and

W = diag(W1,W2,W3,W4,W5)

are weights. Notice that the energy in the beginning and the end of the period is unchanged if J1

is optimized to its possible maximum value, which is 0. Another candidate cost function J2 is a
modified J1 as

J2(χ) = s2
TWs2 (3.3)

where,
s2 = [y0 − yn, z0 − zn, ψ0 − ψn, γ0 − γn, vn]T

and

W = diag(W1,W2,W3,W4,W5)

The only difference is that the last element of s is changed to be vn, which becomes a measure
of kinetic energy gained. J2 allows the final velocity to be larger then the initial velocity. J2

encourages the optimizer to find solution that extract energy from the wind field. However, the
same control policy is not sustainable, because the initial condition, the airspeed in particular, of
the next period is different. Since the optimization variables are control inputs, the constraints of
the optimization, in this case, are upper and lower bounds of allowable bank angle, bank rate, pitch
angle, and pitch rate. Then, the optimization process for asymptotic trajectory can be formulated
as,
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minimize
χ=(φi,θi,∆t)

J(χ)

subject to |φi| ≤ φmax,

|θi| ≤ θmax,

|φi − φi+1| < φ̇max∆t,

|θi − θi+1| < θ̇max∆t,

|∆t−∆t0| ≤ δ∆t,

ẋ = f(x,u)

for i = 1, 2, ..., n, where J(χ) can be chosen as J1 in equation 3.2 to maintain velocity, or J2 in
equation 3.3 to extract as much energy as possible. And f(x,u) is the dynamics of the system
given in chapter 2.

3.3 Simulation Results
In this section, the results of the optimization generated by Matlab’s fmincon optimization

toolkit is shown and discussed. The wind field parameters are set to be δ = 1.1 and wo = 0.6. The
wind field is shown in Figure 2.4 as an example in the previous chapter. The optimization variables
χ is chosen according to equation 3.1, which are all the control input φ and θ at each time step and
the time step size. Figure 3.1 and 3.2 shows the flight trajectory and the details of states and control
input applying the cost function J1 defined in equation 3.2, which penalizes the difference between
all the initial and final states except the traveling direction state x. The top left plot in Figure 3.2
shows the altitude z(t) as a function of time. The bottom left plot shows the airspeed V (t) as a
function of time. With the vehicle starts at the nadir (z(0) ≈ −7m) of the trajectory, it files into
the wind and pulls up until it reaches the peak (z(10.5) ≈ 5m). The airspeed decreases as the
vehicle flies up to trade potential energy from kinetic energy except at the altitude z ∈ (−1, 1)m at
t ∈ (3, 4)s, where it experiences the maximum wind shear. As the vehicle crosses the wind shear,
the airspeed V does not decrease much while the altitude increases at the same time, which is the
key for a successful dynamic soaring cycle. After t = 5.5s, the vehicle turns away from the wind
and descends back to its initial altitude. The airspeed at the end of the cycle reaches back to its
initial value. The vehicle is able to extract energy from the wind shear. The top right plot shows
the top view of the actual flight trajectory. It is clear that the vehicle is able to fly back to its initial
location of the cycle. The bottom right plot shows the corresponding control input bank angle φ(t)
and pitch angle θ(t) and the state of flight path angle γ(t) as functions of time. The entire cycle
takes about 10 seconds. It is in no doubt a successful dynamic soaring cycle. Altitude, airspeed,
flight path angle, bank angle and y-coordinate returns to its initial value at the last time step of a
cycle.
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Figure 3.1: Asymptotic Trajectory with Cost J1, δ = 1.1, wo = 0.6

Figure 3.2: Asymptotic Trajectory Solution with Cost J1, δ = 1.1, wo = 0.6

The simulated flight result using the cost function J2 (equation 3.3) is shown in Figure 3.3.
It is also a successful dynamic soaring cycle with substantial increase in its final airspeed from
18 m/s to 19 m/s. Also, the control input is considerably more smooth than that under J1, with
which the optimizer tries to meet the initial condition by adding unnecessary high frequency noise



18
to damp out extra energy the aircraft should have obtained from the wind field. Also note that the
optimizer under J2 cost tends to choose actions at the boundary of the constraint—the maximum
and minimum of the bank angle, the maximum bank and pitch rate.

Figure 3.3: Asymptotic Trajectory Solution by Direct Optimization with Cost J2, δ = 1.1, wo =
0.6

The corresponding optimization result for a different wind field—with δ = 1.0, wo = 0.8 is
shown in Figure 3.4 and Figure 3.5 using the cost function J1. As shown in dimensional wind
profile in Figure 2.4, the overall wind speed of this wind field is larger and the shear is stronger.
It infers that the aircraft is able to extract more energy from the wind field. As it is indicated in
the airspeed versus time plot, at t ∈ [1.9, 3.2] when the aircraft flies through the shear, the velocity
increases while the altitude increases. With J1 as the cost function, the optimizer amplifies noise
in the control input schedule to damp out extra energy in comparison to that in Figure 3.2.
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Figure 3.4: Asymptotic Trajectory Solution with Cost J2, δ = 1.0, wo = 0.8

Figure 3.5: Asymptotic Trajectory Solution by Direct Optimization with Cost J1, δ = 1.0, wo =
0.8

On the other hand, the optimization result of using the cost function J2 is shown in Figure 3.6.
With a stronger wind field, the aircraft extracts more energy from the wind field, as shown not only
in a larger and longer increases of air velocity when it flies through the main shear, but also in its
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final air velocity obtained. The final airspeed increases to about 20m/s in comparison to 19m/s
shown in Figure 3.2.

Figure 3.6: Asymptotic Trajectory Solution n with Cost J2, δ = 1.0, wo = 0.8

Although this thesis only shows the simulation in two selective wind field, the optimization
can also find a solution in other wind field with sufficiently strong shear and proper initial values
chosen.
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Chapter 4

Conclusion

This thesis verifies an optimization process to find a solution of asymptotic dynamic soaring
in a fixed wind shear. A numerical simulation is built and the optimization process is discussed
in details. The simulated result shown in the last chapter shows that the optimization process can
indeed generate a control input schedule to achieve asymptotic dynamic soaring. In the simulation,
the aircraft can maintain flight without thrust.

Although this optimization process can successfully find dynamic soaring, it is not as ideal
in practice as it is theoretically. The first limitation is the size of optimization variables, which
grows linearly with the number of the interpolation points φi and θi. Thus, there is always a
trade-off between the solution space expression capability and the complexity of the optimization.
In practice, the computation complexity makes it impossible to generate a solution on the fly.
Secondly, there is no guarantee that the nonlinear optimizer can find the global maximum. Thirdly,
in this thesis the wind field is assumed fixed and time-invariant. In reality, however, wind field is
stochastic due to turbulence and other unmodeled factors in the environment. Since the solution
as control input schedule is open-looped, disturbance from the wind field can leads to failure in
dynamic soaring. These are the issues needed to be addressed to make autonomous dynamic
soaring possible in reality. For the first issue, the imminent 5G communication technique with fast
and little time delay network might be helpful by conducting the optimization computing in the
cloud instead of the onboard computer. At the same time, some modern algorithm, like those in
the field of artificial intelligence, might resolve the last two issues.
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