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ABSTRACT 
 

 Household surveillance systems that aim to provide real-time alerts for security threats face the 

issue of lacking the computational power to detect meaningful events while delivering the alerts with low 

latency. Many home security cameras focus mainly on only capturing video for subsequent playback. If a 

security camera wants to be able to carry out more worthwhile tasks that are significant to the homeowner 

(e.g. alerts other than for motion detection) in a timely manner, it must be robust enough to do so. While 

mobile devices can be built to retain enough power for completing demanding jobs, such as prediction 

using deep learning, the development and production of these cameras may be very expensive and not 

feasible for the average household to use. This research utilizes the concept of edge computing to develop 

a low-cost household surveillance system design that increases security and privacy, largely focusing on a 

smart camera. This new system aims to be able to detect motion, identify known or unknown people, and 

lastly, detect delivery package theft and provide a prompt alert upon detection of an interesting event. The 

image processing and machine learning techniques used to achieve this system are not original 

techniques, however, the main contribution of this research derives from the design choices of this system 

of providing a low-cost mobile security camera that can ensure punctual alerts. 
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Introduction 

The urgency for privacy and security in many different societies and communities has 

tremendously heightened in recent time. Whether in cyber situations or physical environments, human 

nature has caused people to become wary of how they can be threatened by a variety of outside forces. 

There have been studies that show that in around 10 years, the urban population alone is expected to reach 

5 billion people [1]. With the increase in population comes the increase in security and privacy threats via 

technology or humans. Residential areas and civilizations are, in turn, inherently threatened, which calls 

for the need to increase household security. 

The idea of smart technologies and Internet of Things (IoT) is becoming a huge role in all aspects 

of life, especially security and privacy. The term “smart” can be characterized as “using basic and 

assistive devices to build an environment in which many features are automated and where devices can 

communicate with each other” [2]. On a large scale, smart cities are being developed which have a variety 

of uses such as traffic control, cyber security, big data analysis, energy consumption reduction, and even 

healthcare [1]. A main motivation of a smart city is mainly to increase the comfort of citizens in all 

environments. On a smaller scale, smart technologies and IoT devices have also been applied to 

individual homes also for a variety of purposes. For example, low-cost smart devices have been utilized to 

aid the healthcare industry. There have been developments in smart homes where sensors and cameras 

can monitor interesting activities—cooking, exercising, gardening, household chores, listening to music, 

etc. [3]. This type of monitoring system could benefit those with dementia or Parkinson’s disease. 

Moreover, other smart home devices, such as smart speakers, smart planners, or smart HVAC systems, 

are used every day by the average person just to increase the quality of life. 
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However, one attractive motivation for smart home devices is the added security measures that 

can be attained. As previously mentioned, increasing household security needs to be addressed especially 

in this day and age. This increase of importance is evident by the number of companies who have 

invested in developing smart devices for privacy purposes. Specifically, multi-billion-dollar companies 

such as Google, Amazon, and Samsung have developed the Nest Cam Outdoors, Amazon Cloud Cam, 

and Samsung WiseNet, respectively, as on-the-market smart cameras which can be purchased for 

households. However, there is still a need for further cultivating the technologies of smart home devices 

in an IoT setting to increase security.  

This thesis is motivated by the shortcomings of the current industry standard of smart home 

devices, specifically smart cameras, when it comes to utilizing them for security purposes. The research 

explores this drawback and presents a system that utilizes a smart camera that detects motion in frames 

and communicates with a server for heavy processing—facial recognition and object classification 

established by deep learning models. Advances in the machine learning and image classification fields [4] 

have shown that utilizing those concepts can prove to be very powerful. Additionally, the boom of smart 

home technologies [5] is another argument for utilizing them for security measures. It is an astute 

conclusion to incorporate concepts of both fields into a robust security system. 

The organization of this thesis is as follows: Related works of current smart home technologies 

and related technical concepts will be discussed. Next, specific background technical concepts that are 

used within the system will be reviewed. Then, we present an overview of the surveillance system as well 

as an outline of how we will evaluate each component of the system. Finally, the system will be 

implemented, tested, and evaluated, ultimately followed by discussion, future works and conclusion. 
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Related Works 

 From end users to large corporations, smart technologies are becoming more accessible and 

accepted. Moreover, machine learning, image processing, and edge computing are concepts that have 

vastly matured in the past few decades. On both accounts, there is ample research that explores these 

fields. 

Smart Technology 

As mentioned in [5], smart technologies are becoming increasingly popular, but more 

importantly, they are indeed becoming more advantageous. While our research focuses on the security 

and privacy advantages to exploiting smart technologies, there is a plethora of research that widens the 

scope of use. Regardless of user or audience, smart devices are known to enhance quality and longevity of 

life in general [6]. Nonetheless, there still exists research in this field that is relevant to security goals. 

Abaya, et. al. [7] examines the use of image processing techniques in order to develop a 

surveillance system to be used within a warehouse setting. This work was motivated by the need in 

warehouses to detect potential crime or potential fires. The goal was to use a low-cost smart camera to 

detect humans as well as smoke. The system included a smart camera with the IR filter removed in order 

to achieve night vision capabilities. To achieve their goals, [7] used background subtraction for motion 

detection, Haar-like features for human recognition, and the following heuristic: a mass that increases size 

as it moves would be classified as smoke. This work aims at exhibiting that smart cameras can be used in 

a surveillance manner. 

Aside from privacy purposes, research has shown that smart technologies possess potential to 

have an impact in the health industry. Similar to [7], Tewell, et. al. [3] uses low-cost smart devices. 

However, in their work, low-cost smart devices are used to monitor “meaningful activities” in a 

household. They defined meaningful activities as activities that “promote a person’s emotional, creative, 
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intellectual, and spiritual needs” [3]. The goal was to use the devices to monitor person’s with dementia 

and Parkinson’s disease to help them self-manage their daily living. The system included infrared sensors, 

pressure sensors, RFID tags, contact switches, and multimedia sensors in order to track activities such as 

exercising, reading, cleaning dishes, gardening, etc. Devices in the system communicated via Bluetooth 

with a central hub unit connected to the home’s Wi-Fi network for monitoring the devices. This work 

shows promise of using smart devices specifically in a household setting. 

While the two works illustrated above are vastly disparate in purpose, target audience, and 

technical background, they both seek to utilize the concept of smart technologies. This thesis will also 

seek to make use of the advantages of smart devices, with a focus on the privacy facet. Further, this 

research seeks to extend the value of smart devices by exploiting their ability to increase privacy in a 

household setting in an unprecedented manner.   

 Edge Computing 

Autonomous search and rescue missions can be essential to societies whether they be utilized by, 

for example, the military, the police force, criminal justice, or natural disaster rescue efforts. If those 

types of rescue missions are aimed to be controlled and monitored from a remote location, then 

autonomous technologies, such as drones, must be quick and efficient. 

Wang, et. al. [8] present a computer vision-based pipeline that describe different heuristics that 

can be used for rescue missions which involves all three of machine learning, image processing, and edge 

computing. Specifically, [8] focuses on optimizing bandwidth of sending data from a drone to a base for 

missions. In order for drones to be useful in providing video analytics in real-time, they must be energy 

efficient, accurate, and timely. The main premise of this work was to offload computations from drones to 

edge nodes towards the goal of increasing bandwidth efficiency. The drones would be flown out to a 

target location where the rescue was needed, and report data based on real-time video. The four strategies 
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to make this process efficient that Wang et. al. present include “EarlyDiscard”, “Just-in-Time-Learning”, 

“Reachback”, and “Context-Aware.” 

Firstly, EarlyDiscard refers to limiting the number of frames that are sent to a more robust edge 

computing node (i.e. cloudlet) for image processing. This would reduce the amount of data being sent 

from the drones to the point source as well as allow for heavier computation that the drone could not 

handle in a timely manner. Only frames that are actually of interest need to be sent to the cloudlet. Just-in-

Time-Learning (JITL) refers to using a cheap cascade filter. Essentially, as frames are passed from drone 

to cloudlet, they are fed into the JITL filter labelled with being a false positive or true positive. Over time, 

the JITL filter is trained periodically and sent back to the drones to be used after the EarlyDiscard phase 

to further refine the frames being sent from the drones. Reachback is used to exploit the limited 

capabilities that the drones do have—in this case, their storage. If the cloudlet needs a set of consecutive 

frames to correctly make an analysis, it will retrieve the missing frames from the drone’s storage. Lastly, 

Context-Aware makes use of the attributes of the specific rescue mission that may be exclusive to that 

particular mission (i.e. searching for orange lifejackets in the ocean for watercraft crashes). [8] suggests 

that these four heuristics can be utilized for other systems that use mobile platforms. 

The heuristics that are presented in this work are shown to be effective in the rescue mission 

setting. However, this thesis extends these heuristics to a household setting and with a smart camera 

rather than a mobile drone. Moreover, rather than using the camera for post-event analysis (i.e. the drones 

are flown in after a threat is known), the smart camera is used in a real-time manner for threat alerts. 

Image Processing 

The research area of computer vision and image processing aims to create algorithms and 

techniques that allow technologies to process the world visually as close to as humans can. For example, 

from a central or peripheral view, humans can naturally detect and recognize objects, color, and motion. 
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However, from a computer standpoint, methods and algorithms are developed to process visuals or 

images in a different manner than humans. 

Chen, et. al. [9] aim to develop a real-time object recognition system that can be specifically used 

for mobile platforms. The system, Glimpse, is able to take in a full-motion video and detect the location 

of an object of interest. Additionally, it recognizes the type of object and labels it in the frame with a 

bounding box and text label for each frame. Since the mobile device offloads “trigger” frames to a server 

for recognizing and labelling frames, there is a latency issue between when frames arrive and when 

frames are processed by the server. In order to counteract this, an active cache is also utilized to track 

objects on the mobile device based on stale hints from the server in order to regain the accuracy. 

Specifically, for facial recognition, Glimpse is able to produce 96.4% to 99.8% which is a 1.8-2.5x 

increase in accuracy compared to without Glimpse’s techniques. 

This work is a strong foundation for the possibilities of image processing on mobile devices. 

However, there is no clear specific target end user use for the Glimpse system. This thesis will extend the 

use of image processing techniques used in [9] and in other state-of-the-art research by applying them in a 

surveillance security system. Specifically, the use of trigger frames is utilized as well as offloading 

frames, similar to [8]. 

Machine Learning 

A large portion of image processing algorithms are often used hand in hand with machine 

learning and deep learning algorithms. While machine learning is often used as a buzzword in many 

different fields, there is authentic benefits with using machine learning. Michie [10] stated that the 

versatility and usefulness of computers can be heightened if they are able to learn from their own 

experiences, just like humans. 
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Sultani, et. al. [11] developed a system that was able to detect a variety of real world “anomalies” 

using a deep learning model. Anomalies can be considered as actions of fighting, road accidents, robbery, 

and normal non-aggressive actions as well. Using a new dataset of 128 hours of video and weak training 

labels, Sultani et. al. develops a deep multiple instance ranking framework that can be used in a 

surveillance setting. During the training phase, this work includes sparsity and temporal smoothness 

constraints in the ranking loss function in order to gain more accurate location of the anomalies. 

This work exhibits the potential of deep learning for security objectives in real world settings. 

However, the techniques presented are not completely feasible for mobile devices such as a smart camera. 

Especially with the training phase and large dataset, the system presented contains methods that are 

computationally heavy. This thesis seeks to adopt the advantages of deep learning in a surveillance 

setting, while utilizing more robust platforms to perform the heavier computations. 
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Background 

In this section, the various concepts used in the surveillance system are discussed in detail. The 

techniques and concepts used in motion detection, facial recognition, and deep learning will be outlined. 

Any methods or idea used that is specific to the research will be discussed in the later chapters. 

Motion Detection 

One of the key topics in image processing is motion detection. Moreover, real-time motion 

detection is even more important in an application setting. Computer vision systems such as automated 

visual surveillance, human-machine interfaces, and very low-bandwidth telecommunications utilize 

motion detection as a fundamental technique [12]. There are two aspects to motion detection: on one 

hand, recognizing the existence of motion in a video or between two frames and on the other hand, 

recognizing and detecting the location of the motion within a frame. The system in this research only 

needs to recognize the existence of motion so latter is not covered. This section discusses how motion 

detection can be implemented using adaptive background subtraction as well as Gaussian smoothing. 

Adaptive Background Subtraction 

Motion detection can be very accurate due to the inherent nature of the task at hand. Once a video 

is split into images or frames based on a frames per second rate, the video can be considered as a set of 

consecutive images. Using these frames, simple frame differencing can be used to recognize motion.  

𝐹∆(𝑥, 𝑦) = |𝐹𝑖(𝑥, 𝑦) −  𝐹𝑗(𝑥, 𝑦)| 
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Fi and Fj represent the matrix of pixel levels for specific frames. F' represents the absolute 

difference between the pixel levels between the two frames. The size of these matrices is N x M x 3 

where N and M are the width and height, respectively. For images that are in grayscale, the matrix size 

would be N x M instead—images used for motion detection should be converted to grayscale during 

preprocessing for easier computations. For a stationary camera or a video stream where the perspective of 

the video is not moving, simple background subtraction can be used where either Fj or Fi from the above 

equation would be the background image, typically the first frame of the video. The equation can be 

simplified to 

𝐹∆(𝑥, 𝑦) = |𝐹𝑖(𝑥, 𝑦) −  𝐵(𝑥, 𝑦)| 

where B represents the background image in matrix form and is subtracted from the frame at hand 

for every iteration. Once this operation is complete, the difference matrix F' can be binarized based off a 

specific pixel level difference threshold, which can be represented as I. If the frame difference in a pixel 

location is greater than I, then another N x M matrix can be flagged as a 1 in the same pixel location or a 

0 if the difference does not exceed the threshold. 

𝐷𝑖,𝑗(𝑥, 𝑦) = {
1 𝑖𝑓 𝐹∆𝑖,𝑗

(𝑥, 𝑦) ≥ I 
0 𝑖𝑓 𝐹∆𝑖,𝑗

(𝑥, 𝑦) < I  

After this new matrix is calculated, the number of ones in the matrix D can also be compared to a 

final threshold to determine if enough pixels reached a sufficient pixel level change, thus indicating 

motion. Figure 2-1 below depicts this whole process. 
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Figure 2-1: Flowchart of simple background subtraction for detecting motion 

 

While Singla [13] and many other researchers have shown that frame difference with simple 

background subtraction is effective, it can further be improved in an application setting where the 

background is changing, or the perspective of the images and videos is moving. To combat this, adaptive 

background subtraction can be utilized instead. In this method, frame differencing and thresholding is still 

used; however, instead of subtracting the static background image from the candidate image, the image 

being subtracted is one of the previous frames in the stream of images or video. For the equation above, it 

can be again modified as  

𝐹∆(𝑥, 𝑦) = |𝐹𝑖(𝑥, 𝑦) −  𝐹𝑖−𝑡(𝑥, 𝑦)| 

where Fi still represents the current candidate image, but instead of the background image, Fi-t is 

subtracted which represents a frame that occurs t iterations before the current image. After this difference 
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is found, the pixel location flagging is still done by comparing the differences with the pixel level 

threshold. Figure 2-2 represents the new flow of this process. 

 

Figure 2-2: Flowchart of adaptive background subtraction for detecting motion 

 

Using adaptive background subtraction rather than simple background subtraction offers a greater 

opportunity to improve motion detection. Zaman et. al. [14] showed how this technique could be used for 

a visual-based security system and the research obtained sufficient results. 



12 
Gaussian Smoothing 

While the background subtraction methods are fairly trivial in nature, there are more techniques 

that can be used in the motion detection process in order to improve the methods even more. One flaw of 

frame differencing to determine motion between two frames is the adverse effects of noise. Noise can be 

described as anything in the image that are not “interesting” and in this case, can have an effect on the 

background subtraction process. Examples of noise can include light variations, sensor noise, or 

quantization effects. Noise can introduce unexpected fluctuations in pixel levels and affect the image 

processing [15]. 

Essentially, Gaussian smoothing, also commonly referred to as Gaussian blurring, adds a blur 

effect to images. A 2-D convolution operator is applied to the image to reduce detail and noise and 

remove the unwanted parts of the image. The convolution kernel is a 2-D Gaussian and represents a bell-

shaped curve. For 2-D Gaussian smoothing, the Gaussian has the form 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2 𝑒−𝑥2+𝑦2

2𝜎2  

where V  represents the standard deviation of the distribution. Figure 2-3 depicts an example 2-D 

Gaussian bell curve centered at the origin. 

 

Figure 2-3: Example 2-D Gaussian distribution with mean at (0,0) and V  = 1 [15] 
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The process for applying a Gaussian kernel to an image can be represented by the following 

equations. 

𝐼𝐺 = 𝐼 ∗ 𝐺 

=  ∑ ∑ 𝐺(ℎ, 𝑘)𝐼(𝑖 − ℎ, 𝑗 − 𝑘)

𝑚
2

𝑘=−𝑚
2

𝑚
2

ℎ=−𝑚
2

 

=  ∑ ∑ 𝑒−ℎ2+𝑘2

2𝜎2 𝐼(𝑖 − ℎ, 𝑗 − 𝑘)

𝑚
2

𝑘=−𝑚
2

𝑚
2

ℎ=−𝑚
2

 

=  ∑ 𝑒− ℎ2

2𝜎2

𝑚
2

ℎ=−𝑚
2

∑ 𝑒− 𝑘2

2𝜎2

𝑚
2

𝑘=−𝑚
2

 𝐼(𝑖 − ℎ, 𝑗 − 𝑘) 

Essentially, when Gaussian blurring is applied to an image I with 2-D Gaussian kernel, it is the 

same as applying a 1-D Gaussian kernel to all the rows then to all the columns, while the standard 

deviation of the 1-D kernel is the same as the 2-D kernel. With this technique, noise is effectively 

removed, and images can be better used for processing. 

Facial Recognition 

Humans are able to effectively distinguish human faces from each other even though there are a 

vast number of detailed features that make up each part of a face. Even with different poses, expressions, 

and lighting conditions, people can still identify distinctions between faces [16]. When it comes to 

computer vision, this task is not as natural for computers as it is for humans. Similar to motion detection 

described above, there are two aspects to facial recognition: locating faces and identifying faces in an 

image. Both of these aspects are of interest for this thesis and are discussed. 



14 
Histogram of Oriented Gradient 

One popular method for face detection in images is using the histogram of oriented gradients 

technique. The histogram of oriented gradients technique, or HOG, works under the premise that local 

features of an image can be identified and characterized by the local intensity gradients or edge directions 

[17]. Essentially, HOG works by analyzing the pixel intensity and surrounding pixels in an image. The 

pixels are assigned an arrow which denotes the direction of intensity—i.e. which direction the image is 

becoming darker. The key is determining the direction of brightness in order to combat different lighting 

settings for images of the same object or face. The same feature of an object may have extremely different 

raw pixel values under different lighting, but the relative direction of intensity between pixels remains 

constant. Thus, the orientational analysis is robust to changes in illumination. The HOG method is 

especially useful for objects that have a lot of texture which is appropriate for faces. 

However, determining a direction for each pixel is excessive because too much detail can deter 

from recognizing the overall object in a general manner since the object should be able to be recognized 

under different positions and angles. In order to combat this, the method can be further enhanced by 

generalizing the direction of intensity in portions of the overall image. For example, a 16x16 pixel chip of 

an image can be represented by one direction, which is the strongest or most dominant direction on a 

pixel level in that specific chip. By doing this, the basic structures of objects can be better captured.  

For face detection specifically, many faces can be used as training data and the HOG 

representations can be extracted to be compared with a candidate image. If the trained HOG pattern is 

found in an image area, then there is likely a face in that area. The comparison of the known facial HOG 

representations can be achieved with machine learning techniques. Not only is this technique effective in 

detecting faces in images, but also, the histogram of oriented gradients has been used to even detect facial 

expressions [18]. Facial expressions arise from changes in facial muscle movements and deformations, 

and since the HOG method is sensitive to small changes, it can be applied to faces to determine the 

expression. 
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Face Embeddings 

After detecting if there is a face located in an image and where the face is located in the image, 

the recognition step is still of interest. The goal is to be able to distinguish faces of one person from faces 

of another person. A human face has many different measurement options—eye to eye distance, ear to ear 

distance, lip width, nose length, face height, face width, etc. The options are nearly endless. However, 

instead of choosing which measurements to use, machine learning can be used to determine which 

features are best. A deep convolutional neural network (CNN)—the details of deep CNNs discussed in the 

next section—can be used to train to recognize facial measurements. Specifically, research has shown that 

the identity of a face is best measured using 128 measurements. Moreover, deep neural networks are most 

effective with generating these 128 dimensions [19]. These measurements for a face are known as a 128-

dimensional embedding.  

For training faces, three images of faces are actually needed: an anchor, a positive image, and a 

negative image. The anchor is an image of a face with a specific identity. The positive image is another 

face of the same identity as the anchor, but with a possible change in orientation, angle, or other natural 

difference. The negative image is an image of a face with a different identity completely. The neural 

network produces the 128-dimension embedding for all three images. A triplet loss method can then be 

applied to the three images to minimize the distance between the embeddings of the anchor and positive 

image while creating a large distance between the anchor and negative image. This concept is illustrated 

below. 

 

 

 

 

 

Figure 2-4: Triplet loss method representation [19] 
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Embeddings produced by the neural network embeds an image x into a D-dimensional Euclidean 

space. For an anchor image 𝑥𝑖
𝑎, a positive image 𝑥𝑖

𝑝, and a negative image 𝑥𝑖
𝑛, the goal is to satisfy the 

following expression. 

‖𝑥𝑖
𝑎 − 𝑥𝑖

𝑝‖2
2 + 𝛼 < ‖𝑥𝑖

𝑎 − 𝑥𝑖
𝑛‖2

2, ∀ (𝑥𝑖
𝑎, 𝑥𝑖

𝑝, 𝑥𝑖
𝑛) ∈ Τ 

 where α is the minimum allowance between positive-anchor and negative-anchor pairs while Τ 

represents all possible training triplets [19]. If f(x) denotes the 128-dimension embedding, then the loss 

function can be depicted as 

𝐿 = ∑ [‖𝑓(𝑥𝑖
𝑎) − 𝑓(𝑥𝑖

𝑝)‖2
2 − ‖𝑓(𝑥𝑖

𝑎) − 𝑓(𝑥𝑖
𝑛)‖2

2 + 𝛼]
𝑁

𝑖

 

 With this loss function, the neural network is able to learn which embeddings correspond with 

each other and which do not. For face identity classification, many triplets can be used to train the 

network, which can then be used to create embeddings. 

 The final step for facial recognition is to predict the identity and name of the face based on the 

outputted 128-dimension embedding from the CNN. Any machine learning method classification 

algorithm can be used such as linear support vector machines or k-nearest neighbor classifier. Several 

embeddings of known faces can be used to train a classifier and then used to predict a name and final 

identity from a known database of names based on which class the 128-dimension embedding is most 

similar to. Details of final classification methods will be discussed in later sections. 

Deep Learning Models 

 The main premise of deep learning is essentially taking a large amount of data and using that data 

as input to computational models. As these models take in more and more input, they begin to “learn” 

representations of the data, and in turn, they can be used to make predictions or classifications similar to 

how a human would. Deep learning has led to major breakthroughs in various topics including speech 
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recognition, visual object recognition, object detection, and even more obscure areas of expertise such as 

drug discovery and genomics [27]. 

Convolutional Neural Networks (CNNs) 

 One main focus of deep learning is the task of prediction and classification of images, 

specifically. An approach that was used to combat this task is the development of convolution neural 

networks—also known as CNNs or ConvNets—which is a subclass of feedforward neural networks (i.e. 

data only moves forward in one direction in a network). Specifically, CNNs are used to take input in the 

form of multiple or single arrays, which are the form that images take. For example, input to a CNN can 

be three 2-D arrays which represent pixel intensities in three color ranges (RGB). In the case of images, 

these models extract and learn features of images in a dataset. The benefit derived from convolutional 

neural networks comes from four main concepts that utilize natural signal properties: local connections, 

shared weights, pooling, and the use of many layers [27]. A typical ConvNet includes convolutional 

layers, pooling layers, fully connected layers, and activation function layers. 

 Convolutional layers, which are the fundamental components of a CNN, apply convolution 

operations to its input, and pass the output to the next layer. Additionally, neurons on a convolutional 

layer are only associated with subareas of its input. These layers consist of many filters which are 

convolved with the images to create feature maps. As more inputs enter the layer, the filters learn features 

of the input and adjust their parameters. Outputs of convolutional layers are often passed to rectified 

linear units (ReLU), which applies an activation function to the feature maps (i.e. sets values less than 0 

to 0). Applying activation functions increase non-linearity in the network. In other words, without 

activation, the network to some extent acts as a linear regression model rather than a neural network. 

Other than using a ReLU, other activation functions such as a sigmoid function can be used. 
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 After the activation function has been applied, convolutional layers are often followed by pooling 

layers. These layers have the task of reducing the representation of the input or down sample the input. 

Pooling helps reduces the number of parameters by merging semantically similar features into one [27]. 

This can help alleviate overfitting because the neural network will not try to learn every single feature 

from all areas in an input. Moreover, pooling allows for more efficient computations. 

 Lastly, convolutional layers are often followed by a series of fully connected layers for final 

classification. The input to the fully connected component must be flattened—i.e. the feature maps are 

converted into a long vector. In this layer, every neuron in one layer is connected to every neuron in the 

next layer. This step is where much of the learning comes into play. Classification error is calculated and 

backpropagated so the weights and feature detectors can be adjusted. This process optimizes the 

performance of the model [28]. The output of a fully connected layer is the classification of the input and 

is followed by a final output layer whose nodes correspond to each class in the classification problem. A 

softmax function can be applied to the output of the fully connected layer to convert classifications into 

probabilities, in which the node with the highest probability represents the correct classification.  

 There are endless different convolutional neural network architectures that can be created and 

used for classification depending on the context of the problem. Overall, these models are very powerful, 

especially when image classification is of interest.
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System Architecture and Design 

This section will describe the details of the architecture and the surveillance system. Moreover, 

the design choices and goals of this system will also be outlined. 

Architecture and Process 

 

Figure 3-1: Overview of architecture and flow of smart surveillance system 
 

In order to utilize the concepts of edge computing, we utilize a smart camera (edge device on the 

left of Figure 3-1) and a server running on a PC (“fog” device on the bottom of Figure 3-1). In the next 
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section, the details of these two components will be outlined. For purposes of this research, the smart 

camera and the server communicate by sending and receiving data using a transmission control 

protocol/Internet protocol (TCP/IP) connection. While there may be more efficient methods to transfer 

data, such as using a 4G LTE connection as done in [8], this architecture can still be achieved with 

TCP/IP, so it is a sufficient data transmission approach for this research. 

After the server creates a socket and begins accepting connections, the smart camera component 

begins collecting frames via the camera sensor at 5 frames per second. If motion is detected using the 

methods previously discussed, the camera will send these “trigger” frames to the server for more 

processing. This is done because capturing frames and detecting motion is computationally light and can 

be done on the smart camera. However, facial recognition and object detection require a more robust 

machine. This is similar to the process in [8] where the drones only performed a few processing 

procedures before sending the data to the servers for heavier processing. 

On the server side, as trigger frames are accepted from the smart camera, it immediately performs 

facial recognition and package detection simultaneously on two threads. If the server detects someone 

who is not in the known database of faces, i.e. an unknown person, the frame is deemed “interesting.” If a 

delivery package is detected in the frame, this also indicates there is a possible event happening. Based on 

the outputs of the two algorithms, a specific alert is sent to the homeowner via short message system 

(SMS) text message, possibly indicating that a package is being stolen or there is an intruder. Similar to 

the decision to use a TCP/IP connection, the choice to use the SMS text message could be improved as 

well to something such as a push notification from a smart phone application. However, this process is 

more so a proof of concept to represent that the homeowner can be alerted after facial recognition or 

package detection. This will be further discussed in the future work section. 

Concurrently, as the previous processes are occurring, frames are sent to a live stream that the 

homeowner can view at any time as depicted by the top portion of Figure 3-1. This live stream can be 

accessed via the smart phone or the server and would be useful if an alert is sent. 
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Design Choices 

The following sections explain the decisions of the surveillance system architecture and process. 

Each decision was made to achieve the overall goal of providing a real-time, punctual alert by 

incorporating an inexpensive edge device with another robust component. 

Initial Detection 

In order to allow for a low-cost device that can provide useful data, only motion detection is done 

on the edge device. This will filter out a majority of the frames that the smart camera captures and will 

reduce the computations needed to determine if an event is occurring. In addition, this will reduce the 

bandwidth usage compared to if all frames were sent from the camera to the server. Moreover, motion 

detection only requires rudimentary calculations or simple image processing. High end, powerful cameras 

are not required for those computations. Therefore, using the smart camera edge device to execute the 

initial filtering with only motion detection is a resourceful choice. 

Offloaded Frames 

Once the smart camera completes the initial filtering and offloads the trigger frames to the server, 

there must be additional computations to detect meaningful events. The more robust power of the server 

(PC) is used in this stage since the low-cost edge device cannot provide the same capabilities. Since the 

server has the means to accomplish more difficult tasks, one may consider to just send all the frames to 

the server that are captured from the edge device. While the server has the capability to handle the 

computations, offloading all frames to the server would increase the bandwidth usage and latency. 

Moreover, any usefulness that the low-cost camera does have would not be utilized to its full effect. By 

only offloading frames after initial filtering, all the frames that the server receives have a possibility of 
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indicating a relevant event. Thus, all computations that are completed on the server possess a level of 

significance. 

Final Alert Decision 

While each specific component of the system is able to achieve individual outputs, these outputs 

are not meaningful unless the homeowner can know the significance of the outcomes. As mentioned, the 

smart camera will send frames to the server if motion is detected. Then, the server will run the facial 

recognition and package detection algorithms on the frame. However, in order to integrate these two 

outputs and determine the event that is happening, there are four cases of events that can be happening 

based on the two algorithms: 

• Case 1:  

o Detection of known person and no detection of package 

• Case 2:  

o Detection of known person and detection of package 

• Case 3:  

o Detection of unknown person and no detection of package 

• Case 4:  

o Detection of unknown person and detection of package 

In the first two cases, a known person is detected, so no alert is needed to be sent. However, in the 

second two cases, an unknown person is detected. In case 3, there is an unknown person detected with no 

package. This can indicate a possible intruder. In case 4, an unknown person is detected, and a package is 

detected. This can indicate that there is a possible package theft. While these four cases do not guarantee 

that events are definitely happening, an alert sent to the homeowner is still meaningful to homeowners 

and can cause them to watch the live stream and observe what is happening at their home.
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Implementation 

This chapter discusses the overall approach to implementing the surveillance system as well as 

detailed steps to achieve the individual components. Moreover, the physical materials used to accomplish 

each component are discussed. Overall, the surveillance system architecture was implemented in Python 3 

and leveraged the Keras and TensorFlow libraries in order to create and train the deep neural network. 

Overview 

As discussed in the previous chapter, the system provides a straightforward flow of data. To 

reiterate, firstly, the image stream is captured from the Raspberry Pi camera module at 5 frames per 

second. Once motion is detected in a given frame, the frame is sent to the server via TCP/IP connection. 

The server detects if there exists a person in the frame, and if so, identifies the person as a known identity 

or an unknown identify. Simultaneously with facial recognition, the server predicts the existence of a 

package in a frame according to the neural network which has been trained offline. Upon discovery of an 

unknown person or package, a specific alert is sent to the homeowner via a SMS text message depending 

on what was detected. The following sections describe how each component of this system was 

implemented. 

Materials 

This section details all materials used which include physical materials for all components of the 

system. 



24 
Smart Camera 

The smart camera in this research was constituted of a Raspberry Pi 3 Model B V1.2 and a 

Raspberry Pi Camera Module V2.1.  

The goal was to use a device that was efficient for minimal processing, so the Raspberry Pi 3 

Model B was a suitable choice. This model uses a 64-bit Broadcom BCM2837 system-on-chip (SoC) 

with a quad core ARM Cortex A53 cluster. The cores run at 1.2 GHz with 32kB Level 1 and 512kB Level 

2 cache memory. The Raspberry Pi also includes a low power graphics processing unit (GPU), which is 

the Video Core IV Multimedia Co-Processor. Moreover, the device includes on board BCM43143 Wi-Fi 

and Bluetooth 4.1 capabilities. In terms of power, it is powered by a +5.1V supply via micro USB and 

typically 2.5A power supply which can vary depending on what devices are connected to the Pi [20]. 

The Raspberry Pi Camera Module V2.1 is the most recent camera module release compatible 

with the Raspberry Pi 3. This camera has a still resolution of 8 megapixels and can capture video with 

modes of 1080p30, 720p60, and 640×480p60/90 resolutions. The max frames per second the camera can 

handle at full frame size is 90 fps. In terms of software features, the camera has a variety of effects (e.g. 

blur, negative, saturation), exposure modes (e.g. auto, night, backlight), and white balance modes (e.g. 

auto, sun, fluorescent) [21]. 

Server 

 As mentioned in the previous chapter, the server will be running on a PC. For simplicity, a UNIX 

terminal is used as the server, which receives trigger frames from the smart camera and appends these 

frames to two queues for facial recognition and package detection handling. The PC used in this research 

can handle the processing for facial recognition and package detection. The outcome of the facial 

recognition and package detection is used to construct the correct alert to send to a smart phone via SMS 

text messaging. Eventually, the server could run on a desktop application or other user-friendly method. 
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Smart Phone 

As mentioned, the server will send alerts to a phone via SMS text messages. A future aspiration 

for this thesis is eventually to have application be developed that will handle viewing the live stream, 

receiving alerts via push notification, and any other enhancements to this system. This ideal application 

can be used via the smart phone. This will also be further discussed in the future works section. 

Graphics Processing Unit 

For this research, a robust graphics processing unit (GPU) was necessary for training the image 

datasets for facial recognition as well as the package detection. The GPU used is the NVIDIA Tesla T4, 

which utilizes the NVIDIA Turing architecture. The GPU was accessed through a virtual machine 

instance on the Google Cloud Platform. In terms of GPU specifications, it runs on 320 Tensor Cores and 

2,560 NVIDIA CUDA Cores. It has a GPU memory of 16 GB Graphics Double Data Rate 6 (GDDR6) 

[22]. This unit is sufficient for the needs of this research. 

Datasets Overview 

In all components of the system, image datasets were needed, whether in an offline training phase 

or testing phase. All datasets were obtained using one of three methods: extracted from Google Images, 

downloaded from datasets that are open to public use, or custom-made datasets solely used for this 

research. Specifics of each dataset are described in the next chapter. Any preprocessing or augmentation 

to the datasets for implementation will also be discussed in the next chapter. 
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Motion Detection Approach 

To detect motion, the concepts discussed in chapter 2 of using adaptive background subtraction 

and Gaussian blurring were adopted.  

The basic process of the motion detection is as follows. When the camera captures a frame from 

the camera sensor, the first task is to convert the image to a grayscale image. This is done because color is 

not a contributing factor in the algorithm. Moreover, this will decrease the size of the frame by a factor of 

3 for expedited processing. Once a grayscale image is obtained, the Gaussian blurring effect is applied to 

the frame. Due to the nature of the camera sensor, there may exist fluctuations of pixel intensity levels as 

well as sudden changes in lighting which can cause noise in the frame that may influence the algorithm’s 

accuracy. The Gaussian blurring aids in alleviating this issue. The smoothing was applied with a 21x21 

pixel area across the area of the whole frame. Below are examples of the resized and blurred grayscale 

images from the datasets that are used for evaluation. These datasets will be described in the next chapter. 

 

Figure 4-1: Office dataset resized and blurred grayscale frame 

 

Figure 4-2: Sofa dataset resized and blurred grayscale frame 
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Figure 4-3: University building dataset resized and blurred grayscale frame 

 

Figure 4-4: Cubicle dataset resized and blurred grayscale frame 

 

Figure 4-5: Home dataset resized and blurred grayscale frame 

 

After converting the input to grayscale and blurring the frame, the adaptive background 

subtraction method comes into effect. If the input image is the first captured frame from the camera, then 

the blurring and grayscale conversion is applied, and the next image is read. However, after the initial 

frame, the frame is compared to the previous frame. Firstly, the absolute pixel intensity difference is 

calculated simply by subtracting the previous frame from the current frame and taking the absolute value. 

Figure 4-6 to Figure 4-10 exhibit the result of this process. 
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Figure 4-6: Office dataset absolute pixel intensity difference 

 

Figure 4-7: Sofa dataset absolute pixel intensity difference 

 

Figure 4-8: University building dataset absolute pixel intensity difference 

 

Figure 4-9: Cubicle dataset absolute pixel intensity difference 
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Figure 4-10: Home dataset absolute pixel intensity difference 

  

 As can be seen from the images above, the background is completely black, indicating that there 

is no motion in the background. The other parts of the difference frames have a higher intensity, which 

indicate motion within the frame. However, in order to filter out small changes in pixel intensities that 

may lead to false positives of motion, the frame is converted to a binary image, where locations with pixel 

differences greater than a threshold are set to 1, otherwise set to 0. In other words, all locations in the 

image where motion exists would show as white and otherwise show as black. This process begs the issue 

of choosing the most optimal value for the pixel difference threshold. The next chapter discusses choosing 

that value. However, once that threshold is chosen, the images below portray such binarized images. 

 

Figure 4-11: Office dataset binary image 
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Figure 4-12: Sofa dataset binary image 

 

Figure 4-13: University building dataset binary image 

 

Figure 4-14: Cubicle dataset binary image 

 

Figure 4-15: Home dataset binary image 
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 From these binary images, there are many different white regions of different sizes. In order to 

make the motion detection algorithm sensitive to true motion but robust to small changes of 

“uninteresting” motion, the existence of larger regions are used to indicate legitimate motion. Contour 

detection is used to find the outlines of these regions. Another threshold is introduced which is a size 

threshold for the regions. If a region in the binary image that is greater than the contour area threshold, 

then the frame is considered to have motion, which is the final result of the algorithm. Similar to the pixel 

difference threshold, a threshold is needed to determine what the minimum contour area must be in order 

to make a conclusion for the detection of motion. This threshold is also discussed in the next chapter. 

Facial Recognition Approach 

The facial recognition algorithm follows the methods described in chapter 2. 128-dimension 

facial embeddings are generated and differentiated using the triplet loss method, followed by using 

machine learning classification algorithms to train the embeddings and predict identities. 

First, the facial recognition dataset images were facially aligned. This means that a face is 

identified based on its geometric structure. Then, based on translation, rotation, and scaling, a canonical 

alignment of the face is achieved. Specifically, the face is first extracted in a given image and centered. 

The face is then rotated such that the center of the eyes are on the same horizontal line—the eyes lie on 

the same y-axis. Moreover, all images of faces are scaled so that the faces are equal in size. The logic 

behind facial alignment is that it provides a type of data normalization, which in turn, will allow for better 

training. Figure 4-16 and Figure 4-17 depict this augmentation. 
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Figure 4-16: Mark Zuckerberg original training image 

 

Figure 4-17: Mark Zuckerberg aligned training image 

 

Once all the training images were aligned, the 128-dimension embeddings were ready to be 

generated. In order to produce the embeddings, the dlib facial recognition ResNet model was used, which 

is a ResNet network with 29 convolutional layers. This model is essentially the ResNet-34 network 

described in [24] with fewer layers and the number of filters per layer reduced by half. The input to the 

neural network was trained by taking three of the training images as input, two of which are the same 

person and the third is a different person. 128-dimension embeddings were produced—each associated 

with a known name or label—for each image, and then the triplet loss method described in chapter 2 was 

used to tweak the neural network weights such that the embeddings produced for one identity is 
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differentiated from that of another identity. Faces with the same identity should have very similar 

embedding value after this process. 

After the neural network was trained, a classification model was trained with the generated 

embeddings in order to be used for prediction in the online phase. Each embedding is associated with a 

label which was either a name from the known people or “unknown”. In real time, when the system is 

running, the HOG method is used to extract the location of a face in an image. Then using the neural 

network, a new 128-dimension embedding is generated from the test image, followed by using the 

classification model to predict the final identity based on the embedding. For the classification model, 

there are many options to use. For our implementation, six options were considered: support vector 

machine, linear support vector machine, K-nearest neighbors, decision tree classification, random forest 

classification, and AdaBoost classification. The accuracies for these models were evaluated and the most 

accurate was chosen. The details of the choice of classification is discussed in the next chapter. 

Package Detection Approach 

The final major component of the surveillance system is the package detection classification. Two 

main approaches were used with two different deep neural networks. 

For this component, an abundance of images are needed for training. Half of these images belong 

to one class (images containing a package) and the other half belong to the other class (images containing 

no package). Furthermore, each half was split into training images and validation images. The ratio of 

training to validation images were split such that approximately a 70-30 train-validation split was 

achieved. 

For train and validation sets, data augmentation was also applied. Specifically, during training, 

four different augmentations were used: rescaling, shear transformation, zooming, and flipping. Each 

image was rescaled down by a factor 1/255. The original images consist of values ranging from 0-255 in 
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the RGB spectrum; however, they were rescaled to a 0-1 so the model can more easily process images 

with smaller values. Moreover, random shear transformations were applied followed by zooming. Lastly, 

images were flipped horizontally. For validation images, the only augmentation was rescaling by a factor 

of 1/255. Lastly, all images were resized to 300x300 pixels so the neural network model could use them 

as input. These augmentations provided a larger dataset as well as increased accuracy of the model. 

 

Figure 4-18: Original training image example 

 

The first approach used for package detection was to use a custom small convolutional neural 

network model that contained few layers and few filters per layer along with dropout, in addition to using 

the preprocessed dataset described above. Figure 4-20 is the architecture of the convolutional neural 

network in this first approach. 

Figure 4-19: Augmentation examples 
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Figure 4-20: First approach convolutional neural network architecture 

  

 This CNN architecture takes in 300x300 pixel images as input. Additionally, it mainly features a 

stack of three convolutional layers. The first layer uses 32 3x3 filters along with a rectified linear unit 

(ReLU). This layer is followed by a max pooling layer. The next main convolutional layer is identical in 

architecture to the previous layer, utilizing 32 3x3 filters and rectified linear activation. This is also 

followed by a max pooling layer. The last main layer is another convolutional layer that uses 64 3x3 

filters, rectified linear activation, and again, followed by a max pooling layer. After this stack of 

convolutional layers, the model is flattened to fully connected layers. The first fully connected layer 

features 78,400 nodes with a ReLU. After applying dropout regularization, the next fully connected layer 

features 64 nodes and uses sigmoid activation. Finally, the output of the entire convolutional neural 

network is one node or class—package or no package for this system. 

The CNN described above was a simple stack of layers, mainly used to create a baseline 

measurement of accuracy. In order to improve this model, a different architecture was considered. A more 

efficient method is to use a network that has been pre-trained on a much larger dataset than available. The 

pre-trained network that was chosen is the VGG-16 architecture that was trained on the ImageNet dataset 

by the Visual Geometry Group [25]. 
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 Figure 4-21 depicts the general architecture of VGG-16 model. Essentially, it is composed of five 

convolutional blocks, each composed of a different number of convolutional layers. These blocks are 

followed by fully connected layers before the final output. More details of this model can be found in 

[25]. In this second approach, the goal is to utilize the learned features that are useful for multiclass 

classification. First, only the convolutional blocks were instantiated, and this portion of the model was 

trained offline on the training and validation datasets one time. The output of this is known as the 

“bottleneck features” of the model and was also saved offline. These features are, in essence, the final 

activation maps before the fully connected layers. Then, a small fully connected model was trained on top 

of these saved features. The reasoning for training the convolutional blocks offline on the datasets once is 

to increase efficiency. Training the VGG-16 model is computationally expensive and running the model 

only once still allows to extract the bottleneck features. The small fully connected model that was used on 

top is simply two fully connected layers, one with 41,472 nodes and the other with 256 nodes after 

dropout regularization. Similar to the previous approach, the final output of this model is one node or 

class. 

 

 

Figure 4-21: High level VGG16 architecture [26] 
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Evaluation 

This chapter is dedicated to presenting the performance of all components of the system, which 

includes metrics of intermediate steps as well as final metrics indicating effectiveness. Moreover, the 

datasets used for each component is discussed. 

Motion Detection 

The evaluation of motion detection component consists of a few parts. Firstly, the optimal pixel 

threshold is determined based on the datasets. In addition, the optimal contour area is determined using 

the same datasets. The final accuracy metrics are also included for overall performance of the algorithm. 

Datasets 

To begin with, all datasets were only augmented based on frame size. Since the Raspberry Pi 

camera was configured to capture frames with size 640x480 pixels, the images in all datasets were also 

resized to 640x480 pixels. This was the only augmentation that the motion detection process needed. 

For motion detection, training datasets were required only to determine the optimal thresholds 

needed—pixel difference threshold and contour size threshold, both will be discussed in the next chapter. 

There were five total datasets used, three of which were used to determine the optimal parameters and two 

to verify results. Three of the datasets were downloaded from ChangeDetection.Net (CDNET), which is a 

public online video database for testing change detection algorithms [23]. One dataset was the “office” 

dataset, which is a basic video of someone moving in an office. 342 frames were extracted from this 
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video. The next database was the “sofa” dataset, which contained moving background objects and objects 

that changed from moving to stationary to moving again [23]. 321 frames were extracted from this video. 

Lastly, from CDNET, the “cubicle” dataset was used, which contained shadows and intermittent shade 

[23]. This was the largest dataset of 1,233 extracted frames. The last two of five motion detection datasets 

were custom-made. The first custom dataset was recorded in a household, similar to where the smart 

camera would be placed and contains 262 frames. The last dataset was recorded in a university building 

and contains 718 frames. The office, sofa, and university building datasets were used for parameter 

optimization, and the cubicle and home datasets were used for test results. This comes to a total of 2,876 

frames used for motion detection. The table below visualizes the distribution of datasets. Moreover, 

example frames from all datasets are also shown. 

 

 

 

Figure 5-1: Office dataset example frame 

Table 5-1:  Distribution of motion detection datasets 

Purpose Dataset Number of frames 

Parameter optimization 
office 342 
sofa 321 

university building 718 

Testing 
cubicle 1,233 
home 262 
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Figure 5-2: Sofa dataset example frame 

 

 

Figure 5-3: University building dataset example frame 

 

 

Figure 5-4: Cubicle dataset example frame 

 

 

Figure 5-5: Home dataset example frame 
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Optimal Pixel Threshold 

 In order to determine this optimal pixel difference threshold, the office, sofa, and university 

building datasets were used to calculate accuracy of motion detection when different thresholds are used. 

 

 

Figure 5-6: Office dataset pixel threshold vs accuracy 

 

 

Figure 5-7: Sofa dataset pixel threshold vs accuracy 
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Figure 5-8: University building dataset pixel threshold vs accuracy 

 

 The pixel thresholds that yielded the maximum accuracy for the office, sofa, and university 

building datasets are 15 pixels, 24 pixels, and 18 pixels, respectively. The average of all three is 

approximately 20 pixels across 1,381 images, which is the threshold that was chosen.  

Optimal Contour Area 

 In order to determine the optimal contour size threshold, the office, sofa, and university building 

dataset were used again to determine accuracy with different contour size thresholds. The 20-pixel 

difference threshold found previously was also used. 
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Figure 5-9: Office dataset contour size threshold vs accuracy 

 

Figure 5-10: Sofa dataset contour size threshold vs accuracy 

 

Figure 5-11: University building dataset contour size threshold vs accuracy 
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 The contour size thresholds that yielded the maximum accuracy for the office, sofa, and 

university building datasets are 500, 950, and 700 pixels, respectively, which is an average of 

approximately 700 pixels. This is used as the final parameter for motion detection. 

Performance 

Once the parameters—pixel and contour size threshold—were optimized, the remaining datasets 

were used to evaluate performance. To verify the value of the chosen parameter values, the accuracy of 

the cubicle and home datasets were measured across multiple contour size thresholds again, using the 20-

pixel difference threshold. 

 

 

Figure 5-12: Cubicle dataset contour size threshold vs accuracy 
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Figure 5-13: Home dataset contour size threshold vs accuracy 

 

In both of the testing datasets, the plot shows that the maximum accuracy occurs approximately at 

the 700-pixel contour size threshold, which is threshold that was chosen. As noted in the previous chapter, 

the testing datasets have a total of 1,495 frames. An average accuracy of over 95% was achieved. 

Moreover, the true positive, true negative, false positive, and false negative rates are of interest. 

Below shows these rates for both datasets. 

 

As can be seen from Table 5-3, the true positive rate is the highest while the false negative rate is 
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Table 5-2:  Motion detection test dataset results 

Dataset Number of frames Accuracy 
Cubicle 1,233 95.67% 
Home 262 95.8% 

Table 5-3:  Motion detection test metrics 

Dataset True positive rate True negative rate False positive rate False negative rate 
Cubicle 96.93% 94.27% 5.73% 3.07% 
Home 99.30% 91.6% 8.4% 0.7% 
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positive rate and lower false negative rate. However, a slightly lower true negative rate is acceptable since 

it is better to be cautious than careless in a security setting. Thus, overall, the motion detection algorithm 

presented works efficiently. 

Facial Recognition 

The first step for evaluating facial recognition was to determine which classification model was 

best to determine the final identity of a facial embedding. Then, the final accuracy was tested using the 

test datasets. 

Datasets 

For facial recognition, training and testing datasets were required. To begin with, this research 

constructed a database of faces where two persons were known— household members who should not be 

detected as an intruder—and any other person’s face would be classified as unknown. For simplicity, two 

people were chosen of which images of them could easily be obtained: firstly, Mark Zuckerberg, who is 

the chairman and CEO of Facebook, and secondly, the researcher of this thesis. 

In order to train the model, three datasets were needed. One contained faces of Mark Zuckerberg, 

one contained faces of the researcher, and the third was an unknown dataset, which contained as many 

different faces as possible, not including any faces of Zuckerberg or the researcher. The unknown 

category contains famous people from different race and professions such as African American, Asian, or 

Caucasian and athletes, politicians, or artists, respectively. For the Zuckerberg and unknown datasets, 

Google Images was used to extract images. The training datasets for all three groups—Zuckerberg, the 

researcher, and unknown—include 400 images of faces. This size proved to be sufficient for recognition.  
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For testing, there were four different datasets used. Again, one contained faces of Mark 

Zuckerberg, one contained faces of the researcher, and a third containing unknown faces, but in addition, 

there was a dataset that did not include any faces in the image as a control. The latter dataset included 

Google Images containing household rooms, front doors, and other various objects and places that do not 

contain any visible face. All four datasets contained 100 images each for a total of 400 testing images. 

The table below visualizes the distribution of datasets for training and testing. A few images from the test 

dataset are also shown. Preprocessing was used on the training images and will be shown and discussed in 

the next section. 

 

 

Figure 5-14: Mark Zuckerberg example test image 

Table 5-4:  Distribution of facial recognition datasets 

Purpose Dataset Number of images of faces 

Training 
Mark Zuckerberg 400 

Researcher 400 
Unknown 400 

Testing 

Mark Zuckerberg 100 
Researcher 100 
Unknown 100 
No face 100 
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Figure 5-15: Unknown person example test image 

 

Figure 5-16: No face example test image 

Classification Model for Facial Embeddings 

In order to determine the best classification model to training the embeddings and make 

predictions, six different options were considered: support vector machine, linear support vector machine, 

K-nearest neighbors, decision tree classification, random forest classification, and AdaBoost 

classification. The support vector machine model was concluded to be the best for prediction, which is the 

final model that was chosen. Below shows the accuracy for the four testing datasets—no face, unknown, 

the researcher, and Mark Zuckerberg—with each prediction method.  
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Figure 5-17: Support vector machine accuracy 

 

Figure 5-18: Linear support vector machine accuracy 

 

Figure 5-19: K-nearest neighbors classification accuracy 
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Figure 5-20: Decision tree classification accuracy 

 

Figure 5-21: Random forest classification accuracy 

 

Figure 5-22: AdaBoost classification accuracy 
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Performance 

To evaluate the accuracy of facial recognition, the four datasets shown above were used to test, 

each with 100 images each. Using the support vector machine, the no face, unknown, researcher, and 

Mark datasets achieved accuracies of 100%, 96%, 98%, and 96%, respectively. Figure 5-23 depicts the 

confusion matrix for these datasets. In addition, Table 5-5 represents the true positive, true negative, false 

positive, and false negative rates for all datasets. 

 

Figure 5-23: Facial recognition confusion matrix 

 

 The algorithm is very effective in identifying faces as well as recognizing if no face is present in 

the image with 96% being the lowest true detection rate. In addition to measuring accuracy, the latency of 

the recognition algorithm was also measured. With the concept of edge computing being utilized, the 

decision to offload facial recognition to the server was determined using the latency measurement. On 

average, the server took approximately 1.057 seconds per image to make a prediction. Moreover, 

specifically, the server took an average of 0.073 seconds per image to make a prediction when there was 

no face in the image—i.e. motion was detected from the camera, but no face was in the frame or a face 

was completely occluded in the frame. On the other hand, the facial recognition prediction on the smart 

Table 5-5:  Facial recognition test metrics 

Dataset True positive rate True negative rate False positive rate False negative rate 
No face 100% 97.67% 2.33% 0% 

Unknown 96% 99.67% 0.33% 4% 
Researcher 98% 99.33% 0.67% 2% 

Mark 96% 100% 0% 4% 
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camera took an average of 10.075 seconds per image. Additionally, the smart camera took an average of 

1.013 seconds per image for images without a face. By offloading facial recognition to the server, 

approximately a 10x speedup is achieved overall and a 14x speedup for images that do not contain faces. 

Package Detection 

The evaluation of package detection depended on the accuracy of the two chosen methods. Both 

deep learning models discussed previously were trained and the best model was chosen to be tested for 

final accuracy. 

Datasets 

For package detection datasets, training and testing datasets were mandatory again. In this 

research, a delivery package is classified as the traditional cuboid shaped package, which is what is used 

for training and testing. All datasets for this component were collected from Google Images or custom 

collected. 

For the training set, two datasets were used. One contained images of packages and another 

dataset contained images not including any packages. The package dataset included images with people, 

no people, multiple packages, or single packages in order to train for more realistic test scenarios. 

Moreover, these images included packages that were either unblocked or occluded. Additionally, for both 

of the two datasets, each was further split into train and validation sets. Both datasets set contained a total 

of 1,472 images, with the training set consisting of 1,000 images and the validation set consisting of 472 

images. With this split, approximately a 70-30 train-validation split was achieved. This is a total of 2,944 

images, before augmentation, for training.  
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For testing, two categories of testing was used. As expected, one dataset contained images 

including a package, and the other dataset contained images without packages. For this portion, 810 

images of each category was used. This is a total of 1,620 testing images. Again, the table below 

visualizes the distribution of datasets for training and testing, followed by a sample image of a package 

image. 

 

 

 

Figure 5-24: Package dataset example training image 

 

Figure 5-25: Package dataset example training image with person 

Table 5-6:  Distribution of package detection datasets 

Purpose Dataset Number of images 

Training With package 1000 
No package 1000 

Validation 
With package 472 
No package 472 

Testing 
With package 810 
No package 810 
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Baseline CNN 

To achieve the best results for package detection, both approaches discussed previously were 

trained and compared. First, the baseline CNN was trained. In order to determine the correct amount of 

training for either approach, training metrics were measured using a different number of epochs for 

training ranging from 5 to 155 in intervals of 5. The plots below represents the training and validation 

accuracy over different numbers of epochs as well as the training and validation loss using the neural 

network described in the first approach. 

 

 

Figure 5-26: Training and validation accuracy vs epochs using first approach 
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Figure 5-27: Training and validation loss vs epochs using first approach 

 

In Figure 5-26, the training accuracy does not increase as expected as the number of epochs 

increases. This may indicate that the model has trouble with converging to increase training accuracy. 

Moreover, the training loss shown in Figure 5-27, does not steadily decrease as expected when training a 

model. Furthermore, the validation loss is very sporadic, which also indicates its issue with converging. 

The spikes in validation loss also may indicate the learning rate is too high. While these two plots lead to 

believe that the model is not sufficient for this research’s classification problem, the accuracies of the 

classification on the testing datasets were also measured to verify. 
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Figure 5-28: True positive and true negative accuracy vs epochs using first approach 

 

 

Figure 5-29: False positive and false negative accuracy vs epochs using first approach 
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VGG-16 Bottleneck Features 

Next, the architecture and process using the VGG-16 model was trained and tested in order to see 

if the method for classification can be enhanced. Again, the training and validation accuracies and loss 

were plotted using different number of epochs. 

 

 

Figure 5-30: Training and validation accuracy vs epochs using bottleneck features 

 

 

Figure 5-31: Training and validation loss vs epochs using bottleneck features 

97
97.5

98
98.5

99
99.5
100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A
cc

ur
ac

y 
(%

)

Epochs

Training and Validation Accuracy

Training Validation

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Lo
ss

 (%
)

Epochs

Training and Validation Loss

Training Validation



57 
 

This second approach yielded a much more suitable method for classification. From Figure 5-30, 

the training converges after approximately 20-40 epochs. After this, training accuracy begins to 

constantly reach nearly 100%, meaning that the model is overfitting and should not be trained anymore. 

Moreover, in Figure 5-31, the validation loss begins to become increasingly greater than training loss at 

roughly 30 epochs. In order to verify if this model is useful, the classification was run on the testing 

datasets. 

 

 

Figure 5-32: True positive and true negative accuracy vs epochs using second approach 
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Figure 5-33: False positive and false negative accuracy vs epochs using second approach 
 

As stated before, ideally, the true positive (detected a package when it exists) and true negative 

(detecting no package when no package exists) rates should be as close to 100% as possible. From the 

Figure 5-32, the true negative rate begins to generally decline at approximately 30 epochs. Hence, the 

false positive rate also increases after that much training and 30 epochs is the right amount of training for 

this model. With these metrics, using the bottleneck features of the pretrained model for package 

detection is shown to be much more suited for accurate results. 

Performance 

After training both models, the second approach of using the VGG-16 model’s bottleneck 
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epochs which is optimal. After choosing to use the latter deep learning approach, the model was tested on 

the testing datasets. 

 

Figure 5-34: Package detection confusion matrix 
 

This confusion matrix exhibits the number of correct classification and the number of 

misclassifications. For the package dataset, 23 images were misclassified, and 787 images were correctly 

classified. For the no package dataset, 72 images were misclassified, and 738 images were correctly 

classified. 

 

This amount of training used is verified by the testing accuracies. The highest true positive and 

true negative rate average (94.14%) occurs with using the model trained over 30 epochs. These rates are 

97.16% and 91.11%, respectively. The main contribution of this research comes from this ability to detect 

packages. The results shown here prove to be a suitable baseline for this feature in home a surveillance 

system. 

Table 5-7:  Package detection test metrics 

Dataset True positive rate True negative rate False positive rate False negative rate 
Package 97.16% 91.11% 8.89% 2.84% 

No package 91.11% 97.16% 2.84% 8.89% 
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Discussion 

Overall, the major components of this system all are successful in contributing to a smart 

surveillance system. The previous chapter exhibited its sufficient accuracies for motion detection, facial 

recognition, and package detection. 

Motion Detection 

For motion detection, adaptive background subtraction complemented with Gaussian smoothing 

proved to be very successful. Motion detection has been a very popular research topic in the computer 

vision field, so there exists a wide range of options for accomplishing this task. However, the method 

chosen in this research was suitable for this system, yielding high testing accuracies. Motion detection 

was accomplished on the smart camera. Thus, motion detection was the leading influence in determining 

if a frame should be offloaded to the server for more processing. This could have been coupled with 

another heuristic in order to better choose trigger frames. 

Facial Recognition 

Facial recognition in this research was implemented using a known persons database of two 

people. With this implementation, the algorithm of generating 128-embeddings and training them with a  

support vector machine led to accurate results. In addition, the process of offloading trigger frames to the 

server proved to be a suitable choice considering the improved latency of running facial recognition on 

the server rather than on the smart camera. This implementation only included two known faces, which 
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may not always be the practical database in a real-world scenario—i.e. households of families with more 

than two people. Nonetheless, the results imply that adding more people in the database would still lead to 

acceptable results. 

Package Recognition 

Lastly, the package detection methods led to results that are suitable for a surveillance system, 

which is the first of its kind. Two approaches were investigated. First, a baseline convolutional neural 

network was implemented with a stack of convolutional layers followed by fully connected layers. 

However, this showed to have trouble converging and yielding high training and testing accuracies. The 

next implementation investigated was leveraging the pre-trained VGG-16 neural network. With this 

architecture, the bottleneck features of this model were obtained and used to train the data once. After 

this, fully connected layers where trained on top of the bottleneck features over 30 epochs. This approach 

led to much better results. High training accuracy was achieved as well as a similar training and validation 

loss. The model correctly classified 1,620 test images with true positive and true negative accuracies of 

over 90%. This method may possibly be adjusted to be more robust to unknown test images, but 

regardless, this research successfully accomplished the task of package detection. 

Overall System Design 

As a whole, the process of using an edge device to complete initial filtering and subsequently 

offloading interesting frames to a fog device provided a low-latency framework that allowed for alerts to 

be sent efficiently. The edge computations allow a low-cost device to be effective while fog computations 

can supply meaningful detections for a homeowner. Moreover, by splitting the computations between 

multiple devices, bandwidth usage is decreased. In addition, the logic for determining which alert to send 
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is effective in providing a homeowner with significant knowledge of occurring events. Overall, the three 

main components of the surveillance system and design choices work together efficiency to alert users of 

possible threats. Once implemented in an authentic household setting, the system can provide a 

heightened sense of security. 

Potential Future Work 

This section outlines possible future work that can expand on or improve the surveillance system 

presented in this thesis. 

Smart Phone Control Application 

In the system defined in this research, there is a lack of easy remote access to control different 

components of the system as well as a user-friendly interface to interact with the system. This research 

mainly focused on the main architecture of the system, so a smart phone application was slightly out of 

scope. To expand the overall architecture, a smart phone application could be developed in which the 

homeowner could control the surveillance system. These controls may include turning on and off specific 

features of the system, turning on and off the system as a whole, allowing all frames to be sent to the 

server, viewing the live stream from the application, adding people to the known persons facial 

recognition database, etc. While this user interface, the surveillance would be more custom to individual 

homeowners. 
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Alternative Deep Neural Network 

While the network architecture presented was sufficient in detecting packages, there may be a 

more effective model or method to achieve the detection. Future work may focus on improving this 

component using recurrent neural networks rather than convolutional networks in order to take advantage 

of changes environments or events from the past. Moreover, long short-term memory may be 

investigated. 

Additional Server Features 

The main contribution of this research was the overall surveillance architecture but also the 

ability to detect packages. On the server component of the system, future work can expand on the tasks 

that can be done. Perhaps detecting different objects or actions would be of interest. The opportunities for 

expansion are extensive. 
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Conclusion 

The research presented in this thesis was motivated by the increasing presence of smart 

technologies as well as the increased security and privacy threats that come with technology. The 

surveillance system outlined in this work builds upon the popularly used concepts of motion detection and 

facial recognition while additionally contributes a unique feature to detect packages. Most importantly, 

the architecture that this thesis provided allows for a low-cost device to be used in a surveillance system 

that can still provide detection of meaningful events. Motion detection and facial recognition will always 

be invaluable in many different applications. Package detection shows to be a considerable advantage in a 

surveillance system. The need for privacy will not decrease as long as human nature continues its course. 

Overall, this research presents a security system architecture that can be expanded for further use, such as 

being used in a non-household setting or adding additional features to the system that could impede 

security threats even more. 
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Appendix A 
 

Python Code 

The source code to implement each component of the surveillance system is included below. 

Other miscellaneous scripts used for this research, such as data collection scripts, are not included. 

detect_motion.py 

import os 
import cv2 
import socket 
import pickle 
import imutils 
import time 
import live_stream 
import numpy as np 
 
from camera import VideoCamera 
from cStringIO import StringIO 
from threading import Thread 
 
video_camera = VideoCamera(flip=True) # creates a camera object, flip 
vertically 
 
#Set server IP address 
SERVER_IP = '*.*.*.*' 
 
send_frames_flag = 1 
 
def send_frame_to_server(frame): 
    if send_frames_flag: 
        client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
        client.connect((SERVER_IP, 8000)) 
 
        serialized_frame = pickle.dumps(frame, protocol=2) 
        client.sendall(serialized_frame) 
        client.close() 
 
#remove previous images in folders 
def clear_frame_directories(): 
    frames_folders = ['all_frames','trigger_frames'] 
    for folder_name in frames_folders: 
        for frame in os.listdir(folder_name): 
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            file_path = os.path.join(folder_name, frame) 
            try: 
                if os.path.isfile(file_path): 
                    os.unlink(file_path) 
            except Exception as e: 
                print(e) 
 
def detect_motion(): 
    global video_camera 
 
    frame_number = 0 #frame counter for file name 
 
    while(True): 
        # Capture frame 
        frame = video_camera.get_frame() 
        live_stream.live_frames.append(frame) 
 
        #frame = cv2.resize(frame, (500,500), cv2.INTER_AREA) 
     current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 
     blurred_gray = cv2.GaussianBlur(current_gray, (21, 21), 0) 
 
        if not frame_number: 
            cv2.imwrite('all_frames/frame_' + str(frame_number) + 
'.jpg', current_gray) 
            frame_number+=1 
            previous_frame = blurred_gray 
            continue 
 
        frameDelta = cv2.absdiff(previous_frame, blurred_gray) 
        pixel_threshold = 20 
     thresh = cv2.threshold(frameDelta, pixel_threshold, 255, 
cv2.THRESH_BINARY)[1] 
 
     # dilate the thresholded image to fill in holes, then find 
contours 
     # on thresholded image 
     thresh = cv2.dilate(thresh, None, iterations=2) 
     cnts = cv2.findContours(thresh.copy(), 
cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) 
     cnts = imutils.grab_contours(cnts) 
 
        motion = False 
        contour_size = 700 
        for c in cnts: 
            if cv2.contourArea(c) < contour_size: 
                continue 
            motion = True 
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        if motion == True:#num_pixel_movement>threshold: #this can be 
improved 
            print "TRIGGER FRAME" 
            cv2.imwrite('trigger_frames/frame_' + str(frame_number) + 
'.jpg', current_gray) 
            cv2.imwrite('all_frames/frame_' + str(frame_number) + 
'.jpg', current_gray) 
 
            send_frame_to_server(frame) 
        else: 
            print "NON-TRIGGER FRAME" 
            cv2.imwrite('all_frames/frame_' + str(frame_number) + 
'.jpg', current_gray) 
 
        frame_number+=1 
        previous_frame = blurred_gray 
 
    del video_camera 
 
if __name__ == '__main__': 
    clear_frame_directories() 
    print("[INFO] Connecting to server: " + SERVER_IP) 
 
    Thread(target=detect_motion).start() 
 
    time.sleep(3) 
 

server.py 

import os 
import imutils 
import socket 
import cv2 
import pickle 
import numpy as np 
import globals as g 
 
from package_detection import package_recognition 
from facial_recognition import facial_recognition 
 
from threading import Thread 
 
DEBUG = 0 #change to 1 for debugging print statements 
 
#Server config 
HOST = socket.gethostbyname(socket.gethostname()) 
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print("[INFO] Host: %s" % HOST) 
SERVER_PORT = 8000 
BUFFER_SIZE = 4096 
SERVER_SOCKET = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
 
#function to receive and append to candidate queues 
def receive_frames(): 
    print("[INFO] Starting receive frames thread") 
    global most_recent_frame 
 
    trigger_frame = 0 
 
    try: 
        while True: 
            conn, addr = SERVER_SOCKET.accept() 
 
            data = b'' 
            while True: 
                block = conn.recv(4096) 
                if not block: break 
                data += block 
 
            final_image = pickle.loads(data,encoding='bytes') 
 
            #Save image into folder 
            cv2.imwrite('trigger_frames/frame_' + 
str(trigger_frame).zfill(4) + '.jpg', \ final_image) 
 
            if DEBUG: 
                print('[INFO] Saved trigger frame') 
 
            g.facial_recognition_candidates.append(final_image) 
            g.facial_recognition_candidates.append(trigger_frame) 
            g.package_candidates.append(final_image) 
            g.package_candidates.append(trigger_frame) 
 
            most_recent_frame = final_image 
 
            trigger_frame+=1 
 
            conn.close() 
 
    except KeyboardInterrupt: 
        if not conn is None: 
            conn.close() 
        if not SERVER_SOCKET is None: 
            SERVER_SOCKET.close() 
        print("Exiting") 
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def server_setup(): 
    SERVER_SOCKET.bind((HOST, SERVER_PORT)) 
    SERVER_SOCKET.listen(5) 
    receive_frames() 
    SERVER_SOCKET.close() 
    print('[INFO] Client disconnected') 
 
#remove previous images in folders 
def clear_frame_directories(): 
    for frame in os.listdir('trigger_frames'): 
        file_path = os.path.join('trigger_frames', frame) 
        try: 
            if os.path.isfile(file_path): 
                os.unlink(file_path) 
        except Exception as e: 
            print(e) 
 
if __name__ == '__main__': 
    clear_frame_directories() 
 
    Thread(target=server_setup).start() 
    Thread(target=facial_recognition).start() 
    Thread(target=package_recognition).start() 

face_recognition.py 

import pickle 
import face_recognition 
import globals as g 
 
from threading import Thread 
from send_sms import send_alert 
 
f = open("models/svm.pickle", "rb") 
clf = pickle.load(f,encoding='latin1') 
f.close() 
 
known_faces = ['researcher','mark'] 
 
Thread(target=send_alert).start() 
 
DEBUG = 1 
 
def facial_recognition(): 
    print("[INFO] Starting facial recognition thread") 
 
    while(True): 
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        if g.facial_recognition_candidates: 
            image = g.facial_recognition_candidates[0] 
            frame_number = g.facial_recognition_candidates[1] 
            del g.facial_recognition_candidates[:2] 
 
            # Find all the faces in the test image using the default 
HOG-based model 
            face_locations = face_recognition.face_locations(image) 
            no = len(face_locations) 
 
            if no == 0: 
                if DEBUG: 
                    print("[INFO] No person detected in trigger frame 
" + str(frame_number)) 
                continue 
 
            for i in range(no): 
                image_enc = face_recognition.face_encodings(image)[i] 
                name = clf.predict([image_enc]) 
 
                if DEBUG: 
                    print("[INFO] Detected: " + name[0] + " from 
trigger frame " + \ str(frame_number)) 
 
                if name[0] not in known_faces: 
                    print("[INFO] Detected unknown person! Sending SMS 
alert") 
                    g.alert_queue.append('unknown_person') 

generate_classifiers.py 

import face_recognition 
import pickle 
import os 
import glob 
 
from sklearn import svm, neighbors, tree, ensemble 
 
encodings = [] 
names = [] 
 
# Training datasets 
datasets = ['mark','researcher','unknown'] 
 
# Loop through each person in the training directory 
for person in datasets: 
    path_to_data = './train_dir/' + person + '/' 
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    filelist = sorted(glob.glob(path_to_data + '*.jpg')) 
 
    # Loop through each training image for the current person 
    for filename in filelist: 
        print("[INFO] Training on: " + filename.split('/')[-1]) 
 
        # Get the face encodings for the face in each image file 
        face = face_recognition.load_image_file(filename) 
        face_bounding_boxes = face_recognition.face_locations(face) 
 
        if len(face_bounding_boxes) != 1: 
            print(person + "/" + person_img + " contains none or more 
than one face.") 
            exit() 
        else: 
            face_enc = face_recognition.face_encodings(face)[0] 
            encodings.append(face_enc) 
            names.append(person) 
 
clf = svm.SVC(gamma='scale') #Support vector classification 
clf.fit(encodings,names) 
f = open("output/svc.pickle", "wb") 
pickle.dump(clf,f,-1) 
f.close() 
 
clf = svm.LinearSVC() #Linear support vector classification 
clf.fit(encodings,names) 
f = open("output/linear_svc.pickle", "wb") 
pickle.dump(clf,f,-1) 
f.close() 
 
clf = neighbors.KNeighborsClassifier(n_neighbors=5) #K-nn classifier 
clf.fit(encodings,names) 
f = open("output/knn.pickle", "wb") 
pickle.dump(clf,f,-1) 
f.close() 
 
clf = tree.DecisionTreeClassifier(max_depth=5) #Decision tree 
classifier 
clf.fit(encodings,names) 
f = open("output/decision_tree.pickle", "wb") 
pickle.dump(clf,f,-1) 
f.close() 
 
clf = ensemble.RandomForestClassifier(max_depth=5, n_estimators=10, 
max_features=1) #r-forest 
clf.fit(encodings,names) 
f = open("output/random_forest.pickle", "wb") 
pickle.dump(clf,f,-1) 
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f.close() 
 
clf = ensemble.AdaBoostClassifier() #AdaBoost classifier 
clf.fit(encodings,names) 
f = open("output/adaboost.pickle", "wb") 
pickle.dump(clf,f,-1) 
f.close() 

package_detection.py 

import cv2 
import numpy as np 
import globals as g 
 
from PIL import Image 
from keras import applications 
from keras.models import load_model 
from keras.preprocessing.image import img_to_array, load_img 
 
from send_sms import send_alert 
 
DEBUG = 1 
 
def package_recognition(): 
    print("[INFO] Starting package recognition thread") 
 
    model = load_model('models/bottleneck_fc_model.h5') 
    top_model = 
applications.VGG16(include_top=False,weights='imagenet') 
 
    model.compile(loss='binary_crossentropy', 
                  optimizer='rmsprop', 
                  metrics=['accuracy']) 
 
    while(True): 
        if g.package_candidates: 
            image = g.package_candidates[0] 
            frame_number = g.package_candidates[1] 
            del g.package_candidates[:2] 
 
            image = Image.fromarray(image) 
            image = image.resize((300,300),Image.NEAREST) 
            image = img_to_array(image) 
            image = image.reshape((1,)+image.shape) 
 
            feature_img = top_model.predict(image) 
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            classes = model.predict_classes(feature_img) 
 
            prediction = 'package' if classes[0][0] else 'no_package' 
 
            if prediction == 'package': 
                if DEBUG: 
                    print("[INFO] Detected: package from trigger frame 
" + str(frame_number)) 
 
                print("[INFO] Detected package! Sending SMS alert") 
                g.alert_queue.append('package_detected') 
            else: 
                if DEBUG: 
                    print("[INFO] No package detected in trigger frame 
" + \ str(frame_number)) 
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Appendix B 
 

GitHub 

 The following link leads to the GitHub repository which contains the source code from Appendix 

A as well as datasets and other supporting materials used in this research. 

 

GitHub Repository Link

https://github.com/joewong55/smart_home_surveillance_system
https://github.com/joewong55/smart_home_surveillance_system
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