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ABSTRACT 

 

 Traditional high-speed brushless motors, such as those found on drones, are heavy and 

expensive components. Miniature brushless motors made from Printed Circuit Boards (PCBs) 

are lightweight, inexpensive, and easy to assemble, although relatively weak. One previous 

attempt to develop a PCB motor for use in a drone found it too weak to create sufficient lift and 

impossible to control using the typical Back-EMF (BEMF) method of sensorless control. This 

thesis attempts to improve on the design of that PCB motor and controller to resolve those 

deficiencies and make it viable for use in drones, which might allow for the size and cost of 

miniature drones to decrease. Development efforts focused on three areas: motor design 

improvements based on a literature review of existing designs, the design of an Electronic Speed 

Controller (ESC) prototyping ecosystem to quickly and inexpensively test different motors and 

sensing circuitry topologies, and the design of several sensing circuitry topologies intended to 

provide closed-loop BEMF feedback from the motor to a microcontroller controlling the ESC. 

The results of the work do not suggest that such a small motor can be controlled via BEMF to lift 

a drone. However, the ESC prototyping environment successfully simplified the prototyping and 

testing process. It will be improved upon to test larger motor designs and other control topologies 

in the future.    
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Chapter 1  
 

Introduction 

The goal of the miniature Printed Circuit Board Brushless DC motor is to contribute to 

the development of small, low-cost drones. Other applications that require small, high-speed 

motors may exist, as well. Traditional motors are relatively expensive, heavy, and require 

mechanical integration into a system. Printed Circuit Board (PCB) motors, however, can be 

extremely cheap, lightweight, infinitely customizable, and easily integrated into an electrical 

system.  

Only one example of a miniature PCB motor intended for use in a drone was published at 

the time this work started [1], [2]. It was designed and built by a Maltese engineer named Carl 

Bugeja, who published details of his work on the websites Hackaday.io and Youtube.com. The 

design had several shortcomings. First, the motor’s coils (in the form of traces spirals on a PCB) 

were not designed to optimize performance, and the motor was not powerful enough to generate 

lift for a drone. Second, the Electronic Speed Controller (ESC) that was designed to control the 

motor was forced to use a Hall sensor to detect the rotor’s position because the Back-EMF 

(BEMF) generated by the motor was too weak. The control scheme using a Hall sensor is viable 

but is less reliable and has a longer Bill of Materials than the industry-standard “sensorless” 

control scheme that relies on the motor’s BEMF [3].  

The goal of this thesis is two-fold. First, a PCB motor will be designed and tested to see if 

it improves on Bugeja’s design. Although no PCB motors besides Bugeja’s have been designed 

for drone applications, there are numerous examples of formal research into PCB motors for 
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other applications. This research will be used to design an optimized coil for the motor. The 

optimized motor design will retain most of the characteristics of Bugeja’s design so the two 

motors can be directly compared during the testing phase. The improved coil should result in a 

more powerful motor that also generates a stronger and clearer BEMF signal.  

The second goal of the thesis is to design an ESC to control the improved motor using a 

sensorless control scheme. If necessary, amplification circuitry of some kind will be 

implemented on the BEMF signal so it can be observed by the microcontroller. Neither 

objective, if accomplished, will necessarily result in a motor system that is capable of lifting a 

miniature drone. However, progress toward the two objectives will at least be stepping stones to 

realizing cheap and lightweight drones and other applications of this type of motor.  

The first section of this thesis will provide background information on the various pieces 

of the project, including Brushless DC (BLDC) motor theory and sensorless control theory. Later 

sections describe the design of the motor itself and the electronic speed controller hardware and 

software. Results and future work conclude the thesis.  



3 

 

1.1: Brushless DC Motors 

Permanent magnet motors have generally replaced brushed motors in electromechanical 

systems. Brushed motors are very simple to construct but have disadvantages such as brush 

friction and large amounts of noise generated by commutation [4]. Permanent magnet motors 

operate without any electrical connection between the motor’s rotor and stator. This results in 

less noisy commutation and improved reliability but requires additional control hardware and 

software to spin the motor.  

 

Figure 1: Parts of a BLDC Motor 

BLDC motors have a series of discrete coils spaced out in a circle around the stator, 

meaning that each commutation shifts the source of the magnetic field (the active coil) by some 

angular step. In the most common configuration of BLDC motor, like the one above, that angle 

is 60 degrees. Such a large angular step means that BLDC motors suffer from significant torque 

ripple compared to other permanent magnet motors [3]. However, they are easier to control than 

other types of permanent magnet motors because they only require a constant-voltage power 
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supply and relatively simple switching hardware and software. Extension of this thesis’s 

conclusions to other permanent magnet motor types can be the subject of further work. 

 

Figure 2: Rotary vs. Axial Flux Structure 

Typical BLDC motors can be classified as rotary flux devices. In this category, the rotor 

and stator are concentric and coplanar, with the rotor’s magnets mounted at a radius different 

from that of the stator’s coils. An alternative to the rotary flux geometry is the axial flux 

geometry, in which the rotor and stator mounted like concentric disks separated by a small air 

gap.  The PCB motors used in this thesis are axial flux devices that replace the traditional wire-

wound stator coils with spiral traces. When the axial-flux motor is implemented on a PCB, the 

motor is infinitely customizable and easy to integrate into an existing electrical system. The PCB 

device can be lighter, smaller, and less expensive. However, PCB axial-flux motors produce 

relatively little torque per their size in comparison to conventional BLDC motors.  
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1.2: Motor Control 

 

Figure 3: Triple Half-H Bridge Driver for 3-Phase Commutation 

The most common architecture for a BLDC motor uses three phases, each consisting of 

two coils, and is driven by a circuit featuring three half-H bridges. This results in a six-step 

electrical commutation sequence to pass current through the coils. Only two phases are active at 

any time, with current entering one coil from the high voltage side and exiting another coil 

through the low voltage side. Current flow through the coils creates a magnetic field; the field’s 

polarity depends on the direction of the current flow. This magnetic field interacts with the 

magnetic fields of the permanent magnets in the rotor, and the commutation sequence serves to 

pull the rotor in a circular motion.  

The driving circuitry is usually controlled by a microcontroller, FPGA, or ASIC. The 

motor can be driven most simply using open-loop control, where instructions from the controller 

to the driving circuit do not rely on any feedback from the motor. This configuration is 

inefficient because it does not rely on feedback, thus increasing current draw and torque ripple. 
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Closed-loop control, however, does rely on feedback from the motor to decide when to move to 

the next step in the commutation sequence, increasing efficiency.  

The basic implementation of closed-loop control uses a Hall sensor or similar to sense the 

rotor’s position, but requires more parts and is less reliable than the preferred sensorless closed-

loop control scheme. Sensorless control is normally implemented using observation of BEMF. In 

a BLDC motor having three phases, two of the phases are active at any one time, leaving one 

phase inactive. Due to the movement of magnets in the rotor, a voltage is induced in the inactive 

coil in such a way as to resist the rotation of the motor (by Lenz’s Law). This voltage can be 

observed by the control circuitry to infer commutation timing [5]. Other methods of sensorless 

control do exist, but this thesis focuses on BEMF sensing.  

The strength and frequency of the BEMF signal are directly related to the speed of the 

rotor, so most ESCs rely on both open-loop and closed-loop sensorless control. An open-loop 

algorithm is used to start up the motor while the BEMF is too weak to be sensed by the control 

circuitry at low motor speeds. Once the motor has achieved sufficient speed the controller 

switches to the closed-loop algorithm. 
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1.3: Methods of Back EMF Sensing 

Several methods can be used to analyze a BEMF waveform to determine commutation 

points.  

 

Figure 4: Zero-Crossing Method 

The simplest is called the zero-crossing method. This method involves monitoring the 

BEMF waveform of the non-energized phase. It is compared to the voltage of a virtual neutral 

point, which is created by connecting the inputs of each motor phase through resistors. The point 

of interest is when the polarity of the observed phase changes relative to the virtual neutral point, 

which is related to the actual ideal commutation point by a phase shift of 30 degrees [5]. The 

comparison can make use of either a comparator or an ADC, both of which are usually available 

inside a microcontroller. This method requires high motor speeds, is sensitive to noise, and 

suffers from high common-mode voltages [6]. Since it is the simplest method of BEMF sensing 

and the PCB motor is only intended to be run at high speeds it is the first method that will be 

attempted to implement sensorless control for the improved PCB motor.  
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Other sensing methods that can be explored as necessary include the integration of the 

BEMF signal and observation of the BEMF waveform’s third harmonic. Both methods are more 

complicated to implement than the zero-crossing method, but do not suffer as significantly from 

that method’s drawbacks and do not require a phase shift to the correct commutation point [6].  

1.4: PCB Coil Winding Theory 

The number, arrangement, dimensions, and shape of the coils of wire that make a 

brushless motor function are critical design parameters. Any motor with coils arranged in a 

circular shape and activated sequentially to pull on the permanent magnets in the rotor is likely to 

achieve rotation. However, non-optimal designs will have low torque, significant torque ripple, 

and draw excess current. All of these factors detract from the efficiency of the motor. A well-

designed coil will also produce a cleaner BEMF waveform than a sub-optimal coil design, which 

will be critical to achieving sensorless control with minimum additional componentry.  

Exploration of the research into PCB motor coil design shows many examples of 

theoretical and experimental work. The applications of the documented motors are different from 

the application of this motor, but the theory behind coil design still applies.  

The choice of the coil’s shape is important because not all of the coil contributes to the 

motor’s rotation. Only the segments of the coil roughly parallel to the radius of the motor are 

active or generating a useful magnetic field. The ends of the coil (roughly tangential to the 

circumference of the motor) are inactive. The challenge is to choose a shape that maximizes the 

active coil length while minimizing the inactive length to achieve the best motor efficiency [7]. 

Although a roughly trapezoidal coil shape is a popular design due to its efficient use of the stator 
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area, it does have a relatively long inactive trace length for each turn. Rhomboidal or hexagonal 

designs are a good alternative, significantly decreasing the inactive trace length while only 

adding some non-ideality to the active trace length since parts of the active length are not exactly 

radial [8]. 

The fundamental mathematics of a motor state that the BEMF generated in the coil is 

related to the change in flux-linkage that the coil experiences. Flux linkage, simplistically, is the 

product of the magnetic flux from the permanent magnet through the area contained by the coil, 

multiplied by the number of turns in the coil [9]. Thus, more turns lead to a greater flux linkage, 

which generates a larger BEMF that can be observed to control the motor.  

In an ideal system, the motor’s flux-linkage could be maximized by packing as many 

turns as possible into each coil. However, a realistic system suffers from the copper’s resistance 

as current travels through the traces, which generates significant heat [7]. Additionally, since 

every turn of the coil cannot follow the same path, the required spiral shape means that each 

additional coil encloses less area and contributes less flux linkage to the motor. So, choosing the 

number of turns becomes an optimization problem that balances maximizing the flux linkage of 

the motor without causing unacceptable levels of copper loss.  
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Chapter 2 

 

Motor Design 

The goal of the motor design for this thesis is to improve the characteristics of the motor 

designed by Carl Bugeja. The part of the motor that involves the most intensive design work is 

the stator, which is made from a PCB. Improving on the design of the stator offers the best 

opportunity to optimize the performance of the motor. Bugeja’s stator design features coils 

wound in a circular shape and packs in as many turns as possible to improve performance [1].  

 

Figure 5: Bugeja's Coil Design 

 Bugeja’s design was successful by several measures: it is simple to manufacture and 

assemble, its driving circuitry is easy to implement, and can spin at several thousand revolutions 

per minute (rpm) with open-loop control. However, the motor was not able to generate enough 

BEMF to implement sensorless control and its torque output is insufficient to turn a propeller 

fast enough to generate enough lift for a miniature drone [2]. The motor designed for this thesis 

will ideally achieve higher loaded speeds and generate sufficient BEMF to implement sensorless 

control.  
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2.1: Design Constraints 

Before any design work occurred, the motor was constrained to only a few variables to 

make experimentation manageable. First, since the improved motor will be compared to 

Bugeja’s original design, its stator had to have similar characteristics to his. The improved stator, 

therefore, had the same mechanical dimensions, layer count, phase arrangement, and trace 

dimensions. These values are listed in table form below. Beyond limiting the number of variables 

to manipulate, Bugeja’s design characteristics worked with the well understood and documented 

control scheme for three-phase brushless motors. The improved motor also used Bugeja’s rotor 

design. 

Table 1: Fixed Variables for Stator Design 

Characteristic Specification 

Outer Diameter 16 mm 

Inner Diameter 4 mm 

Phases 3 

Coils per phase 2 

PCB layers 4 

Trace width 4 mil 

Trace spacing 4 mil 

2.2: Variable Manipulation 

The constraints placed on the design left only two variables to manipulate. The first was 

the shape of the coil. In theory, the performance of Bugeja’s motor was hampered because of the 

shape he chose for the motor coils. Examination of engineering literature did not reveal any 

examples of a circular coil shape being the best suited for a powerful axial-flux brushless motor. 

The literature typically identified a trapezoidal shape as most common and suitable, with 
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rhomboidal and hexagonal shapes as viable alternatives [7], [8]. An explanation of the theory 

behind the coil shapes was given in the previous chapter.  

A hexagonal coil shape was chosen for the prototype of the improved motor because it 

significantly decreased the length of lossy inactive traces while only marginally decreasing the 

area that contributed to flux linkage relative to trapezoidal coils [8]. The specifications of the 

outermost hexagon in the coil are listed below. The numbers were calculated based on the 

physical parameters of the stator listed previously. 

Table 2: Outermost Hexagon Specifications 

Characteristic Specification 

Inner Radius (Ri) 2.6 mm 

Outer Radius (Ro) 7.6 mm 

Center Radius (Rc) 5.1 mm 

Knee Angle (k) 30 Degrees 

Coil Allotment (Al) 57 Degrees 

 

An image of the nested hexagons used in the Computer-Aided Design of the hexagonal 

coil is shown below to help visualize the hexagon specifications. The upper end of the dashed 

major axis line represents the stator’s center. The Inner, Outer, and Center Radii are measured 

from that point. The Knee Angle is the angle of the diagonal lines relative to the major axis. The 

stator design called for six coils, meaning each Coil Allotment could ideally be 60 degrees of the 

stator surface. However, the coils must be separated by a distance greater than the 

manufacturer’s copper-to-copper clearance specification, so 57 degrees was allotted for each 

coil.  
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Figure 6: Nested Hexagons 

The remaining variable to manipulate was the number of turns in each coil. More turns 

per coil results in a larger flux linkage. This creates a larger BEMF, which makes sensorless 

control easier to implement. Increasing the number of turns per coil also increases the coil 

resistance, which causes energy to be dissipated as heat. Thus, choosing the number of turns per 

coil became an optimization problem. The ideal number was that where further increases in flux 

linkage from an extra turn did not justify the increase in coil resistance. This applies no matter 

the coil shape.  

The quantities relevant to calculating the motor’s flux linkage and winding resistance 

were the total area and perimeter of each coil. The area was proportional to flux linkage and the 

perimeter was proportional to winding resistance. The area and perimeter could be quickly and 
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simply estimated by treating each turn of the coil as a closed hexagon. Since the coil dimensions 

were chosen to make use of all of the area available on the PCB (improving the performance of 

the motor), an unfortunate trade-off is that the resulting coils were not shaped like regular 

hexagons. This made the calculations of area and perimeter slightly more involved than they 

would be otherwise. The formulas are written in table form below and reference the hexagon 

characteristics defined previously.  

Table 3: Area and Perimeter Formulas 

Description Formula 

Hexagon Height (li) Ro - Ri 

Hexagon Width (gi) 2 π Rc 
𝐴𝑙

360
 

Rectangle Area (RA) gi li 

Triangle Area (TA) 𝑙𝑖
2

2
 tan(k) 

Hexagon Area RA – 4 (TA) 

Diagonal Length (DL) 𝑙𝑖

2cos (𝑘)
 

Horizontal Length (HL) gi – li tan(k) 

Total Perimeter 4 (DL) + 2 (HL) 

 

The area formula found the area of the smallest rectangle that encompassed the hexagon 

and subtracted the area of the four triangles inside the rectangle but outside the hexagon. The 

perimeter formula used basic trigonometry to calculate the length of one horizontal side and one 

diagonal side and added them together the appropriate number of times to find the total perimeter 

of the hexagon. Both formulas relied on the width and height of the hexagon. The width and 

height change predictably based on the trace width and spacing defined for the design, so it was 

simple to calculate the area and perimeter of each hexagon in the coil. The resulting area and 
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perimeter for each hexagon were added to the total area and perimeter numbers. Spreadsheets 

and Python scripts helped to run the calculations quickly.  

The resistance of the winding was easily calculated from the coil perimeter using the 

basic formula for resistance.  

𝑅 =
ρA

L
 

Where ρ is the resistivity of copper, A is the cross-sectional area of the copper traces, and L is 

the total length (perimeter) of the windings.  

2.3: Optimization of Number of Turns 

 The initial effort to analyze the flux linkage (area) and resistance (perimeter) values as a 

function of the number of turns attempted to calculate a value proportional to “kp,” which was 

defined as the “generated torque per copper loss” [8]. 

 𝑘𝑝 =
𝑘𝑇

√𝑅𝑝ℎ

 

Where kT is the motor’s torque constant and Rph is the motor’s phase resistance. Since kp 

is a measure of the motor’s performance, logic dictates that turns should be added as long as the 

value of kp increases. Phase resistance was easily calculated, and the torque constant kT was 

assumed to be the product of the coil area and current, which was calculated based on the phase 

resistance. A second look at the literature showed this assumption to be false, but the stator PCB 
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had already been designed and ordered. The erroneous assumption showed that the value of kp 

stopped increasing with the eighth turn, so each coil on the PCB was designed with eight turns.  

 

Figure 7: Rendering of the Optimized Stator Design 

 Despite the mathematical error, the design remained unchanged in order to focus on the 

ESC design. The hexagonal coil shape alone can be tested to see if it improves the motor’s 

performance relative to the original motor. Additionally, eight turns happened to be nearly the 

maximum number of turns that were possible with the hexagonal coil design, so it was 

impractical to try to add more. Also, the coil resistance of the hexagonal motor was measured to 

be significantly lower than in Bugeja’s motor, so heating will already be a problem for the motor. 

Fewer coils would make this problem worse.  
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2.4: Motor Assembly 

The same mechanical design was used for both this thesis’s motor and Bugeja’s motor. It 

is designed to be easily assembled without the need for special tools. Parts such as the magnets, 

headers, and bearing are all available to consumers. The custom stator and rotor can easily be 

ordered by a hobbyist who has access to Computer-Aided Design software.  

 

Figure 8: Motor Assembly 

To begin assembly, a three-pin male header is soldered to the stator PCB and is used to 

connect the motor to its driving circuitry. The stator PCB is connected to the rotor via a shaft that 

fits into a bearing press-fit into the center of the stator. The opposite end of the shaft is press-fit 

into the center of a 3D-printed rotor. The rotor itself has four circular indentations spaced equally 

around its underside. These indentations accept circular rare-earth magnets, which are arranged 

with alternating polarity.  When assembled, the motor has a diameter of 16mm and a height of 

approximately 6mm. The hexagonal motor design is pictured.  
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Chapter 3 

 

Electronic Speed Controller Hardware Design 

A brushless motor has no electrical connection between its rotor and stator, so an 

Electronic Speed Controller is required to compel the motor to spin. As was explained 

previously, the driving circuitry in the ESC uses logic to manipulate a set of transistor H-bridges 

that pass current through the phases of the motor to create rotation in a six-step commutation 

cycle. Each full commutation cycle corresponds to one-half turn of the rotor. 

After the PCB motor prototype was designed and fabricated, a series of prototypes of the 

ESC driving hardware and the logic software behind it were developed to test the motor and 

observe its performance relative to Bugeja’s control motor. Both the circuit and code prototypes 

started very simply and advanced with each iteration. The goal is to eventually have a motor that 

can be controlled by a user, start independently, and run efficiently using closed-loop control. 

Consideration was given to the experimental nature of the project and the desire for 

speedy and cost-effective development. Therefore, the circuitry was designed to be modular to 

allow parts such as the motor PCB and BEMF observation circuitry to be swapped and updated 

without affecting other parts of the circuitry. Once a viable design is observed the design can 

then be packaged into a very small PCB that might be suitable for mounting on a drone. This 

section focuses on hardware development.  



19 

 

3.1: First Hardware Prototype 

 

Figure 9: ESC Prototype 1 

In the interest of validating the PCB motor without a large investment in time or money, 

the first prototype motor controller was based around an open-source ESC from a maker called 

ElectroNoobs [10]. His controller was designed for radial-flux BLDC motors typically found on 

drones and was capable of open-loop motor starting and sensorless closed-loop control using an 

ATmega328 microcontroller. In his version, everything was implemented on a PCB. The design 
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was appealing because it was simple, open-source, and known to be capable of driving a BLDC 

motor. Also, the ATmega328 is a familiar microcontroller that is compatible with the Arduino 

development environment, making it easy to understand ElectoNoobs’ code and write custom 

software.  

Significant changes were made as to how the circuit was implemented to speed up 

development. First, since all of the major components were available as through-hole packages, 

it was very simple to wire everything on a breadboard. This decision meant that no time was 

needed to create a design and review a PCB in Computer-Aided Design software, eliminated the 

lead time related to having a PCB fabricated, and allowed for any necessary wiring corrections or 

additions to be made immediately at no cost.  

The first prototype of the controller was built very quickly and used only the minimum 

components needed to drive the motor. Further simplifying the prototype was the replacement of 

the bare ATmega328 microcontroller with an Arduino Nano board. The Arduino Nano uses the 

ATmega328 but also implements power regulation circuitry, a serial programmer, and comes 

with the Arduino bootloader installed. So, no finicky breadboarding of the bare microcontroller 

chip and its associated components were required. Also, there was no need to build a method of 

programming the chip, since the Arduino Nano comes with a Mini USB connector that interfaces 

with a host computer.  

A downside to the design of this controller was that it required both 12 V and 5 V power. 

5 V was used for the logic of the H-Bridge and was compatible with the Arduino. 12 V was used 

to supply the H-Bridge and transistors that guide current through the motor. It was simple to 

implement a dual power supply architecture in prototype form because a benchtop power supply 

was easily accessible. However, such architecture was not viable for later iterations of the ESC, 
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since the intended application is a miniature drone that should be based around 5 V only for 

simplicity. This design also used very large transistors capable of carrying several amps of 

current at 12 V, which was an amount of power far greater than what the PCB motor requires. 

With the ESC built on the breadboard a very simple commutation sequence was written 

in Arduino code. Running that code on the Arduino Nano to control the H-Bridges proved that 

both Bugeja’s and the newly designed motor were capable of rotation. They each required a 

manual kick start, the rotation was slow, and excessive heat built up very quickly in the motors. 

Still, building such simple hardware and software prototypes allowed for the design of more 

permanent and sophisticated ESCs to move forward with confidence.  

3.2: Second Hardware Prototype 

 

Figure 10: Sensorless Control Development Board, Top Side 

 The second prototype of the motor controller hardware called the “PCB BLDC Motor 

Sensorless Control Development Board,” was designed to be a universal platform for the 

remaining thesis experiments. It is modular, so different components can be added to the base 
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circuit board the design develops. The development board consists of the parts of the ESC that 

are not anticipated to change throughout the design process. Specifically, the motor driving 

circuitry, overtemperature protection circuitry, a benchtop power supply connection, and a 

potentiometer for speed control are implemented permanently.  

 

Figure 11: Sensorless Control Development Board, Bottom Side 

 Connectors facilitate the modular nature of the board, allowing interface with peripheral 

devices that may change, such as the microcontroller, motor, and closed-loop control or 

amplification circuitry. The development board was designed to mount to a standard breadboard 

so additional circuitry can be prototyped quickly and at little cost. The breadboard connection 

has the additional benefit of providing a wide and stable base of support and protecting the tiny 

components soldered to the underside of the board.  

The Integrated Circuits (ICs) and MOSFETs used in the previous prototype were not 

viable for the second prototype due to size and voltage constraints. Searches for a BLDC motor 

controller that uses 5 V for both logic and driving and is available in a small surface-mount 

package led to the same IC that was used by Bugeja. It seems to be the best option for space-

constrained low-power applications. It features integrated protection circuitry against short 

circuits. 
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Temperature protection circuitry was implemented on the development board because of 

experience from the first hardware prototype, which generated so much heat in the stator PCB 

that it could be dangerous for the stator if the circuit was left on for too long. The output of an 

analog temperature sensor was fed to a comparator circuit that triggered an error if the 

temperature of the stator got too high and used hysteresis to hold the error until the temperature 

fell below an acceptable level.   

The error signals from both the motor driver IC and the temperature sensor were broken 

out to red LEDs on the top of the circuit board for visual error indication. The two error signals 

were ORed together and fed to the microcontroller so the software could be aware of a problem 

immediately.  

The development board was compatible with the Arduino Nano series of microcontrollers 

(MCU). The Nano was chosen because it was extremely easy to interface with, just like any 

Arduino board, and it was small enough that its footprint fit within that of the development 

board. The electrical connections between the circuitry built into the development board and the 

specific pins of the Nano connector were chosen very intentionally due to the port structure of 

the Nano [11].  

Table 4: Arduino Nano Port Functions 

Port Basic Function Additional Function 

B Digital I/O PWM, Internal Comparator, 

External Interrupts 

C Analog I / Digital I/O Analog to Digital Converter 

D Digital I/O PWM 

 

The Arduino Nano has three accessible Input/Output (I/O) ports. Ports B and D 

correspond to digital-only I/O. Some of these pins are capable of Pulse Width Modulation 
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(PWM). Port D also contains the two external interrupt pins and internal comparator pins 

available on the Nano. Port C is connected to the ATmega328’s Analog to Digital Converter 

(ADC) [11].   

The motor driver required six inputs, three low and three high, that control the transistors 

in the H-Bridge that drive the three-phase motor. It was desirable to control all the inputs using 

only a single code instruction so that current changes within the motor happen essentially 

simultaneously. All six inputs could be put on one port to accomplish this. However, having all 

the inputs on one port would limit the amount of experimentation that is possible.  

Some motor drivers use a PWM signal on the high or low (or both) input signals to the 

motor driver to modify the motor’s performance by essentially decreasing the applied voltage to 

the motor. Such a control scheme is not currently part of the design plan, but it should be an 

option in the future. So, the three high inputs were put on Port B pins capable of PWM, and the 

low inputs were put on Port C pins that can be operated as basic digital I/O. Four pins of Port C 

were still available to be used as inputs to the ATmega328’s ADC, which could useful for 

implementing closed-loop control. Port D was not used to connect to the motor inputs because it 

has interrupts and a comparator could also be useful for closed-loop control.  

The most important feature of the development board was that all the pins of the motor 

and the microcontroller are broken out to separate headers. This allowed experimental shield 

boards to be plugged into the development board that carried additional circuitry necessary for 

the sensorless closed-loop control of the motor. The shield boards could take input from the 

motor and the MCU directly, manipulate it, and then pass information back to the 

microcontroller. The shield format saved money and time since the basic driving circuitry was 

unlikely to change. Only the small shield boards needed to be designed, ordered, and built.  
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The development board paired with an MCU alone was capable of open-loop motor 

control, and its first purpose was the development of a control algorithm to get the motor 

spinning more quickly and more efficiently than was possible with the first hardware prototype.  

3.3: First Sensorless Control Shield 

The first Sensorless Control Shield was an exploratory initial step to develop the circuitry 

necessary to implement sensorless control for the PCB motor. This shield was a proof-of-

concept, demonstrating that such a shield was compatible with the development board system. 

The shield was designed to connect to the extra headers broken out from all of the pins of the 

Arduino Nano and the three phases of the motor.  

 

Figure 12: Motor Control Shield 1 

This first shield had very simple onboard circuitry and many test points. It was designed 

with the most common method of BEMF sensing in mind, called zero-crossing detection, which 

was explained in Chapter 1. Zero-crossing detection derives a virtual neutral point relative to the 
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three motor phases and then compares the actual voltage of each phase to that virtual neutral 

point. The change in polarity of the phase relative to the neutral point allows the commutation 

timing to be inferred. The shield created a neutral point by connecting the three phases through a 

high-value resistor. Comparison was done by feeding the neutral point and each phase to the 

inputs of three comparators. Three comparators were used for simplicity in this design, but a 

production system would likely use one comparator and multiplex the three phases to a single 

input. The three phases, the neutral point, the comparator outputs, and multiple ground 

connections were broken out to test points to allow easy and reliable connection to an 

oscilloscope for observation.  
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3.4: Second Sensorless Control Shield 

The second Sensorless Control Shield was designed to test a possible configuration of the 

BEMF amplification circuitry. It used the same mechanical structure as the first shield, 

connecting to all of the microcontroller and motor pins. It also created a virtual neutral point 

relative to the three phases of the motor. 

 

Figure 13: Motor Control Shield 2 

The zero-crossing method of sensorless control observes the polarity of the BEMF signal 

relative to the virtual neutral point, where the change in polarity is called the zero-crossing point. 

The magnitude of the BEMF, and therefore the ease of observing its zero-crossing point, is 

directly related to the speed and strength of the motor. A PCB motor as small as those observed 

in this thesis was a relatively weak motor, so even though it could be spun at several thousand 

rpm the generated BEMF was still very weak and needed to be amplified for sensing to be 

viable.  
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The specific quantity of interest to the designer of this amplification system was the 

signed difference between the neutral point voltage and the phase BEMF being observed. A 

comparator such as the one used in the previous shield design could be used to detect the polarity 

of the two signals relative to each other. However, the unamplified signal had such a small peak-

to-peak magnitude that noise in the system could easily be misinterpreted as a polarity change. 

So, before being fed to the comparator the difference between the two signals should amplified 

to make the true zero-crossing point easier to observe. 

 For a discrete circuit designer, operational amplifiers (op-amps) provide the simplest 

method of constructing analog amplifiers. The typical op-amp is a differential input, single 

output device whose output when amplifying alternating voltages swings about the system 

ground. There are two reasons that this simple system was not viable for this particular 

development board environment. First, only a single power supply was available to the system. 

To get symmetric swing about the system ground from the amplifier output, a dual power supply 

architecture was required. The second issue was the output voltage needed to have a common-

mode component approximately equal to that of the virtual neutral point so that the swing of the 

amplified BEMF could the neutral point. The DC component of the input BEMF signal was 

already approximately 2.5 V, and it can be difficult to amplify the AC voltage without affecting 

the DC voltage in a standard op-amp. If the amplifier circuit had any DC gain the resulting 

output could be offset from the neutral point such that no zero-crossing occurs.  
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Figure 14: Differential Amplifier with Common-Mode Voltage 

A solution to these issues was to use a purely differential op-amp, whose inputs and 

outputs were both differential. Thus, the differential inputs were the two quantities whose 

difference is of interest - the motor phase BEMF and the neutral point. The outputs were 

amplified versions of those inputs which were fed directly to the comparator. Such devices can 

be used with single power supply architectures because they often include a common-mode 

voltage input, which sets the DC value of the output that the AC outputs swing around.  

Application notes from Texas Instruments were found to help correctly design the 

circuitry around the fully differential op-amp IC [12]. The gain of the op-amp was set by two sets 

of two resistors that provide negative feedback between output and input. The desired common-

mode output voltage was set to 2.5 V which was half of the supply. In addition to the virtual 

neutral point that was present on the first shield, the new shield also allowed any of the three 

motor phases to be mapped to the input of the op-amp, broke out the op-amp’s differential 
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outputs and the comparator’s output to test points, and the comparator output was supplied to one 

of the microcontroller’s external interrupt pins for future use in closed-loop control.  

3.5: Complete Development System  

The complete system of the development board, Arduino Nano, a PCB motor, and shield 

prototypes allows the user to spin the motor and observe its phase voltages in the interest of 

deciding if the zero-crossing method of BEMF sensing might be viable for closed-loop control. 

Further shields can be developed on that conclusion, whether or not such a method is found to be 

viable. 

    

Figure 15: Complete Development System 
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Chapter 4 

 

Electronic Speed Controller Software Design 

 The ESC hardware required software to dictate when the motor driver commutes the 

motor. The prototype software developed in a very continuous manner, with a basic building 

block being modified slightly and repeatedly to test and implement improvements. This differed 

dramatically from the hardware prototyping process, which was very discrete since individual 

circuit boards had to be designed and ordered. Therefore, this section describes the evolution of 

the software prototype and major design characteristics more than specific code instances. 

4.1: Design Decisions 

 From the beginning, the development board’s hardware and software were designed 

around the Arduino microcontroller and development environment. This simplified the hardware 

design because Arduino boards implement power, reset, I/O, and programming circuitry by 

default, greatly decreasing the amount of effort that goes into the design of a microcontroller-

based system.  

 This decision also simplified the software design because Arduino boards can be 

programmed with Arduino’s hardware-centered adaptation of the C programming language, 

which is written, compiled, and exported from a free and simple Integrated Development 

Environment. This makes programming the microcontroller quite simple by eliminating most of 

the tedious and confusing register manipulation normally required when programming an MCU.  
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4.2: Basic Building Block 

 The building block for the software was the most basic possible routine to achieve 

commutation. It consisted of code to define the direction of the I/O pins of the Arduino Nano, 

and then a six-step commutation sequence that set the state of the I/O pins to control the motor 

driver appropriately. Each step in the commutation sequence was separated by a set time delay. 

This building block was first used with the breadboarded hardware prototype to confirm that the 

PCB motor could spin. It was then used with slight modifications to confirm that the Sensorless 

Control Development Board had been designed and assembled correctly. After that, the basic 

code building block was modified to improve performance and add features.  

4.3: Software Iterations 

 The initial code building block proved that the PCB motor was able to spin, but it also 

highlighted how important a quality acceleration algorithm would be to self-start the motor, 

bring it reliably to a steady-state speed, and reach a steady-state speed high enough to potentially 

observe BEMF. Since the rotor of the PCB motor had very little mass, acceleration could happen 

quite quickly in theory. However, writing the software to decrease the time delay between steps 

proved to be the greatest challenge of the thesis for this electrical engineer.  

 The first few iterations of the software attempted to implement an acceleration algorithm 

in stages that caused the step delay value to very roughly mimic an exponential decay function. 

The motor would start with a very large step delay that was decreased very quickly until a cutoff 

step delay was reached. Another stage of acceleration took over and decreased the step delay by 

a factor of 10 less per step than in stage one. Three stages were used in the last attempt at this 
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method, which accelerated the motor successfully but was very finicky and couldn’t reach a very 

high speed.  

 The issue with this simple method was that changes to the step delay did not adapt 

continuously to the motor’s speed. The faster the motor spun, the smaller the change in the step 

delay should be. The staged algorithm very roughly approximated this with three decrement 

values separated by a factor of 10, but the transition between stages was abrupt and the smallest 

decrement value could not accelerate the motor beyond a certain speed. The motor would 

frequently stop suddenly because the rotor could not maintain synchrony with the magnetic field 

produced by the stator.  

 

Figure 16: Graphical Comparison of Acceleration Algorithms 

 The obvious solution was to implement step delay values according to an actual 

exponential decay function into the acceleration algorithm. This could have been done by writing 

an exponential function directly into the software and calculating a new step delay number along 

with every step. However, since the time between steps is currently implemented with a delay 
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function rather than an interrupt, the concern was that the computational intensity of calculating 

values from an exponential function would cause unintended differences in the timing of 

commutations.  

 Instead, the values from the exponential function were calculated in Excel, formatted as 

an array, and put in the memory of the Arduino. The acceleration algorithm simply retrieved 

sequential delay values from memory with each commutation. The issue with this method was 

that storing a large array in the Arduino consumed most of its available memory, limiting the 

number of commutation steps that could be taken by the acceleration algorithm. As can be seen 

in the graph above, though, the values used in the array allowed the motor to accelerate smoothly 

and reliably and reach a higher speed than was possible with the staged algorithm. This last 

acceleration method was used to spin the motor so that results from the hardware could be 

observed.  
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Chapter 5 

 

Results and Future Work 

5.1: Motors 

 The two motors described in Chapter 2 were fabricated for use in this thesis. The original 

intent was to compare the performance of the two motors to see if the research-based hexagonal 

design improved on Bugeja’s original design. Unfortunately, due to this engineer’s error, the 

copy of Bugeja’s motor was ordered with critical shorts across the entire bottom layer. Its 

performance was so degraded that it couldn’t be tested on the hardware built for this thesis. The 

best comparison that could made was to Bugeja’s descriptions of his results on YouTube and 

Hackaday.  

 The hexagonal motor achieved a top speed of approximately 2,100 rpm using the open-

loop acceleration algorithm described previously. That algorithm started the motor consistently, 

accelerated it to its top speed within approximately three seconds, and could maintain the top 

speed successfully. This result was a great improvement over initial results and came out of 

significant iteration on the acceleration algorithm. Further improvements to the algorithm to 

improve the top speed were attempted, but none were reliable. The highest motor speed observed 

was 3,500 rpm. The process of modifying the acceleration algorithm (which involves generating 

values in Excel and loading them in an array format into Arduino) was very time-consuming. 

Unfortunately, the open-loop structure meant that iteration was the only way to improve the 

motor’s acceleration, and it was found that iteration did not consistently result in improvements 

because small changes to the algorithm often damaged the motor’s performance.  Bugeja’s motor 



36 

 

was able to achieve a top speed of about 14,000 rpm when equipped with a Hall sensor for 

closed-loop feedback [1]. The slow top speed of the hexagonal motor was likely due in part to 

shoddy software written by this electrical engineer. It is also likely that the motor’s acceleration 

and top speed could be significantly improved if closed-loop Hall sensor feedback was 

implemented, having now observed the difficulty of open-loop acceleration. The current motor 

and ESC could not use closed-loop feedback for acceleration because the BEMF is far too weak 

at low motor speeds.   

 When the hexagonal motor was received from the fabricator its coil resistance was 

observed to be about 8 Ohms, which was less than half of what Bugeja observed on his original 

motor. This was probably because the hexagonal motor has fewer turns overall. As a result, the 

hexagonal motor drew 2.5 W from a 5 V power supply. Since the motor was unloaded and spun 

relatively slowly, most of that power dissipated as heat in the rotor and stator. This limited the 

amount of testing that could be done at one time because the motor had to cool down after about 

a minute of continuous use. Future revisions on the hexagonal motor will attempt to increase the 

coil resistance so it can spin for longer without overheating. 

5.2: Hardware 

The basic ESC board was functional immediately after being soldered. It allowed the 

motor, MCU, and shields to be swapped out as necessary, and the extra headers and connection 

to the breadboard made observing the operation of the motor and debugging very easy. The error 

detection features were never triggered, but they worked as intended when tested.  
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Figure 17: Typical Experimental Setup 

 The overtemperature detection circuit would have been very useful except the large air 

gap between the motor and the sensor was not accounted for, so the sensed temperature never 

reached the trigger threshold. Future revisions of this board will fix the error. The typical 

experimental setup, as shown above, looks a little messy but was very easy to work with. 

Oscilloscope probes connected directly to the signals of interest using test points.  
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Figure 18: Motor Phases at 2,100 rpm 

Observation of all the motor’s phases using an oscilloscope clearly showed the six-step 

commutation sequence. Each of the six steps drives the three phases into a unique combination 

of high, floating, and low states. The waveform shown in Figure 18 corresponds to the motor 

spinning steadily at about 2,100 rpm. This speed, the highest that can be accelerated to reliably, 

was used to show the output of the two shield boards. 

 The purpose of the first sensorless control shield was to observe each of the three phases 

of the motor compared to a virtual neutral point, as would be done in the zero-crossing method of 

closed-loop control. The shield mapped each phase to a comparator for simplicity, but a real 

system would only map the phase of interest to a single comparator at any given time.  
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Figure 19: Phase, Neutral Point, and Comparator Outputs from Shield 1 

The oscilloscope capture above shows one phase of the motor (yellow), the virtual neutral 

point (pink), and the output of the comparator (blue) connected to that phase. The neutral point 

rested steadily at 2.5 V. It showed some inductive spiking with each commutation, but that was 

not relevant for this shield. The comparator output worked well when the observed phase is 

driven high or low. The region of interest, however, was when the phase is left floating 

(highlighted by the cursors). The movement of magnets in the rotor should generate some BEMF 

that appears as a sloped voltage line in that region. Ideally, the voltage would cross the neutral 

point and the state of the comparator output would change inside that region of interest. This was 

not the case, however. The floating phase voltage was observed to be higher than the neutral 

point at about 2.7 V, and the slight slope of its graph was present whether or not the motor was 

spinning, so it did not indicate generated BEMF. Even if sufficient BEMF were generated it 
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would likely not be enough to cross the neutral voltage due to the voltage offset, so the 

comparator output would not switch.  

The second sensorless control shield was designed based on the expectation that the 

motor would not generate sufficient BEMF to be observed, so it should be amplified. It featured 

a fully differential op-amp that amplified the difference between the phase voltage and the 

neutral voltage by a factor of ten.  

 

Figure 20: Amplifier Inputs and Outputs from Shield 2 

 The results of the test are shown in the scope capture above. The inputs to the op-amp 

were one of the motor phases (pink) and the neutral point (yellow). The blue output corresponds 

to the phase input and the green output corresponds to the neutral point, each with a gain of 10 

V/V. The neutral voltage on this device was not similar to that on the first shield – it was an 

attenuated version of the observed phase voltage itself. This was because of the interaction of the 
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neutral point with the op-amp’s feedback path. The disconnection of that path returned the 

neutral point to its expected state. Interactions with the feedback path were not considered in the 

design of this shield, and it appears that the inputs should have been buffered before reaching the 

op-amp. The outputs in the regions where the motor phase is driven high or low are not centered 

around the common mode, but that is to be expected because the inputs are near the limit of the 

supply voltage. The outputs in the region of interest are centered around a common-mode 

voltage of 2.5 V, as was designed, but the difference in the inputs was not multiplied by the op-

amp’s gain of 10 V/V. The reason for this was unclear. Buffering the inputs would improve on 

the circuit design and show if the fully differential op-amp topology is viable for observing the 

phase and neutral voltages. 

5.3: Software Architecture 

 Whether or not Hall sensors are implemented in future versions of the motor controller, 

the software will certainly be restructured to use interrupts to drive the commutation sequence. 

Interrupts will allow for higher motor speeds and in-software computations to occur, while also 

driving the motor more efficiently because interrupts create a closed-loop feedback path from the 

motor to the MCU.  

 If the motor can be driven fast enough to generate some BEMF and that BEMF can be 

amplified by the second motor control shield, an external interrupt can be implemented based on 

the output of that shield’s comparator, which senses the motor’s zero-crossing point. Every 

trigger of the interrupt would cause the commutation sequence to increment.   
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Chapter 6 

 

Conclusion 

The scope of this thesis changed as progress was made, but the results are very interesting 

and much was learned that can be put to use as this project continues beyond the formal thesis. 

Although no direct comparison was able to be made between the hexagonal motor and Bugeja’s 

original, the difficulty of using open-loop control to accelerate the hexagonal motor and the 

relatively low speed that was achieved indicate that sensorless control is not likely viable for 

PCB motors of this size. Even if the motor was driven to a speed fast enough to observe BEMF, 

the slight voltage offsets between the motor’s floating voltage and the virtual neutral point may 

make the circuitry design for BEMF amplification and comparison prohibitively complex.  

The biggest success of the thesis was the design of the ESC prototyping environment. 

Swapping out shield boards and motors from the basic motor driving hardware made 

development and comparison quicker and less expensive than would be possible if entirely new 

circuitry had to be designed and assembled for each change. In the future, the design of the 

prototyping environment will be updated based on the experience of using it for this thesis. The 

biggest change will be the addition of a Hall sensor, which will allow closed-loop control 

schemes to be tested in addition to open-loop schemes. As more motors are designed, they can be 

easily tested with both types of control, allowing stronger conclusions about the viability of 

sensorless BEMF control to be reached.   
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