THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

College of Information Sciences and Technology

The Migration of Data and Refactoring of Large Scale Digital Libraries: A Case Study For
CiteSeerX

Sean Parsons
Spring 2020

A thesis
submitted in partial fulfillment
of the requirements
for a baccalaureate degree
in Security and Risk Analysis
with honors in Information Sciences and Technology

Reviewed and approved* by the following:

C. Lee Giles
David Reese Professor at the College of Information Sciences and Technology
Thesis Supervisor

Edward Glantz
Teaching Professor of Information Sciences and Technology
Honors Adviser

*Electronic approvals are on file in the Schreyer Honors College.

Abstract

CiteSeer* is one of the first academic digital libraries in the world and currently contains data
on over 10 million academic documents. While the current technical architecture of CiteSeer* has
scaled well to this point, there is a need to ingest more papers and utilize modern tools to increase
efficiency. NoSQL datastores are examined in this thesis as well as new ways to represent relational
data in non-relational databases. Additionally, in this thesis we compare the performance between
Elasticsearch and MongoDB for our dataset and we propose a new indexing system for CiteSeer*.

List of Figures

List of Tables

Table of Contents

Acknowledgements

1 Introduction

1.1 Background
1.2 Other Digital Libraries e
1.3 Metadata Standardso
1.3.1 Metadata Formats
1.4 Current Architecture of CiteSeer®
141 Overview e e
1.42 FrontEnd
1.4.3 Data Storage and Indexing
1.4.4 Datalngestion e
1.5 Goalsand Approach
1.5.1 Experiments on NoSQL Datastores
1.5.2 Generate New Schema
1.5.3 DataMigration e e e
1.5.4 Refactoring or Rebuilding FrontEnd
1.55 Approach
2 Experiments and Comparison of NoSQL Databases
2.1 Introduction L e
2.1.1 Elasticsearch
2.1.2 MongoDB
2.2 Experiment and Evaluation L Lo oo
2.2.1 ExperimentDesign
222 CPUUSAZE oo e e e e e
223 Memory Usageo e e e
224 Indexing Speed
225 Evaluation

i1

iv

vi

3 ElasticSearch Schema Design

3.1 Introduction e
32 ClusterDesign e
3.2.1 Nested Object Structure
3.2.2 Parent-Child Structure
323 OurApproach.
3.3 Individual Index Schemas oo
33.1 Paperlndex
332 AuthorIndex
333 ClusterIndex
4 CiteSeer* Data Migration Process
4.1 Introduction e e
4.2 Migration Methodologies
4.2.1 Third Party MySQL to Elasticsearch Syncing Tool
422 MySQLIJDBC Connector
4.23 Custom Manual Migration

4.3 Running the Migration

5 Results

5.1 Experimental Results
5.2 Indexing
5.3 System Updates

6 Conclusions and Future Work

6.1 Conclusions
6.2 Future Work

6.2.1
6.2.2
6.2.3

Appendix A
A.1 Code
A.l.1
A.1.2
A.1.3
A.l4

Bibliography

Next Generation CiteSeer o
Refactor Legacy Code

New CiteSeer .

GitHub
Schema Files .

Experiment Monitoring and Automation

Migration Files

11

15
15
15
16
16
18
18
18
18
20

22
22
22
23
23
23
26

27
27
27
28

29
29
30
30
30
31

32
32
32
32
38
46

52

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
33
34
3.5

4.1
4.2

Y

List of Figures

CPU utilization by Elasticsearch during indexing. 10
CPU utilization by MongoDB during indexing. 10
Memory utilization by Elasticsearch during indexing. 11
Memory utilization by MongoDB during indexing. 12
Total papers indexed across time in Elasticsearch. 13
Total papers indexed across time in MongoDB. 13
Nested JSON example. 17
Parent-Child configuration example. L oL 17
Paperindex schema. 19
Authorindex schema.o 20
Clusterindex schema. L 21
Data migration flowchart. 24

Upserting logic using the Painless and Python. 25

2.1
2.2
2.3

3.1
4.1

List of Tables

Virtual machine hardware specifications. 8
Overview of indexing times across systems. v v v v vt .. 11
Overview of experimentresults. L L. 12
Mappings of MySQL terms and objects to the Elasticsearchones. 16
Filenames and descriptions of migration system logic. 24

vi

Acknowledgements

I want to thank my fellow lab members and leaders including Dr. Lee Giles, Dr. Jian Wu,
Shaurya Rohatgi, Bharath Kandimalla, and Jason Chhay. Without their help, I would not have
been able to complete this thesis. Additionally, I must thank Dr. Ed Glantz and Dr. Dinghao
Wau for helping me on my academic journey. Last but not least I have to thank my friends and
family including Valeria and all of the extended 507 group for being patient and motivating me to
complete my work.

Chapter 1

Introduction

1.1 Background

The CiteSeer project began in 1997 at Princeton University as the first digital library and search
engine to provide automated citation indexing and citation linking using autonomous citation in-
dexing [29]. Overall, the project encompasses a scientific literature digital library and search en-
gine that allows researchers and public users to find relevant publications pertaining to their query
[36]. With features including author disambiguation and reference linking, CiteSeer* has become
more robust over the years. [43]. The system architecture of CiteSeer* has evolved over many
years, and the current architecture is spread out across many different virtual machines which will
be discussed later.

CiteSeer* has ingested and indexed over 10 million academic papers which it queries every
time a user interacts with the search bar [43]. Much like a Google Scholar, CiteSeer* will return
relevant academic papers to the student, researcher, or academic who is searching [32]. Something
that differentiates CiteSeer* from many other academic digital libraries is that it consistently offers
the ability to download the full PDF version of any individual paper [25].

CiteSeer” is interested in migrating from a traditional XML based scheme to a metadata scheme
that supports JSON capabilities in order to use software like Elasticsearch. The reasons behind this
migration include increases in speed and distribution of data across multiple production machines
[39]. In order to make this migration and determine if it is worth pursuing, it is important to observe
what other academic digital libraries are implementing.

1.2 Other Digital Libraries

There are many other academic digital libraries similar to CiteSeer® including Semantic Scholar,
Google Scholar, and DBLP [40]. Out of the many scientific digital repositories, Semantic Scholar
is one of the most similar to CiteSeer*. For one, there is a similar layout, citation graph, and search
feature [23]. Additionally, Semantic Scholar uses a JSON metadata scheme that can be leveraged
by Elasticsearch to provide faster and more distributed indexing/searching capabilities [23]. As
CiteSeer* moves forward with the transition from a XML based metadata scheme to a JSON based
metadata scheme, it is important to consider various metadata standards in addition to what others
have done with similar scientific digital repositories.

There are many academic digital libraries in existence today. Some of these projects include
Google Scholar, DBLP, PubMed, Web of Science, and Semantic Scholar. A few of these academic
digital libraries have publicly released their data format schemas, allowing other researchers in this
field to see how best to store academic publication metadata. In the case of DBLP, its team has
released the basic makeup of their nested XML-based data schema that stores different informa-
tion pertaining to article descriptions [35]. PubMed, a leading digital library for medical related
publications, also uses an XML based schema and has also released the different data fields from
publications that it currently indexes today [9]. Web of Science currently uses a variant of the
XML data schema, utilizing .XSD file formats to store metadata about its publication dataset [20].
While many of these academic digital libraries are using XML based systems, there is one that
currently uses JSON with Elasticsearch.

SemanticScholar is an academic digital library created by the Allen Institute for Artificial Intel-
ligence to serve as an artificial intelligence powered academic search engine [44]. SemanticScholar
is able to index the metadata of over 125 million academic publications [44]. The publications
themselves may be hosted on other websites such as ArXiv or PubMed. SemanticScholar also
hosts a large and complex literature graph with all of the metadata that it holds. This academic
digital library utilizes a JSON based schema and openly states that it uses Elasticsearch as its in-
dexing engine [44]. While the team from the Allen Institute for Al releases what software they
use, they do not detail how to conduct a large scale data format migration as well as an indexing
platform migration.

1.3 Metadata Standards

Given the substantial growth of information and data available online, there is a directed fo-
cus towards making this information valuable. By using metadata and other features, experts can
draw conclusions about massive amounts of data and leverage the resource of information to an-
swer previously unanswerable questions. Metadata is traditionally defined as “data about data”;
although this may be understood by some, it is also helpful to think of metadata as “information
about an object, be it physical or digital” [27]. With the heterogeneous nature of data and infor-
mation across different fields, drawing conclusions or searching through information can be very
difficult. This is why it is necessary for different groups to convene and form metadata standards
[31]. Some of these groups include ISO, the Dublin Core Metadata Initiative, and the World Wide
Web Consortium [31].

Very little academic work has been done on comparisons between different metadata standards.

Some of the most common metadata schemes include the MAchine Readable Cataloging (MARC),
Dublin Core, Digital Object Identifier (DOI), and Resource Description Framework (RDF) [24].
A few of these metadata schemes are relevant to the work of the CiteSeer* team as it relates to a
migration from an older metadata schema to a new one. As an example, the DOI is relevant to
CiteSeer™ as it relates to the unique identification of different scientific publications, whereas the
Library of Congress metadata scheme, MARC, may not be relevant.

1.3.1 Metadata Formats

Many of these metadata standards utilize the Standard Generalized Markup Language (referred
to as SGML) or, more recently, XML (Extensible Markup Language) to ensure syntax consistency
across its many uses [24]. In order to index and search through these metadata, different software
can be used to derive value from overwhelmingly large sets of metadata. One of the most common
XML based index and search tools is Apache Solr, and it is used across many different domains
[2]. While Apache Solr has traditionally been very fast, it struggles with unstructured data in
JSON (Javascript Object Notation) format [2]. In the indexing and searching community, JSON is
becoming the preferred data format compared to XML [34].

Many studies have compared the JSON and XML data formats for performance and resource
utilization [38]. Across the board, these studies have found JSON to be significantly faster than
XML in its transmission as well as parsing by different applications [38]. Seeing how JSON is a
native data structure in Javascript, it is often seen as the modern de-facto data format standard for
web and mobile applications. Both JSON and XML have a focus of human readability, although the
lack of tags in JSON is usually seen as an improvement in readability. An application traditionally
requires more CPU utilization to parse JSON data over XML but the parsing and transmission of
JSON is significantly faster than XML [38].

In relation to different metadata standards and the means by which a user can convert data from
one format to another, there is limited literature for a couple of reasons. While various patents exist
that specify exactly how companies like IBM and others have built XML to JSON software and
vice versa, many programmers end up coding a custom conversion method to satisfy their needs
[28]. This is the best solution as it allows programmers to tailor the conversion to their specific
hardware capabilities. While the conversion itself, using logic in programming languages like
Python, Java, or C++, is not very difficult, it becomes increasingly harder to map different tags to
specific key-value pairs in JSON.

1.4 Current Architecture of CiteSeer®

1.4.1 Overview

In order for CiteSeer* to display results to a user after searching a collection of data, it must
first build a comprehensive dataset of academic papers to index [25]. To do this, CiteSeer* crawls
the web, and once it finds an academic paper of interest, it extracts all data and metadata from the
paper to be stored and later indexed [25]. By following this method, CiteSeer* has been able to
steadily grow this unique dataset. Once the data has been ingested and extracted, it is stored in a
database where that information is pulled and indexed, ready to be searched for by the user. On the

user-most facing components of CiteSeer*, users interact with the front end which is served using
the Java Spring web framework [17]. A query is sent to the indexing system which then returns
the most relevant results to the front end.

While one of the topics of this thesis is the CiteSeer* architecture, the real focus is towards the
indexing system architecture and migrating to an entirely different indexing system. To understand
how the indexing part of the system fits in CiteSeer* overall, a breakdown of each layer in the
technology stack is described below.

1.4.2 Front End

The front end of CiteSeer* is comprised of a variety of web servers and load balancers which
ensure that a large amount of traffic will not overload one specific web server [36]. Apache Tomcat
is the software used to serve the core CiteSeer* Java Sever Pages (.jsp) code to the user [3]. By
utilizing the Java Spring Framework, it is easy to do some core logic in Java then display the result
of that logic with HTML-like formatting in a JSP file [17]. While there are currently some changes
occurring with the deployment of a new web server, the front end system has largely stayed the
same.

1.4.3 Data Storage and Indexing

The CiteSeer* data and metadata is currently stored using three different strategies across dif-
ferent technologies. When the initially ingested PDF file is processed, CiteSeer®, makes sure to
save the PDF and all associated data so it can be displayed to the user. This works by assign-
ing each paper a unique CiteSeer* document ID (DOI) following the syntax of this example here:
10.1.1.4.102. By storing the original PDF with additionally extracted files like a .txt file containing
the paper full text and a .xml file containing metadata, no data is lost after extraction [25]. These
files are located in a regular Linux directory structure where each number in the DOI of the paper,
delimited by periods, represents another child directory to the paper and its data. After opening
the directory named ”10” on the CiteSeer* file repository server, then opening 17, 17, 74", and
1027, one would find all of the files associated with this specific paper with ID 10.1.1.4.102. This
is how CiteSeer”* is able to store the PDF of the original paper and the full text of that paper.

The next layer of the data stack is the MySQL database which is responsible for storing all
the metadata about papers, authors, clusters, and the related citation graph [11]. For production
purposes, there are 2 main databases which contain many tables with all the relational data needed
to build the index and to provide the user with relevant information. In the citeseerx database, all
metadata on papers, authors, citations, acknowledgements and more is stored. In the papers table
stored here, there are more than 10 million rows, meaning more than 10 million unique papers.
In the other core database, named csx_citegraph, lives all the citation graph information about
various clusters. The concept of a cluster is an important one because it defines one of the core
objects or nodes on the citation graph itself. A cluster as it is used in CiteSeer*, is a collection of
similar authors grouped by their papers citing one another. In the citation table of the csx_citegraph
database, which represents all citations stored in the CiteSeer* system, there are over 207 million
rows. There are two main database servers that are synced regularly to ensure consistency and
backup capabilities, if needed.

The last part of the system which directly processes the CiteSeer* data also happens to be the
focus of this thesis: the indexing platform. CiteSeer* uses Apache Solr to index, or process and
store data about an object so it can be easily search-able, information about authors and papers
alike [2]. Apache Solr is built on top of Apache Lucene, an open source search engine software
from 1999 [2]. Apache Solr brought new features like full text search, real time indexing, and
dynamic clustering for scaling [2]. Additionally, Apache Solr uses XML as its metadata format, so
it is also classified as a NoSQL datastore. Apache Solr is written in Java and it has extensive Java
support in the library Solrj. For this reason and many others, CiteSeer* adopted it many years ago
as its main indexing tool. There are 2 main index servers which are currently running Apache Solr
today, serving metadata about papers and authors to the users when they search on CiteSeer*.

1.4.4 Data Ingestion

CiteSeer* has a multi-step process for finding and extracting information that is found on the
public internet. First, the crawling system must be fed a list of URLs to visit and once it navigates
to a website, it reads the robots.txt file that is commonly offered by websites to explicitly state
what is allowed to be crawled and extracted. For instance, to see what Google allows in terms of
crawling and extracting, we can navigate to www.google.com/robots.txt in a web browser and see
all the different crawling policies listed. Once there is a list of websites that allows crawling and
the URLs are known, the crawler goes and downloads the according PDFs that it finds [25]. Then,
it is time for the extracting software to take the PDF as an input and generate the output of many
metadata related files for the ingestion process to proceed. Currently, CiteSeer* uses PDFMEF
to extract information from the crawled PDF files [42]. This tool combines the functionality of
other tools like Grobid and PDFBox [42]. The output of PDFMEEF is many different metadata files
including the full text .txt file and the metadata .xml file. Additionally, PDFMEEF has the ability to
directly load the relevant metadata to the MySQL databases previously mentioned.

1.5 Goals and Approach

An overarching goal of this thesis is to find areas of CiteSeer* which can be improved or mod-
ernized using current technologies. Another high level goal is to make the indexing system as
efficient as possible to allow for the indexing of many more papers. By building a system that uti-
lizes modern technology and testing various systems for efficiency, we hope to accomplish this. As
can be seen in the previous section of this thesis about system architecture, there are many separate
systems which culminate into what CiteSeer* is today. By using containerization technologies like
Docker containers, we hope to make our experiments and systems more replicable than ever before
[21].

1.5.1 Experiments on NoSQL Datastores

After seeing that JSON based systems perform better than XML based ones, the team at
CiteSeer” is looking to conduct experiments to find the best new index system for CiteSeer*. By
comparing the performance metrics of Elasticsearch and MongoDB, this thesis will provide the
information the team needs to decide upon the new indexing system.

1.5.2 Generate New Schema

Once a new index system is selected, a new JSON data schema must be created. Additionally,
index architecture will be discussed as it pertains to running an index in a production environment.
Creating a new schema for the index system is important because field mappings are what an index
system is built on top of, and native data structures are one of the reasons JSON schemas are so
powerful.

1.5.3 Data Migration

After the CiteSeer* lab group decides on the new index system, the process of migrating the
data must be dealt with accordingly. While many JDBC connectors exist to simply migrate the
data over to NoSQL datastores from a system like MySQL, formatting becomes an issue. One
of the main goals of this thesis was to find the best way to migrate the CiteSeer* dataset over to
Elasticsearch so it can be used as the primary index system.

1.5.4 Refactoring or Rebuilding Front End

As the data migration process was happening, the CiteSeer* team was faced with a difficult
decision: is it best to refactor the current front end to make calls to ElasticSearch instead of MySQL
and Solr or create a new front end altogether? After much discussion, it was decided that there
would be a new front end created for the query results from Elasticsearch. More on this topic can
be found in the Future Work chapter of this thesis.

1.5.5 Approach

The approach of this thesis is to improve CiteSeer* by configuring Elasticsearch to be used
as the primary indexing system and to migrate all of the data to Elasticsearch. Additionally, by
introducing containerization to CiteSeer*, we can build a more scalable microservice architecture
in the new Next Generation CiteSeer.

Chapter 2

Experiments and Comparison of NoSQL
Databases

2.1 Introduction

Once the CiteSeer* lab group decided to migrate to another NoSQL datastore instead of MySQL
and Apache Solr, there were a few popular options to choose from. The two systems which were
considered the most were Elasticsearch and MongoBD. While both of these systems use a JSON
based key-value pair schema, they can act very differently in large production systems [30]. Graph
databases like Neo4j were not considered in this study because they do not provide production
search functionality and would require a different formatted testing schema. In order to decide
which system to use for the indexing and metadata storage for CiteSeer®, experiments were con-
ducted, and both of the systems were evaluated. This chapter begins with general descriptions of
the two systems and then describes the various experiments.

2.1.1 Elasticsearch

Elasticsearch is an open source search engine built on top of Apache Lucene which allows
developers and website owners to utilize the powers of search [34]. The product itself allows for
a highly distributed, full-text search engine that comes pre-built with a REST API for easy data
manipulation [34]. While Elasticsearch may be thought of as a pseudo-database, it is really a dis-
tributed JSON document store. For system administrators and database administrators, managing
millions of records and having access to that data in real time is a hard feat. Leveraging the open
source nature of Elasticsearch, teams from all around the world at organizations like Uber, Stack-
Overflow, Shopify, CodeAcademy, SoundCloud, and Expedia all deploy Elasticsearch for their
searching needs [19].

H Operating System CPU Memory H
| CentOS Linux 7 Intel Xeon Gold 5118 2.30GHz 8 cores 16GB ||

Table 2.1: Virtual machine hardware specifications.

Elasticsearch is written primarily in Java, and it runs as a daemon service on production or
development servers. It can be accessed in a variety of different ways because of the Elasticsearch
API, which is a RESTful API capable of handling complicated requests and queries [5]. For this
experiment, the team used the Python Elasticsearch library, which is a Python wrapper for the
REST API, to conduct all requests [16].

2.1.2 MongoDB

MongoDB is currently the most popular NoSQL database on the internet [18]. It is a general
purpose, document-based, object datastore that operates on JSON formatted data. A MongoDB
instance can be expanded by introducing sharding and clustering on the data. Additionally, Mon-
goDB can store actual files like images or videos by serializing them first. Compared with a
traditional SQL database, MongoDB scales exceptionally well with unstructured data and queries
that require multiple join operations.

MongoDB is written in many languages including C++ and Javascript and similar to Elastic-
search, it has client APIs for almost all programming languages. In this experiment, the team will
use the Python MongoDB library which acts as a client to the MongoDB server daemon service
[15].

2.2 Experiment and Evaluation

2.2.1 Experiment Design

The goal of this experiment is to comparatively determine which NoSQL database would suit
the needs of CiteSeer* moving forward. By studying the CPU usage and memory usage during
indexing, as well as total indexing speeds, the team hopes to to arrive at a conclusion as to which
system is faster and more efficient for the 10 million papers in the CiteSeer* dataset. The team
is focused on picking the system with the most efficient migration process possible. Additionally,
only default configurations will be used in this study to compare Elasticsearch and MongoDB out
of the box.

To accomplish this comparative study, 1 million papers will be indexed by both Elasticsearch
and MongoDB, and their performance utilization and times will be compared. The 1 million papers
would be the same papers for each system, so that there would be no discrepancies in the data.
Additionally, the indexing monitoring and analysis had to be done on the same virtual machine to
ensure hardware consistency during the timed trial. The hardware of the virtual machine is seen in
Table 2.1.

While the intention of the experiment was to observe the indexing measures as the two systems
index 1 million papers, the indexing on MongoDB slowed to a halt. Only after numerous trials

were the researchers able to collect data on the MongoDB system indexing only 200,000 papers
because otherwise the script would run weeks with little progress. More on this will be said in
the Evaluations and Conclusions part of this thesis, but it must be mentioned that the sample size
of the MongoDB indexing experiments was significantly smaller than Elasticsearch based out of
necessity.

Another important note to make is about how the data is directly inserted into both Elasticsearch
and MongoDB. The official Python libraries were used to automate the indexing of the papers from
the MySQL database into the new systems. In Elasticsearch, there are upserting capabilities which
enabled the team to update and insert/append when needed with the author and cluster index all
with one request. For MongoDB, there was no single-query upserting/appending capabilities so
the upserting functionality had to be separated into two queries: one checking if the document
exists and the other appending it or inserting it.

While MongoDB does have the most basic upserting capabilities, it was impossible to upsert
into an update for a document where a value could be appended to an array in the document. This
had to be done in a completely different update statement where append operations could take
place.

While the experiment below measures only the performance metrics used during the inser-
tion of documents into Elasticsearch and MongoDB, it is advised to monitor other operations like
updating, deleting, and querying documents.

2.2.2 CPU Usage

CPU utilization rates are a very important factor when working with large indexing systems and
something that the research group wanted to study [22]. By leveraging the psutils Python library, it
was easy to attach to a certain process running on a virtual machine to study the CPU utilization of
that process [14]. The CPU percentage returned by the psutils library is not split evenly between all
cores of the system. By measuring the CPU utilization rates of both Elasticsearch and MongoDB,
we can make a more informed decision on the more efficient index system to use.

While the sample size of the MongoDB indexing experiment was only 200,000 instead of 1
million, there are still very interesting results of the study. Included here is a simple graph of the
CPU utilization percentage rate for Elasticsearch (Figure 2.1) then MongoDB (Figure 2.2).

An additional observation made during the indexing experiment for both these systems is that
Elasticsearch uses multiple cores to speed up the inserting of new documents into the index. Mon-
goDB allows for the use of only one core during insertion, which greatly limited the indexing speed
[4]. During initial trials of indexing 1 million papers in MongoDB, after only a few days the CPU
utilization of MongoDB would be 99% on the one core it occupied.

2.2.3 Memory Usage

Memory utilization rates are one of the most commonly used metrics when researchers do
comparisons of different indexing systems [22]. Similar to the CPU utilization tracking, the psutils
Python library was used to collect the memory data from the virtual machine where these exper-
iments took place. It is important to note that a monitor did not need to be attached to a process
ID in order to collect memory utilization rates, as the rates shown are the total memory utilization
rates of the machine as it was indexing the documents, not of the process itself.

cpu percentage

8 & 8

n
o

| |
Mk, 4 V\’V\waw

—
o
s

(=]

L Ll Ll T Ll

4 4
Yoo 0P a® WY W P

0
Q’l'x 0’13 0‘1’\‘ 0’1” Q‘l’\‘ 0’1” 0’1’\' Q’l’\‘

cpu percentage

time

Figure 2.1: CPU utilization by Elasticsearch during indexing.

10 -

46 10 o o> o Al 46 1°

Q A" AY A" A" AY AY

o @t ¢ ¢t @ & ¢
time

0‘5’10

Figure 2.2: CPU utilization by MongoDB during indexing.

10

11

21.4 4

21.2 4

21.0 4

20.8 4

memory usage

20.6 4

20.4 4

20.2 4

Vv A 1> o> AV A > o>
0 0 0 \ \ \ 3 ¢
o'l‘x 0'1»'\ 01‘\ 01'\’ o'l‘\ QTX ()'l‘X 01'\
time

Figure 2.3: Memory utilization by Elasticsearch during indexing.

H System Time Number of Documents H
Elasticsearch 1 day, 21 hours, 52 minutes, and 11 seconds 1,000,000
MongoDB 1 day, 8 hours, 34 minutes, and 15 seconds 200,000

Table 2.2: Overview of indexing times across systems.

Again with the memory utilization study, the MongoDB system did not have the ability to index
1 million papers and so the effects of 200,000 papers are observed. While this is not ideal, it does
show insight into the scalability of MongoDB given our dataset and relational schema. Figure
2.3 below shows the total memory utilization rate of the VM during the indexing of 1 million
papers into Elasticsearch while Figure 2.4 shows the memory utilization rate of the VM during the
indexing of 200,000 papers into MongoDB.

2.2.4 Indexing Speed

The final metric monitored throughout the duration of this comparative study was the total time
it took to insert the documents into each system. This metric was the most interesting to observe
due to the figures below which reflect different time complexity curves. This metric is also the most
important to CiteSeer* because with a dataset of over 10 million papers and many more authors
and clusters, migrating to a new indexing system must be a relatively quick process. Table 2.2
outlines how long it took in total to index the accompanying number of documents.

While memory utilization and CPU utilization both may effect the total time it takes to index
a certain number of documents, it is important to remember the effects that the indexing code may

12

60.4 4

60.2 4

60.0 -

59.8 -

59.6 -

memory usage

59.4 -

59.2 1

!]]]] T] I

\6 10 o N o AL \6 10
N N 3 N N
0’53 93'1 03'1 031 0’53 0’51

time

Figure 2.4: Memory utilization by MongoDB during indexing.

H System Mean CPU % | Mean Memory % | Documents per Second H

Elasticsearch 6.35 20.892 6.06
MongoDB 1.546 59.75 1.7

Table 2.3: Overview of experiment results.

have in the total indexing time. Since MongoDB does not have the upserting capabilities in one
query like Elasticsearch, it needed two queries which likely contributed greatly to the total time it
took to index papers.

Below are Figure 2.5 and Figure 2.6 which show the number of papers indexed over time for
both Elasticsearch and MongoDB, respectively.

It can be observed that the indexing speed for Elasticsearch may be represented by a linear time
complexity or O(n) time. Comparatively, MongoDB indexes with a quadratic or O(n?). This is
most likely reflected in the one versus two query trade-off that needed to be made in order to keep
the schema the same across the two systems.

2.2.5 Evaluation

A couple important comparisons can be made between Elasticsearch and MongoDB as it relates
to their performance utilization rates and speed of indexing. Table 2.3 shows the summary data
from the experiments. For one, the CPU utilization rate of Elasticsearch during indexing is about
4 times greater than the CPU utilization rate of MongoDB during index. Inversely, the memory
utilization of MongoDB during indexing is about 3 times greater than the memory utilization of
Elasticsearch during indexing.

1000000 -

800000 -

600000

400000 -

200000 -

0 1

W gkl o S I S y I
0 0 0 3 3 3 5\ v
0’1‘\' 015 0’1’\ 0’1'\' 0’1'\ 0’13 0’1’\' 0’1”
time

Figure 2.5: Total papers indexed across time in Elasticsearch.

200000

175000 -
150000 -
125000

.

100000 -
75000 -

P

50000 -
25000 A

0 1

o 0 R or g 4k 4 90
0> 40 NI, g, W S
time

Figure 2.6: Total papers indexed across time in MongoDB.

13

14

Even though Elasticsearch was able to index 5 times more data in roughly the same amount of
time as MongoDB was able to index 200,000 unique papers, the researchers are more interested
in the rate of indexing and factors that could have caused the MongoDB slowdown. Of course the
limitation that MongoDB can only use one core of the CPU during insertion, in addition to the
lack of its ability to upsert and append onto an existing document, were certainly factors in the
slowdown.

Overall, the ability to index 1 million documents in less than two days with a completely new
JSON schema makes Elasticsearch very attractive as an index system for CiteSeer*.

15

Chapter 3

ElasticSearch Schema Design

3.1 Introduction

By choosing a new index system for CiteSeer* that uses JSON to store documents instead of
XML or a relation database, a new schema must be developed. JSON is unique compared to XML
or relational databases in that data structures like lists or arrays may be used, in addition to nested
JSON objects. It is important to note that while Elasticsearch is considered schema-less and that
a schema is not inherently necessary for Elasticsearch to function properly, it was preferable to
have a structure to the storing of these documents because a front end will be making calls to
Elasticsearch and must know the format of the data it is receiving.

Because various JDBC connectors and automated migration features did not work with Elastic-
search, the team had to write software that would manually query and upload all of the data stored
in the MySQL databases and format the result in a input format for Elasticsearch.

3.2 Cluster Design

To begin the schema design of the new Elasticsearch system, it was important to first understand
the core design differences between a relational database and Elasticsearch. A table outlining the
different terms for each of the respective data objects in the datastores can be seen in Table 3.1.

One of the goals of this project was to modernize the CiteSeer* system and in doing so, only
the newest versions of software were to be used on the new indexing system. To that extent,
Elasticsearch 7.4.0 was used because it was the newest version during the system development.
This choice of using Elasticsearch 7.4.0, compared to previous versions of Elasticsearch, proved
to affect our cluster design greatly. In Elasticsearch versions before 6.0, it was possible to have
different document types in the same index. Since we are using a newer version, this was not an

16

H MySQL Elasticsearch H

column field
row document
table type

database index

Table 3.1: Mappings of MySQL terms and objects to the Elasticsearch ones.

option.

There is limited academic work detailing the ways to store relational data in a NoSQL datastore
like Elasticsearch. The CiteSeer* dataset is relational in nature, in having data about different pa-
pers, different authors, and different clusters. Each paper has many authors and those authors, who
write other papers as well, belong to clusters. While this may seem counterintuitive because many
use a NoSQL datastore for non-relational data, these datastores are still valuable for relational data.
There are two main approaches which are explained in detail below.

3.2.1 Nested Object Structure

One approach for dealing with relational data in a non-relational datastore is to nest the related
objects all within one document. By leveraging the power of ordered arrays and nested objects, it is
possible to build a complete document with many nested fields. The drawback from this approach
is that the queries to find related documents would take significantly longer to execute [12]. An
example of a nested paper document can be seen in Figure 3.1 and shows the nested nature of both
the cluster and author information. Additionally, a nested document datastore would include many
copies of the same information. In the case of CiteSeer* data, there would be many duplicates of
author information and cluster information across the many paper documents.

3.2.2 Parent-Child Structure

The other approach uses the built in parent-child document feature in Elasticsearch by using the
special field join [7]. The parent and child documents must all be in the same index in order to use
the join functionality in Elasticsearch. This is an important distinction and one that eliminates the
use of this method for CiteSeer* because we have different document types, being papers, authors
and clusters. If a version of Elasticsearch prior to 6.0 was being used, then it would be possible to
have different document types in the same index thus opening the possibility of having parent and
child documents. Additionally, each child document can only have one parent document, which
limits architecture possibilities. In Elasticsearch, it is necessary to configure an index to allow
for join functionality. To do so, a PUT request must be sent to the Elasticsearch index you are
trying to configure with the payload shown in Figure 3.2. Here, it is assigning cluster as the parent
document and author as a child document. This is consistent with the assumption that a cluster has
many authors within it in the CiteSeer* dataset.

17

"paper_id": "10.1.1.4.201",

"title": "The Migration of Data",
"authors": [
{

"name": "Sean Parsons",
"author_id": "123456",
"cluster": "9876544"

by

{
"name": "Andrew Warner",
"author_id": "321455",
"cluster": "9876544"

}

Figure 3.1: Nested JSON example.

"mappings": {
"properties": {

"my_id": {
"type": "keyword"

}I

"my_Jjoin_field": {
"type": "join",
"relations": {

"cluster": "author"

Figure 3.2: Parent-Child configuration example.

18

3.2.3 Our Approach

After studying both forms of storing relational data in Elasticsearch, it was decided to use a
hybrid method that optimized for query performance downstream. Even though there were restric-
tions on the architecture flexibility because the newest version of Elasticsearch was being used,
the architecture employed optimizes for anticipated queries. Each document type must have its
own index in Elasticsearch, which means that there must be a papers index, authors index, and
clusters index. The reason it is best to have different document types is because the queries that
will be made pull information from papers, authors, and clusters and there are different metadata
associated with each.

Therefore, each index needed some way of linking to the other two indices in the case of a
more complicated query. By combining the nesting of objects and the linking of keys similar to
what would be seen in a relational database, we propose a hybrid cluster architecture that can be
broken down into the individual indices.

3.3 Individual Index Schemas

3.3.1 Paper Index

The schema for the paper index was the most important because it would be queried the most,
it held the most information, and it contained linking information to the other indices. Much of the
information contained within this index is conveyed to the user in some way. Many of the fields in
this index were converted directly from the MySQL databases with minimal logic. Since the full
text is not included within the MySQL databases, it must be read from the file system. The index
schema of SemanticScholar served as inspiration for the new design of various index schemas in
CiteSeer* [37]. This is covered in greater detail in Chapter 4.

The nesting structure of having author information and keyword information in arrays is helpful
in more than one way. While it may seem redundant to have things like author name and author
ID be in the same nested object in a paper document, the goal is to maximize query efficiency
downstream while balancing duplicity in the index. Figure 3.3 shows the complete paper index
schema where all the fields and some example data are displayed.

3.3.2 Author Index

The schema for the author index contains significantly less information but is harder to generate
in practice. Each paper is independent of other papers but each author has many papers. This is a
classic example of the one to many relationship commonly seen in database systems today. Things
become more challenging when there is a need to create a list of all the papers an author has
written. This utility is needed for specific author pages in CiteSeer*.

Since the migration occurs one paper at a time, there needed to be a way to append certain
papers to a list contained within the author index anytime that author came up in a paper. The
result of this functionality is commonly referred to as upserting data. The upserting operation is
two common operations combined into one: updating a document if it exists and creating a new
document if the document does not exist. This functionality is extremely helpful in many areas
and limits the amount of queries we need to make to build out a completely relational system.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

19

"paper_id": "10.1.1.4.201",
"title": "The Migration of Data",
"cluster": "9876544"
"authors": [
{
"name": "Sean Parsons",
"author_id": "123456",
"cluster": "9876544"
}I
{
"name": "Andrew Warner",
"author_id": "321455",
"cluster": "9876544"
}
]I
"keywords": [
{
"keyword": "data",
"keyword_id": "12345"
}
1y
"abstract": "This is the full abstract."
"year": 2020,
"venue": "PSU Thesis"
"ncites": O,
"scites": O,
"doi": ""
"incol": Null,
"authorNorms": Null,
"text": "This is the full text of the paper!"
"cites": [
"9074080",
"9074081"
]I
"citedby": [

i

"vtime": "03/19/2020 10:15:31"

Figure 3.3: Paper index schema.

20

1 {

2 "author_id": "123456"

3 "name": "Sean Parsons"

4 "cluster": "9876544"

5 "papers": [

6 "10.1.1.4.201",

7 "10.1.1.21.17",

8 "10.1.1.7.34"

9 I

10 "affiliation": "Penn State University"
1 "address": Null,

12 "email": "seanpars98@gmail.com"
13 }

Figure 3.4: Author index schema.

Upserting is very easy to do in Elasticsearch with its updating API and the upsert flag. In figure
3.4, the full author index schema can be seen with the special upserted field being papers.

3.3.3 Cluster Index

The schema for the cluster index is very similar to the author index because it does not contain
much information but it does utilize the upserting operation. In fact, it uses the upserting opera-
tion twice, appending to both the authors and papers data fields. The concept of a cluster is not
necessarily relayed to the user but it is used to generate similar papers for the user and can be used
for a recommendation system [26]. The concept of a cluster is at the core of the citation graph for
CiteSeer*. When linked with the data contained within the paper index, the entire citation graph
can be formed. Figure 3.5 details the complete cluster index schema.

21

"cluster_id": "9876544"

"included_papers": [
"10.1.1.4.201",
"10.1.1.21.17"

]I

"included_authors": [
"Sean Parsons",
"Andrew Warner"

Figure 3.5: Cluster index schema.

22

Chapter 4

CiteSeer* Data Migration Process

4.1 Introduction

When migrating relational data from MySQL to Elasticsearch, there are a few different options
that exist. Traditionally speaking, MySQL is one of the most common flavors of SQL and therefore
it is not uncommon for users to want to migrate data from within MySQL to another data tech-
nology [18]. To do so, there are a few different methodologies that can be used. The main factors
when choosing between methodologies in the case of CiteSeer* were efficiency and accuracy in
formatting.

Once a methodology was chosen, it needed to be implemented in the most efficient way possi-
ble. If configurations needed to be changed, then they were edited using the YAML markup lan-
guage. The main configuration file for Elasticsearch is located in /bin/elasticsearch.yaml. When
manual changes needed to occur, the Python programming language was chosen to automate the
querying and formatting necessary to move data from MySQL to Elasticsearch. Because a goal
of this process was to use modern software engineering techniques, the team containerized the
migration code necessary for replication purposes.

4.2 Migration Methodologies

Below we describe the three different methods that we tried to accurately migrate the data from
MySQL to the new Elasticsearch instance. While some methods did not work well with our data
set and formatting needs, they are all described in detail.

23

4.2.1 Third Party MySQL to Elasticsearch Syncing Tool

Because MySQL is such a common technology, there are many related third party plugins and
scripts which the database community has contributed to over many years. One such tool is a
MySQL to ElasticSearch Syncing tool created by the Github user siddontang [41]. This particular
tool is written in the programming language Go and it interfaces with the ElasticSearch Go client.
While this tool may prove valuable to users who do not have millions of entries of data and strict
formatting needs, our team encountered issues while trying to use this tool.

For one, this tool requires the use of a version of Elasticsearch which is less than 6.0.0. Ad-
ditionally, it does not provide any more field mapping support than the vanilla version of Elastic-
search. This third party tool also did not seem to work with multiple document types and multiple
indices, which was the new schema decision for CiteSeer* data in Elasticsearch. While it was
helpful to run the tool and test out the MySQL migrating capabilities, it does not seem that this
tool can provide the flexibility and the formatting needs of CiteSeer*.

4.2.2 MySQL JDBC Connector

One of the most popular methods of migration from any SQL based database to Elasticsearch
is by using Logstash and the Java Database Connector (JDBC). Logstash is a tool developed by the
creaters of Elasticsearch to provide log parsing and it is commonly used with Elasticsearch [8]. By
using this tool, it is possible to periodically sync data from MySQL and index it in Elasticsearch.
Any Logstash version greater than 5.0.0 comes with the ability to use the JDBC tool. This being
said, the specific jar file for the version of SQL being used must be downloaded beforehand. Addi-
tionally, there is an assumption that MySQL is running on port 3306 and the machine that Logstash
is running on must have access to the MySQL instance in question. By configuring the settings
located in a configuration file in the same directory as Logstash, it is easy to point the input SQL
instance to a machine different than the one running Elasticsearch or Logstash.

There are many configurations of the JDBC tool and they all depend on the architecture of
Elasticsearch. For example, users must define what SQL query they want to run on the MySQL
database. Logstash executes this query on the MySQL database, given that the user provided valid
MySQL credentials in the configuration file.

While the Logstash JDBC connector seems to be helpful in simple cases, it also does not scale
well to multiple indices and multiple data types. Small tests were done to test the efficacy of
the Logstash JDBC tool by running the command "SELECT * FROM PAPER LIMIT 10000;”
to retrieve 10,000 papers from the MySQL database and bring them over to Elasticsearch. After
spending hours trying to properly configure the JDBC driver for MySQL, the process finally began
to work. While it took 38 minutes to migrate 10,000 papers, the formatting was not consistent with
what was in the MySQL database. Additionally, there was no support for building the authors and
cluster indices with no repeat entries.

4.2.3 Custom Manual Migration

While our group tried to use many pre-built solutions to transfer the CiteSeer* data from
MySQL to Elasticsearch, eventually we decided to build our own migration software. This en-
tailed using the Python programming language to interface with the MySQL databases as well

24

Full Text From File System CiteSeer* database csx_citegraph database

\ /

Migration Script

Elasticsearch

Figure 4.1: Data migration flowchart.

H Filename Description H
es_migration.py Main script, establishes db connections
elasticpython.py Interafaces Elasticsearch

paper.py Paper index manipulations
author.py Author index manipulations
cluster.py Cluster index manipulations

Table 4.1: Filenames and descriptions of migration system logic.

as the Linux file system in order to index the data properly into Elasticsearch. A diagram of the
migration process can be seen in Figure 4.1. A multitude of Python files were written to separate
the logic of querying the MySQL database and the index schema initialization for each data type.
A table showing the Python files needed to run the migration with a short description of the logic
contained within the files can be seen in Table 4.1.

In es_migration.py, the user must change one line before the migration is ready to commence.
The line that must be changed affects the number of papers to index from MySQL and into Elas-
ticsearch. To date, over 1 million papers have been indexed by the new Elasticsearch system. After
the n number of papers to be indexed from MySQL is changed, the script queries the MySQL
databases and retrieves that n number of unique paper IDs. Each of these IDs is iterated through,
as the software finds the full text of the paper and queries the databases for remaining metadata.
Once all the previous information from the paper is compiled, the program inserts a paper docu-
ment in the paper index in Elasticsearch. With the remaining metadata, the software must use the
upsert operation on the author data and cluster data in their respective indices. This way, there are
no repeat cluster IDs in the cluster index and no repeat author IDs in the author index because if a
record exists, then the new information will be appended to an array.

It is important to note that the only way to do this upserting logic is by using a Elasticsearch
built-in scripting language that can be used during query execution called Painless [13]. An exam-
ple of the upserting logic using the Painless scripting language can be found in Figure 4.2. If the
record cannot be found in Elasticsearch, then it will take the arguments given and append them to
the document in the authors table in this specific case.

As the migration script is iterating through papers and adding authors and clusters, it is also
monitoring CPU and memory usage across time. By attaching to the process ID of Elasticsearch,

20

21

22

23

24

25

new_data = {}
new_datal['script'] = {
"source": "ctx._source.papers.add(params.new_papers) ;
ctx._source.papers.add(params.new_clusters)'
"lang": "painless",
"params": {
"new_papers": datal['papers'][0],
"new_clusters": data['clusters'][0]

new_datal['upsert'] = {

"papers": datal'papers'],

"author id": data['author_id'],
"cluster": data['clusters'],
"name": data['name'],
"affiliation": data['affiliation'],
"address": data['address'],
"email": data['email']

updatel = es.update (index=index, doc_type=doc_type,

id=doc_id, body=new_data)

|l
’

Figure 4.2: Upserting logic using the Painless and Python.

26

the team is able to get accurate measurements of the performance metrics during the time of index-
ing. In order to run the migration script on the CiteSeer* migration server, the terminal multiplexer
(tmux) command line tool was used to detach from a terminal session so the script could run com-
pletely. As discussed earlier in the paper, to index 1 million papers into Elasticsearch, it took 1
day, 21 hours, 52 minutes and 11 seconds.

4.3 Running the Migration

To start the migration process, one can either install the Python dependencies located in the
requirements.txt file within the code repository or a Docker container can be ran. By containerizing
the migration script, the team has started the process of containerizing certain parts of CiteSeer*.
The container is very simple and is built upon the Python 2.7 base image. Once an image is
produced by the Dockerfile in the repository, the container can be run without the need of mapping
any ports.

27

Chapter 5

Results

5.1 Experimental Results

As a result of the comparative study of this thesis, it is clear that with a relational schema
and many millions of documents, Elasticsearch is a better indexing choice for CiteSeer*. Even
though it may have more CPU utilization compared to MongoDB, it indexes many times quicker
than MongoDB. Because of the experiments conducted, the team recognizes the limitations of
MongoDB in only allowing for one core to be used when inserting documents as well as the
inability to upsert append in one single query. This led to a quadratic time complexity model for
MongoDB, which removed the possibility of inserting 1 million papers to study.

The results of the experiments of this thesis contribute to the systems community as a whole,
giving a performance metric comparison between two of the biggest NoSQL datastores with our
example schema. When system administrators and database administrators are choosing which
new system to migrate data to, they are looking at performance metrics as well as overall migration
duration.

In the case of CiteSeer”, it is expected that if we run the same migration script but instead this
time set it to migrate all 10 million papers to Elasticsearch, this operation would take just over
19 days. This is a reasonable time given the scale of data and the number of indices that must be
populated.

5.2 Indexing

After the indexing experiments in this thesis, the CiteSeer* lab has decided to keep the indexed
1 million papers in the Elasticsearch system and to build upon it. With Elasticsearch being the main
indexing system now, there are plans to refactor CiteSeer* or to change the entire system from a

28

dependency on Apache Solr and eventually MySQL. While the metadata dataset of CiteSeer® is
often a valuable dataset for researchers, steps must now be taken to turn Elasticsearch into the main
indexing tool system-wide.

Migrating all of the data over to Elasticsearch is just one step in changing the indexing system
officially from Apache Solr.

5.3 System Updates

Now the CiteSeer* lab must integrate Elasticsearch within its full technology stack. Various
discussions have ensued and there are a few possible solutions which will be described at length in
the next chapter. If the system is going to use Elasticsearch to its fullest extent, then there will be
many sweeping system changes done to the architecture of CiteSeer*.

29

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we investigated the feasibility of using Elasticsearch and MongoDB as the new
indexing systems for CiteSeer*. Additionally, we analyzed various schemas and configurations
that would optimize the migration process to a new system. By comparing the performance of
two of the most popular NoSQL datastores in existence today, the CiteSeer* team decided to use
Elasticsearch because of its quick indexing times and flexibility during migration.

Additionally, this thesis proposed a hybrid method for storing relational documents in a NoSQL
datastore. By deferring the use of nested objects in documents and by not using the out-of-the-
box parent-child relationships in Elasticsearch, we propose the new schema representing papers,
authors, and clusters. With this new schema, we migrated significant portions of data to the new
Elasticsearch system by containerizing custom migration software and deploying the migration
container to our index servers.

Indexing is at the core of CiteSeer* and by doing a data migration and integrating the new
Elasticsearch system, work from this thesis prompted the development of a new next generation
CiteSeer. This new search engine will use the Elasticsearch instance described in this thesis as its
core indexing system.

Despite the overwhelming use of large NoSQL datastores in technology stacks today, there is
very limited literature on the quantitative analysis of these tools. This thesis and the work of the
CiteSeer* team hopes to add to the knowledge of the systems and search engine community.

30

6.2 Future Work

There are many ways that future researchers can build off of the work that is represented in
this thesis. The current CiteSeer* research group only experimented on the initial indexing of doc-
uments and compared the performance metrics of just the inserting operation. Future researchers
can also compare the update, delete, and query functionality of Elasticsearch and MongoDB.

Additionally, it would be valuable to have a robust comparison between all systems in ques-
tion: MySQL, Apache Solr, MongoDB, Elasticsearch, in addition to more datastores like Reddis
and DynamoDB. If this is completed, this would provide the systems community with significant
information on where each of these platforms stands from a performance and timing point of view.

Another possible area of work could be the packaging of various CiteSeer* systems and assets
into containers to be deployed on other virtual machines on the cloud. With the onset of cloud
popularity and reduced costs, containerization can only help with mobility moving forward.

Additionally, the work of this thesis has propelled a conversation about a completely refactored
version of CiteSeer* described below.

6.2.1 Next Generation CiteSeer

After the new schema was developed and the migration to Elasticsearch began, discussions
of integration with the current system had to be addressed. The current CiteSeer* system today
uses both MySQL and Apache Solr for two slightly different reasons. MySQL acts as a metadata
storage for analysis and backups, while Apache Solr is the searching and indexing tool responsible
for serving results for user submitted paper queries. As the Elasticsearch work was coming to
a close, it was important to know how Elasticsearch was going to be integrated with the rest of
CiteSeer*, namely the front-end which must query the index system frequently.

To that end, the CiteSeer* research group developed two possible solutions to the issue sur-
rounding Elasticsearch integration. One solution is to refactor the legacy code base and remove all
calls to Apache Solr and MySQL from the front-end and to replace them with REST API calls to
Elasticsearch. The other solution was to rebuild CiteSeer* with a completely different front end
by using new Javascript frameworks and by breaking down the back end of CiteSeer* into scalable
microservices. Both solutions are described in detail below.

6.2.2 Refactor Legacy Code

The CiteSeer* system is very complex, totaling over 45,000 lines of code and having many
moving parts. The front end of CiteSeer* utilizes the Java Spring framework with dynamically
generated content on Java Server Page files (.jsp) [33]. The initial solution by the CiteSeer* team
was to go into the legacy front end code and refactor all the calls to MySQL and to Apache Solr
and to replace these calls with requests to Elasticsearch. While this is a great idea, the front end
is very complicated with hundreds of .jsp files serving content to the user and there is no central
place where all the data calls are.

Reviewing and becoming acquainted with the code was a challenge, given that many of the
current members of the CiteSeer* lab team are moderately new and also unfamiliar with the legacy
code base. While this method may have proven to be more simple because we would just be
changing a set number of calls in the front end and slowly migrating away from MySQL and

31

Apache Solr, determining where these calls were and how best to change them proved difficult.
All of these issues eventually resulted in the solution to be deemed unfeasible for the time being.
This shifted the focus of the CiteSeer* research group to build a new system from the bottom

up.

6.2.3 New CiteSeer

After much discussion, the decision was made to build a new modern CiteSeer* with a new
front end and back end. By leveraging relatively new tools like Vue.js, Django, Elasticsearch,
and containers, the team was confident that a new CiteSeer* product that leverages the new index
system could be built in a timely manner.

The new system architecture of the next generation CiteSeer* is made up of a few of the same
parts as the current production CiteSeer*. PDFMEEF is used for extraction, Elasticsearch is used
for indexing, and Django and Vue are used to display results to the user in record speeds. More
details on this new system will be disclosed shortly.

32

Appendix A

A.1 Code

A.1.1 GitHub

All of the code mentioned throughout this thesis can be found on the GitHub Repository located

at this link on the elasticsearch branch:

https://github.com/seanpars98/CiteSeerX

A.1.2 Schema Files

Import SQL capabilities
import MySQLdb

Import basic system libraries
import sys
import time

Reload sys and make sure the encoding 1is set properly to utf8
reload(sys)
sys.setdefaultencoding ('utf8")

class paper:
def _ _init__ (self, paper_id):

""" Input: The specific paper ID of a paper
Output: None

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

Method: Build a value dictionary with all of the

relevant schema information

rrr

self.paper_id = paper_id
self.values _dict = {

"paper_id": self.paper_id,
"title": '',
"cluster": '',
"authors": [
{
"name": '',
"author_id": '',
"cluster": ''
}
1,
"keywords": [
{
"keyword": '',
"keyword_id": ''

1,

"abstract": '',

"year": O,

"venue": '"',

"ncites": 0,

"scites": O,

"doi": '',

"incol": None,

"authorNorms": None,

"text": '',

"cites": [
None,
None

1,

"citedby": [
None,
None

1,

"vtime": None,

def paper_table_fields(self, cur):
""" Input: MySQL database connection

33

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Output: None

Method: Query the MySQL database for a specific paperID

and properly organize
the data returned in the values_dict data
Structure.

statement = "SELECT title, abstract, year, venue, ncites,

—~ selfCites, cluster, versionTime FROM papers WHERE id='"

<~ + self.paper_id + "';"

cur.execute (statement)

result_tuple = cur.fetchall () [0]

self.values_dict['title'] = str(result_tuplel0])
self.values_dict|['abstract'] = str(result_tuple[l])
if result_tuple[2]:

self.values_dict['year'] = int (result_tuple[2])
self.values_dict['venue'] = str(result_tuplel[3])
self.values_dict['ncites'] = int (result_tuple[4])
self.values_dict['selfCites'] = int (result_tuplel[5])
self.values_dict['cluster'] = int (result_tuple[6])
self.values_dict['vtime'] =

[

— result_tuple[7].strftime ('%$Y-%m-%d $H:%M:%S")

def authors_table_fields (self, cur):
""" Input: MySQL database connection
Output: None
Method: Query the MySQL database (authors table
specifically) for a specific

paperID and properly organize the author data returned

in the values _dict data structure.

statement = "SELECT name, id, cluster FROM authors WHERE
— paperid='" + self_paper_j_d AN

cur.execute (statement)
result_tuple = cur.fetchall ()

for author in result_tuple:

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

35

temp_dict = { "name": str (author[0]),
"author_1id": int (author[1]),
"cluster": int (author[2])
}
self.values_dict['authors'].append (temp_dict)
del self.values_dict['authors'] [0]

def keywords_table_fields(self, cur):
""" Input: MySQL database connection
Output: None
Method: Query the MySQL database (keywords table
specifically) for a specific
paperID and properly organize the keyword data returned

in the values dict data structure.

statement = "SELECT keyword, id FROM keywords WHERE
— paperid='" + self.paper_id + "';"

cur.execute (statement)
result_tuple = cur.fetchall ()

for keyword in result_tuple:
temp_dict = { "keyword": str (keyword[0]),
"keyword_id": int (keyword[1])
}
self.values_dict['keywords'] .append (temp_dict)

del self.values_dict['keywords'][0]

def csx_citegraph_query(self, cur):
""" Input: MySQL database connection for the csx_citegraph
— database
Output: None
Method: Query the MySQL database for the citegraph data
based off of
clusterID.

#this statement grabs the cluster ids who have cited this
— cluster

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

36

statement = "SELECT citing FROM citegraph WHERE cited=" +
< str(self.values_dict['cluster']) + ";"
cur.execute (statement)

result_citedby_tuple = cur.fetchall ()

#this statement grabs the cluster ids who are cited by this
— cluster

statement2 = "SELECT cited FROM citegraph WHERE citing=" +

— str(self.values_dict['cluster']) + ";"

cur.execute (statement?2)

result_cites_tuple = cur.fetchall ()
self.values_dict['citedby'] = [int (cite[0]) for cite in
— result_citedby_tuple]

self.values_dict['cites'] = [int (cite[0]) for cite in

— result_cites_tuple]

def retrieve_full_text (self):
""" Input: None
Output: None
Method: We traverse through the local filesystem to
find the full text
.txt file. Then, we open this file and populate
the values
dictionary with the full text.

d_path = self.paper_id.split('.")

text_file_path = "/mnt/repl/%s/%s/%s/%s/%s/%s.txt" %

. (d_path[0], d_path[l], d_path[2], d_path[3], d_path[4],
— self.paper_id)

try:

with open(text_file_path, "r") as text_file:

contents = text_file.read()
resp = ''.Join(contents)
self.values_dict['text'] = str(resp)

except IOError:

183

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

37

print ("full text file could not be found")

Listing 1: Paper index schema declaration.

class author:

def _ init_ (self, author_id):
""" Input: The specific author ID of an author
Output: None
Method: Build a value dictionary with all of the

relevant schema information
rri

self.author _id = author_id
self.values_dict = {

"author_id": self.author_id,
"name": None,
"clusters": [

1,
"papers": [

1,

"affiliation": None,
"address": None,
"email": None

def authors_table_fields (self, cur):
""" Input: MySQL database connection
Output: None
Method: Query the MySQL database (authors table
specifically) for a specific
authorID and properly organize the author data returned

in the values_dict data structure.

statement = "SELECT affil, address, email FROM authors
— WHERE id='" + str(self.author_id) + "';"

cur.execute (statement)

40

41

42

43

44

45

20

21

22

result_tuple = cur.fetchall () [0]

self.values_dict['affiliation'] = result_tuple[0]
self.values_dict['address'] = result_tuple[l]
self.values_dict['email'] = result_tuple[2]

38

Listing 2: Author index schema declaration.

class cluster:

def _ init_ (self, cluster_id):
""" Input: The specific cluster ID of a cluster
Output: None
Method: Build a value dictionary with all of the
— relevant schema information

rr

self.cluster_id = cluster_ id
self.values_dict = {

"cluster_id": self.cluster_id,
"included_papers": [
None,
None
1,
"included_authors": [
None,
None

Listing 3: Cluster index schema declaration.

A.1.3 Experiment Monitoring and Automation

Import capabilities to make HITP requests to ElasticSearch
import requests

import zlib
Import ability to work with JSON objects in Python

import json

Import ElasticSearch API for Python

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

from elasticsearch import Elasticsearch

def establish ES connection{() :
"!'" Input: None
Output: ElasticSearch connection
Method: Using the ElasticSearch Python API

es = Elasticsearch([{'host': '130.203.139.151",
'port': 9200
1)

return es
def test_FES_connection{() :

"!''!" Input: None
Output None

39

Method: Test Python's connection to ElasticSearch and print

—~ the response

req = requests.get ('http://130.203.139.151:9200")
content = reqg.content

parsed = Jjson.loads (content)

print_response (parsed)

def print_response (response) :
"!''" Input: None
Output: None
Method: Prints the JSON of the response from ElasticSearch
— to test connection

print (json.dumps (response, indent=4, sort_keys=True))

#If the document exists already, update the document where the

— doc_id's are the same

def update_authors_document (es, index, doc_id, doc_type, data):
""" Input: ElasticSearch instance, index name (authors),
— document id, document type (authors), and data dictionary

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

40

Output: None
Method: First we properly format scripts to be ran on
ElasticSearch in
order to upsert the correct values using the
painless scripting
language. My formatting the dictionaries in such a
way that will
allow ElasticSearch to upsert the document into the
authors index,
we don't need to worry about 1if the document exists
already. Then we
use the traditional 'update' command for
ElasticSearch to apply the upsert.

rrr

new_data = {}

source = "ctx._source.papers.add (params.new_papers) ;

— ctx._source.papers.add(params.new_clusters)"

We also need to add a script to the JSON to check and add the
—~ associated data appropriately

new_data['script'] = {
"source": source,
"lang": "painless",
"params": {
"new_papers": datal['papers'][0],
"new_clusters": data['clusters'][0]
}
}
new_datal['upsert'] = {
"papers": datal'papers'],
"author_id": datal['author_id'],
"cluster":
— data['clusters'],
"name": data['name'],
"affiliation": data['affiliation'],
"address": data['address'],
"email": data['email']

Update the specific document located by the ID
updatel = es.update (index=index, doc_type=doc_type, id=doc_id,
body=new_data)

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

41

def update_clusters_document (es, index, doc_id, doc_type, data):
""" Input: ElasticSearch instance, index name (clusters),
— document id, document type (clusters), and data dictionary
Output: None
Method: First we properly format scripts to be ran on
— FElasticSearch in
order to upsert the correct values using the
— painless scripting
language. My formatting the dictionaries in such a
— way that will
allow ElasticSearch to upsert the document into the
— clusters index,
we don't need to worry about if the document exists
— already. Then we
use the traditional 'update' command for
— FElasticSearch to apply the upsert.

rrr

new_data = {}
source = "ctx._source.included_papers.add (params.new_papers) ;
— ctx._source.included_authors.add (params.new_authors)"
new_datal['script'] = {
"source": source,
"lang": "painless",
"params": {
"new_papers": datal['included_papers'][0],
"new_authors": data['included_authors']
}
}
new_datal['upsert'] = {
"cluster_id": data['cluster_id'],
"included_papers": data['included_papers'],
"included_authors": data['included_authors']

updatel = es.update (index=index, doc_type=doc_type, id=doc_id,
— Dbody=new_data)

def create_document (es, index, doc_id, doc_type, data):
""" Input: ElasticSearch instance, index name (papers),
— document 1id, document type (papers), and data dictionary
Output: None

127

128

129

130

131

132

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Method: For each paper, we need to create a document 1in
— ElasticSearch.

Begin indexing the data in the correct index
indexl = es.index(index=index, id=doc_id, doc_type=doc_type,
— body=data)

42

Listing 4: Custom wrapper for the Elasticsearch library.

from pymongo import MongoClient
from pprint import pprint

from paper import paper

from author import author

from cluster import cluster
from monitoring import Monitor

class Mongo () :

def init (self):
self.client = None
self.db = None

def establishMongoConnection(self):
client = MongoClient ('localhost', 27017)
self.client = client
self.db = self.client['citeseerx']

def getCollection(self, colName) :
collection = self.db[colName]
return collection

def createDocument (self, collection, data):
col = self.db[collection]

Did not assign ID, therefore mongo will give us a
— generated one
result = col.insert_one (data)

def checkIfDocExists(self, collection, idType, idValue):

if self.db[collection].find({idType: idValue}) .count () >
return True

else:
return False

0:

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

def updateAuthorHelper (self, collection, data):

col = self.db[collection]
response = col.update_one (

{

"author_id": data['author_id']

}I

{ "SaddToSet": { "clusters": { "Seach":

— datal['clusters'][0]},

"papers": { "Seach": datal['papers'][0]}

)
def insertAuthorHelper (self, collection, data):

col = self.db[collection]
response = col.insert_one (data)

def upsertAuthor(self, paper, collection, db):
for auth in paper.values_dict['authors']:
authorl = author (auth['author_id'])

authorl.values_dict['clusters'] = [auth['cluster']]
authorl.values_dict['name'] = auth['name']
authorl.values_dict|['papers'] =

. [paper.values_dict['paper_id']]

authorl.authors_table fields (db)

Now that author is prepared, time to switch logic
— depending on 1if the
entry exists already
if self.checkIfDocExists ("authors", "author_id",
— authorl.values_dict['author_id']) :
Append paper and cluster to author entry!
self.updateAuthorHelper (collection,
— authorl.values_dict)
else:
Insert the brand new document!
self.insertAuthorHelper (collection,
— authorl.values_dict)

43

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

def

def

def

44

updateClusterHelper (self, collection, data):
col = self.db[collection]

result = col.update_one

{

"cluster_ _id": data['cluster_id']

{ "SaddToSet": { "included_papers": { "Seach":
— datal['included_papers']},
"included_authors": { "$Seach":

— data['included_authors']}
}
})

insertClusterHelper(self, collection, data):

col = self.db[collection]
response = col.insert_one (data)

upsertCluster (self, paper, collection):

clusterl = cluster (paper.values_dict['cluster'])
clusterl.values_dict|['included_papers'] =

— [paper.values_dict['paper_id']]

list_of author_names = [auth['name'] for auth in
— paper.values_dict['authors']]
clusterl.values_dict['included_ authors'] =

— list_of author names

if self.checkIfDocExists ("clusters", "cluster_id",
— clusterl.values_dict['cluster 1id']):
If the document exists, then append values
self.updateClusterHelper (collection,
— clusterl.values_dict)
else:
Create the document from scratch!
self.insertClusterHelper (collection,
— clusterl.values_dict)

Listing 5: Custom wrapper for the MongoDB library.

import psutil

from datetime import datetime
from pprint import pprint
import csv

import time

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

import pandas as pd
import pickle

class Monitor:

def _ init_ (self, pid):
self.pid = pid
self.cpu_usage = {'cpu_usage': []}

self.memory_usage = {'memory_usage': []}

def getData (self):
timestamp = datetime.now() .strftime ("%d-%m-
— (%H:%M:%S.%f)")
self.getCPU (timestamp)
self.getMemory (timestamp)

o\°

Y

def getCPU(self,
cpus = []
P = psutil.Process (pid=self.pid)
for i in range (10):

timestamp) :

P_Ccpu = p.cpu_percent (interval=.1)

cpus.append (p_cpu)
self.cpu_usage['cpu_usage'].append([timestamp,
— float (sum(cpus))/len(cpus)])

def getMemory(self, timestamp) :
self.memory_usage['memory_usage'].append([timestamp,
— dict(psutil.virtual_memory () ._asdict())])

def toCSV(self):

with open('cpus.p', 'wb') as f:

pickle.dump (self.cpu_usage, f)

with open('mem.p', 'wb') as f:
pickle.dump (self.memory_usage, f)

lines = []

avail = 'available'

for i in range(len(self.cpu_usage(['cpu_usage'])):
temp = str(self.cpu_usage['cpu_usage'][i][0]) + ',
— str(self.cpu_usagel['cpu_usage'] [i][1]) + ',

+

45

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

46

temp +=

— str(self.memory_usage['memory_usage'][i][1]['percent'])
N

— str(self.memory_usagel['memory_usage'][i][1l]["active'])
— + ',

temp += str(self.memory_usage['memory_ usage'][i][1][availl)
T

— str(self.memory_usagel['memory_usage'][i][1]["free']) +
temp +=

— str(self.memory_usage['memory_usage'][i][1]["'inactive'])
N T

— str(self.memory_usagel['memory_usage'][i][1]['total']) +
o,

temp +=

— str(self.memory_usage|'memory_usage'][i][1]['used'])

lines.append (temp)

filename = str(self.pid) + '.csv
with open(filename, 'w') as f:
w = csv.writer(f, delimiter=',")
w.writerows ([x.split(',') for x in lines])
df = pd.read_csv(filename)
df.columns = ['timestamp', 'cpu', 'percent', 'active',
— 'available', 'free', 'inactive', 'total', 'used']

df .to_csv(filename, index=False)

Listing 6: Monitoring script that captures memory and CPU data.

A.1.4 Migration Files

Import SQL capabilities
import MySQLdb

Import ElasticSearch capabilities
import elasticpython

Import MongoDB capabilities
#import mongo

Import each of the schemas and associated methods for each index
from paper import paper

from author import author

from cluster import cluster

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

from monitoring import Monitor

def get_ids (cur, n):
""" Input: Database cursor (database connection), n number of
— papers to retrieve
Output: Returns a list of first 'n' number of paper ids
- from the SQL DB
Method: Queries the database for the paper ids and returns
— a list of length 'n'

statement = "SELECT id FROM papers LIMIT %d;" % (n)
cur.execute (statement)

return [tup[0] for tup in cur.fetchall ()]

def connect_to_citeseerx_db():
""" Input: None
Output: Returns the cursor (connection) to the citeseerx
— database
Method: Using the python MySQL API, establishes a
— connection with the citeseerx DB

db = MySQLdb.connect (host="",
USer=" nw ,
paSSWdZ" " ,
db:u ||,
charset="utfg8")

return db.cursor ()

def connect_to_csx_citegraph() :
""" Input: None
Output: Returns the cursor (connection) to the
— Ccsx_citegraph DB
Method: Using the python MySQL API, connects to the
«— csx_citegraph database

47

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

db = MySQLdb.connect (host="",
user="",
passwd="",
db="",
charset='utfg")

return db.cursor ()

def authorHelperUpsert (paper, citeseerx_db_cur):
""" Input: Paper object with it's values dictionary, and
— cliteseerx database connection
Output: None
Method: Iterate through each author on a given paper,
— prepare the dictionary
for upsertion into the authors index in
—~ FElasticSearch.
Upserting means insert 1f the object doesn't
— already exist, update if it does

for auth in paper.values_dict(['authors']:
authorl = author (auth['author_id'])

authorl.values_dict['clusters'] = [auth['cluster']]
authorl.values_dict |

authorl.values_dict|['papers'] =

. [paper.values_dict['paper_id']]

'name'] = auth['name']

authorl.authors_table fields (citeseerx_db_cur)

elasticpython.update_authors_document (es,

< index='authors',

— doc_id=authorl.values_dict['author_id'],
doc_type='author', data=authorl.values_dict)

def clusterHelperUpsert (paper) :
"''!" Input: Paper object with it's values dictionary
Output: None
Method: Prepare the clusters dictionary for upsertion into
— ElasticSearch

48

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

if

—

49

clusterl = cluster (paper.values_dict['cluster'])

clusterl.values_dict['included_papers'] =
o [paper.values_dict['paper_id']]

list_of author names = [auth['name'] for auth in
— paper.values_dict['authors']]

clusterl.values_dict['included_authors'] = list_of_ author_names
elasticpython.update_clusters_document (es, index='clusters',

— doc_id=clusterl.values_dict['cluster_id'],
doc_type='cluster', data=clusterl.values_dict)

name == "_ main__":

""" Main Method
Method: Call all above methods then sets the number of
papers to index.
Iterates through each paper and indexes the paper,
all authors, and the cluster
of said paper.

Establish connections to databases and ElasticSearch

citeseerx_db_cur = connect_to_citeseerx_db ()
csx_citegraph_cur = connect_to_csx_citegraph ()
es = elasticpython.establish_ES_connection ()

elasticpython.test_ES_connection ()

Set the number of papers to index by this migration script
number_of_papers_to_index = 1000000

moni = Monitor (66912)

Retrieve the list of paper ids
list_of_paper_ids = get_ids (citeseerx_db_cur,
— number_of_ papers_to_index)

Set counter so we can keep track of how many papers have
— migrated in real-time
paper_count = 0

Iterate through each of the paper_ids selected and add them
- to the index

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

50

for paper_id in list_of_paper_ids:

Every 100 papers print out our current progress

if paper_count % 100 == 0O:
print ('Total paper count: ', str(paper_count))

Every 10,000 papers, record the metrics we want
if paper_count % 10000 == O:
moni.getData ()

Extract all the fields neccessary for the paper type from
— the MySQL DBs

paperl = paper (paper_id)

paperl.paper_table_fields (citeseerx_db_cur)
paperl.authors_table_fields (citeseerx_db_cur)
paperl.keywords_table_ fields (citeseerx_db_cur)
paperl.csx_citegraph_query (csx_citegraph_cur)
paperl.retrieve_full_text ()

Load the paper JSON data into ElasticSearch
elasticpython.create_document (es, index='citeseerx',
— doc_id=paperl.values_dict['paper_id'],

— doc_type="paper', data=paperl.values_dict)

We also need to update the other indices 1like author and
— cluster

By using the update and upserts command in ElasticSearch,
—~ we can do this easily

authorHelperUpsert (paperl, citeseerx_db_cur)
clusterHelperUpsert (paperl)

Increment counter so we can keep track of migration
— progress
paper_count += 1

moni.toCSV ()

Listing 7: Elasticsearch migration script.

Dockerfile
FROM python:2.7

COPY . /migration_app

WORKDIR /migration_app
RUN pip install -r requirements.txt
ENTRYPOINT ["python"]

CMD ["es_migration.py"]

51

Listing 8: Dockerfile used to containerize migration app.

52

Bibliography

[1] Apache Lucene - Welcome to Apache Lucene. URL: https://lucene.apache.org/.
[2] Apache Solr -. URL: https://lucene.apache.org/solr/.
[3] Apache Tomcat® - Welcome! URL: http://tomcat.apache.org/.

[4] Bulk Write Operations — MongoDB Manual. Library Catalog: docs.mongodb.com. URL:
https://docs.mongodb.com/manual/core/bulk-write-operations.

[5] Elasticsearch Reference [7.x] | Elastic. Library Catalog: www.elastic.co. URL:
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/index.html.

[6] Jdbc input plugin | Logstash Reference [7.6] | Elastic. Library Catalog: www.elastic.co.
URL: https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html.

[7] Join datatype | Elasticsearch Reference [7.6] | Elastic. URL.:
https://www.elastic.co/guide/en/elasticsearch/reference/current/parent-join.html.

[8] Logstash Reference [7.6] | Elastic. Library Catalog: www.elastic.co. URL:
https://www.elastic.co/guide/en/logstash/7.6/index.html.

[9] MEDLINE®PubMed® XML Element Descriptions and their Attributes. Library Cat-
alog: www.nlm.nith.gov Publisher: U.S. National Library of Medicine. URL:
https://www.nlm.nih.gov/bsd/licensee/elements escriptions.html.

[10] MongoDB Documentation. Library Catalog: docs.mongodb.com. URL:
https://docs.mongodb.com/.

[11] MySQL. URL: https://www.mysql.com/.

[12] Nested datatype | Elasticsearch Reference [7.6] | Elastic. URL:
https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html.

[13] Painless scripting language | Elasticsearch Reference [master] | Elastic. URL:
https://www.elastic.co/guide/en/elasticsearch/reference/master/modules-scripting-
painless.html.

[14] psutil documentation — psutil 5.7.0 documentation. URL:
https://psutil.readthedocs.io/en/latest/.

53

[15] PyMongo 3.9.0 Documentation — PyMongo 3.9.0 documentation. URL:
https://api.mongodb.com/python/current/.

[16] Python Elasticsearch Client — FElasticsearch 8.0.0 documentation. URL.:
https://elasticsearch-py.readthedocs.io/en/master/.

[17] Spring. Library Catalog: spring.io. URL: https://www.spring.io.

[18] Stack Overflow Developer Survey 2018. Library Catalog: insights.stackoverflow.com. URL.:
https://insights.stackoverflow.com/survey/2018/?utmgource = so — ownedutm,edium =
soctalutm.ampaign = dev — survey — 2018utm.ontent = social — share.

[19] Use Cases - Elastic Stack Success Stories | Elastic. Library Catalog: www.elastic.co. URL:
https://www.elastic.co/customers/.

[20] Web of Science Core Collection Schema. URL:
http://help.incites.clarivate.com/wosWebServicesExpanded/wosSchemaWoSCCGroup/wosSchema.html.

[21] Docker Documentation, March 2020. Library Catalog: docs.docker.com. URL:
https://docs.docker.com/.

[22] Mustafa Ali Akca, Tuncay Aydogan, and Muhammer Ilkucar. An Analysis on the Com-
parison of the Performance and Configuration Features of Big Data Tools Solr and Elas-
ticsearch. International Journal of Intelligent Systems and Applications in Engineer-
ing, pages 8—12, December 2016. URL: https://www.ijisae.org/IJISAE/article/view/912,
https://doi.org/10.18201/10.18201/ijisae.271328 doi:10.18201/10.18201/ijisae.271328.

[23] Waleed Ammar, Dirk Groeneveld, Chandra Bhagavatula, 1z Beltagy, Miles Crawford, Doug
Downey, Jason Dunkelberger, Ahmed Elgohary, Sergey Feldman, Vu Ha, Rodney Kinney,
Sebastian Kohlmeier, Kyle Lo, Tyler Murray, Hsu-Han Ooi, Matthew Peters, Joanna Power,
Sam Skjonsberg, Lucy Lu Wang, Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen, and
Oren Etzioni. Construction of the Literature Graph in Semantic Scholar. arXiv:1805.02262
[cs], May 2018. arXiv: 1805.02262. URL: http://arxiv.org/abs/1805.02262.

[24] Ricardo Carvalho Amorim, Jodo Aguiar Castro, Jodo Rocha da Silva, and Cristina Ribeiro.
A comparison of research data management platforms: architecture, flexible metadata and
interoperability. Universal Access in the Information Society, 16(4):851-862, November
2017. https://doi.org/10.1007/s10209-016-0475-y doi:10.1007/s10209-016-0475-y.

[25] Cornelia Caragea, Jian Wu, Alina Ciobanu, Kyle Williams, Hung-hsuan Chen, Zhaohui Wu,
and Lee Giles. CiteSeerX: A scholarly big dataset. In Proceedings of the 36th European
Conference on Information Retrieval, pages 311-322, 2014.

[26] Hung-Hsuan Chen, Pucktada Treeratpituk, Prasenjit Mitra, and C. Lee Giles. CSSeer: an ex-
pert recommendation system based on CiteseerX. In Proceedings of the 13th ACM/IEEE-CS
Jjoint conference on Digital libraries, JCDL *13, pages 381-382, Indianapolis, Indiana, USA,
July 2013. Association for Computing Machinery. https://doi.org/10.1145/2467696.2467750
doi:10.1145/2467696.2467750.

54

[27] Erik Duval. Metadata standards: What, who & why. Journal of Universal Computer
Science. URL: www.academia.edu/1163669/Metadatatandardsy hat,,ho,nd,,hy.

[28] Shudi Gao, Jeff J. Li, and James P. Schmeiser. Generating XML schema
from JSON data, July 2015. Library Catalog: Google Patents. URL:
https://patents.google.com/patent/US9075833/en.

[29] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. CiteSeer: An Automatic Citation
Indexing System. pages 89-98. ACM Press, 1998.

[30] Silvana Greca, Anxhela Kosta, and Suela Maxhelaku. Optimizing data retrieval by using
MongoDb with Elasticsearch. page 6.

[31] Jane Greenberg. Understanding Metadata and Metadata Schemes. Cat-
aloging & Classification ~ Quarterly, 40(3-4):17-36, September 2005.
Publisher: Routledge _eprint: https://doi.org/10.1300/J104v40n03_02.

https://doi.org/10.1300/J104v40n03¢2doi : 10.1300/.J104v40n032.

[32] Péter Jacs6. Google Scholar: the pros and the cons. Online Information Re-
view, 29(2):208-214, January 2005. Publisher: Emerald Group Publishing Limited.
https://doi.org/10.1108/14684520510598066 doi:10.1108/14684520510598066.

[33] Douglas William Jordan. Lessons In Scaling A Large Digital Library: A Case Study For
Citeseerx. April 2016. URL: https://etda.libraries.psu.edu/catalog/29174.

[34] Oleksii Kononenko, Olga Baysal, Reid Holmes, and Michael W. Godfrey. Mining mod-
ern repositories with elasticsearch. In Proceedings of the [1th Working Conference
on Mining Software Repositories, MSR 2014, pages 328-331, Hyderabad, India, May
2014. Association for Computing Machinery. https://doi.org/10.1145/2597073.2597091
doi:10.1145/2597073.2597091.

[35] Michael Ley. DBLP - Some Lessons Learned. @ PVLDB, 2(2):1493-1500, 2009.
https://doi.org/10.14778/1687553.1687577 doi:10.14778/1687553.1687577.

[36] Huajing Li, Isaac Councill, Wang-Chien Lee, and C. Lee Giles. CiteSeerx: an
architecture and web service design for an academic document search engine. In
Proceedings of the 15th international conference on World Wide Web, WWW 06,
pages 883-884, Edinburgh, Scotland, May 2006. Association for Computing Machinery.
https://doi.org/10.1145/1135777.1135926 doi:10.1145/1135777.1135926.

[37] Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Dan S. Weld. Gorc: A
large contextual citation graph of academic papers, 2019. http://arxiv.org/abs/1911.02782
arXiv:1911.02782.

[38] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta. Comparison
of JSON and XML Data Interchange Formats: A Case Study. In CAINE, 2009.

[39]

[40]

[41]

[42]

[43]

[44]

55

Xavier Ochoa and Erik Duval. Automatic evaluation of metadata quality in digital
repositories. International Journal on Digital Libraries, 10(2):67-91, August 2009.
https://doi.org/10.1007/s00799-009-0054-4 doi:10.1007/s00799-009-0054-4.

José Luis Ortega. Academic Search Engines. Elsevier, 2014. URL:
https://linkinghub.elsevier.com/retrieve/pii/C20130232268, https://doi.org/10.1016/C2013-
0-23226-8 doi:10.1016/C2013-0-23226-8.

siddontang. siddontang/go-mysql-elasticsearch, March 2020. original-date: 2015-01-
15T09:54:18Z. URL.: https://github.com/siddontang/go-mysql-elasticsearch.

Jian Wu, Jason Killian, Huaiyu Yang, Kyle Williams, Sagnik Ray Choudhury, Suppa-
wong Tuarob, Cornelia Caragea, and C. Lee Giles. PDFMEF: A Multi-Entity Knowl-
edge Extraction Framework for Scholarly Documents and Semantic Search. In Pro-
ceedings of the S8th International Conference on Knowledge Capture, K-CAP 2015,
pages 1-8, Palisades, NY, USA, October 2015. Association for Computing Machinery.
https://doi.org/10.1145/2815833.2815834 doi:10.1145/2815833.2815834.

Jian Wu, Kyle Mark Williams, Hung-Hsuan Chen, Madian Khabsa, Cornelia Caragea, Sup-
pawong Tuarob, Alexander G. Ororbia, Douglas Jordan, Prasenjit Mitra, and C. Lee Giles.
CiteSeerX: Al in a Digital Library Search Engine. Al Magazine, 36(3):35-48, September
2015. Number: 3. URL: https://www.aaai.org/ojs/index.php/aimagazine/article/view/2601,
https://doi.org/10.1609/aimag.v3613.2601 doi:10.1609/aimag.v3613.2601.

Chenyan Xiong, Russell Power, and Jamie Callan. Explicit Semantic Ranking for Aca-
demic Search via Knowledge Graph Embedding. In Proceedings of the 26th Inter-
national Conference on World Wide Web, WWW ’17, pages 1271-1279, Perth, Aus-
tralia, April 2017. International World Wide Web Conferences Steering Committee.
https://doi.org/10.1145/3038912.3052558 doi:10.1145/3038912.3052558.

Sean Parsons

Education

Work
Experience

Leadership
Experience

Skills and
Activities

Academic Vita

The Pennsylivania State University, Schreyers Honors College
B.S. in Security and Risk Analysis, focus in Cybersecurity Anticipated Graduation:

May 2020
M.S. in Information Sciences and Technology with focus in Data Sciences
Program Manager Intern — Windows Kernel Team, Microsoft May 2019 - Present
+ Disambiguated intern project, discovered stated and unstated needs by customers, and
personally led container debugging efforts across 3 teams in BASE organization.
+ Utilized Hyper-V and Kernel APIs to kickoff all remote tracing efforts for guest systems.
* Integrated tracing tool DTrace with Windows Containers by writing driver components and
scripts in C and Powershell
Network Security Intern — Boeing, High Assurance and Data Protection Services May 2018-August 2018

« Individually developed Tableau and Apache Superset dashboards for use in the New Midsize Airplane.

» Wrote automation scripts in Python to make dashboards and visualizations in Splunk.

» Worked on an intern team and individually created linear and logistic regression models to detect wire
damage in the 787.

Co-founder and President — Skillet.ai, Data Science and Technology Consulting Firm January 2018-Present

* Led a team of 2 other engineers and drove all customer relations.

« Actively built products including micro service infrastructure on AWS and GCP.

« Technology stack included Python (Flask & Tensorflow), ElasticSearch, and Bootstrap.
« Profit exceeded $60k annually, received pre-seed funding by Penn State University.

Technical Product Management Intern — CardConnect, Payment Gateway Team May 2017-August 2017

» Devised new Python scripts to help internal teams save at least 15 hours per week.

» Served as an intermediary between development and requirement teams.

+ Other focuses include the management of a custom internal Agile SDLC, website and
API bug fixes, the analysis of an Android SDK.

Information Retrieval and Machine Leaming Research Assistant — Penn State January 2017-Present

* Led a funded team of students in utilizing machine and deep learning to help understand
current human trafficking networks in Pennsylvania.

» Worked in conjunction with the DOJ, DHS, FBI and the Pennsylvania State Police.

« For a different lab, | led the migration of one of the most visited academic paper search engine
websites (CiteSeerX) off of Apache Solr and onto Elasticsearch.

Co-founder and President — Nittany Data Labs at Penn State August 2017-May 2019
» Penn State’s premier data science organization
* Supervised the first recruitment of over 800+ new members, on-boarded our first corporate
sponsors, and oversaw projects.
+ Only student chosen to represent the major of Data Sciences at Penn State.

Vice President of Finance — College of IST Student Government at Penn State May 2017-May 2018
* Charged with all funding for IST student clubs and organizations.

Science and Technology Officer — Red Cell Analytics Lab at Penn State May 2017-May 2018

* Supervises all technology in a lab focused on analyzing extreme events with grant funding from
State and Federal agencies.

Programming Languages: Python, C, SQL, HTML, CSS, Java

Technical Tools/APIs: Wordpress, Tensorflow, Pandas, Numpy, Flask, Scitkit-Learn, Wireshark, UNIX,
ELK Stack, Splunk, Tableau, DTrace, Docker Containers, AWS, GCP, Azure, Powershell

Activities:
NSA Codebreaker Challenge, 4th Level (2016, 2017, 2018) Eagle Scout (2016)
Machine Learning Cryptocurrency Price Predictor (2018) Strike Capture The Flag Event (Top 15) (2019)

P2P Countering Violent Extremism Research Project (2017)

