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ABSTRACT 

 

Machine Learning is widely used in academics and industry to study patterns, give 

recommendations, and build statistical models. We need scalable infrastructure to train models 

quicker as well as fit into the working memory of the training device. Vertical scaling is 

expensive, so even with expensive and big machines with lots of memory, it would be more 

efficient by cost to use many small machines. In our research we characterize the resource 

utilization of machine learning workloads during the teaching and inference phases. This will 

further help us understand how to improve a systems capability to run such workloads more 

efficiently and realize how to optimize the system for these workloads. In addition, we will be 

able to determine the limiting factor in the performance of the machine learning teaching and 

inference models by running them on a standard system while using profiling tools to see the 

load on memory, CPU, and power. We can then analyze how different methods of handling 

system processes (such as page replacement, threading, etc.) affect the performance of the 

workload. Afterwards, we will determine whether core scaling and memory binding play an 

important role in determining the scalability of machine learning model training. Finally, we will 

investigate if hyperthreading improves performance for model training, and whether the same 

applies to inter-operator parallelism.  
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Chapter 1  

Introduction 

Machine Learning is a method of data analysis that automates the process of model 

building and inference with minimal human interaction. Machine Learning models are iterative 

and are exposed to large amounts of data to independently learn and recognize patterns and learn 

from previous computations to produce reliable, repeatable decisions and results. Machine 

Learning is not a new science but has gained a new momentum due to our ability now to 

iteratively apply complex mathematical computations on big data. [1]  

It is essential for the success of machine learning models to be scalable. To make a 

machine learning algorithm useful in real life (like playing a game of chess, generate real faces, 

recognize images) requires training data in massive amounts (hundreds of GB) and very high 

processing power on specialized hardware. With the spread of the internet, the amount of data an 

average internet user creates is exponentially rising, as well as the amount of data that can be 

stored on a piece of hardware is getting cheaper and compact, following Moore’s law [2]. This 

increase in the amount of information available provides data to be leveraged in order to train 

models further.  

We need scalable models to train models quicker as well as be able to fit into the working 

memory of the training device. Vertical scaling is expensive, so instead of having one expensive 

and big machine that contains lots of memory, it would be more efficient by cost to use many 

smaller machines to accomplish the same task. [3]  
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Data is iteratively fed into the training algorithms, the data access and transport speed for 

this is effected by memory management, data is transport mechanisms from storage to registers 

for the algorithm to access, as well as the von Numann bottleneck [4] can impact performance. 

The highly iterative training process can be parallelized, however allocating more computing 

resources to reduce training time is not efficient. To scale computations in machine learning the 

system must run fast matrix multiplication with less power consumption. There is also 

specialized hardware like ASICs (Applied Specific Integrated Chips), for increased performance. 

CPUs are scaler processors, GPUs are vector processors and ASICs are matrix processors.   

We aim to characterize the resource utilization of machine learning workloads during the 

teaching and inference phase. This will further help us understand how to improve a systems’ 

capability to run such workloads more efficiently and realize how to optimize for scalable model 

training. We use TensorFlow as the machine learning library to run the tests, characterize and 

understand the load on the different components of the system. We will further attempt to find 

parameters that would help optimize the system for a machine learning workload. We intend to 

find the limiting factor in the performance of the Machine Learning teaching and inference 

models by running them on a standard system and using profiling tools to see the load on 

memory, CPU, and power. We also analyze how different methods of handling system processes 

(like page replacement, threading etc.) affect the performance of the workload.  
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Chapter 2  

 

Literature Review 

Model Training 

Machine Learning aims to leverage data, algorithms and statistics to perform specific 

tasks without using explicit instructions and minimal human interference in the long run. In the 

initial stages this requires data collection and model building. A model in machine learning is 

simply the question answering system, this is created in the training process. Training a model 

simply means learning from the determining features and reducing the loss to have an accurate 

answer (model output) every time. In supervised learning, for example a model learns from 

training data to adjust weights to minimize loss. Loss is the penalty of a bad prediction, the goal 

of training a model is to find a set of weights that have low loss, on average, across most 

samples, this process is iterative [5] [6]. 

  

Figure 1. Model Training Workflow 
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The model training loop is also the time when model hyperparameters are introduced into 

the predictions, these are used to estimate model parameters, they are specified by the 

practitioners and use heuristics as a starting point in determining the weights of the neural 

network connections in order to reconcile the differences between the actual and predicted 

outcomes for subsequent forward passes, predictions and loss calculations [6] [7].  

Neural Networks 

Neural Networks are a set of algorithms that are modeled after the human brain, designed 

to recognize patterns, to cluster, label and classify input data to produce predictions as output. 

The neural network layers are made up of nodes, a node is a basic unit of computation, it 

combines the input data with weights to assign weightage/significance to an input source or 

characteristic. These weighted inputs are summed and passed through activation functions that 

determine the importance and accuracy of the input signal [9].  

 

Figure 2. A Single node in a Neural Network 
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 Non-Uniform Memory Access 

Memory from various points in the address space have different performance 

characteristics. A systems memory is hierarchical and systems require modified operating system 

kernels with NUMA support to understand the topological properties of system memory. Fast 

systems require memory at each socket, and memory access across socket memories is 

inefficient as it adds additional latency since it requires the traversal of the memory interconnect 

first. Proper placement of data improves bandwidth and latency to memory. Future generations 

of computers will have increasing differences in performance depending on the position of the 

core on the die relative to the controller, making new functionality in operating systems to access 

these different kinds of memory very important.  

While training a Machine Learning model, a lot of data is ingested and iteratively 

accessed; having efficient memory access can make a significant difference in overall 

performance, as will be observed in our experiments in this paper. The NUMA system classifies 

memory into NUMA nodes, and each node has an affinity to processors and devices that can use 

memory on the NUMA node with the best performance. Below is an example of a NUMA 

system with 2 NUMA nodes, 8 processors and an interconnect between each node [10].  
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Figure 3. NUMA System with 2 nodes and 8 cores 

 Wide and Deep Learning  

A wide and deep model jointly trains a wide linear model and a deep neural network for 

memorization and generalization, to bring us one step closer to how a human brain learns to 

generalize memorized information and remember exception rules. Memorization is learning 

frequent co-occurrence of features and exploiting the correlation on the basis of historical data. 

Generalization on the other hand is based on transitivity of data, and explores new feature 

combinations that are not in the history. Wide and deep models have been found to be very 

effective for recommender systems, this recommender system is productionized on Google Play. 

The Wide and Deep models are trained every time a new set of training data arrives, there are 

optimizations in place such as a warm starting that initializes the new model with the 

embeddings and linear model weights of the old model, however a model training still requires 
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the input layer to take the new training data, concatenating the embeddings with dense features 

and passing this through the ReLU and logistic loss calculation unit [11] [12]. 

Inter and Intra Operation Parallelism  

TensorFlow provides configurations to select operation parallelism settings using inter-

operation and intra-operation parallelism. The intra-op-parallelism runtime setting controls 

parallelism inside an operation, it is for operations that can be parallelized internally, for example 

matrix multiplication. TensorFlow will schedule tasks in a thread pool with the specified number 

of threads. Intel recommends setting this environment variable to the number of physical cores in 

the system.  

The inter-operation parallelism controls the parallelism among independent operations. 

According to Intel this variable is recommended to be set to the number of parallel paths in the 

model, empirical testing is the best way to adjust the inter-operation thread pool size for the 

specific model [15]. 

Scale Speedup  

 The parallel run time is defined as the time that elapses from the moment that a parallel 

computation starts to the moment that the last processor finishes execution. The speedup is 

defined as the ratio of the serial runtime of the best sequential algorithm for solving a problem to 

the time taken by the parallel algorithm to solve the same problem on 𝑝 processors (𝑆 = 𝑇𝑆/𝑇𝑃). 

The efficiency is defined as the ratio of speedup to the number of processors. Efficiency 
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measures the fraction of time for which a processor is usefully utilized (𝐸 =
𝑆

𝑃
= 𝑇𝑆/𝑝𝑇𝑃). The 

cost of solving a problem on a parallel system is defined as the product of run time and the 

number of processors. A cost‐optimal parallel system solves a problem with a cost proportional 

to the execution time of the fastest known sequential algorithm on a single processor.  Scalability 

is a measure of a parallel system’s capacity to increase speedup in proportion to the number of 

processors [14]. 

For our experiments we aim to compare the change in accuracy to the change in 

performance to determine the speedup as we scale the model. We aim to determine an optimal 

scale speedup which produces above acceptable accuracy with reduced processing power and 

time as simply increasing processing power to improve performance is not a viable approach 

since there is a hard upper limit to increasing number of processors and it is also cost heavy.  

Memory Interleaving 

Memory interleaving is a technique used to compensate for the relatively slower access 

time to DRAM. The main memory is divided into banks where memory is stored in a round 

robin fashion to be able to access memory individually without any dependency on other 

memory calls. In general, the CPU is more likely to need to access the memory for a set of 

consecutive words (either a segment of consecutive instructions in a program or the components 

of a data structure such as an array, the interleaved (low-order) arrangement is preferable as 

consecutive words are in different modules and can be fetched simultaneously. In case of high-

order arrangement, the consecutive words are usually in one module, having multiple modules is 

not helpful if consecutive words are needed [16]. 
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Figure 4. Memory Interleaving Example 

 

 

 

 

 



10 

Chapter 3 

 

Tools Overview 

Experiment System’s NUMA configuration 

Our system for the experiments described in the founding’s of this thesis is the Intel(R) 

Xeon(R) CPU E5-2620 0 @ 2.00GHz. It is a 2-socket machine with 6 cores per socket and 2 

threads per core with hyperthreading enabled. A core is the smallest independent unit that 

implements a general-purpose processor and a processor is an assembly of cores. Our machine 

has 24 processors numbered 0 to 23. Hyperthreading allows for concurrent scheduling of 2 

processes per core due to which we get effectively 12 cores, the operating system sees 12 cores 

and assigns processes accordingly, but there are only 6 hardware cores. 

Each socket has a NUMA node associated with it in our system, this is not necessary for 

all systems, processor configurations and memory configurations together impact the overall 

performance of the system. For us, since each physical socket has a NUMA node associated with 

it, it is most efficient for the processes running on a physical socket to access memory from the 

same NUMA node, accessing data from the other node adds compute time due to the limited 

memory bandwidth and added latency of accessing memory not on the chip. 

The command ‘lscpu -e’ gives a quick view of the processors on the physical chip and the 

hyperthreaded processors. CPU 0 and CPU 12 are on node 0, socket 0 and core 0 – this shows 

that they are on the physical core on the chip and have the same closest physical memory that is 

fastest to access. These CPUs use the same hardware resources, so it is capable of concurrently 

scheduling processing on CPU0 and CPU12 but they use the same physical resources.   
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Figure 5. CPU and core configurations on the physical sockets 

Reading the /proc/cpuinfo file we can understand the processor placements on the 

physical chip and the NUMA node associated with each socket. There are 6 cores per socket, 

with 12 threads in a socket. CPU 0,2,4,6,8,10,12,14,16,18,20 and 22 are on socket 0 and use 

NUMA node 0 while CPU 1,3,5,7,9,11,13,14,15,17,19,21 and 23 are on socket 1 and use NUMA 

node 1. A processor or CPU is a logical CPU, this depicts the view of the operating system 

showing how many processes can be scheduled simultaneously.  
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Figure 6. Logical CPU placement on the physical chip on sockets 

Datasets  

For our experiment we used two different datasets to get a basic understanding of the 

topic and build motivation towards the exact parameters we used in the experiments presented in 

this thesis. The first dataset used is the Fashion-MNIST that contains 60,000 training samples 

and 10,000 testing samples of pieces of clothing. Each example of a greyscale image and has a 
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label identifying the type of clothing item. The Fashion-MNIST dataset is a commonly used 

dataset for image recognition models, so we wanted to start our scalability studies with this 

dataset. This is an example of supervised learning since the training data provides the image as 

well as the associated label that classifies the item in the image. Using the TensorFlow library in 

Python to build the model to run these predictions the accuracy results are quite favorable, so it is 

a good Machine Learning dataset to study, since the model returns the correct class with a high-

confidence accurately.  

 

Figure 7. Fashion-MNIST Model Predictions 

The Wide and Deep model uses the Census Income Dataset [15] containing over 32,000 

training and 16,000 testing samples with attributes including age, occupation, education, and 
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income bracket. We use the wide and deep model that predicts the income label, the wide model 

can memorize interactions with data with a large number of features like these, and the deep 

model can generalize the data, the wide and deep combines the two and can also learn 

exceptions. For the purposes of this example, the model builders chose the Census Income Data 

Set to allow the model to train in a reasonable amount of time. They claim that the deep model 

performs almost as well as the wide and deep model on this dataset. The wide and deep model 

truly shines on larger data sets with high-cardinality features, where each feature has 

millions/billions of unique possible values (which is the specialty of the wide model) [16]. 

Optimizers 

Optimizers help minimize (or maximize) an Objective Function (Error function) that are 

used to set and update the weights and biases in the direction of the optimal solution. It is the 

optimizer that makes changes to the weights of the model using the direction from the loss 

function calculations. First, The Optimizer class is initialized with given parameters, but no 

Tensor is created. In a second step, invoking get_tensor method will actually build the 

TensorFlow Optimizer Tensor, and return it [18]. TensorFlow provides a variety of optimizers in 

its libraries to use out of the box and also provides functionality to write custom optimizers for 

the models. In our research we made use of the Adam and Stochastic Gradient Descent 

optimizers. 
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Chapter 4 

 

Experiment: Performance across CPUs 

We expect that increasing processing power and assigning more CPUs to train our model 

should improve the performance. The model training process involves a lot of computation and 

calculations in the ReLU, loss calculations, and weight calculation stages, leveraging parallel 

processing to speed up each computation should positively impact the overall performance. This 

is the basic instinct behind parallel processing when a single program is broken up into 

independent parts and the results of these parallelly computed individual parts are merged for an 

overall faster solution. The cost versus performance is an important measurement to consider as 

system resources are limited, and processing power cannot be arbitrarily increased in real life.  

Another important consideration for parallelization is how efficiently can the task be 

done concurrently, as dependencies add serial requirements and are inefficient to compute 

parallelly as they depend on conditions upstream that must be fulfilled first. Also, data 

dependencies across parallel processes on different nodes in the CPU requires communication 

across nodes that can be very expensive on computation cycles so they must be minimized and 

overlapped with computation [15]. The reason that compute capacities have increased much 

more than memory bandwidth following Moore’s law is that program memory is usually much 

bigger in terms of hardware required than the processor. Faster components are more expensive 

to produce, consume more power and require newer technology, that means that the CPU can be 

made faster than the memory while keeping within a budget [16].  
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For effective parallelization, programmers need to consciously build the program to take 

advantage of parallelization and write custom code to be parallelized to avoid race conditions 

and upstream dependencies that could essentially make the parallelization counter intuitive by 

actually adding processing overheads while also using more resources, TensorFlow can take 

uninformed Python code written using the TensorFlow library and turn it into appropriately 

parallelized code that can take advantage of a GPU or TPU(Tensor Processing Units). This can 

be automated in large part because of machine learning’s heavy use of matrix operations, which 

are easily parallelized [18]. 

Fashion MNIST 

Keeping the model constant, we change the number of logical CPUs allotted to the 

process to run or the memory configurations allotted to see the impact on performance. The 

performance is measured as wall clock time taken to reach required accuracy, this is when the 

process completes running. Our expectation is that more parallel processing will improve 

efficiency and reduce time taken, however we want to also observe load on a single hardware 

core and memory latency between NUMA nodes.  

Using the ‘numactl’ command on Linux we can control the number of processors 

assigned to the task. Assigning one thread per core in one socket till each core is utilized (6 

threads). Then, utilizing hyperthreading to assign 2 threads on the same while staying on the 

same socket gives us up to 12 threads. Expanding from here to two sockets allows up to 24 CPUs 

to parallelly schedule the processes of model training.    
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Table 1. Execution time across CPUs assigned without NUMA considerations 

CPUs used Number of 

CPUs 

Average Time 

(seconds) 

0 1 55.70848107 

0,2 2 52.5390594 

0,2,4 3 47.76953363 

0,2,4,6 4 44.62922502 

0,2,4,6,8 5 42.9579463 

0,2,4,6,8,10 6 40.50696492 

0,2,4,6,8,10,12 7 41.41678119 

0,2,4,6,8,10,12,14 8 40.67656898 

0,2,4,6,8,10,12,14,16 9 41.29061198 

0,2,4,6,8,10,12,14,16,18 10 41.83172035 

0,2,4,6,8,10,12,14,16,18,20 11 41.94293666 

0,2,4,6,8,10,12,14,16,18,20,22 12 41.95351219 

0-2,4,6,8,10,12,14,16,18,20,22 13 42.42555094 

0-4,6,8,10,12,14,16,18,20,22 14 41.99365187 

0-6,8,10,12,14,16,18,20,22 15 42.63701653 

0-8,10,12,14,16,18,20,22 16 44.13888478 

0-10,12,14,16,18,20,22 17 43.61157393 

0-12,14,16,18,20,22 18 43.61488366 

0-14,16,18,20,22 19 45.28833652 

0-16,18,20,22 20 45.24622822 

0-18,20,22 21 45.14145947 

0-20,22 22 44.76190948 

0-22 23 45.73434758 

0-23 24 45.05802155 
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Figure 8. Execution Time vs. number of threads without NUMA considerations 

We observe a 37% improvement in the time required to train the model from using only 

one thread on one core to using 6 threads on 6 cores on the same socket, which is also the most 

time efficient running configuration for CPU assignments. Assigning further after the one 

process per core configuration increases training time as the threads are now sharing the 

hardware core for physical resources, and moving to a new socket increase latency due to limited 

memory bandwidth to communicate between the nodes. 

A point of interest on the graph is the peak at 7 hardware threads being used, the logical 

CPUs in use are: 0,2,4,6,8,10 and 12. CPUs 0 and 12 are on the same core and therefore share 

hardware, assigning the process to both of these CPUs increases training time. In all NUMA 

systems, when the memory is located with processor X and the code is running on processor Y 

(where X & Y aren't the same processor), every memory access will be bad for performance. So, 

allocating memory on the right NUMA node will certainly help. Therefore, the best training time 

is achieved at one thread per core on the socket with all cores in the socket being utilized.  

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Ti
m

e 
(s

ec
o

n
d

s)

No. of hardware threads



19 

This finding motivated us to further investigate the result of assigning threads in the order 

of cores, therefore only utilizing a new core when all threads in the current core are utilized. 

Again, using the numactl command we train the same Fashion-MNIST model using cores 

incrementally to see the impact of cores on training time.  

Table 2. Execution time across CPUs 

CPUs used Number 

of CPUs 

Average Time 

(seconds) 

0 1 55.51468379 

0,12 2 65.93169141 

0,12,2 3 52.94081931 

0,12,2,14 4 51.02283266 

0,12,2,14,4 5 46.65497568 

0,12,2,14,4,16 6 45.72486472 

0,12,2,14,4,16,6 7 43.81104424 

0,12,2,14,4,16,6,18 8 43.69985437 

0,12,2,14,4,16,6,18,8 9 42.69280622 

0,12,2,14,4,16,6,18,8,20 10 42.47134326 

0,12,2,14,4,16,6,18,8,20,10 11 41.69253724 

0,12,2,14,4,16,6,18,8,20,10,22 12 41.66431026 

0,12,2,14,4,16,6,18,8,20,10,22,1 13 42.21683812 

0,12,2,14,4,16,6,18,8,20,10,22,1,13 14 42.86210787 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3 15 42.97455266 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15 16 43.33942018 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5 17 43.26101291 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17 18 43.61898901 

0,12,2,14,4,16,6,18,8,20,10,22,1,133,15,5,17,7 19 43.78118851 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19 20 43.89095798 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9 21 43.76108971 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21 22 43.55454891 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21,11 23 43.90372281 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21,11,23 24 43.90343845 
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Figure 9. Execution time vs. number of threads 

A very important point of interest in this experiment is 2 threads getting assigned, there is 

a distinct peak in training time when 2 threads are assigned on the same core – this is the data 

point for allocating CPU 0 and 12 – both of these are at physical address 0 core 0. This confirms 

our understanding from the previous experiment where we saw an increase in training time when 

using the multiple threads on the same core.  

We also observe that the tail end of both experiments doesn’t show any significant 

improvement in performance even though they use the most resources as all cores and threads 

are being utilized for the task, these tasks are high cost but relatively low efficiency as they are 

not comparably improved.  

To ensure that we are not measuring the training time for an accurate model, we 

performed the experiments again while measuring the final accuracy and loss along with training 

time and observed the same trends with a minimum accuracy of 87.77% and a standard deviation 

of 0.15 in accuracy.  
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Table 3. Accuracy Loss and Time across CPUs 

CPUs used Average 

Accuracy 

Average 

Loss 

Average 

Time 

0 88.274 33.8277044 52.6109275 

0,12 88.144 34.0828999 62.7671298 

0,12,2 87.771 34.8694614 50.1742908 

0,12,2,14 87.97 34.2152158 48.1330197 

0,12,2,14,4 88.253 33.752413 43.5679296 

0,12,2,14,4,16 88.009 34.0259658 42.5894236 

0,12,2,14,4,16,6 88.009 33.9668157 40.7443727 

0,12,2,14,4,16,6,18 88.114 34.1414777 40.6137685 

0,12,2,14,4,16,6,18,8 88.287 33.4276155 39.3068003 

0,12,2,14,4,16,6,18,8,20 88.017 34.0909901 39.3169499 

0,12,2,14,4,16,6,18,8,20,10 88.178 34.1238776 38.6085581 

0,12,2,14,4,16,6,18,8,20,10,22 88.291 33.4246089 38.5505942 

0,12,2,14,4,16,6,18,8,20,10,22,1 88.122 34.1129593 39.0003901 

0,12,2,14,4,16,6,18,8,20,10,22,1,13 87.857 34.7241274 39.8941121 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3 88.277 33.6253057 40.0978346 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15 88.25 33.9791908 40.4143277 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5 88.151 33.8184579 40.3571455 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17 88.042 34.1390842 40.7782115 

0,12,2,14,4,16,6,18,8,20,10,22,1,133,15,5,17,7 88.462 33.2744858 40.6113888 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19 88.125 34.1160684 41.0054312 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9 88.246 33.6965795 41.315187 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21 88.07 34.079284 41.0557889 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21,11 88.22 34.0417455 40.8359526 

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21,11,23 88.251 33.6958681 41.7189501 

 



22 

 

Figure 10. Accuracy and Time across CPUs for Fashion-MNIST 

Wide and Deep 

Operators manipulate tensors, i.e. n-dimensional arrays. The parallelism within an 

operator can be exploited with single instruction multiple data (SIMD), multi-threading and data 

parallelism, made possible with the intra flag in the TensorFlow library. Further, the parallelism 

across operators (inter operator parallelism) can be exploited by asynchronous scheduling to 

place independent operators on different hardware units. Our machine has 2 sockets, therefore 2 

distinct hardware units with their own local memory nodes attached to them, each hardware unit 

has 6 cores and 12 available threads due to hyperthreading. We want to compare the performance 

of allotting operator parallelism to each core versus each available thread as seen by the 

Operating System due to hyperthreading. Synchronous scheduling is beneficial in both single-
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socket and multi-socket systems, the best performance is achieved by balancing intra- and inter-

operator parallelism. 

After observing the impact of multithreading and multiple CPU usage on model training 

with the Fashion MNIST dataset we are motivated to test the impact of controlling CPU usage on 

the wide and deep model which is different in terms of data type, training set size as well as 

model training algorithm to see if similar trends exist in different models. Measuring and 

visualizing the accuracy scalar with TensorFlow logger and Tensor Board to see the accuracy 

response across inter and intra operation parallelism. Running the wide and deep algorithm with 

no inter and intra flags (the system picks the appropriate number of intra and inter threads from 

the thread pool), and testing for 6 intra threads and 12 intra threads to parallelize each operation 

into the 6 cores or the 12 hyperthreads available per socket and its performance impact. Further 

parallelizing independent operations using 2 inter operation threads since our test system has 2 

sockets we test 6 intra and 2 inter threads as well as 12 intra and 2 inter threads.  

 

Figure 11. Accuracy for Wide and Deep model 
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The intra12inter2 has the steepest accuracy increase proving the fastest accuracy gain 

over time by parallelizing operations on the 12 CPUs and 2 sockets. The second-best accuracy 

increase is of intra6inter2 when independent operations are parallelized on the two sockets and 

each operation is parallelized on hyperthreads. The width of the computation graph quantifies the 

inter-operation parallelism. Intra parallelism across all hyperthreads has the shortest width 

quantifying the model’s inter-operator parallelism, our model is not highly inter-operator 

parallelizable as it does not have many parallel dataflow circuits in the graph.  

 

 

 

Figure 12. Wide and Deep Model Precision and Width Metrics 

Comparing the wide model and deep model with the wide and deep model we aim to 

correlate accuracy and training time of the best performing CPU configurations of each model 
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training type, i.e. the intra and inter operator allocation. We see characteristics of the wide model 

and the deep model combine into the wide and deep model in the precision, loss and accuracy 

scalars. All training algorithms maintain a minimum accuracy of 83%, but allocating thread 

pools and hardware resources positively impacts accuracy and the time to accuracy.  

There is a tradeoff between training time and accuracy as the wide and deep algorithm 

takes significantly longer to train but ultimately consistently provides better accuracy even with 

no thread pool optimization.  This particular census data model is biased towards deep learning 

accuracy and the wide and deep model is able to utilize the efficiency of the wide model that 

quickly trains to be accurate enough (above 83% accuracy) and the deep model trains for 

generalization and finding patterns not present in history data.  

 

 

Figure 13. Wide and Deep Training Accuracy vs. Time 
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Now, seeing that intra12inter2 is giving the best performance on the 2 socket 12 core 

machine we have, we experiment further with 𝑛 number of cores allocated across 2 sockets. We 

set the inter flag to inter=2 allowing for inter-operator parallelization and observe the scaling of 

the wide and deep model across increasing intra-operator parallelization to essentially understand 

the parallelizability of the wide and deep model. Further, we observe the scalability across a 

single hardware chip using all cores for scalability across n-cores in a single socket (restricted 

hardware resources) and try to find the optimal configuration and compare the differences in the 

experiments. 

The first, sixth and twelfth run are the most interesting and characteristic. They signify 

the following:  

Two Socket Experiment: operators parallelized on 2 sockets 

One: Core 1 used only (threads 1 and 12).  

Six: All six cores on Socket 0 used. 

Twelve: All twelve cores on both sockets used. 

 



27 

 

Figure 14. Two Socket intra-operator parallelism (wide and deep) 

One core takes the longest training time to reach the final accuracy value but it has the 

smoothest curve to accuracy, this is because all the data is readily available in the node but takes 

long to process all the data as there is very less parallelization of operations. Six cores use all the 

cores on the same socket and have a lot of variation in accuracy over time. However, six cores 

overall take less time to reach the best possible accuracy than one core, while its overall time to 

accuracy is slow. Given arbitrary time constraints, parallelization across six cores does not 

perform well as the accuracy dips below the threshold (83% guaranteed by the developers) 

before it reaches a final accuracy of 85% which is better than the promised accuracy. Utilizing 

all the cores on both sockets shows a consistent upward accuracy, starting below the threshold, it 

steeply increases over a short time, thus this parallelization performs well for a short time limit, 

but uses a lot of hardware resources. Therefore, the next parallelization we observe is restricting 

to one socket to reduce the hardware usage but maintain performance.  
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One Socket Experiment: no inter-operator parallelization 

One: Core 1 thread 1 used. 

Six: One thread per core on Socket 0 used. 

Twelve: All threads on all cores on Socket 0 used.  

 

 

Figure 15. One Socket intra-operator parallelism (wide and deep) 

Maintaining one socket at a time and using no inter-operator parallelism by setting inter flag to 1, 

we see that the total training time for all experiments increased compared to when operations were 

parallelized. An interesting trend in this data is that one thread per core (Six) has a steeper slope of 

increase in accuracy than 2 threads per core (Twelve), there is also a steadier increase for one thread than 

for hyperthreading which causes dips in accuracy.  

Thus, given an experiment with 𝑡 time and limited resources of 𝑛 cores to reach the best possible 

accuracy having one thread per core (no hyperthreading) across all cores and using all sockets available 
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will give the best and fastest results. Therefore, hyperthreading impedes performance as a result of the 

sharing of physical hardware resources.  

Chapter 5 

 

Experiment: Performance across memory configurations 

Two important factors that impact performance due to memory storage is throughput and 

latency. Throughput is the quantity of memory operations going through a processor and latency 

is the time needed to perform an action or fetch data from memory[23]. Non-uniform memory 

access (NUMA) systems, like our test system are server platforms with more than one system 

bus. Our system has 2 sockets and 1 NUMA node associated with each socket. These platforms 

can utilize multiple processors on a single motherboard, and all processors can access all the 

memory on the board, however, when a processor accesses memory that does not lie within its 

own node, data must be transferred over the NUMA connection at a rate that is slower than it 

would be when accessing local memory. Thus, memory access times are not uniform and depend 

on the location (proximity) of the memory and the node from which it is accessed.  

The x86 CPU architecture has supported NUMA for a number of years. Modern 

operating systems such as Linux support NUMA-aware scheduling, where the OS attempts to 

schedule a process to the CPU directly attached to the majority of its RAM. In Linux, it is 

possible to further manually tune the NUMA subsystem using the ‘numactl’ utility. We utilize 

this utility to examine machine learning workload performance across memory configurations by 

binding the process and the memory to the same or different nodes [24].  

Our expectation from this experiment is that being on the same NUMA node as the 

current processing socket would improve performance due to the decreased memory latency as 
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local memory access is the fastest. Large memory areas shared across CPUs are best placed 

using interleaving so the objects are distributed over all available nodes, machine learning 

workloads take up large memory areas and repeatedly recalculate weights which cyclically 

utilize memory, having a low memory access time will reduce the overhead of getting the data 

for each comparison and thus improve the overall performance of the workload run. Further, we 

observe the voluntary and involuntary context switches as well as minor page faults to analyze 

the correlation between memory and thread overhead and performance declines. 

When a page is allocated it is not placed on a NUMA node until it is first touched. A 

hardware fault will be generated when a process touches or writes to an address (page fault) that 

has not been used yet. The physical page is allocated during page-fault handling. The default 

allocation policy is for the OS to place the page on the node where the CPU is running. It is at 

the page allocation time that the allocation policy occurs [26].  

Fashion MNIST 

 

Keeping the model constant, we now change the memory configurations to study the 

impact of NUMA nodes on the Fashion MNIST workload. From the first experiment we studied 

performance impacts of CPU allocation configurations and gained motivation to further study the 

impact of memory latency and analyze the optimal memory allocation as well as the correlation 

of page faults and context switches to system performance. Soft page faults occur when data 

being sought is actually in memory, but can’t be found by address, this is quickly corrected to 

retrieve the data.  
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In this experiment we test a few configurations of memory interleaving and binding to 

gain an understanding of performance impacts which would indicate towards whether is 

consecutive memory access if interleaving is significantly more efficient than memory binding. 

We are expecting memory binding to give positive results as we maintain memory locally reduce 

NUMA access across nodes.  

Our first test is to check the response with no controlling of memory configurations and 

observe the default case. Further, from the first experiment we determined that using all nodes on 

one core gave the best performance as the memory access time is reduced, going further we try 

to utilize all the memory banks within a socket or interleave memory to compare the 

performance due to only memory impacts. Memory binding to nodes works to use a node 

preferentially to store data, keeping the same node as the process to see the impact of memory 

binding and therefore memory access time on performance, to observe if it is a significant 

change in execution time. 

Table 4. Training Time across Memory Configurations 

Memory Configurations Average Time 

all 44.3771529 

all, cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22 41.6843095 

interleave all 43.4357842 

interleave all, cpubind = 0,12,2,14,4,16,6,18,8,20,10,22 42.0083139 

interleave = 0, cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22 41.7073533 

cpu node bind =0, membind = 0,1 41.7534961 

cpu node bind =0, membind = 0 41.8946379 

cpu node bind =0, membind = 0,1, cpu bind = 
0,12,2,14,4,16,6,18,8,20,10,22 

41.5584751 
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Figure 16. Memory configurations vs. Average Training Time 

The most efficient run is without memory interleaving while utilizing all cores on the first 

socket, from the previous experiment we know that processing all threads on one socket is the 

most efficient thread configuration for our test, further this comparison between interleaved and 

non-interleaved memory proves that non-interleaved memory configuration is faster, this is the 

opposite of the expectation and memory interleaving is meant to make memory access for 

contiguous memory faster. The interleave policy distributes memory allocations equally on all 

nodes regardless of which threads access it. Interleaving ensures that memory allocations are 

balanced but not necessarily that memory accesses will be balanced. Interleaving works on the 

page granularity level, therefore this motivates us to check for page faults and context switches. 

From this experiment we also observe that the average times for the same dataset and 

model is much lower across all runs as compared to the previous experiment using varying 

number of CPUs. The standard deviation is also much greater by changing CPU allocation than 

by changing memory allocation. Therefore, CPU allocation plays a heavier role in determining 
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system performance while running machine learning workloads and memory configurations, if 

used per the use case can further help improve the performance.  
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Figure 17. Minor Page Faults and Training Time across Memory Configurations 

77

77.5

78

78.5

79

79.5

80

0

100000

200000

300000

400000

500000

600000

Ti
m

e 
(s

ec
o

n
d

s)

M
in

o
r 

P
ag

e 
Fa

u
lt

s

Minor Page Faults Time



35 

 

 

Figure 18. Involuntary Context Switches and Time across Memory  

Minor page faults are caused by a page miss in the memory bank at the local node, this 

adds the miss found time and the remote memory access time, this increases training time, 
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therefore reducing performance. An involuntary context switch occurs when a thread has been 

running too long without making a system call that blocks (voluntary context switch) and there 

are processes waiting for the CPU, more involuntary context switches occur when a program is 

very CPU intensive. A highly multi-threaded application also increases the probability of 

involuntary context switches occurring. Having less threads than CPU cores help reduce number 

of involuntary context switches.  

The added time due to inter-node memory access across NUMA nodes is due to the 

increased distance from one node to the other. There is an added distance which is double the 

distance in our test system to access memory in the opposite node to the current processing node.  

 

Figure 19. NUMA hardware 

Cache Statistics 

We aim to study cache statistics across memory configurations and the impact of cache 

misses and branch misses on training time. We understand from a computer architecture theory 

standpoint that cache misses have a penalty time of cache access time + access time to main 

memory, however, we aim to study if these cache miss penalties are large enough to impact the 
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overall performance of the machine learning model and if it should be considered for a 

significant contributor in training time, learning this will help us realize the importance of 

memory configuration and maximum impact of memory usage optimizations on the training time 

of models on a large scale. 

 

Table 5. Cache statistics with perf command 

 

 

 

memory configuration task-clock (CPUs) context-switches (M/sec)
page-faults 

(M/sec)
branch-misses (% of all branches)

L1-dcache-

loads (M/sec)

L1-dcache-load-misses(% of all L1-

dcache hits) 

LLC-loads 

(M/sec)

LLC-load-misses(% of all LL-

cache hits )

Time 

(seconds)

all 2.072 0.009 0.009 2.86% 487.011 10.07% 16.642 24.46% 43.35486184

all , cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22 2.105 0.009 0.005 3.01% 548.191 10.05% 17.6 5.39% 41.86561167

interleave all 2.106 0.009 0.002 2.44% 534.918 8.51% 18.154 16.33% 41.82015163

interleave all, cpubind = 0,12,2,14,4,16,6,18,8,20,10,22 2.134 0.009 0.002 3.11% 536.465 9.88% 17.103 5.37% 41.75787444

interleave = 0, cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22 2.131 0.009 0.002 3.12% 537.193 9.63% 17.65 5.27% 41.88808544

cpu node bind =0 , membind = 0,1 2.14 0.009 0.002 3.14% 539.955 9.78% 17.111 5.31% 41.48588839

cpu node bind =0, membind = 0 2.129 0.009 0.002 3.01% 546.879 9.77% 17.535 5.28% 41.63952407

cpu node bind =0 , membind = 0,1, cpu bind = 

0,12,2,14,4,16,6,18,8,20,10,22
2.138 0.01 0.002 3.05% 543.304 9.53% 16.961 5.50% 41.50273856
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Figure 20. Cache Statistics across memory configurations 

We use the perf tool to get cache hit and miss statistics for the program run using 

different NUMA configurations and observe a proportional relation between number of LLC-

load misses and the total execution time of the training model. The LLC is the Last Level Cache 

and it refers to the highest-level cache that is shared by all the CPUs, a miss in the LLC cache 

would mean that the data has to be retrieved from main memory and is not in any cache. We get 

a large number of LLC cache misses in the run “all” and “interleave all”, using all cores in any 

configuration increases the number of cache misses and impacts overall time due to the increased 

time to fetch from main memory. It is important to note here that we measure the percentage of 
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misses out of all calls to that cache, this can be read as the percentage being the probability of 

having a cache miss for the given setup.  

The L1-d cache misses do not vary much by the memory configuration, the L1-d cache is 

the lowest level cache and the first cache that is accessed for the data, from the L1-d cache the 

data fetching proceeds hierarchal downwards to higher level caches and main memory. The 

minimal variability in L1-d cache miss rates except for interleave all shows that the L1-d cache 

which is associated to a NUMA node provides the same performance across configuration. 

However, interleaving memory lowers the cache miss rate and is also meant to reduce the access 

time to main memory, we see this take effect as despite higher number of LLC-cache misses the 

overall training time did not drastically increase, in fact it improved marginally compared to 

other cases.  
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Chapter 6 

 

Results 

In this research, we used TensorFlow libraries and popularly used, machine learning 

models to do a scalability study of accuracy, training time and machine resources to study the 

impact on performance of limiting hardware resources and time.  

Through the preliminary studies we determined that core scaling and memory binding 

play an important role in determining the scalability of machine learning model training. 

Allocating hardware resources using custom configurations for optimization give the best results. 

Hyper-threading does not aid in performance as it requires resource sharing between threads. 

Utilizing parallel processing across operators significantly improves time to accuracy and total 

training time of the model.  

Allocating cores on the same socket aid in performance by reducing the memory access 

time of inter-NUMA node memory accesses since distances to memory nodes are greater for 

other NUMA nodes as compared to local access.  

Wide and Deep models specifically are interesting to study as they clearly depict the 

tradeoff between performance and accuracy. Studies of machine learning models show that wide 

and deep models combine to predict generic history data as well as new sample points for 

recommendations not present in training. While wide models are faster to train as well as model 

from a programming perspective, they have a limit to accuracy due to the traditional dependence 

of models on history and training data. On the other hand, deep models are more time intensive 
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to train but reach a higher final accuracy as well as have a better time to minimum threshold 

accuracy.   
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