

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SCALABILITY STUDY OF MACHINE LEARNING ALGORITHM TEACHING AND

INFERENCE ON CENTRAL PROCESSING UNITS

SWASTI MEHRA

SPRING 2020

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree in

Computer Engineering with honors in

Computer Engineering.

Reviewed and approved* by the following:

Anand Sivasubramaniam

Distinguished Professor of Computer Science and Engineering

Thesis Supervisor

Chitaranjan Das

Distinguished Professor of Computer Science and Engineering

Honors Advisor

* Electronic approvals are on file.

i

ABSTRACT

Machine Learning is widely used in academics and industry to study patterns, give

recommendations, and build statistical models. We need scalable infrastructure to train models

quicker as well as fit into the working memory of the training device. Vertical scaling is

expensive, so even with expensive and big machines with lots of memory, it would be more

efficient by cost to use many small machines. In our research we characterize the resource

utilization of machine learning workloads during the teaching and inference phases. This will

further help us understand how to improve a systems capability to run such workloads more

efficiently and realize how to optimize the system for these workloads. In addition, we will be

able to determine the limiting factor in the performance of the machine learning teaching and

inference models by running them on a standard system while using profiling tools to see the

load on memory, CPU, and power. We can then analyze how different methods of handling

system processes (such as page replacement, threading, etc.) affect the performance of the

workload. Afterwards, we will determine whether core scaling and memory binding play an

important role in determining the scalability of machine learning model training. Finally, we will

investigate if hyperthreading improves performance for model training, and whether the same

applies to inter-operator parallelism.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Introduction .. 1

Chapter 2 Literature Review .. 3

Model Training .. 3
Neural Networks .. 4
Non-Uniform Memory Access .. 5
Wide and Deep Learning ... 6
Inter and Intra Operation Parallelism ... 7
Scale Speedup .. 7
Memory Interleaving ... 8

Chapter 3 Tools Overview .. 10

Experiment System’s NUMA configuration ... 10
Datasets .. 12
Optimizers .. 14

Chapter 4 Experiment: Performance across CPUs ... 15

Fashion MNIST ... 16
Wide and Deep ... 22

Two Socket Experiment: operators parallelized on 2 sockets 26
One Socket Experiment: no inter-operator parallelization 28

Chapter 5 Experiment: Performance across memory configurations 29

Fashion MNIST ... 30
Cache Statistics .. 36

Chapter 6 Results .. 40

BIBLIOGRAPHY .. 42

iii

LIST OF FIGURES

Figure 1. Model Training Workflow ... 3

Figure 2. A Single node in a Neural Network ... 4

Figure 3. NUMA System with 2 nodes and 8 cores .. 6

Figure 4. Memory Interleaving Example ... 9

Figure 5. CPU and core configurations on the physical sockets ... 11

Figure 6. Logical CPU placement on the physical chip on sockets... 12

Figure 7. Fashion-MNIST Model Predictions ... 13

Figure 8. Execution Time vs. number of threads without NUMA considerations 18

Figure 9. Execution time vs. number of threads .. 20

Figure 10. Accuracy and Time across CPUs for Fashion-MNIST .. 22

Figure 11. Accuracy for Wide and Deep model .. 23

Figure 12. Wide and Deep Model Precision and Width Metrics ... 24

Figure 13. Wide and Deep Training Accuracy vs. Time ... 25

Figure 14. Two Socket intra-operator parallelism (wide and deep) .. 27

Figure 15. One Socket intra-operator parallelism (wide and deep) ... 28

Figure 16. Memory configurations vs. Average Training Time .. 32

Figure 17. Minor Page Faults and Training Time across Memory Configurations................. 34

Figure 18. Involuntary Context Switches and Time across Memory 35

Figure 19. NUMA hardware .. 36

Figure 20. Cache Statistics across memory configurations ... 38

iv

LIST OF TABLES

Table 1. Execution time across CPUs assigned without NUMA considerations 17

Table 2. Execution time across CPUs .. 19

Table 3. Accuracy Loss and Time across CPUs .. 21

Table 4. Training Time across Memory Configurations ... 31

Table 5. Cache statistics with perf command .. 37

v

ACKNOWLEDGEMENTS

I want to thank Dr. Anand Sivasubramaniam for introducing me to the topic of Machine

Learning and characterizing process information of these workloads on a system, while

understanding system architecture. I also want to thank Dr. Chitaranjan Das for his valuable

inputs on the scope of the research and for always pointing me in the right direction as an

advisor. In addition, I would like to thank Mr. Adithya Kumar, graduate student at Penn State

University, for mentoring me throughout my research. He shared his expertise by talking through

difficult concepts with me and guiding me through the problem-solving process. Kumar gave

active feedback on my research, which proved to be vital throughout the process.

1

Chapter 1

Introduction

Machine Learning is a method of data analysis that automates the process of model

building and inference with minimal human interaction. Machine Learning models are iterative

and are exposed to large amounts of data to independently learn and recognize patterns and learn

from previous computations to produce reliable, repeatable decisions and results. Machine

Learning is not a new science but has gained a new momentum due to our ability now to

iteratively apply complex mathematical computations on big data. [1]

It is essential for the success of machine learning models to be scalable. To make a

machine learning algorithm useful in real life (like playing a game of chess, generate real faces,

recognize images) requires training data in massive amounts (hundreds of GB) and very high

processing power on specialized hardware. With the spread of the internet, the amount of data an

average internet user creates is exponentially rising, as well as the amount of data that can be

stored on a piece of hardware is getting cheaper and compact, following Moore’s law [2]. This

increase in the amount of information available provides data to be leveraged in order to train

models further.

We need scalable models to train models quicker as well as be able to fit into the working

memory of the training device. Vertical scaling is expensive, so instead of having one expensive

and big machine that contains lots of memory, it would be more efficient by cost to use many

smaller machines to accomplish the same task. [3]

2

Data is iteratively fed into the training algorithms, the data access and transport speed for

this is effected by memory management, data is transport mechanisms from storage to registers

for the algorithm to access, as well as the von Numann bottleneck [4] can impact performance.

The highly iterative training process can be parallelized, however allocating more computing

resources to reduce training time is not efficient. To scale computations in machine learning the

system must run fast matrix multiplication with less power consumption. There is also

specialized hardware like ASICs (Applied Specific Integrated Chips), for increased performance.

CPUs are scaler processors, GPUs are vector processors and ASICs are matrix processors.

We aim to characterize the resource utilization of machine learning workloads during the

teaching and inference phase. This will further help us understand how to improve a systems’

capability to run such workloads more efficiently and realize how to optimize for scalable model

training. We use TensorFlow as the machine learning library to run the tests, characterize and

understand the load on the different components of the system. We will further attempt to find

parameters that would help optimize the system for a machine learning workload. We intend to

find the limiting factor in the performance of the Machine Learning teaching and inference

models by running them on a standard system and using profiling tools to see the load on

memory, CPU, and power. We also analyze how different methods of handling system processes

(like page replacement, threading etc.) affect the performance of the workload.

3

Chapter 2

Literature Review

Model Training

Machine Learning aims to leverage data, algorithms and statistics to perform specific

tasks without using explicit instructions and minimal human interference in the long run. In the

initial stages this requires data collection and model building. A model in machine learning is

simply the question answering system, this is created in the training process. Training a model

simply means learning from the determining features and reducing the loss to have an accurate

answer (model output) every time. In supervised learning, for example a model learns from

training data to adjust weights to minimize loss. Loss is the penalty of a bad prediction, the goal

of training a model is to find a set of weights that have low loss, on average, across most

samples, this process is iterative [5] [6].

Figure 1. Model Training Workflow

4

The model training loop is also the time when model hyperparameters are introduced into

the predictions, these are used to estimate model parameters, they are specified by the

practitioners and use heuristics as a starting point in determining the weights of the neural

network connections in order to reconcile the differences between the actual and predicted

outcomes for subsequent forward passes, predictions and loss calculations [6] [7].

Neural Networks

Neural Networks are a set of algorithms that are modeled after the human brain, designed

to recognize patterns, to cluster, label and classify input data to produce predictions as output.

The neural network layers are made up of nodes, a node is a basic unit of computation, it

combines the input data with weights to assign weightage/significance to an input source or

characteristic. These weighted inputs are summed and passed through activation functions that

determine the importance and accuracy of the input signal [9].

Figure 2. A Single node in a Neural Network

5

 Non-Uniform Memory Access

Memory from various points in the address space have different performance

characteristics. A systems memory is hierarchical and systems require modified operating system

kernels with NUMA support to understand the topological properties of system memory. Fast

systems require memory at each socket, and memory access across socket memories is

inefficient as it adds additional latency since it requires the traversal of the memory interconnect

first. Proper placement of data improves bandwidth and latency to memory. Future generations

of computers will have increasing differences in performance depending on the position of the

core on the die relative to the controller, making new functionality in operating systems to access

these different kinds of memory very important.

While training a Machine Learning model, a lot of data is ingested and iteratively

accessed; having efficient memory access can make a significant difference in overall

performance, as will be observed in our experiments in this paper. The NUMA system classifies

memory into NUMA nodes, and each node has an affinity to processors and devices that can use

memory on the NUMA node with the best performance. Below is an example of a NUMA

system with 2 NUMA nodes, 8 processors and an interconnect between each node [10].

6

Figure 3. NUMA System with 2 nodes and 8 cores

 Wide and Deep Learning

A wide and deep model jointly trains a wide linear model and a deep neural network for

memorization and generalization, to bring us one step closer to how a human brain learns to

generalize memorized information and remember exception rules. Memorization is learning

frequent co-occurrence of features and exploiting the correlation on the basis of historical data.

Generalization on the other hand is based on transitivity of data, and explores new feature

combinations that are not in the history. Wide and deep models have been found to be very

effective for recommender systems, this recommender system is productionized on Google Play.

The Wide and Deep models are trained every time a new set of training data arrives, there are

optimizations in place such as a warm starting that initializes the new model with the

embeddings and linear model weights of the old model, however a model training still requires

7

the input layer to take the new training data, concatenating the embeddings with dense features

and passing this through the ReLU and logistic loss calculation unit [11] [12].

Inter and Intra Operation Parallelism

TensorFlow provides configurations to select operation parallelism settings using inter-

operation and intra-operation parallelism. The intra-op-parallelism runtime setting controls

parallelism inside an operation, it is for operations that can be parallelized internally, for example

matrix multiplication. TensorFlow will schedule tasks in a thread pool with the specified number

of threads. Intel recommends setting this environment variable to the number of physical cores in

the system.

The inter-operation parallelism controls the parallelism among independent operations.

According to Intel this variable is recommended to be set to the number of parallel paths in the

model, empirical testing is the best way to adjust the inter-operation thread pool size for the

specific model [15].

Scale Speedup

 The parallel run time is defined as the time that elapses from the moment that a parallel

computation starts to the moment that the last processor finishes execution. The speedup is

defined as the ratio of the serial runtime of the best sequential algorithm for solving a problem to

the time taken by the parallel algorithm to solve the same problem on 𝑝 processors (𝑆 = 𝑇𝑆/𝑇𝑃).

The efficiency is defined as the ratio of speedup to the number of processors. Efficiency

8

measures the fraction of time for which a processor is usefully utilized (𝐸 =
𝑆

𝑃
= 𝑇𝑆/𝑝𝑇𝑃). The

cost of solving a problem on a parallel system is defined as the product of run time and the

number of processors. A cost‐optimal parallel system solves a problem with a cost proportional

to the execution time of the fastest known sequential algorithm on a single processor. Scalability

is a measure of a parallel system’s capacity to increase speedup in proportion to the number of

processors [14].

For our experiments we aim to compare the change in accuracy to the change in

performance to determine the speedup as we scale the model. We aim to determine an optimal

scale speedup which produces above acceptable accuracy with reduced processing power and

time as simply increasing processing power to improve performance is not a viable approach

since there is a hard upper limit to increasing number of processors and it is also cost heavy.

Memory Interleaving

Memory interleaving is a technique used to compensate for the relatively slower access

time to DRAM. The main memory is divided into banks where memory is stored in a round

robin fashion to be able to access memory individually without any dependency on other

memory calls. In general, the CPU is more likely to need to access the memory for a set of

consecutive words (either a segment of consecutive instructions in a program or the components

of a data structure such as an array, the interleaved (low-order) arrangement is preferable as

consecutive words are in different modules and can be fetched simultaneously. In case of high-

order arrangement, the consecutive words are usually in one module, having multiple modules is

not helpful if consecutive words are needed [16].

9

Figure 4. Memory Interleaving Example

10

Chapter 3

Tools Overview

Experiment System’s NUMA configuration

Our system for the experiments described in the founding’s of this thesis is the Intel(R)

Xeon(R) CPU E5-2620 0 @ 2.00GHz. It is a 2-socket machine with 6 cores per socket and 2

threads per core with hyperthreading enabled. A core is the smallest independent unit that

implements a general-purpose processor and a processor is an assembly of cores. Our machine

has 24 processors numbered 0 to 23. Hyperthreading allows for concurrent scheduling of 2

processes per core due to which we get effectively 12 cores, the operating system sees 12 cores

and assigns processes accordingly, but there are only 6 hardware cores.

Each socket has a NUMA node associated with it in our system, this is not necessary for

all systems, processor configurations and memory configurations together impact the overall

performance of the system. For us, since each physical socket has a NUMA node associated with

it, it is most efficient for the processes running on a physical socket to access memory from the

same NUMA node, accessing data from the other node adds compute time due to the limited

memory bandwidth and added latency of accessing memory not on the chip.

The command ‘lscpu -e’ gives a quick view of the processors on the physical chip and the

hyperthreaded processors. CPU 0 and CPU 12 are on node 0, socket 0 and core 0 – this shows

that they are on the physical core on the chip and have the same closest physical memory that is

fastest to access. These CPUs use the same hardware resources, so it is capable of concurrently

scheduling processing on CPU0 and CPU12 but they use the same physical resources.

11

Figure 5. CPU and core configurations on the physical sockets

Reading the /proc/cpuinfo file we can understand the processor placements on the

physical chip and the NUMA node associated with each socket. There are 6 cores per socket,

with 12 threads in a socket. CPU 0,2,4,6,8,10,12,14,16,18,20 and 22 are on socket 0 and use

NUMA node 0 while CPU 1,3,5,7,9,11,13,14,15,17,19,21 and 23 are on socket 1 and use NUMA

node 1. A processor or CPU is a logical CPU, this depicts the view of the operating system

showing how many processes can be scheduled simultaneously.

12

Figure 6. Logical CPU placement on the physical chip on sockets

Datasets

For our experiment we used two different datasets to get a basic understanding of the

topic and build motivation towards the exact parameters we used in the experiments presented in

this thesis. The first dataset used is the Fashion-MNIST that contains 60,000 training samples

and 10,000 testing samples of pieces of clothing. Each example of a greyscale image and has a

13

label identifying the type of clothing item. The Fashion-MNIST dataset is a commonly used

dataset for image recognition models, so we wanted to start our scalability studies with this

dataset. This is an example of supervised learning since the training data provides the image as

well as the associated label that classifies the item in the image. Using the TensorFlow library in

Python to build the model to run these predictions the accuracy results are quite favorable, so it is

a good Machine Learning dataset to study, since the model returns the correct class with a high-

confidence accurately.

Figure 7. Fashion-MNIST Model Predictions

The Wide and Deep model uses the Census Income Dataset [15] containing over 32,000

training and 16,000 testing samples with attributes including age, occupation, education, and

14

income bracket. We use the wide and deep model that predicts the income label, the wide model

can memorize interactions with data with a large number of features like these, and the deep

model can generalize the data, the wide and deep combines the two and can also learn

exceptions. For the purposes of this example, the model builders chose the Census Income Data

Set to allow the model to train in a reasonable amount of time. They claim that the deep model

performs almost as well as the wide and deep model on this dataset. The wide and deep model

truly shines on larger data sets with high-cardinality features, where each feature has

millions/billions of unique possible values (which is the specialty of the wide model) [16].

Optimizers

Optimizers help minimize (or maximize) an Objective Function (Error function) that are

used to set and update the weights and biases in the direction of the optimal solution. It is the

optimizer that makes changes to the weights of the model using the direction from the loss

function calculations. First, The Optimizer class is initialized with given parameters, but no

Tensor is created. In a second step, invoking get_tensor method will actually build the

TensorFlow Optimizer Tensor, and return it [18]. TensorFlow provides a variety of optimizers in

its libraries to use out of the box and also provides functionality to write custom optimizers for

the models. In our research we made use of the Adam and Stochastic Gradient Descent

optimizers.

15

Chapter 4

Experiment: Performance across CPUs

We expect that increasing processing power and assigning more CPUs to train our model

should improve the performance. The model training process involves a lot of computation and

calculations in the ReLU, loss calculations, and weight calculation stages, leveraging parallel

processing to speed up each computation should positively impact the overall performance. This

is the basic instinct behind parallel processing when a single program is broken up into

independent parts and the results of these parallelly computed individual parts are merged for an

overall faster solution. The cost versus performance is an important measurement to consider as

system resources are limited, and processing power cannot be arbitrarily increased in real life.

Another important consideration for parallelization is how efficiently can the task be

done concurrently, as dependencies add serial requirements and are inefficient to compute

parallelly as they depend on conditions upstream that must be fulfilled first. Also, data

dependencies across parallel processes on different nodes in the CPU requires communication

across nodes that can be very expensive on computation cycles so they must be minimized and

overlapped with computation [15]. The reason that compute capacities have increased much

more than memory bandwidth following Moore’s law is that program memory is usually much

bigger in terms of hardware required than the processor. Faster components are more expensive

to produce, consume more power and require newer technology, that means that the CPU can be

made faster than the memory while keeping within a budget [16].

16

For effective parallelization, programmers need to consciously build the program to take

advantage of parallelization and write custom code to be parallelized to avoid race conditions

and upstream dependencies that could essentially make the parallelization counter intuitive by

actually adding processing overheads while also using more resources, TensorFlow can take

uninformed Python code written using the TensorFlow library and turn it into appropriately

parallelized code that can take advantage of a GPU or TPU(Tensor Processing Units). This can

be automated in large part because of machine learning’s heavy use of matrix operations, which

are easily parallelized [18].

Fashion MNIST

Keeping the model constant, we change the number of logical CPUs allotted to the

process to run or the memory configurations allotted to see the impact on performance. The

performance is measured as wall clock time taken to reach required accuracy, this is when the

process completes running. Our expectation is that more parallel processing will improve

efficiency and reduce time taken, however we want to also observe load on a single hardware

core and memory latency between NUMA nodes.

Using the ‘numactl’ command on Linux we can control the number of processors

assigned to the task. Assigning one thread per core in one socket till each core is utilized (6

threads). Then, utilizing hyperthreading to assign 2 threads on the same while staying on the

same socket gives us up to 12 threads. Expanding from here to two sockets allows up to 24 CPUs

to parallelly schedule the processes of model training.

17
Table 1. Execution time across CPUs assigned without NUMA considerations

CPUs used Number of

CPUs

Average Time

(seconds)

0 1 55.70848107

0,2 2 52.5390594

0,2,4 3 47.76953363

0,2,4,6 4 44.62922502

0,2,4,6,8 5 42.9579463

0,2,4,6,8,10 6 40.50696492

0,2,4,6,8,10,12 7 41.41678119

0,2,4,6,8,10,12,14 8 40.67656898

0,2,4,6,8,10,12,14,16 9 41.29061198

0,2,4,6,8,10,12,14,16,18 10 41.83172035

0,2,4,6,8,10,12,14,16,18,20 11 41.94293666

0,2,4,6,8,10,12,14,16,18,20,22 12 41.95351219

0-2,4,6,8,10,12,14,16,18,20,22 13 42.42555094

0-4,6,8,10,12,14,16,18,20,22 14 41.99365187

0-6,8,10,12,14,16,18,20,22 15 42.63701653

0-8,10,12,14,16,18,20,22 16 44.13888478

0-10,12,14,16,18,20,22 17 43.61157393

0-12,14,16,18,20,22 18 43.61488366

0-14,16,18,20,22 19 45.28833652

0-16,18,20,22 20 45.24622822

0-18,20,22 21 45.14145947

0-20,22 22 44.76190948

0-22 23 45.73434758

0-23 24 45.05802155

18

Figure 8. Execution Time vs. number of threads without NUMA considerations

We observe a 37% improvement in the time required to train the model from using only

one thread on one core to using 6 threads on 6 cores on the same socket, which is also the most

time efficient running configuration for CPU assignments. Assigning further after the one

process per core configuration increases training time as the threads are now sharing the

hardware core for physical resources, and moving to a new socket increase latency due to limited

memory bandwidth to communicate between the nodes.

A point of interest on the graph is the peak at 7 hardware threads being used, the logical

CPUs in use are: 0,2,4,6,8,10 and 12. CPUs 0 and 12 are on the same core and therefore share

hardware, assigning the process to both of these CPUs increases training time. In all NUMA

systems, when the memory is located with processor X and the code is running on processor Y

(where X & Y aren't the same processor), every memory access will be bad for performance. So,

allocating memory on the right NUMA node will certainly help. Therefore, the best training time

is achieved at one thread per core on the socket with all cores in the socket being utilized.

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Ti
m

e
(s

ec
o

n
d

s)

No. of hardware threads

19

This finding motivated us to further investigate the result of assigning threads in the order

of cores, therefore only utilizing a new core when all threads in the current core are utilized.

Again, using the numactl command we train the same Fashion-MNIST model using cores

incrementally to see the impact of cores on training time.

Table 2. Execution time across CPUs

CPUs used Number

of CPUs

Average Time

(seconds)

0 1 55.51468379

0,12 2 65.93169141

0,12,2 3 52.94081931

0,12,2,14 4 51.02283266

0,12,2,14,4 5 46.65497568

0,12,2,14,4,16 6 45.72486472

0,12,2,14,4,16,6 7 43.81104424

0,12,2,14,4,16,6,18 8 43.69985437

0,12,2,14,4,16,6,18,8 9 42.69280622

0,12,2,14,4,16,6,18,8,20 10 42.47134326

0,12,2,14,4,16,6,18,8,20,10 11 41.69253724

0,12,2,14,4,16,6,18,8,20,10,22 12 41.66431026

0,12,2,14,4,16,6,18,8,20,10,22,1 13 42.21683812

0,12,2,14,4,16,6,18,8,20,10,22,1,13 14 42.86210787

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3 15 42.97455266

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15 16 43.33942018

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5 17 43.26101291

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17 18 43.61898901

0,12,2,14,4,16,6,18,8,20,10,22,1,133,15,5,17,7 19 43.78118851

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19 20 43.89095798

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9 21 43.76108971

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21 22 43.55454891

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21,11 23 43.90372281

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21,11,23 24 43.90343845

20

Figure 9. Execution time vs. number of threads

A very important point of interest in this experiment is 2 threads getting assigned, there is

a distinct peak in training time when 2 threads are assigned on the same core – this is the data

point for allocating CPU 0 and 12 – both of these are at physical address 0 core 0. This confirms

our understanding from the previous experiment where we saw an increase in training time when

using the multiple threads on the same core.

We also observe that the tail end of both experiments doesn’t show any significant

improvement in performance even though they use the most resources as all cores and threads

are being utilized for the task, these tasks are high cost but relatively low efficiency as they are

not comparably improved.

To ensure that we are not measuring the training time for an accurate model, we

performed the experiments again while measuring the final accuracy and loss along with training

time and observed the same trends with a minimum accuracy of 87.77% and a standard deviation

of 0.15 in accuracy.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

Ti
m

e

Number of Threads

Average Time

21
Table 3. Accuracy Loss and Time across CPUs

CPUs used Average

Accuracy

Average

Loss

Average

Time

0 88.274 33.8277044 52.6109275

0,12 88.144 34.0828999 62.7671298

0,12,2 87.771 34.8694614 50.1742908

0,12,2,14 87.97 34.2152158 48.1330197

0,12,2,14,4 88.253 33.752413 43.5679296

0,12,2,14,4,16 88.009 34.0259658 42.5894236

0,12,2,14,4,16,6 88.009 33.9668157 40.7443727

0,12,2,14,4,16,6,18 88.114 34.1414777 40.6137685

0,12,2,14,4,16,6,18,8 88.287 33.4276155 39.3068003

0,12,2,14,4,16,6,18,8,20 88.017 34.0909901 39.3169499

0,12,2,14,4,16,6,18,8,20,10 88.178 34.1238776 38.6085581

0,12,2,14,4,16,6,18,8,20,10,22 88.291 33.4246089 38.5505942

0,12,2,14,4,16,6,18,8,20,10,22,1 88.122 34.1129593 39.0003901

0,12,2,14,4,16,6,18,8,20,10,22,1,13 87.857 34.7241274 39.8941121

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3 88.277 33.6253057 40.0978346

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15 88.25 33.9791908 40.4143277

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5 88.151 33.8184579 40.3571455

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17 88.042 34.1390842 40.7782115

0,12,2,14,4,16,6,18,8,20,10,22,1,133,15,5,17,7 88.462 33.2744858 40.6113888

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19 88.125 34.1160684 41.0054312

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9 88.246 33.6965795 41.315187

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21 88.07 34.079284 41.0557889

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21,11 88.22 34.0417455 40.8359526

0,12,2,14,4,16,6,18,8,20,10,22,1,13,3,15,5,17,7,19,9,21,11,23 88.251 33.6958681 41.7189501

22

Figure 10. Accuracy and Time across CPUs for Fashion-MNIST

Wide and Deep

Operators manipulate tensors, i.e. n-dimensional arrays. The parallelism within an

operator can be exploited with single instruction multiple data (SIMD), multi-threading and data

parallelism, made possible with the intra flag in the TensorFlow library. Further, the parallelism

across operators (inter operator parallelism) can be exploited by asynchronous scheduling to

place independent operators on different hardware units. Our machine has 2 sockets, therefore 2

distinct hardware units with their own local memory nodes attached to them, each hardware unit

has 6 cores and 12 available threads due to hyperthreading. We want to compare the performance

of allotting operator parallelism to each core versus each available thread as seen by the

Operating System due to hyperthreading. Synchronous scheduling is beneficial in both single-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of CPUs

Accuracy and Training Time across CPU

Average Accuracy Average Time

23

socket and multi-socket systems, the best performance is achieved by balancing intra- and inter-

operator parallelism.

After observing the impact of multithreading and multiple CPU usage on model training

with the Fashion MNIST dataset we are motivated to test the impact of controlling CPU usage on

the wide and deep model which is different in terms of data type, training set size as well as

model training algorithm to see if similar trends exist in different models. Measuring and

visualizing the accuracy scalar with TensorFlow logger and Tensor Board to see the accuracy

response across inter and intra operation parallelism. Running the wide and deep algorithm with

no inter and intra flags (the system picks the appropriate number of intra and inter threads from

the thread pool), and testing for 6 intra threads and 12 intra threads to parallelize each operation

into the 6 cores or the 12 hyperthreads available per socket and its performance impact. Further

parallelizing independent operations using 2 inter operation threads since our test system has 2

sockets we test 6 intra and 2 inter threads as well as 12 intra and 2 inter threads.

Figure 11. Accuracy for Wide and Deep model

24

The intra12inter2 has the steepest accuracy increase proving the fastest accuracy gain

over time by parallelizing operations on the 12 CPUs and 2 sockets. The second-best accuracy

increase is of intra6inter2 when independent operations are parallelized on the two sockets and

each operation is parallelized on hyperthreads. The width of the computation graph quantifies the

inter-operation parallelism. Intra parallelism across all hyperthreads has the shortest width

quantifying the model’s inter-operator parallelism, our model is not highly inter-operator

parallelizable as it does not have many parallel dataflow circuits in the graph.

Figure 12. Wide and Deep Model Precision and Width Metrics

Comparing the wide model and deep model with the wide and deep model we aim to

correlate accuracy and training time of the best performing CPU configurations of each model

25

training type, i.e. the intra and inter operator allocation. We see characteristics of the wide model

and the deep model combine into the wide and deep model in the precision, loss and accuracy

scalars. All training algorithms maintain a minimum accuracy of 83%, but allocating thread

pools and hardware resources positively impacts accuracy and the time to accuracy.

There is a tradeoff between training time and accuracy as the wide and deep algorithm

takes significantly longer to train but ultimately consistently provides better accuracy even with

no thread pool optimization. This particular census data model is biased towards deep learning

accuracy and the wide and deep model is able to utilize the efficiency of the wide model that

quickly trains to be accurate enough (above 83% accuracy) and the deep model trains for

generalization and finding patterns not present in history data.

Figure 13. Wide and Deep Training Accuracy vs. Time

26

Now, seeing that intra12inter2 is giving the best performance on the 2 socket 12 core

machine we have, we experiment further with 𝑛 number of cores allocated across 2 sockets. We

set the inter flag to inter=2 allowing for inter-operator parallelization and observe the scaling of

the wide and deep model across increasing intra-operator parallelization to essentially understand

the parallelizability of the wide and deep model. Further, we observe the scalability across a

single hardware chip using all cores for scalability across n-cores in a single socket (restricted

hardware resources) and try to find the optimal configuration and compare the differences in the

experiments.

The first, sixth and twelfth run are the most interesting and characteristic. They signify

the following:

Two Socket Experiment: operators parallelized on 2 sockets

One: Core 1 used only (threads 1 and 12).

Six: All six cores on Socket 0 used.

Twelve: All twelve cores on both sockets used.

27

Figure 14. Two Socket intra-operator parallelism (wide and deep)

One core takes the longest training time to reach the final accuracy value but it has the

smoothest curve to accuracy, this is because all the data is readily available in the node but takes

long to process all the data as there is very less parallelization of operations. Six cores use all the

cores on the same socket and have a lot of variation in accuracy over time. However, six cores

overall take less time to reach the best possible accuracy than one core, while its overall time to

accuracy is slow. Given arbitrary time constraints, parallelization across six cores does not

perform well as the accuracy dips below the threshold (83% guaranteed by the developers)

before it reaches a final accuracy of 85% which is better than the promised accuracy. Utilizing

all the cores on both sockets shows a consistent upward accuracy, starting below the threshold, it

steeply increases over a short time, thus this parallelization performs well for a short time limit,

but uses a lot of hardware resources. Therefore, the next parallelization we observe is restricting

to one socket to reduce the hardware usage but maintain performance.

28

One Socket Experiment: no inter-operator parallelization

One: Core 1 thread 1 used.

Six: One thread per core on Socket 0 used.

Twelve: All threads on all cores on Socket 0 used.

Figure 15. One Socket intra-operator parallelism (wide and deep)

Maintaining one socket at a time and using no inter-operator parallelism by setting inter flag to 1,

we see that the total training time for all experiments increased compared to when operations were

parallelized. An interesting trend in this data is that one thread per core (Six) has a steeper slope of

increase in accuracy than 2 threads per core (Twelve), there is also a steadier increase for one thread than

for hyperthreading which causes dips in accuracy.

Thus, given an experiment with 𝑡 time and limited resources of 𝑛 cores to reach the best possible

accuracy having one thread per core (no hyperthreading) across all cores and using all sockets available

29

will give the best and fastest results. Therefore, hyperthreading impedes performance as a result of the

sharing of physical hardware resources.

Chapter 5

Experiment: Performance across memory configurations

Two important factors that impact performance due to memory storage is throughput and

latency. Throughput is the quantity of memory operations going through a processor and latency

is the time needed to perform an action or fetch data from memory[23]. Non-uniform memory

access (NUMA) systems, like our test system are server platforms with more than one system

bus. Our system has 2 sockets and 1 NUMA node associated with each socket. These platforms

can utilize multiple processors on a single motherboard, and all processors can access all the

memory on the board, however, when a processor accesses memory that does not lie within its

own node, data must be transferred over the NUMA connection at a rate that is slower than it

would be when accessing local memory. Thus, memory access times are not uniform and depend

on the location (proximity) of the memory and the node from which it is accessed.

The x86 CPU architecture has supported NUMA for a number of years. Modern

operating systems such as Linux support NUMA-aware scheduling, where the OS attempts to

schedule a process to the CPU directly attached to the majority of its RAM. In Linux, it is

possible to further manually tune the NUMA subsystem using the ‘numactl’ utility. We utilize

this utility to examine machine learning workload performance across memory configurations by

binding the process and the memory to the same or different nodes [24].

Our expectation from this experiment is that being on the same NUMA node as the

current processing socket would improve performance due to the decreased memory latency as

30

local memory access is the fastest. Large memory areas shared across CPUs are best placed

using interleaving so the objects are distributed over all available nodes, machine learning

workloads take up large memory areas and repeatedly recalculate weights which cyclically

utilize memory, having a low memory access time will reduce the overhead of getting the data

for each comparison and thus improve the overall performance of the workload run. Further, we

observe the voluntary and involuntary context switches as well as minor page faults to analyze

the correlation between memory and thread overhead and performance declines.

When a page is allocated it is not placed on a NUMA node until it is first touched. A

hardware fault will be generated when a process touches or writes to an address (page fault) that

has not been used yet. The physical page is allocated during page-fault handling. The default

allocation policy is for the OS to place the page on the node where the CPU is running. It is at

the page allocation time that the allocation policy occurs [26].

Fashion MNIST

Keeping the model constant, we now change the memory configurations to study the

impact of NUMA nodes on the Fashion MNIST workload. From the first experiment we studied

performance impacts of CPU allocation configurations and gained motivation to further study the

impact of memory latency and analyze the optimal memory allocation as well as the correlation

of page faults and context switches to system performance. Soft page faults occur when data

being sought is actually in memory, but can’t be found by address, this is quickly corrected to

retrieve the data.

31

In this experiment we test a few configurations of memory interleaving and binding to

gain an understanding of performance impacts which would indicate towards whether is

consecutive memory access if interleaving is significantly more efficient than memory binding.

We are expecting memory binding to give positive results as we maintain memory locally reduce

NUMA access across nodes.

Our first test is to check the response with no controlling of memory configurations and

observe the default case. Further, from the first experiment we determined that using all nodes on

one core gave the best performance as the memory access time is reduced, going further we try

to utilize all the memory banks within a socket or interleave memory to compare the

performance due to only memory impacts. Memory binding to nodes works to use a node

preferentially to store data, keeping the same node as the process to see the impact of memory

binding and therefore memory access time on performance, to observe if it is a significant

change in execution time.

Table 4. Training Time across Memory Configurations

Memory Configurations Average Time

all 44.3771529

all, cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22 41.6843095

interleave all 43.4357842

interleave all, cpubind = 0,12,2,14,4,16,6,18,8,20,10,22 42.0083139

interleave = 0, cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22 41.7073533

cpu node bind =0, membind = 0,1 41.7534961

cpu node bind =0, membind = 0 41.8946379

cpu node bind =0, membind = 0,1, cpu bind =
0,12,2,14,4,16,6,18,8,20,10,22

41.5584751

32

Figure 16. Memory configurations vs. Average Training Time

The most efficient run is without memory interleaving while utilizing all cores on the first

socket, from the previous experiment we know that processing all threads on one socket is the

most efficient thread configuration for our test, further this comparison between interleaved and

non-interleaved memory proves that non-interleaved memory configuration is faster, this is the

opposite of the expectation and memory interleaving is meant to make memory access for

contiguous memory faster. The interleave policy distributes memory allocations equally on all

nodes regardless of which threads access it. Interleaving ensures that memory allocations are

balanced but not necessarily that memory accesses will be balanced. Interleaving works on the

page granularity level, therefore this motivates us to check for page faults and context switches.

From this experiment we also observe that the average times for the same dataset and

model is much lower across all runs as compared to the previous experiment using varying

number of CPUs. The standard deviation is also much greater by changing CPU allocation than

by changing memory allocation. Therefore, CPU allocation plays a heavier role in determining

40 40.5 41 41.5 42 42.5 43 43.5 44 44.5 45

all

all , cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22

interleave all

interleave all, cpubind =
0,12,2,14,4,16,6,18,8,20,10,22

interleave = 0, cpu bind =
0,12,2,14,4,16,6,18,8,20,10,22

cpu node bind =0 , membind = 0,1

cpu node bind =0, membind = 0

cpu node bind =0 , membind = 0,1, cpu bind =
0,12,2,14,4,16,6,18,8,20,10,22

Average Time (seconds)

33

system performance while running machine learning workloads and memory configurations, if

used per the use case can further help improve the performance.

34

Figure 17. Minor Page Faults and Training Time across Memory Configurations

77

77.5

78

78.5

79

79.5

80

0

100000

200000

300000

400000

500000

600000

Ti
m

e
(s

ec
o

n
d

s)

M
in

o
r

P
ag

e
Fa

u
lt

s

Minor Page Faults Time

35

Figure 18. Involuntary Context Switches and Time across Memory

Minor page faults are caused by a page miss in the memory bank at the local node, this

adds the miss found time and the remote memory access time, this increases training time,

77

77.5

78

78.5

79

79.5

80

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Ti
m

e

In
vo

lu
n

ta
ry

 C
o

n
te

xt
 S

w
it

ch
e

s

involuntary context switches Time

36

therefore reducing performance. An involuntary context switch occurs when a thread has been

running too long without making a system call that blocks (voluntary context switch) and there

are processes waiting for the CPU, more involuntary context switches occur when a program is

very CPU intensive. A highly multi-threaded application also increases the probability of

involuntary context switches occurring. Having less threads than CPU cores help reduce number

of involuntary context switches.

The added time due to inter-node memory access across NUMA nodes is due to the

increased distance from one node to the other. There is an added distance which is double the

distance in our test system to access memory in the opposite node to the current processing node.

Figure 19. NUMA hardware

Cache Statistics

We aim to study cache statistics across memory configurations and the impact of cache

misses and branch misses on training time. We understand from a computer architecture theory

standpoint that cache misses have a penalty time of cache access time + access time to main

memory, however, we aim to study if these cache miss penalties are large enough to impact the

37

overall performance of the machine learning model and if it should be considered for a

significant contributor in training time, learning this will help us realize the importance of

memory configuration and maximum impact of memory usage optimizations on the training time

of models on a large scale.

Table 5. Cache statistics with perf command

memory configuration task-clock (CPUs) context-switches (M/sec)
page-faults

(M/sec)
branch-misses (% of all branches)

L1-dcache-

loads (M/sec)

L1-dcache-load-misses(% of all L1-

dcache hits)

LLC-loads

(M/sec)

LLC-load-misses(% of all LL-

cache hits)

Time

(seconds)

all 2.072 0.009 0.009 2.86% 487.011 10.07% 16.642 24.46% 43.35486184

all , cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22 2.105 0.009 0.005 3.01% 548.191 10.05% 17.6 5.39% 41.86561167

interleave all 2.106 0.009 0.002 2.44% 534.918 8.51% 18.154 16.33% 41.82015163

interleave all, cpubind = 0,12,2,14,4,16,6,18,8,20,10,22 2.134 0.009 0.002 3.11% 536.465 9.88% 17.103 5.37% 41.75787444

interleave = 0, cpu bind = 0,12,2,14,4,16,6,18,8,20,10,22 2.131 0.009 0.002 3.12% 537.193 9.63% 17.65 5.27% 41.88808544

cpu node bind =0 , membind = 0,1 2.14 0.009 0.002 3.14% 539.955 9.78% 17.111 5.31% 41.48588839

cpu node bind =0, membind = 0 2.129 0.009 0.002 3.01% 546.879 9.77% 17.535 5.28% 41.63952407

cpu node bind =0 , membind = 0,1, cpu bind =

0,12,2,14,4,16,6,18,8,20,10,22
2.138 0.01 0.002 3.05% 543.304 9.53% 16.961 5.50% 41.50273856

38

Figure 20. Cache Statistics across memory configurations

We use the perf tool to get cache hit and miss statistics for the program run using

different NUMA configurations and observe a proportional relation between number of LLC-

load misses and the total execution time of the training model. The LLC is the Last Level Cache

and it refers to the highest-level cache that is shared by all the CPUs, a miss in the LLC cache

would mean that the data has to be retrieved from main memory and is not in any cache. We get

a large number of LLC cache misses in the run “all” and “interleave all”, using all cores in any

configuration increases the number of cache misses and impacts overall time due to the increased

time to fetch from main memory. It is important to note here that we measure the percentage of

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

40.5

41

41.5

42

42.5

43

43.5

%
 o

f
m

is
se

s

ti
m

e
(s

ec
o

n
d

s)

time branch-misses L1-dcache-loadmisses LLC-loadmisses

39

misses out of all calls to that cache, this can be read as the percentage being the probability of

having a cache miss for the given setup.

The L1-d cache misses do not vary much by the memory configuration, the L1-d cache is

the lowest level cache and the first cache that is accessed for the data, from the L1-d cache the

data fetching proceeds hierarchal downwards to higher level caches and main memory. The

minimal variability in L1-d cache miss rates except for interleave all shows that the L1-d cache

which is associated to a NUMA node provides the same performance across configuration.

However, interleaving memory lowers the cache miss rate and is also meant to reduce the access

time to main memory, we see this take effect as despite higher number of LLC-cache misses the

overall training time did not drastically increase, in fact it improved marginally compared to

other cases.

40

Chapter 6

Results

In this research, we used TensorFlow libraries and popularly used, machine learning

models to do a scalability study of accuracy, training time and machine resources to study the

impact on performance of limiting hardware resources and time.

Through the preliminary studies we determined that core scaling and memory binding

play an important role in determining the scalability of machine learning model training.

Allocating hardware resources using custom configurations for optimization give the best results.

Hyper-threading does not aid in performance as it requires resource sharing between threads.

Utilizing parallel processing across operators significantly improves time to accuracy and total

training time of the model.

Allocating cores on the same socket aid in performance by reducing the memory access

time of inter-NUMA node memory accesses since distances to memory nodes are greater for

other NUMA nodes as compared to local access.

Wide and Deep models specifically are interesting to study as they clearly depict the

tradeoff between performance and accuracy. Studies of machine learning models show that wide

and deep models combine to predict generic history data as well as new sample points for

recommendations not present in training. While wide models are faster to train as well as model

from a programming perspective, they have a limit to accuracy due to the traditional dependence

of models on history and training data. On the other hand, deep models are more time intensive

41

to train but reach a higher final accuracy as well as have a better time to minimum threshold

accuracy.

42

BIBLIOGRAPHY

[1] SAS, [Online]. Available: https://www.sas.com/en_us/insights/analytics/machine-

learning.html.

[2] Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Moore%27s_law.

[3] S. Kansal, "Codementor," 7 May 2019. [Online]. Available:

https://www.codementor.io/blog/scaling-ml-6ruo1wykxf.

[4] K. Pingali, "The von Neumann Bottleneck Revisited," 26 July 2018. [Online].

Available: https://www.sigarch.org/the-von-neumann-bottleneck-revisited/.

[5] "Descending into ML: Training and Loss," developers.google.com, [Online].

Available: https://developers.google.com/machine-learning/crash-course/descending-into-

ml/training-and-loss.

[6] Amazon, "Training ML Models," [Online]. Available:

https://docs.aws.amazon.com/machine-learning/latest/dg/training-ml-models.html.

[7] J. Brownlee, "What is the Difference Between a Parameter and a

Hyperparameter?," 26 July 2017. [Online]. Available:

https://machinelearningmastery.com/difference-between-a-parameter-and-a-

hyperparameter/.

[8] M. Mayo, "Neural Network Foundations, Explained: Updating Weights with

Gradient Descent & Backpropagation," [Online]. Available:

43

https://www.kdnuggets.com/2017/10/neural-network-foundations-explained-gradient-

descent.html.

[9] C. Nicholson, "A Beginner's Guide to Neural Networks and Deep Learning,"

[Online]. Available: https://pathmind.com/wiki/neural-network.

[10] C. Lameter, "NUMA (Non-Uniform Memory Access): An Overview," ACM

Queue, vol. 11, no. 7, 2013.

[11] H.-T. Cheng, L. H. Koc, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G.

Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu and H. Shah,

"Wide & Deep Learning for Recommender Systems," arXiv, 2016.

[12] Heng-Tze Cheng, "Wide & Deep Learning: Better Together with TensorFlow,"

Google, 29 June 2016. [Online]. Available: https://ai.googleblog.com/2016/06/wide-deep-

learning-better-together-with.html.

[13] N. Greeneltch and J. X., "Maximize TensorFlow* Performance on CPU:

Considerations and Recommendations for Inference Workloads," Intel, 25 01 2019.

[Online]. Available: https://software.intel.com/en-us/articles/maximize-tensorflow-

performance-on-cpu-considerations-and-recommendations-for-inference.

[14] J. Zhang, "Parallel Computing Chapter 7 Performance and Scalability," [Online].

Available: https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf.

[15] R. Wang, "Memory Interleaving," 29 11 2005. [Online]. Available:

http://fourier.eng.hmc.edu/e85_old/lectures/memory/node2.html.

[16] R. Kohavi and B. Becker, "Census Income Data Set," Silicon Graphics, 01 05 1996.

[Online]. Available: https://archive.ics.uci.edu/ml/datasets/Census+Income.

44

[17] "Predicting Income with the Census Income Dataset," tensorflow, 19 8 2019.

[Online]. Available:

https://github.com/tensorflow/models/tree/master/official/r1/wide_deep.

[18] tflearn, [Online]. Available: http://tflearn.org/optimizers/.

[19] S. Cook, "Optimizing Your Application," in CUDA Programming, 2013, pp. 305-

440.

[20] J. Philip J. Koopman, "The Limits of Memory Bandwidth," in Stack Computers: the

new wave, Ellis Horwood, 1989.

[21] T. E. Bettilyon, "High Performance Computing is More Parallel Than Ever," 20 12

2018. [Online]. Available: https://medium.com/tebs-lab/the-age-of-parallel-computing-

b3f4319c97b0.

[22] F. Denneman, "MEMORY DEEP DIVE: OPTIMIZING FOR PERFORMANCE,"

20 February 2015. [Online]. Available: https://frankdenneman.nl/2015/02/20/memory-

deep-dive/.

[23] C. Hollowell, C. Caramarcu, W. Strecker-Kellogg, A. Wong and A. Zaytsev, "The

Effect of NUMA Tunings on CPU Performance," Journal of Physics, vol. 664, 2015.

[24] C. CATES, "PERFORMANCE IMPLICATIONS OF NUMA WHAT YOU

DON’T KNOW COULD HURT YOU!," [Online]. Available: https://www.cmg.org/wp-

content/uploads/2015/10/numa.pdf.

[25] C. Delimitrou and C. Kozyrakis, "Amdahl's Law for Tail Latency,"

Communications of ACM, vol. 61, no. 8, pp. 65-72, 2018.

45

[26] J. Li, N. K. Sharma, D. R. K. Ports and S. D. Gribble, "Tales of the Tail: Hardware,

OS, and Application-level Sources of Tail Latency," Department of Computer Science &

Engineering, University of Washington.

[27] "TensorFlow on CPUs," New Zealand eScience Infrastructure , 20 02 2020.

[Online]. Available: https://support.nesi.org.nz/hc/en-gb/articles/360000997675-

TensorFlow-on-CPUs.

ACADEMIC VITA

Swasti Mehra

swastime9@gmail.com

Education:
▪ Pennsylvania State University, Computer Engineering B.Sc., 2020

▪ Schreyer Honors College, Dean’s List (all semesters)

▪ Academic Excellence Scholarship, President’s Freshman award and Spark’s Award

▪ Skills: C, C++, Java, Python, C#, UNIX, MIPS architecture, Verilog, Object Oriented

Design, MySQL

Experience:
▪ Software Development Intern, Susquehanna International Group

o Designed alongside the Fixed Income team a backcasting system to simulate the
trading environment with different user set configurations.

o Developed a Windows form application and a backcasting service to
asynchronously run services and simulate the day’s trading activities. Further
implemented backcasting in an in-production service keeping the control flow
unchanged while running the service autonomously with history data and new
configurations.

o Developed and implemented features on the fixed income electronic trading
system to increase trader productivity by supporting bulk updates of user
configurations and allow symbol subscription.

▪ Summer Engineering Intern, Bharti Airtel LTD.

o Designed and implemented API in Java to periodically search several servers for

relevant files and built a File Monitoring System for the Information Management

Team.

o Conducted Proof of Concept for an Application Performance Monitoring system

by using open source tools from Elastic for data monitoring. Real time data

collection (Logstash), custom visualizations (Kibana) and searching and filtering

(Elasticsearch).

o Automated the existing processes for the operational reporting of financial and

fraud management data from core systems to business users.
▪ Undergraduate Researcher, Engineering REU

o Used Computer Vision concepts to build a MATLAB script to identify malaria

affected blood cells on a video capture of a blood sample on a chip.

o Built an amplifying circuit using Arduino PWM for a preloaded microfluidic

centrifugal disk.

o Test the motor and circuit for capability to perform Nucleic Acid testing to detect

diseases by taking air samples.

o Presented Final Project at the Engineering Design Showcase Fall 2018.

Leadership:

mailto:swastime9@gmail.com

▪ President, Association for Computing Machinery

o Lead a team of 13 officers and 670 general members

o Launched DevPSU- a learning initiative that grew to 200 members aiming

to make AI and collaborative software development approachable.

o Created a learning module and project on Visual Recognition using

Microsoft Azure API and an Image classifier using TensorFlow.

o Wrote problems for CodePSU (Penn State’s annual competitive

programming competition) in 2017, 2018 and 2019.

▪ Technology Captain, Penn State Dance Marathon

o Created a point of sales system for the Merchandise committee to track

sales and inventory (Django).

o Created a quizzing platform for the THON eLearning Management

System (Django) in a team of 3 captains.

▪ Learning Assistant, Penn State Computer Science Engineering

o Mentor students by hosting office hours and recitations to help students

understand in class concepts by applying them to assignments and projects

in CMPSC200(MATLAB), CMPSC465 (Data structures and algorithms)

and CMPEN454 (Computer Vision).

	Chapter 1 Introduction
	Chapter 2 Literature Review
	Model Training
	Neural Networks
	Non-Uniform Memory Access
	Wide and Deep Learning
	Inter and Intra Operation Parallelism
	Scale Speedup
	Memory Interleaving

	Chapter 3 Tools Overview
	Experiment System’s NUMA configuration
	Datasets
	Optimizers

	Chapter 4 Experiment: Performance across CPUs
	Fashion MNIST
	Wide and Deep
	Two Socket Experiment: operators parallelized on 2 sockets
	One Socket Experiment: no inter-operator parallelization

	Chapter 5 Experiment: Performance across memory configurations
	Fashion MNIST
	Cache Statistics

	Chapter 6 Results
	BIBLIOGRAPHY

