

THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY

RANDOM FOREST CLASSIFICATION IN COPY NUMBER VARIATION DISCOVERY

GOPAL JAYAKAR

SPRING 2020

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Biomedical Engineering

with honors in Biochemistry and Molecular Biology

Reviewed and approved* by the following:

Santhosh Girirajan

Professor of Genomics

Honors Advisor & Thesis Advisor

Shaun Mahony

Professor of Biochemistry and Molecular Biology

Honors Reader

* Electronic signatures are on file in the Schreyer Honors College.

i

ABSTRACT

 As sequencing technologies and machine learning methods advance, the potential to

diagnose genetic diseases and conditions increases. The leading genetic sequencing platforms,

Illumina included, all generate their sequencing output in the form of short genetic sequences on

the order of tens to hundreds of base pairs called “reads”. When generating a sequence of the

entire human genome, specialized software is used to stitch shorter reads together until a large

contiguous genetic sequence can be output. The current approach to genetic sequence elucidation

has several weaknesses, including difficulty detecting a type of genetic anomaly called a Copy

Number Variation (CNV).

 CNVs are either duplications or deletions in the genome and are larger than Single

Nucleotide Polymorphisms (SNP). CNVs have been implicated in the etiology of a wide range of

conditions, including Intellectual Disability (ID), Autism, and Schizophrenia. The listed

conditions here are all neurodevelopmental, CNVs have the potential to affect any area of health.

Accurate identification of CNVs from available sequencing data has the allure of providing

diagnostic potential (Clancy, 2008).

 Currently available CNV identification algorithms have large false positive rates,

potentially suggesting incorrect diagnoses. The individual algorithms additionally display little

concordance which makes correct CNV determination (termed a “CNV call”) difficult without

an external source of validation. This project attempted to create a higher quality CNV calling

algorithm by first polling several extant CNV algorithms, comparing and combining their

outputs, and using various quality-control metrics to generate a summary of their results.

ii

 These results are used as features in a random forest machine learning model. Machine

learning is a process by which computers can be trained to perform arbitrary tasks, and the

random forest model is a machine learning approach designed to assign categorical values to

each input using a gold standard as a reference to reinforce correct predictions. The “gold

standard” used for comparison was microarray SNP data. In this instance, the random forest

model is assigned the task of deciding whether the input is a duplication, deletion, or there is no

CNV. Using this approach, a higher quantity of CNV calls with greater precision and recall was

recovered than any of the individual algorithms could produce. With further refinement, the

methods used in developing this algorithm could be used in medical practice to diagnose a

variety of conditions with genetic origins.

iii

TABLE OF CONTENTS

LIST OF FIGURES ... iv

ACKNOWLEDGEMENTS ... v

Introduction .. 1

Materials and Methods ... 7

CODEX (Jiang, Oldridge, Diskin, & Zhang, 2015) ... 8
XHMM (Fromer & Purcell, 2014) ... 9
CLAMMS (Packer, et al., 2016) .. 11
CANOES (Backenroth, et al., 2014) .. 12
Developing Consensus Among Callers .. 12
Random Forest Classifier ... 14

Results .. 16

Discussion .. 19

BIBLIOGRAPHY .. 23

iv

LIST OF FIGURES

Figure 1: CNLearn Pipeline ... 7

Figure 2: Consensus Finding and Breakpoint Resolution .. 13

Figure 3: Precision/Recall and Call Number Across Callers ... 17

Figure 4: Relative Importance of All Features Excluding CNV Frequency 18

Figure 5: Precision-Recall Across Training Data Proportions ... 19

v

ACKNOWLEDGEMENTS

I would like to thank Vijay Kumar, Matt Jensen, Neil Kelkar, and Santhosh Girirajan for

their leadership, guidance, collaboration, and advice in the completion of this project.

Additionally, I would like to express my gratitude to Shaun Mahony for agreeing to read

and provide comments on this thesis project.

Lastly, I would like to thank Andrew Polyak for his mentorship as I began my work in

the Girirajan Lab.

This work was supported by R01-MH107431, R01- 472 GM121907, SFARI Pilot Grant

399894, and resources from the Huck Institutes of the Life Sciences 473 to Santhosh Girirajan.

This work was funded partly by the Big Data to Knowledge (BD2K) pre-doctoral training 474

program (T32LM012415) from the National Institutes of Health to Vijay Kumar Pounraja. The

funding bodies had no 475 role in data collection, analysis, and interpretation.

1

Introduction

Machine learning has grown to define the field of computation in recent years, and is

responsible for advances in various diagnostic tools. In general, machine learning is an

algorithmic process by which a computer program can approximate learning by making many

small adjustments to its own code, and preserving those modifications that best allow it to

perform the task provided. Due to the high computational power of machines, and the ever-

growing quantities available to modern bioinformaticians, machine learning continues to grow in

healthcare. Recent advances have increased machine learning’s share in such fields as health

monitoring, follow-up appointment optimization, and diagnostic tool improvements (Bhardwaj,

Nambiar, & Dutta, 2017).

Many types of machine learning exist, each with their particular strengths. This brief

review will focus primarily on classifiers, which are algorithms trained to ascribe a label to its

input. At the most fundamental level, the two types of machine learning are “supervised” and

“unsupervised”, and are utilized based upon whether or not the user has access to the “ground

truth”. For example, a scientist interested in building a machine-learning model which uses

dental x-rays to diagnose cavities would provide a database of x-rays to the machine learning

model, with labels indicating whether a dentist who examined the x-ray believed there was a

cavity in the image. In this instance, the dentist would be providing the “ground truth”, which

can also be thought of as the “correct” prediction. The ground truth and the given images or other

datapoints are called “training data”.

2

Supervised learning classifiers can take in both the given data and the ground truth, and

use the expected outcome to decide which factors should be considered in generating a

classification. In the case of a dental x-ray, such factors could include thin layers in certain

regions of the tooth or abnormalities in the tooth profile. For supervised learning, an accurate

ground truth is extremely important, because inaccuracies in the training data will result in

inaccurate predictions. These predictions can be tested within the machine learning model itself;

by segmenting the given data (with the provided ground truth) into two categories; training data

and test data. The model will train itself using the ground truth and training data, and determine

its own accuracy by comparing the predictions it would make on the test data to the

corresponding labels. Making small adjustments each iteration, a supervised learning program

can slowly decrease the number of misclassified inputs until it has successfully “learned” to

perform the task.

The other major type of machine learning is unsupervised learning, where data are given

to a machine learning program without indication of the ground truth. Instead of provided labels,

like “cavities” or “no cavities”, the machine learning algorithm will attempt to generate its own

categories, without traditional labels. Because the classification is blind and no ground truth is

provided, the generated categories are not meaningful without further analysis. It is possible that

the machine learning model will discover relations between the data scientists had not discovered

before, making unsupervised learning an interesting tool for analysis of large, less-interrogated

data.

Machine learning, while powerful, has certain limitations that cannot be exceeded using

current methodologies, depending on the particular algorithm implemented. The most relevant

3

limitation within science is perhaps machine learning’s lack of explanatory power. While

excellent at identifying correlations within data, machine learning cannot explain why two

variables may be related. Judea Pearl posits a three-leveled hierarchy of causal reasoning;

association is the most basic kind, intervention at the intermediate level, and counterfactuals at

the highest (Pearl, 2018).

The most basic level of causal reasoning is easily within reach of machine learning.

Association between two variables, like a particular symptom and disease likelihood, are the

primary target of many modern machine learning methods. At the second level, intervening,

Pearl suggests that a true AI would be able to ask hypotheticals. For example, if performing a

certain surgery would alleviate a specific set of symptoms. Given robust training, machine

learning methods may be able to help answer some of these questions, but extrapolation far

beyond the range covered by the training dataset will lead to nonsense results. Counterfactuals

are at the highest level, and ask “why”. For example, why might a certain medication cause a

particular side-effect. At the current moment, Pearl argues that these questions are currently off-

limits for machine learning. Within the frame work of biomedical research, establishing causality

is highly desirable for a full understanding of the etiology of disease.

There are a wide variety of machine learning classifiers, which all differ both in the

methods by which they classify inputs and the amount of information they can provide about

their internal logic. Some of these methods include Linear Classifiers, Support Vector Machines

(SVM), Decision Trees, and Neural Networks. Of these, the linear classifier is perhaps the most

basic.

4

Linear classification models are created from datasets that have many samples, each with

a set of associated numerical variables and divided into two or more classifications (Mitchell,

2017). Linear classifiers, given two input variables per sample, essentially plot the samples on an

x-y plane and assume that there exists a line that can divide the two populations. Before running

the program, the user can determine the form of the line; for example, logistic regression is a

form of linear classifier that assumes the line dividing the items of the different classifications is

of the form 𝑦 =
1

1+ⅇ−𝑥
. Additionally, a cost function must be defined. A cost function indicates

the performance of the model based upon how accurately it classifies the samples provided to it.

By making small modifications in the various coefficients and powers and retesting every

modification using the cost function, the dividing line will converge to the point at which it most

accurately separates the classes. These methods can be extrapolated to more categories and

higher variable counts, but have the advantage of always yielding an equation upon their

conclusion, making their decision-making process highly transparent. SVMs take an extremely

similar approach, but instead maps the variables into higher dimensional space and creates

hyperplane boundaries that can take complex shapes (Asa, Horn, Siegelmann, & Vapnik, 2001).

 Decision trees encompass a different approach to classification than Linear Classifiers or

SVM in that they do not attempt to represent the classes in any space (Horning). Instead,

decision trees are recursive structures that begin with a root note and many child nodes. Each

node represents a decision, which could be as simple as whether or not a specific variable

exceeds a threshold (e.g. “age” > 50 years). Each node will branch either into other nodes or a

classification, offering a clear path to classification of a novel input given all the associated

variables. Many approaches to generating and optimizing these structures exist, and they

5

sometimes do include optimization criteria other than overall accuracy. Some decision trees have

additional target function that reduce the number of nodes or minimize the depth of the tree so

that a human examiner might be able to understand the tree’s decision-making process.

Creating a truly optimized tree is an extremely difficult task, which is why using a Forest

might be advantageous. The Random Forest Classifier creates a wide variety of decision trees,

each with unique architectures (Horning). When encountering a new sample, Random Forest

classifiers poll each decision tree within it and use the results to assess the probability the sample

lies in each of the categories. While technically easily visible, the decision-making process

within a Random Forest classifier is unintelligible to humans because a large number of diverse

trees are employed in this process. The benefits of using a random forest are many. The unique

architecture of the various trees ensures that they are de-correlated, which makes the forest noisy,

but the final classification is performed by polling the trees or averaging their results. In this

manner, classification can be made using unbiased models that can capture extremely intricate

correlations between variables (Hastie, Trevor, Tibshirani, Robert, Friedman, 2009).

Although the specific reasoning behind classification decisions in Random Forest

Classifiers is opaque, variable importance data can be recovered from these programs. Each node

in each tree ascribes some amount of importance to each variable, and when aggregated, a total

variable importance score can be found. Other benefits of the Random Forest Model include its

ability to provide accurate predictions even when supplied with a large number of variables

assuming a large number of relevant variables (Segal, 2004) and that Random Forest Classifiers,

while they can potentially overfit to certain datasets, are unlikely to do so (Hastie, Trevor,

Tibshirani, Robert, Friedman, 2009). The combination of all of these advantages make Random

6

Forest Classifiers extremely useful not only in terms of their ability to classify novel elements

properly, but also in that they are fairly forgiving on the user even if the ideal set of features is

not properly identified, so long as few relevant features are excluded.

The robust nature of Random Forest Classifiers makes them a powerful tool in the

analysis of complex biological systems, where the most relevant variables can frequently be

difficult to identify. This project uses Random Forest Classification on the outputs of existing

whole exome sequencing (WES) based CNV calling algorithms to make calls with higher levels

of confidence than was previously possible. Increased levels of confidence are made possible not

only because of the classifier used, but also because of the benefits of ensemble approaches. An

ensemble approach is where many different methods of making a prediction are used alongside

one-another, typically where each methods has its own particular advantage or niche; similar

ensemble methods have been used to call CNVs from SNP array data (Zhang, et al., 2019). The

machine learning method will then combine and refine the results of each individual prediction

method to generate a prediction with higher confidence. In the case of CN-Learn, this is

implemented by using the results of four different WES-based callers as well as passing along

statistics like coverage depth and GC-content from the initial sequencing run.

My personal contributions to this project included developing pipelines and generating

CNV calls for 2 of the 4 callers. This work also included discussions and development of the best

methods by which consensus calls could be generated. Additionally, I developed the Dockerfile

that outlines what and how to package all the required software tools into a Docker container,

allowing for increased portability of the software. Lastly, I aided in testing and bugfixes for the

project.

7

Materials and Methods

All work was performed on computational servers at Penn State. For the purpose of

downloading CNLearn, a Github page was created: https://github.com/girirajanlab/CN_Learn.

The basic pipeline for CNLearn is summarized in the figure below. After all the individual

callers are installed, they are individually used to call CNVs from the available patient data.

Those calls are then overlapped with some tolerance to determine areas of potential agreement,

then provided to the machine learning model.

Figure 1: CNLearn Pipeline

A Dockerfile present on the github page can be used to both create the required

filesystem as well as install the requisite supporting programs needed for both the machine

learning model and the supporting CNV calling algorithms to function properly. It is based on

rocker, a dockerfile designed to provide easy access to various R builds—in this case, R 3.4.4.

The Dockerfile will automatically download and install various R packages, including sqldf,

devtools, and Rcpp, as well as bioconductor functions and an install of CODEX. In building the

docker container, the dockerfile will also automatically download the contents of the github

page, including the filesystem.

https://github.com/girirajanlab/CN_Learn

8

Other important software downloaded include python3.7.3 and associated packages, like

scipy (the machine learning software). samtools and bedtools (required for file preprocessing).

Meanwhile, the other CNV calling algorithms are installed: XHMM, CLAMMS, and CANOES.

Each of these algorithms require their own particular pre-processing steps and have their own

areas of advantage over the others. Each algorithm additionally follows its own process for

generating read depth, which can be examined in their respective program files.

CODEX (Jiang, Oldridge, Diskin, & Zhang, 2015)

CODEX, a CNV calling algorithm based in python, makes certain simplifying

assumptions about the read depth distribution in the data in order to generate calls. The

distinguishing feature of CODEX is its simultaneous approach to read depth normalization and

smoothening, which compensates for some of the innate noise in Whole Exome Sequencing. By

developing an expected coverage map assuming no CNVs, CODEX is able to examine the

coverage regions with large deviations and determine which potential sources of noise (such as

GC content) may add the most bias.

Additionally, CODEX estimates the effects of K latent variables to further reduce noise

in the dataset. It is critical that the correct value of K be chosen for accurate predictions, as large

K could smooth some true CNV signals. CODEX determines several potential values of K using

Akaike and Bayes information criterion, but frequently uses a more conservative value of K to

avoid eliminating true CNVs in favor of more noise. Ideally, this value would be chosen by

identifying the elbow on a scree plot, but as the CODEX publication notes, this method is

inconsistent as the plot does not always have a clear elbow. This means that the value of K is

9

chosen somewhat arbitrarily. Further tuning this K-value is an area of potential improvement

both for CODEX, and consequently, CNLearn.

When the process of normalizing is complete, CODEX seeks areas of the genome that

still differ greatly from the norm out of the population of the samples provided, assuming a

Poisson distribution of the underlying data. This approach means that CODEX does not need to

use a reference file indicating what normal coverage in the different genomic regions may be, but

also introduces a reliance of CNV calls on the other samples concurrently being processed. This

may be an issue if the training set used is either extremely small or has a large population with a

specific CNV.

If a large proportion of the screened individuals have low coverage at the CNV site and

few samples without the CNV are introduced, CODEX may not accurately classify the CNV as a

deletion because “expected” average coverage at that locus will be low. This also means that,

like many other CNV callers, it is easier for CODEX to detect rare CNVs than common ones.

This trend is reflected in the original CODEX publication, wherein the recall rates for rare CNVs

were far better than those for commons CNVs. These proportions may change with the selected

K-Value, but as recall increases, precision is likely to suffer.

XHMM (Fromer & Purcell, 2014)

Unlike CODEX, XHMM uses a more traditional approach to normalization. XHMM and

several other callers use Singular Value Decomposition (SVD) and Principal Component

Analysis (PCA) to filter out noise after depth of coverage is found. CNLearn also calculates the

optional GC-content and read complexity using Plink. These metrics allow XHMM to exclude

10

regions with extremely high GC-content and regions with relatively low complexity. High GC-

content greatly decreases the accuracy of read-depth estimation, and is currently an inherent

limitation on NGS techniques (Chen, Liu, Yu, Chiang, & Hwang, 2013). This will affect all of

the CNV callers, and even impacts the accuracy of the gold standard microarray data (Xia,

2010).

After the low-quality regions are filtered out, XHMM uses SVD to determine along

which variables the read depth changes most, and eliminates them from further analysis. Similar

to the K-value selection within CODEX, the elimination of these variables is intended to remove

noise that does not relate to the CNV state. Those variables are zeroed out, and the remaining

data is normalized. The user is expected to provide data like the “Standard deviation of

DELETION z-score distribution.” Fromer and Purcell provide default values for this metric and

other user-provided metrics such as “Mean of DUPLICATION z-score distribution” and “Mean

number of targets in a CNV call,” but these default parameters have not been thoroughly

investigated and will vary between sample populations. XHMM attempts to remedy this issue by

using the quality control metrics calculated before to filter incorrect CNV calls.

The actual CNV calls are all done by XHMM’s Hidden Markov Model (HMM). A

Markov Model represents the transition between several states, each depending on the current

state. For example, transitions between regular read depth to read depth indicating a duplication

or deletion. A Hidden Markov Model is a system in which the current state is also unknown to

the observer, useful for situation like CNV calls where even the true classification of the current

state is unknown. Using the aforementioned metrics and assumptions regarding the transmission

11

probability between the various states, the Viterbi algorithm can be used to determine which

states exist at which points.

CLAMMS (Packer, et al., 2016)

CLAMMS and XHMM exhibit a large number of similarities, both in their pre-

processing steps and regarding the way they perform CNV calls. CLAMMS also begins by

filtering out regions with extreme GC content and poor mappability, and eliminates rather large

regions surrounding the extreme GC content areas. Unlike XHMM, CLAMMS performs its

normalization after binning by GC content within certain windows. This, combined with the

strategy of GC filtering, reduces the amount of error introduced by GC content. To find the

diploid mean and standard deviation, as well as a parameter relating to a zero copy number and a

point mass flag, CLAMMS employs a mixture model fit using the expectation-maximization

algorithm. This process is performed individually over each target region, which allows for finer

tuning of these parameters in regions where regular coverage reasons may differ due to other

uncontrollable factors. Implicitly, calculating the mean and standard deviation in this model

assumes a gaussian distribution of coverage depth, distinguishing CLAMMS from the other

callers.

CLAMMS uses an HMM extremely similar to the HMM employed by XHMM. The

HMM model in CLAMMS additionally uses the four components calculated by the mixture

model to estimate the emission probabilities between the various copy number states. This is the

primary difference between the calling method for these two algorithms.

12

CANOES (Backenroth, et al., 2014)

The workflow in CANOES is perhaps the most similar to XHMM. Like XHMM,

normalization within target regions is conducted. Instead of normalizing within target regions,

CANOES elects to normalize the read count of the reference sample to match the read count of

the analyzed sample. Then, read depth means and standard deviations within each target region;

as is standard, these metrics are used as to calculate the emission probabilities for a Hidden

Markov Model which performs the actual calling. The fundamental difference between

CANOES and XHMM is its assumption that the distribution of read depths overlapping a target

region follows a negative binomial distribution. Because CANOES uses its own reference files

instead of relying on large batches of analyzed patients to generate its expectations for read

depth, it is more robust than XHMM when analyzing fewer samples.

Developing Consensus Among Callers

Each of these four algorithms artificially segments WES probe regions differently when

generating calls, and as such they have slightly different cutoff points for the same copy number

event. In order to resolve this discrepancy, a three-step process was used to both merge the calls

as well as attempt to discover the most accurate breakpoints for the CNV call. Step 1 involves

generating groups of CNVs that overlap with one-another to any extent, as shown in Fig. 2.

13

Figure 2: Consensus Finding and Breakpoint Resolution

Once the various groups are determined, a list of all the potential start-and-stop

coordinates is generated, creating a group of all the possible calls that fit any combination of the

start-and-stop points. Of these possible calls, the one with the lowest read depth (for deletions) or

highest read depth (for duplications) is kept and is considered the consensus call. In the case that

only one caller determined a CNV happened in a region, this CNV is kept without examining

read depth.

All of these calls, both the ones determined by consensus and by individual callers

without support, are then classified as “True” or “False” based on overlap with the microarray

data. Unlike when determining consensus, a 10% reciprocal overlap was required for

classification. 10% reciprocal overlap indicates that two regions will be considered truly

overlapping if the overlap size is at least 10% of the size of the smaller region. These samples,

14

tagged as “True” or “False” and accompanied by metrics like GC score and mappability within

the sample, are the inputs to the Random Forest Algorithm.

Random Forest Classifier

Python’s scikit-learn library was used to implement the random forest classifier.

Interestingly, because the library was used, it is fairly easy to change CN-Learn to use either the

SVM or LR strategies for classification instead of the random forest. The predictors within the

random forest model are the overall concordance, GC content within the prediction, mappability,

CNV size, read depth ratio, CNV type, Target Probe Count, and chromosome number, combined

the proportion of the call (or consensus call) to calls made by CLAMMS, XHMM, CODEX, and

CANOES. Hundreds of trees are generated, and a recommended 70% proportion of the

microarray-validated dataset should be employed to train the model, while the 30% remaining is

used as the test set. At this point, the classification model is constructed and can be used on

unvalidated data for CNV identification.

For the purposes of training the model, a set of 503 samples was acquired from the

Simons Variation in Individuals Project (SVIP). Of these 503 samples, 291 had microarray

validation. As such, this was the size of the combined training and test datasets. Further

experiments were performed on the data as though CLAMMS were the gold standard, but

because this strays from the biological ground truth, these results will not be discussed in this

paper. Additional trial runs were performed with various training set percentages, from 10% to

70% to examine precision-recall with varying amounts of training data. In total, the four calling

15

algorithms initially predicted 41,791 CNV events throughout all of these samples, which were

then run through the aforementioned breakpoint resolution process, yielding around 30,000

CNVs events. Further analyses were run using the 291 samples with microarray validation,

examining the sites where microarray probes were able to interrogate the exome.

16

Results

The data presented below (Fig. 3A, 3B) represent a run of CNLearn on 262 of the

samples from the SVIP dataset. Of the 2245 calls made by the various CNV callers, 365 were

validated by microarray. CNLearn, on the other hand, identified a set of 315 samples that it

claimed to be true CNVs, of which 266 overlapped with the microarray validation. Of the

various callers, CODEX lost the maximum number of calls after it was run through CNLearn,

going from 1685 CNV calls to 198 CNLearn-validated calls. Of all the individual callers,

CODEX also made the largest number of calls, by a factor of almost three. On the other end of

the spectrum, CANOES, the algorithm with the fewest number of calls, also retained the highest

percentage of its calls after running through CNLearn.

When examining the true positives (Fig. 3D), it is interesting to note that the largest value

in the Venn Diagram lies at the extreme center, with a total of 112 samples. This result indicates

the importance of concordance among callers in CNLearn’s decision-making, a result

recapitulated in Fig. 4. Indeed, only 27 calls made by a single caller, all of them belonging to

CLAMMS, were considered true by CNLearn.

17

Figure 3: Precision/Recall and Call Number Across Callers

 A B

 C D

 When performing these analyses, it is also interesting to examine the contribution of the

various variables provided to the classifier. Interestingly, the quality control metrics passed to the

various classifiers, Mappability and Read Depth Ratio, were among the more important features,

18

at a combined 16%. The callers themselves, CANOES (17%), CLAMMS (8%), XHMM (4%),

and CODEX (3%) have a combined 32% importance. Adding the concordance importance to this

number yields a total 46%, which is less than what may have been expected. As Figure 3 implies,

CLAMMS is a fairly important feature (8%), but is surprisingly overtaken by CANOES (17%)

which had no singlet calls maintained by CNLearn in the sample run (Fig. 3). Unsurprisingly,

CODEX and XHMM had relatively low importance compared to the other two callers.

Figure 4: Relative Importance of All Features Excluding CNV Frequency

Read depth ratio, another extremely important metric, was also extremely important when

resolving read depth breakpoints. CNLearn has shown that with this relatively small number of

features, extremely high precision and fair recall can be achieved. To avoid overfitting, a 70%

training set was used, but CNLearn showed that it was fairly robust across different training set

sizes.

19

Figure 5: Precision-Recall Across Training Data Proportions

The training data sizes here reflect percentages of the total population of 291 samples

with microarray validation. As such, each 10% reflects roughly an additional 29 samples. While

the 70% training curve is always superior to the other training proportions, the fact that the

model maintained precision and recall values each within 20% of the values when the largest

training data proportion was used. This result is extremely encouraging, as it may suggest that

the validity of the results only suffers slightly when a limited amount of data is available. For this

application, the Random Forest classifier appears to be the best choice due to the shape of its

precision-recall curve. The other methods tested offer much poorer precision-recall rates at the

70% training data proportion. LR has 88% precision and 75% recall, while SVM has 82% and

75% precision and recall, respectively.

Discussion

In general, the high precision and recall rates found for CNLearn are encouraging and

show that it can effectively recapitulate the microarray data results given the outputs of the four

20

CNV callers used. One of the more interesting results from the factor importance plot is the

relative unimportance of some of the callers. CNLearn draws heavily from CANOES and

CLAMMS at 17% and 8% respectively, but 50% importance is made up by factors independent

of any individual caller. Namely, mappability, read depth ratio, chromsome number, GC content,

target probe count, and size label.

This result suggests several directions for future improvements to this ensemble calling

method. Firstly, it may suggest that CANOES and CLAMMS should be kept, but that other

callers like EXCAVATOR, CoNIFER (Krumm, et al., 2012), or the recently published CODEX2

(Jiang, et al., 2018) could also be experimented with as additional sources of breakpoints. Further

analysis could also be performed with eliminating one or more of the callers, especially XHMM

and CODEX. Their extremely low importance (4% and 3%) and relatively low precision would

suggest that these callers act more as a source of noise than they do a meaningful signal. This

could crucially also cut down dramatically on the amount of time needed to process results,

which could be a priority in situations where less computational power is available.

While CNLearn has proven to be fairly robust with various training set proportions, we

have not proven that all of the individual CNV calling algorithms used within it would still

provide usable results with small patient numbers. As mentioned in the Methods and Materials

section, some of the callers that use ensemble methods to determine what normal and aberrant

coverage depths are, and use this to determine the CNV status at each locus. If the total number

of samples provided to these algorithms decrease, the output of the individual callers would

suffer, likely causing CNLearn to similarly suffer. This issue can be avoided by always running

larger numbers of samples through the individual callers, especially individuals with no

21

medically relevant CNVs. This does increase the total computation time, but may be needed to

ensure the best possible results.

While the individual calling algorithms do add somewhat to processing time, there are

certain strategies that could be employed to reduce this. In previous runs, unpublished code

experimented with parallelizing the process of calling the various CNVs, reducing wait time by

running similar tasks simultaneously. By far one of the biggest time sinks is the long time

required for read alignment because the original authors of each caller used different methods.

XHMM uses GATK, CANOES uses bedtools, CODEX uses samtools, and CLAMMS relies on

BWA for FASTA indexing. These steps are extremely time-consuming, and they all perform the

same essential task.

As mentioned earlier, the use of microarray data as the validation set for CNV calls does

expose some of the limitations of CNLearn. Microarrays are limited in that they can only

interrogate small regions of the genome and their accuracy can be impacted by GC content. With

the advent of long-read sequencing, it is possible that more accurate gold standards may become

available. However, while this limitation currently represents an upper bound on the accuracy of

CNLearn, this experiment does show that CNLearn can recreate calls made by an unrelated CNV

calling method using only the output WES-based methods. While it has not been experimentally

shown, this lends credence to the idea that CNLearn could easily adapt to receive inputs from

higher quality sources of true CNV information. As with many machine learning programs,

CNLearn is limited primarily by the quality of the training data available to it.

In terms of improving the performance of the individual CNV callers, several remedial

steps could be taken. In the case of CODEX, the k-value used smoothen the data could be

adjusted. Currently, the method used to generate the k-value is conservative, allowing for some

22

false calls to ensure that it captures more true positives. Based on the fact that CODEX had such

a large number of calls, it seems that a less conservative k-value selection method could be

chosen so the number of false calls would be reduced. Moving forward, however,

implementation of CODEX2, an updated CODEX program, should be implemented. CODEX is

not maintained anymore, which could be an issue for those seeking to implement CODEX on

newer paradigms (such as hg38) as they emerge. The other caller with low importance was

XHMM, for which a clear solution does not present itself. XHMM made 649 calls, in the same

neighborhood as CLAMMS, which made 596 calls. For this reason, reducing the amount of

unsmoothed variation in read depth does not present itself as a good path to take moving

forward. Additionally, it would be interesting to examine the ability of CNLearn to work across

sequencing machine types. Namely, different models of sequencing machines or machines

manufactures by different companies. The data used in this experiment all originated from SVIP,

all using the Agilent SureSelect Human All Exon v2.0 capture kit and examining the same

targets. As some of these factors change, the performance of CNLearn is expected to be affected,

but the extent is unknown.

In general, CNLearn shows extremely good performance, with sensitivities and

specificities that hold consistent across CNV size and rarity. While there are a host of potential

optimizations that could be made to this program, it has proven to be a strong test case for

ensemble-based machine learning methods for CNV calling. It currently shows a great deal of

improvement over other CNV calling tools, and has extremely high precision, which would be

critical if CNLearn or similar technologies would be used in a clinical setting.

23

BIBLIOGRAPHY

Asa, B.-H., Horn, D., Siegelmann, H., & Vapnik, V. (2001). Support Vector Clustering. Journal of

Machine Learning Research, 2.

Backenroth, D., Homsy, J., Murillo, L., Glessner, J., Lin, E., Brueckner, M., . . . Shen, Y. (2014, 7).

CANOES: detecting rare copy number variants from whole exome sequencing data. Nucleic

acids research, 42(12), e97.

Bhardwaj, R., Nambiar, A., & Dutta, D. (2017). A Study of Machine Learning in Healthcare. Proceedings

- International Computer Software and Applications Conference. 2, pp. 236-241. IEEE Computer

Society.

Chen, Y., Liu, T., Yu, C., Chiang, T., & Hwang, C. (2013, 4 29). Effects of GC Bias in Next-Generation-

Sequencing Data on De Novo Genome Assembly. PLoS ONE, 8(4).

Clancy, S. (2008). Copy Number Variation. Nature Education, 1(95), 1.

Fromer, M., & Purcell, S. (2014). Using XHMM software to detect copy number variation in whole-

exome sequencing data. Current Protocols in Human Genetics, 81(SUPPL.81), 7.23.1.

Hastie, Trevor, Tibshirani, Robert, Friedman, J. (2009). The Elements of Statistical Learning The

Elements of Statistical LearningData Mining, Inference, and Prediction, Second Edition.

Horning, N. (n.d.). Random Forests : An algorithm for image classification and generation of continuous

fields data sets.

Jiang, Y., Oldridge, D., Diskin, S., & Zhang, N. (2015, 3 31). CODEX: a normalization and copy number

variation detection method for whole exome sequencing. Nucleic acids research, 43(6), e39.

Jiang, Y., Wang, R., Urrutia, E., Anastopoulos, I., Nathanson, K., & Zhang, N. (2018, 11 26). CODEX2:

Full-spectrum copy number variation detection by high-throughput DNA sequencing. Genome

Biology, 19(1), 202.

24

Krumm, N., Sudmant, P., Ko, A., O'Roak, B., Malig, M., Coe, B., . . . Eichler, E. (2012, 8). Copy number

variation detection and genotyping from exome sequence data. Genome Research, 22(8), 1525-

1532.

Mitchell, T. (2017). Tom Mitchell : Naive Bayes and Logistic Regression. Machine Learning, 1-17.

Packer, J., Maxwell, E., O'Dushlaine, C., Lopez, A., Dewey, F., Chernomorsky, R., . . . Reid, J. (2016).

CLAMMS: A scalable algorithm for calling common and rare copy number variants from exome

sequencing data. Bioinformatics, 32(1), 133-135.

Pearl, J. (2018, 1 11). Theoretical Impediments to Machine Learning With Seven Sparks from the Causal

Revolution.

Segal, M. (2004). Machine Learning Benchmarks and Random Forest Regression.

Xia, X. (2010). The Effect of Probe Length and GC% on Microarray Signal Intensity: Characterizing the

Functional Relationship.

Zhang, Z., Cheng, H., Hong, X., Di Narzo, A., Franzen, O., Peng, S., . . . Hao, K. (2019). EnsembleCNV:

an ensemble machine learning algorithm to identify and genotype copy number variation using

SNP array data. Nucleic acids research, 47(7), e39.

ACADEMIC VITA

Education
The Pennsylvania State University Schreyer Honors College, University Park, PA 2020
Bachelor of Science in Biomedical Engineering, Minor in Chemistry

Research and Work Experience
Intern and Employee at Girirajan Lab at Penn State 2015-2020

• Evaluating accuracy of various Copy Number Variation calling algorithms

Intramural Research Training Award Fellow at National Institutes of Health 2018

Summer
• Investigating methylation patterns in subtypes of ovarian cancer

• Ascertaining quality of mouse cancer as a model for human cancer

Summer Intern at Genentech 2019 Summer
• Evaluating clinical strength of novel eye health test

• Analyzing competitive strength of app within home monitoring market

Research

• Peer reviewed paper: Kumar, V., Jayakar, G., Jensen, M., Kelkar, N., Girirajan, S. (2019). A

machine-learning approach for accurate detection of copy-number variants from exome

sequencing. Genome Research, 29: 1134-1143. Doi: 10.1101/gr.245928.118

• Poster: Jayakar, G., Giangreco, N., Petrykowska, H., Margolin, G., Gotea, V., & Elnitski, L.

(2019). Differential Methylation and Ovarian Endometrioid Cancer: A Comparison Between GE

Mice and Human. Poster presented at the National Institutes of Health Summer Poster Day,

Bethesda, Maryland.

• Poster: Jayakar, G., Haskova, Z., Willis, J. (2019). Review of Home Monitoring Devices in

Ophthalmology. Poster presented at Summer Intern Poster Day, South San Francisco, California.

Skills
Programming

• Performing research using programming and scripting in Java, Python, R and awk

• Running genomic analysis programs, including GATK, CODEX, CLAMMS and other CNV

tools

International Experience
• Intensive Korean course, Sogang University, with NSLI, U.S. Department of State, Summer 2014

• Spanish language courses on Cuban history and culture, Havana, Cuba, CIEE, Summer 2017.

Service, Leadership, and Recognition
Volunteer, Mount Nittany Medical Center 2010-2020

• Completed over 350 Hours of Volunteer Work & received scholarship

Academia 2016-2020
• Remote Area Medical clinic club (Secretary, 2019-2020)

• Penn State Quiz Bowl (Public Relations Chair, 2019-2020)

• Vollmer-Kleckner and Schreyer Honors College Scholarships (2016-2020)

Boy Scouts of America (Troop 31) 2005-2016
• Achieved the Rank of Eagle Scout

