
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF ELECTRICAL ENGINEERING

MACHINE LEARNING FOR ELECTROMAGNETIC

METAMATERIAL DESIGN

PHILIP J. O’CONNOR

SPRING 2020

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Electrical Engineering

with honors in Electrical Engineering

Reviewed and approved* by the following:

Douglas H. Werner

Professor of Electrical Engineering

Thesis Supervisor

Julio Urbina

Professor of Electrical Engineering

Honors Adviser

* Electronic approvals are on file.

ABSTRACT

Computational electromagnetics has found success in the design and simulation of

metamaterial devices for many applications. This work explores machine learning as a

tool for computationally efficiently modeling metamaterial devices. Conventional

methods have proven effective, though computationally expensive and slow, for

analyzing metamaterials. By using a dataset of geometric metamaterials generated by

traditional computational electromagnetic methods, a neural network can be trained to

generate and analyze new metamaterial designs more quickly than previous methods.

This work develops and presents a method for parameterizing a dataset of

geometric metamaterial patterns and electromagnetic properties for a neural network to

generalize these electromagnetic properties to new patterns. The motivation for training a

neural network on this computationally expensive process of analyzing the

electromagnetic properties of geometric metamaterials is to ultimately utilize the quick

computation of neural networks. Through parallelized GPU computing, thousands of

metamaterials can be simulated by the trained neural network in the same time

conventional methods can analyze a single design.

iii

TABLE OF CONTENTS

LIST OF FIGURES ... v

LIST OF TABLES ... viii

ACKNOWLEDGEMENTS ... ix

Chapter 1 - Introduction ... 1

1.1 Motivation ... 1
1.2 Background ... 2

1.2.1 Metamaterial Antennas ... 2
1.2.2 Applying Machine Learning to Metamaterial Antennas 4

1.3 Original Contributions of this Work ... 5

Chapter 2 - Related Work .. 6
2.1 Machine Learning Work in Antennas and Propagation 6

2.2 Machine Learning Work in Computational Electromagnetics 8

Chapter 3 - Fundamentals of Neural Networks ... 9
3.1 Neural Networks as Universal Function Approximators 9

3.1.1 General Neural Network Structure ... 9

3.1.2 Nonlinear Activation Functions ... 10
3.2 Gradient Descent and Backpropagation ... 11

3.3 Hyperparameters ... 12
3.3.1 Learning Rate ... 13
3.3.2 Number of Layers and Size of Layers .. 14

3.3.3 Dataset Size .. 14
3.4 Types of Neural Networks .. 15

3.4.1 Fully Connected Neural Networks ... 15

3.4.2 Convolutional Neural Networks ... 16
3.4.3 Recurrent Neural Networks .. 16

3.4.4 Generative Adversarial Neural Networks .. 17
3.5 Training Methods .. 17

3.5.1 Transfer Learning ... 17

3.5.2 Batch Normalization ... 18
3.5.3 Dropout ... 18

3.6 Computational Speed-up of GPU Parallelization ... 19

Chapter 4 - Encoding Metamaterials for Neural Networks ... 20

4.1 Data Generation .. 20
4.2 Input Encoding .. 22

4.2.1 Binary Image Encoding .. 22

4.2.2 Bezier Control Point Encoding ... 23
4.3 Output Encoding ... 24

iv

4.3.1 Magnitude and Phase Encoding ... 24
4.3.2 Real and Imaginary Encoding .. 28

4.3.3 Geometric Sorting to Explore Output Continuity 28
4.4 Exploration Space of Patterns ... 29

4.4.1 Solution Space for Data Generation ... 30
4.4.2 Pattern Symmetry ... 31

Chapter 5 - Neural Network Implementation and Results ... 35

5.1 Metric for Error ... 35

5.2 Fully Connected Neural Network Model ... 36

5.3 Convolutional Neural Network Model ... 37
5.4 Comparison of Fully Connected and CNN ... 38
5.5 Hyperparameters ... 39

5.5.1 Number and Size of Layers .. 39

5.5.2 Dataset Size .. 40

Chapter 6 - Extensions of Method ... 42

6.1 CMA-ES Optimizing the optimization ... 42
6.2 Inverse Neural Network Method for Direct Pattern Generation 45

6.2.1 Motivation .. 45
6.2.2 Pseudocode of Method ... 46

6.2.3 Results of Inverse Neural Network Method ... 46
6.2.4 Limitations and Drawbacks .. 53

Chapter 7 - Conclusion and Future Work .. 55

7.1 Summary ... 55
7.2 Future Work .. 57

References .. 59

Academic Vita…………………………………………………………………..……61

v

LIST OF FIGURES

Figure 1.1: Rendering of a metamaterial array with the cross-section of the

repeated single element depicted in the upper left .. 3

Figure 1.2: (left) Rendering of a metamaterial array with the cross-section of the

three repeated elements depicted on the right ... 4

Figure 3.1: Graphical representation of the connections and nodes of a fully

connected neural network ... 10

Figure 3.2: Plot of the sigmoid activation function ... 11

Figure 4.1: Depiction of a metamaterial binary image encoding for a pattern

generated from 5x5 control points with enforced 4-fold symmetry 21

Figure 4.2: (left) Depiction of the Bezier surface defined by the green control

points. (right) The cross section of the Bezier surface that is used as a

metamaterial pattern ... 23

Figure 4.3: Two very similar metamaterial patterns with very similar phases.

However, phase wrap-around leads to the two phase being parameterized as

nearly 360 degrees apart ... 25

Figure 4.4: Plot of the absolute difference of predicted and actual phase on the test

data set. There is noticeably higher error near the boundaries of -180 and 180

degrees phase .. 26

Figure 4.5: Two overlapping plots. In orange, there is a scatter plot of the absolute

difference between the predicted and actual phase showing a tendency for

higher error near the boundaries of -180 and 180 degree. This scatter plot also

shows even higher error near the positive 180 degree boundary. In blue, there

is a histogram of all the true phase of the test set. The higher number of

phases near the -180 degree boundary explains the lower error on this side. 27

Figure 4: There are four plots showing the magnitude and phase encoding and the

real and imaginary encoding, all linearly normalized between -1 and 1. They

are plotted along x-axis by index of geometric similarity. The thing of note

for this plot is which encodings are most sensitive to changes in value from

small changes in geometry. ... 29

Figure 4.7: Five depictions of random-walk metamaterial patterns are shown. 31

Figure 4.8: Nine depictions of metamaterial patterns generated with 3x3 Bezier

control points and with 4-fold symmetry. ... 32

vi

Figure 4.9: Nine depictions of metamaterial patterns generated with 3x3 Bezier

control points and with 2-fold symmetry. ... 32

Figure 4.10: Nine depictions of metamaterial patterns generated with 3x3 Bezier

control points and with no symmetry. .. 33

Figure 4.11: Nine depictions of metamaterial patterns generated with 5x5 Bezier

control points and with 4-fold symmetry. ... 33

Figure 4.12: Nine depictions of metamaterial patterns generated with 5x5 Bezier

control points and with 2-fold symmetry. ... 34

Figure 4.13: Nine depictions of metamaterial patterns generated with 5x5 Bezier

control points and with no symmetry. .. 34

Figure 5.1: Plot of the data set size versus the validation RMSE. 41

Figure 5.2: Plot of the average mean error throughout 170 generations of CMA-

ES optimizing the neural network’s hyperparameters of learning rate, layer

size, and number of layers. ... 43

Figure 5.3: Three scatterplots. One scatterplot for each of the parameters being

optimized simultaneously during 170 iterations of CMA-ES on the neural

network hyperparameters. The top plot shows the learning rate. The middle

plot shows the number of layers. The bottom plot shows the size of the

layers. .. 44

Figure 6.1: Plot of the output space encoded as real and imaginary numbers. The

X marks are targets and the corresponding trail of the same color shows the

inversion method’s attempt to reach each X. The red dots show several

thousand random input points mapping out the neural network in output

space. .. 48

Figure 6.2: Plot of the output space encoded as real and imaginary numbers. The

X marks are targets and the corresponding trail of the same color shows the

inversion method’s attempt to reach each X. The red dots show several

thousand random input points mapping out the neural network in output

space. .. 49

Figure 6.3: Plot of the output space encoded as real and imaginary numbers. The

X marks are targets and the corresponding trail of the same color shows the

inversion method’s attempt to reach each X. The red dots show several

thousand random input points mapping out the neural network in output

space. .. 50

vii

Figure 6.4: Plot of the output space encoded as real and imaginary numbers. 50

inversion iterations are started from very similar positions. Several of the

paths successfully reach the target X. The red dots show several thousand

random input points mapping out the neural network in output space. 51

Figure 6.5: Zoomed in depiction of the previous plot. Plot of the output space

encoded as real and imaginary numbers. 50 inversion iterations are started

from very similar positions. Several of the paths successfully reach the target

X. The red dots show several thousand random input points mapping out the

neural network in output space. .. 51

Figure 6.6: Plot of the output space encoded as real and imaginary numbers. 50

inversion iterations are started from very similar positions. Now the target

path is farther from the starting point and fewer of the paths reach the target.

The red dots show several thousand random input points mapping out the

neural network in output space. .. 52

viii

LIST OF TABLES

Table 5.11: Mean of the mean errors for 32 output predictions for the fully

connected neural network architecture. .. 37

Table 5.22: Maximum of the mean errors for 32 output predictions for the fully

connected neural network architecture. .. 37

ix

ACKNOWLEDGEMENTS

 I would like to thank my friends and family for offering endless support

throughout my time at Penn State.

 I would like to thank Dr. Werner for welcoming me to his incredible lab and

supporting me throughout my research. I would also like to thank everyone in the

CEARL for promoting a great lab experience and helping make everyday a pleasure to

come into lab. I would especially like to thank Ronald Jenkins and Sawyer Campbell for

their great attitudes toward research and their direct help every step of the way. I really

could not have asked for a better research experience.

 The author acknowledges partial support of this work by the Penn State MRSEC,

Center for Nanoscale Science (NSF DMR-1420620), and by the DARPA/DSO Extreme

Optics and Imaging (EXTREME) Program (HR00111720032). The findings and

conclusions of this work do not necessarily represent the beliefs of either of these groups.

Chapter 1

Introduction

Computational electromagnetics is a field study that utilizes Maxwell’s equations

to model the interactions of electromagnetic waves and the surrounding environment.

This field of study is constantly battling the limitations of computational power,

algorithmic efficiencies, and electromagnetic modeling. Increasingly more powerful

modeling tools enable the design of increasingly more complex and useful

electromagnetic devices. All three frontiers--computation, algorithms, and

electromagnetics--are areas of study that progress the field of computational

electromagnetics.

This thesis presents an algorithmic advancement, specifically a method for

leveraging deep learning with neural networks to simulate electromagnetic metamaterial

devices. Additionally, there will be brief discussion of the GPU computation that enables

the computational efficiency of neural networks.

1.1 Motivation

Machine learning is quickly finding its way into almost every research discipline.

Machine learning is especially applicable to fields that involve significant computation,

like computational electromagnetics. This thesis explores a method for combining the

potential computation speed-ups of machine learning methods and the modeling of

computational electromagnetics.

2

Neural networks are a quickly growing and popular method for modeling all sorts

of data. Neural networks are universal function approximators, so they make a good

candidate for accurately modeling the nonlinear problems within computational

electromagnetics.

1.2 Background

1.2.1 Metamaterial Antennas

Metamaterial antennas come from a field of study known as computational

electromagnetics, which basically refers to methods for designing antennas that rely on

optimization methods and computation without necessarily modeling the broader type of

antenna [1].

Metamaterial antennas specifically are a field of study that uses complex

geometric shapes to essentially emulate and customize light-molecule interactions.

Similar to the way 700nm visible red light behaves differently with glass and metal, these

light interactions can be manipulated by changing the size scales of the “molecules” to be

on the order of 100nm rather than ~1nm for molecules. At this 100nm size scale, various

manufacturing techniques can create complex and well defined shapes. If the right

“molecule” shapes are chosen, this meta-material can have unique and desirable

properties. This is a highly nonlinear problem with frequency-geometry resonances often

dominating the behavior of metamaterial antennas, and antennas in general.

3

In contrast to computational metamaterial antennas, a conventional antenna, like a

patch antenna, dipole antenna, or Yagi Uda array, are designed based on equations

derived from Maxwell’s equations. These well established designs and shapes have

popular simplifications and approximations to Maxwell’s equations that make their

electromagnetic properties as antennas simple to predict.

 In contrast, metamaterial antennas are generated through time-intensive

computation of Maxwell’s equations or through full-wave finite element analysis. Figure

1.1 shows a metamaterial antenna array generated from the extrusion of a less model-able

2D shape.

Figure 1.1: Rendering of a metamaterial array with the cross-section of the repeated single element

depicted in the upper left.

In summary, the method to simulate a complex metamaterial shape like this one is

relatively simple but time-intensive. And this makes it difficult to design a metamaterial

antenna with the desired behavior.

4

This problem becomes even more difficult when designing complex metamaterial

antenna arrays, with multiple complex shapes.

Figure 1.2: (left) Rendering of a metamaterial array with the cross-section of the three repeated

elements depicted on the right.

1.2.2 Applying Machine Learning to Metamaterial Antennas

The computational complexity discussed above seemed like a great potential

application of machine learning and neural networks. The hope would be to generate a

training set of data, train a neural network, and then use a much quicker and

computationally parallelized method for simulating these complex shapes.

 The intuition supporting this hope lies in the ability of a neural network to

learn a dimensionally compressed version of the problem based on the specifics of the

defined constraints on the metamaterial antenna. For example, often a researcher in my

lab will have a good understanding of constraints on the metamaterial antenna--perhaps

there are material decisions, like silicon or metal plating, or height and size

considerations for individual antenna elements that are known before modeling.

5

However, the current non-machine-learning methods for simulating these antennas

cannot make use of these known constraints for computational speed-up.

The full-wave solvers are told the shape is silicon, for example, but this

information is used in the equation for every calculation of a silicon metamaterial. In

contrast, a neural network trained on just silicon metamaterials will have an easier

problem to solve.

However, the dataset generation and neural network training must be faster than

the conventional method for this new method to be useful. Or at least there must be a

quicker transfer learning method onto subtly new problems, like the difference of training

a silicon neural network model vs a metal-plated neural network model.

1.3 Original Contributions of this Work

 A method for using fully connected neural networks to model

electromagnetic metasurfaces

 Discussion of the machine learning training methods for understanding

and modeling a problem in electromagnetics

 Exploration of a neural network inversion method for metasurface pattern

generation

6

Chapter 2

Related Work

Machine learning is becoming more popular for many different problems, and the

field antennas and propagation is no exception. Many conventional problems are being

explored for more efficient machine learning solutions while entirely new methods are

being developed to better integrate machine learning solutions. Within the last few

decades, machine learning has seen direct implementations of the some of the most

similar sub-domains, i.e. image recognition, remote sensing, and signal processing [2].

This section will briefly discuss related work within the larger field of

electromagnetics while the following section will discuss the theoretical work within the

domain of machine learning.

2.1 Machine Learning Work in Antennas and Propagation

Many recent papers explore various machine learning methods in the broad field

of antennas and propagation. While neural networks are becoming a very popular

machine learning technique for a wide array of problems, other machine learning

methods are also being explored. Support vector machines, or SVMs, can be used to

model and design reflectarrays [3]. The design method is faster and maintains accuracy

compared to method-of-moments solvers.

7

Neural networks have become an exceptionally popular technique. A

convolutional neural network based on work from the machine learning and image

recognition field can be applied to an inverse electromagnetic scattering problem [4]. The

neural network can be applied to complex-valued, like electromagnetic scattering while

maintaining accuracy.

Methods for improving neural networks are also being developed by the antennas

and propagation community. A method was developed to reduce the required dataset size

for using a neural network approach to design a patch antenna [5]. The method uses data

mining techniques to essentially create new trainable data from the data that is already

present.

New machine learning algorithms intertwined with electromagnetic intuitions can

be developed for specific antenna problems. A new antenna optimization method was

developed for the design of a cavity-backed slot antenna and then applied to 5G

applications [6]. The designed antenna was then manufactured and shown to have

accurate and realizable properties.

Generative adversarial networks, or GANs, are also becoming very popular

among many fields, as well as the field of antennas and propagation. GANs make use of

two competing networks in a reinforcement learning context to develop more accurate

models. An energy-based model was used a proof-of-concept for employing GANs in

general modeling methods [7].

Unsupervised methods can be applicable to antenna problems as well. By using

the popular K-means algorithm to cluster similar groups of basis functions, multipole

design approaches can be applied to antenna design [8].

8

2.2 Machine Learning Work in Computational Electromagnetics

Machine learning methods are also being explored for computational

electromagnetics problems, like designing metamaterial devices. Supervised learning

methods, like neural networks, have been particularly effective.

The metamaterial elements can be parameterized as various simple shapes,

simulated using conventional methods, and then used to train a neural network. Once

trained, the neural network can accurately and quickly simulate similar metamaterial

elements [9]. There is however discussion and complications with directly applying this

trained neural networks to new but related metamaterial problems.

Different parameterizations of metamaterial patterns allows for larger or smaller

exploration spaces. A 1-dimensional barcode-like encoding was used with a generative

adversarial network approach to develop a method that allows computationally more

efficient design of metamaterial arrays [10]. The work can likely be applied to solving

other inverse design problems as well.

9

Chapter 3

Fundamentals of Neural Networks

3.1 Neural Networks as Universal Function Approximators

Neural networks have been mathematically shown to be capable of approximating

any arbitrarily complex function, even nonlinear functions. In theory, a large enough

neural network can model anything [11]. Unfortunately, the neural network needs to be

exponentially larger for a linearly more complex problem. However, the practical

difficulty comes in learning this ideal neural network for a given problem.

3.1.1 General Neural Network Structure

Neural networks are a system of nodes and connections. These connections are

directed from the input layer, generally portrayed on the left, to the output layer,

portrayed on the right. There are different ways these connections are structured and

different ways these connections react to a node’s value.

In general, the neural network input layer is populated with the values from the

input data, then various activation functions are used to perform combinations of this

input layer to populate the successive hidden layers of the neural network until the output

layer is populated. The structure of the neural network also enables backward

computations, the backbone of neural network training.

10

Figure 3.1: Graphical representation of the connections and nodes of a fully connected neural

network.

Figure 3.1 depicts the structure of a fully connected neural network. The inputs

are fed into nodes then layers of nodes are connected through activation function until

reaching the outputs.

3.1.2 Nonlinear Activation Functions

The nonlinear modeling capability of neural networks comes from the choice of a

nonlinear activation function. The first prominent nonlinear activation function was the

sigmoid function, shown in figure 3.2. The combination of many of these simple

nonlinear functions enable the neural network as a whole to model very complex,

nonlinear functions.

11

Figure 3.24: Plot of the sigmoid activation function (unitless).

3.2 Gradient Descent and Backpropagation

The backbone of neural network training is the backpropagation algorithm. This is

the algorithm that enables a neural network to iteratively improve its prediction ability

using pairs of input and output data. Backpropagation is a gradient descent method that

calculates the error of every parameter in the neural network--every connection and bias

term. This error then determines whether any given parameter should be increased or

decreased to improve the network’s ability to predict a given training example.

 Without discussing the full details of the algorithms, the vector forms of

the equations are shown below [12]. For each of the multiplicative weight terms and the

12

constant bias terms, the error is calculated backwards from the output layer (equations 3.1

and 3.2) where ⊙ refers to the Hadamard product [13].

 𝛿𝐿 = ∇𝑎 𝐶 ⊙ σ′ (z𝐿) (3.1)

 𝛿𝑙 = ((𝑤𝑙+1)𝑇 𝛿𝑙+1) ⊙ σ′ (z𝑙)

(3.2)

Then the gradient of this error with respect to each network parameter is

calculated (equations 3.3 and 3.4).

 𝛿𝐶

𝛿𝑏𝑙
𝑗

= 𝛿𝑙
𝑗

(3.3)

 𝛿𝐶

𝛿𝑤𝑙
𝑗𝑘

= 𝑎𝑙−1
𝑘 𝛿𝑙

𝑗
(3.4)

3.3 Hyperparameters

The hyperparameters of a neural network are all the heuristically determined

design decisions that affect the architecture and training of neural networks. The many

different machine learning methods have many different possible hyperparameters to

describe the method for training and structure of the neural network. Common

hyperparameters in the training of neural networks are the learning rate, the depth of the

network, and the width of layers of a network. There is often a trade-off between

computational speed and the likelihood of improved training.

13

3.3.1 Learning Rate

The learning rate of neural network training refers to the multiplicative factor

given to the error gradients during backpropagation to actually adjust the network

parameters. Generally, just taking the error gradients as actual values would cause too

steep an adjustment in model parameters, so generally the learning rate is much less than

1 to offer a more smooth convergence to better network parameters.

The learning rate can be a fickle hyperparameter for neural network training,

especially due to the practicality of wanting to increase the speed of neural network

training. Having a very large learning rate can cause the backpropagation algorithm to

worsen the accuracy of a neural network and prevent convergence. Having too small a

learning rate will cause the training to take an exceptionally long time. A common

compromise is to have an adjustable learning rate. The intuition is that training can start

with a large learning rate to quickly train the broader relations captured in a neural

network, and as training progresses, a smaller learning rate allows gradient descent to

converge to the extrema to model the finer details.

There are many important considerations for choosing the correct learning rate,

but there are really only heuristic methods for finding good learning rates for a given

problem. For example, the learning rate for training a convolutional neural network to

identify images of cats has no obvious implication for a good learning rate for training a

fully connected neural network to model metamaterial elements. However, choosing

learning rates from similar published applications is generally the best starting point

available.

14

3.3.2 Number of Layers and Size of Layers

Similar to learning rate, the number of layers and size of layers in a neural

network are heuristically determined. There are no steadfast rules, and many celebrated

advances in machine learning come from new combinations of the number and size of

layers. In general, more layers and larger layers allow for a greater modeling capacity,

but there definitely a critical point where neural network training fails to extend to larger

networks. Larger networks guarantee slower training, but they also can prevent the

network from learning. This field of study is what puts the “deep” in “deep learning.”

Some architectures are more or less susceptible to problems with going deeper.

3.3.3 Dataset Size

While not always considered a hyperparameter, the size of the dataset is a critical

consideration for ensuring a neural network will generalize beyond the training data. In

general, there are rigorous methods for predicting a sufficient dataset size. There are

ways to predict the ceiling, or the maximum that would be needed, but they are often

orders of magnitude larger than practical, and many estimates are orders of magnitude

larger than needed.

Depending on how data is generated, the simplest method for determining a

sufficient dataset size is often to keep producing data until more data no longer seems to

help improve the accuracy of the neural network. Another possible method is to simply

review similar published work describing their sufficient dataset sizes.

15

3.4 Types of Neural Networks

There are many types of artificial neural networks (ANNs), and hybrids of these

many types, so only the most popular types will be mentioned below. Also, these neural

networks will be discussed in a supervised learning context, though all of them could be

used for unsupervised and reinforcement learning methods as well.

3.4.1 Fully Connected Neural Networks

The fully connected, or feedforward, neural network is the original, and in many

ways simplest, neural network. Every node in a given layer of a fully connected neural

network connects to every node in the next layer. As described above in the general

neural network architecture section, a fully connected network connects nodes with a

simple nonlinear activation function, like a sigmoid or ReLU (rectified linear unit).

Fully connected neural networks are often a good starting point for a new

machine learning problem because they can offer early insights into the complexity of

modeling the problem. There are fewer hyperparameters to change for a fully connected

neural network, so a hyperparameter sweep can be more quickly performed. Ideally, a

relatively simple fully connected network will offer good performance and maybe that is

sufficient for a specific application. But if the fully connected network is not sufficient, it

might at least suggest what network architecture will be needed.

16

3.4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of ANNs that utilize

convolution to learn hierarchical patterns within data. CNNs preserve spatial relations

between data and generalize across different spatial scales, so they are well posed for

image data, in any dimensionality.

CNNs use kernels to determine connections between nodes of a network. The

kernels are convolved with the data to geometric representations of the data. CNNs make

use of backpropagation to iteratively apply gradient descent to the weights of the kernels.

The equations for backpropagating through a CNN are more complex than the simple

fully connected network, but they can still be vectorized and parallelized to utilize the

computation speed-ups of computation on a GPU.

Deep learning is an area of particular interest. Methods are being developed to

enable very large and deep networks to be effectively trained [14]. Convolutional neural

networks have been empirically shown to be particularly good at training very deep

networks [15].

3.4.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of ANNs that utilize backward (or

feedback) connections to enable a memory of internal states between successive passes to

the network. RNNs can process collections of successive input data and are well-posed

for learning series data [16].

17

Relatedly, long short-term memory (LSTM) neural networks are a type of

recurrent neural networks that use a memory cell with “forget” gates [17]. They are

empirically shown to perform well on series data that involves multiple time scales, like

the stock market or language interpretation.

3.4.4 Generative Adversarial Neural Networks

Generative adversarial neural networks are a class of machine learning systems

wherein two ANNs compete to improve each other’s’ models [18]. The generative

network learns to create inputs indistinguishable from the training data while the

discriminative network learns to identify true data from data created by the generative

network. GANs have recently become popular for problems across many research topics,

and some machine learning researchers doubt their supremacy, but they have undeniably

found success in many problems. Part of this success is likely in their intuitive method of

operation.

3.5 Training Methods

3.5.1 Transfer Learning

Transfer learning is a method for taking a previously trained neural network and

using some of its weights for connections as the initialization for a new network on a new

problem [19]. Transfer learning works best when this new problem is closely related to

the problem of the original network. Transfer learning can dramatically reduce the

18

computational time required to achieve good accuracy on a new problem. This is

especially true for very deep networks, with hundreds of layers. Rather than retraining a

whole new convolutional neural network to, for example, identify cats in images, a

researcher can use one of many open-sourced pre-trained neural networks on similar

image classification problems.

3.5.2 Batch Normalization

Batch Normalization is a method for improving the training time and accuracy of

neural networks. Batch Normalization works by rescaling and normalizing the activations

of connections during the forward pass and backpropagation of neural network training

[20]. This helps spread the learning of the neural networks across all the nodes rather than

allowing a small subset of the nodes to dominate the learning and reduce the

generalizability and modeling capacity of the network. It has been empirically shown

improve accuracy and computational time.

3.5.3 Dropout

Dropout is a method to randomly disable nodes in a neural network during

training to reduce dependency on any given node [21]. A certain dropout rate will be

defined during training to remove that percentage of nodes in a given layer. It has been

empirically shown that this helps the network generalize and avoid overfitting.

19

3.6 Computational Speed-up of GPU Parallelization

The major benefit of using neural networks in the pursuit of computationally

quicker algorithms is the ability for neural network computations to be vectorized and

computed in parallel on a GPU (graphics processing unit). Every single training pair of

inputs and outputs can be computed in parallel since they are all independent of each

other. In practice, usually subsets of the entire training data are taken due to GPU

memory limitations, but these training subsets, or batches, greatly increase the

computation speed.

The calculations for the forward pass and backpropagation of a neural network

can be vectorized, meaning there are vector notation forms of all the equations. GPUs are

specifically designed to calculate thousands or millions of similar and simple

computations at the same time [22]. While the actual application of graphics is best

solved with these simultaneous computations, neural networks can also greatly benefit

from simultaneous, parallel computation.

This computational speed-up for the neural network forward pass and

backpropagation of gradient descent enabled by GPUs is reason for the explosion of

neural network research in the last decade. Many of the algorithms for the foundations of

neural networks were developed decades ago, but the vectorization and parallelization

enabled by GPUs are what brought neural networks to the cutting edge of computation

and modeling. The work of this thesis is largely dependent on the computational speed-

ups of neural networks calculations being performed on GPUs.

20

Chapter 4

Encoding Metamaterials for Neural Networks

The conventional method for simulating a metamaterial is to create the

geometrical structure in an electromagnetics software, like HFSS or COMSOL, and

assign the corresponding material types to different parts of the structure, like silicon or

various metals. Then the software uses full-wave solvers, finite-element analysis, and/or a

lot of Maxwell’s equations to slowly but surely simulate the structure. This method is

computationally very slow.

 The work in this thesis is specifically focused on 2-dimensional metamaterials.

While there is existing work on the more complex 3-dimensional metamaterials, they are

much more difficult to manufacture and are less common in practical applications.

Another benefit of 2-dimensional metamaterials is there are some equations to closely

approximate their behavior at a fraction of the computational time.

4.1 Data Generation

Without digging into the details of the grating solver method, Reticolo allows for

2-dimensional metamaterials to be simulated relatively quickly compared to full-wave

and finite-element solvers [23]. The simulations run by defining the geometric cross-

section, the extrusion height, the operating frequency, and the material of the

metamaterial shape. Given these inputs, Reticolo will then compute the electromagnetic

21

transmission and reflection of an incident wave. The geometric cross-section is defined

by an arbitrary resolution binary image of the exact shape.

Using this Reticolo method, about 50,000 2-dimensional metamaterials patterns

can be simulated in about 12 hours on a 10-core intel CPU. These simulations produce

the electromagnetic transmission and reflection properties of interest.

Figure 4.15: Depiction of a metamaterial binary image encoding for a pattern generated from 5x5

control points with enforced 4-fold symmetry.

An important additional design decision is what 50,000 patterns should actually

get simulated. This question relies on some familiarity with metamaterials and some level

of intuition about the specific application for the final metamaterial device. The question

really is how complex of metamaterial shapes will be needed for the final application.

Allowing for a very large solution space will require much more computation to search

through that space, and many more patterns to accurately train a neural network. These

design decisions will be discussed in more detail in the remainder of this section.

22

After the data is generated, the output is saved as magnitude and phase values for

the 2 different polarizations of each the electric and magnetic components of the

transmission and reflection, for a total of 32 values.

4.2 Input Encoding

 There are several possible ways to encode an electromagnetic

metamaterial for a neural network. The two methods explored in this paper are: an

arbitrary resolution binary image of the pattern and a Bezier surface control point

encoding.

4.2.1 Binary Image Encoding

The binary image encoding uses the same encoding as the original data

generation--an arbitrary resolution binary image of the exact cross-sectional pattern. The

benefits of this method are the neural network will be training on the exact metamaterial

shape used to create the output data--there are no approximations made to represent the

data.

The inherent drawback to this method is the data size and significant computation

complexity of large images. Based on the data generation method and previous validation

work, an image resolution of 100x100 pixels gives an accurate result from the Reticolo

method [23].

23

Representing the geometric metamaterial data as a binary image also has machine

learning applications. For those familiar with neural networks, an image-type input

immediately suggests the use of convolutional neural networks. CNNs are often the best

method for reducing the large dimensionality of images for a neural network.

4.2.2 Bezier Control Point Encoding

The Bezier surface control point encoding allows for a significantly reduced

dimensionality by parameterizing and limiting the space of possible shapes.

A Bezier surface is a type of spline that is defined by coordinate positions and

smoothly interpolated. The Bezier surfaces in this work are surfaces existing in 3-

dimensions. The simplest analogy is to think of a bedsheet pulled tight by several people.

Now imagine there are puppet strings attached to certain spots above and below the

bedsheet. The strings can be manipulated up and down to change the shape of this

bedsheet.

Figure 4.26: (left) Depiction of the Bezier surface defined by the green control points. (right) The

cross section of the Bezier surface that is used as a metamaterial pattern.

24

Once this Bezier surface is defined, then a cross-section is taken to define a two

dimensional shape, and that is the shape used as the 2-dimensional metamaterial pattern.

One key feature of this Bezier surface cross-section method is that it produces

smooth shapes, which allows for a relatively continuous change in electromagnetic

properties between very similar shapes.

Additionally, this method results in a significantly smaller input dimensionality

compared the binary image method. Now, a small number of control points directly

represent the metamaterial shape. This work explores Bezier representations by 3x3 and

5x5 control points, so even 5x5 = 25 control points is significantly less than 100x100 =

10,000 pixels for the binary image representation.

4.3 Output Encoding

After the data is generated, the output is initially encoded as magnitude and phase

values for the 2 different polarizations of each the electric and magnetic components of

the transmission and reflection, for a total of 32 values.

The two tested encodings for the output values were to leave the values as

magnitude and phase and to convert the values to real and imaginary numbers.

4.3.1 Magnitude and Phase Encoding

After a few tests of training a neural network on magnitude and phase encodings

of the transmission properties, it became clear there was significant error caused by

25

phase-wrap-around. This encoding caused very similar metamaterial patterns to be

recorded as having drastically different phases. As shown in figure 4.3, these two patterns

are very similar, and have very similar phases, but they are on the arbitrary cut-off of

where phase happens to be referenced, so they are recorded as having the most different

possible phases.

Figure 4.37: Two very similar metamaterial patterns with very similar phases. However, phase

wrap-around leads to the two phase being parameterized as nearly 360 degrees apart.

To further explore this exact problem, the plot in figure 4.4 show the absolute

difference between the predicted phase values and the true phase values. There is a clear

trend on the boundaries of the -180 to 180 degree phase range. Some patterns that are

truly -180 degree phase are predicted to be 180, and vice versa. There is simply no

mechanism for a neural network to learn and accurately characterize this wrap-around

26

Figure 4.48: Plot of the absolute difference of predicted and actual phase on the test data set. There

is noticeably higher error near the boundaries of -180 and 180 degrees phase.

Additionally, the figure above shows an interesting difference between patterns

with phases closer to -180 degree phase and patterns closer to 180 degree phase. There is

noticeably more error on the 180 degree phase end.

To explore this inconsistency in neural network accuracy depending on phase, the

plot in figure 4.5 is two overlapping plots--the orange is a scatter plot showing the same

metric as above, the absolute difference between prediction and true phase, and the blue

is a histogram of the total number of patterns of a given phase. There is a clear data bias

to having a dataset with patterns that coincidentally have a phase centered around -140

degrees.

27

Figure 4.59: Two overlapping plots. In orange, there is a scatter plot of the absolute difference

between the predicted and actual phase showing a tendency for higher error near the boundaries of -180 and

180 degree. This scatter plot also shows even higher error near the positive 180 degree boundary. In blue,

there is a histogram of all the true phase of the test set. The higher number of phases near the -180 degree

boundary explains the lower error on this side.

This exploration of phase-encoding the output data also led to a discovery in the

dataset of a data bias stemming the particular solution space of metamaterial patterns

being explored. While this is not inherently bad, it is an important consideration moving

forward. If the final training is data-limited, as in more training empirically seems like it

would produce an appreciably more accurate neural network, then it might be worthwhile

to keep this dataset bias in. If the dataset empirically seems to be a sufficient size, or even

larger than necessary, it might be more appealing to remove some of the data centered

around this bias at -140 degrees phase and flatten out the histogram.

28

4.3.2 Real and Imaginary Encoding

As discussed above, the magnitude and phase encoding of the transmission and

reflection properties of the metamaterials causes problems due to phase wrap-around, so

the simplest solution is to convert the values to real and imaginary numbers.

Using this real and imaginary encoding removed the phase-dependent error of the

neural network prediction

4.3.3 Geometric Sorting to Explore Output Continuity

During the exploration of the data, a study of the sensitivity of the output

parameters was conducted. Metamaterials patterns were sorted by geometric similarity.

An arbitrary starting pattern was chosen as the starting pattern. Then the highest

correlating pattern was chosen as the following pattern. And this process was repeated

until the patterns were sorted such that nearby patterns would be geometrically similar.

Figure 4.6 shows the results of plotting the electromagnetic transmission encoded

both as real and imaginary numbers and as the magnitude and phase.

29

Figure 4.610: There are four plots showing the magnitude and phase encoding and the real and

imaginary encoding, all linearly normalized between -1 and 1. They are plotted along x-axis by index of

geometric similarity. The thing of note for this plot is which encodings are most sensitive to changes in

value from small changes in geometry.

Some of the important understandings to be derived from figure 4.6 are which

encodings are more sensitive to small changes in geometry and how many total changes

in direction any of the patterns take. This two observations help inform the necessary

modeling capacity of the neural network. Seemingly, there are 30 to 50 nonlinear changes

in electromagnetic output parameters.

4.4 Exploration Space of Patterns

The exploration space of solutions being considered is an important consideration

for designing a metamaterial element irrespective of machine learning methods. Ideally,

the exploration space will be sufficiently complex to offer a rich variety of metamaterial

30

solutions while not being prohibitively complex to be computationally tractable. The

problem unfortunately becomes entangled with machine learning once the neural network

complexity and training become a limiting factor.

4.4.1 Solution Space for Data Generation

Relying on intuitions from previous work with metamaterials, the starting point

for this work was on 3x3 control point encodings for data generation. These patterns

could be fed through the data generation method described above and applied to either a

binary image encoding or a Bezier control point encoding. Additionally, the 5x5 control

Compared to other methods for generating metamaterial geometries, the Bezier

control point method offers an easily parameterized exploration space that changes

smoothly and minimizes resonances.

One considered method for data generation was using optionally symmetric

random-walk patterns. This would result in a significantly larger exploration space than

the Bezier control point encodings for a comparable pixel resolution. The random-walk

patterns could be smaller images scaled up, but there are other difficulties with random-

walk patterns as well. They have many more discontinuities and nonlinear resonances

31

due to the geometric jaggedness.

Figure 4.711: Five depictions of random-walk metamaterial patterns are shown.

 Ultimately, the work of this thesis was performed on the Bezier control

point encodings.

4.4.2 Pattern Symmetry

Another important consideration relating to limiting the exploration space is to

optionally enforce a symmetry in the geometry of the metamaterial pattern. Enforcing

either a 2-fold or 4-fold symmetry reduces the exploration space while allowing some

larger and more complex patterns.

Figures 4.8, 4.9, and 4.10 depict metamaterial patterns generated using a less

complex 3x3 control point Bezier surface method. These patterns are simpler than the

5x5 control point patterns. Figures 4.11, 4.12, and 4.13 show 5x5 control point patterns.

Figure 4.8 shows the 3x3 control point pattern with 4-fold symmetry enforced.

These are the geometrically simplest patterns.

32

Figure 4.812: Nine depictions of metamaterial patterns generated with 3x3 Bezier control points and

with 4-fold symmetry.

Figure 4.913: Nine depictions of metamaterial patterns generated with 3x3 Bezier control points and

with 2-fold symmetry.

33

Figure 4.1014: Nine depictions of metamaterial patterns generated with 3x3 Bezier control points

and with no symmetry.

Figure 4.1115: Nine depictions of metamaterial patterns generated with 5x5 Bezier control points

and with 4-fold symmetry.

34

Figure 4.1216: Nine depictions of metamaterial patterns generated with 5x5 Bezier control points

and with 2-fold symmetry.

Figure 4.1317: Nine depictions of metamaterial patterns generated with 5x5 Bezier control points

and with no symmetry.

35

Chapter 5

Neural Network Implementation and Results

Based on the discussion in Ch. 3, various neural network considerations can be

implemented for different data encodings.

5.1 Metric for Error

There are many ways to characterize the error of a neural network, and there are

different metrics used for classification and regression problems. Root mean square error

(RMSE) is often used for regression problems, and it is the square root of the sum of the

squared errors. RMSE essentially encapsulates a square factor into its computation of

error. The biggest problem with only using RMSE as a metric, at least for this work, is

that RMSE changes when the number of output regression targets. A network trying to

predict a single number and a network trying to predict 32 numbers cannot intuitively be

compared through RMSE.

This work focuses on two different metrics: the mean of the mean errors and the

maximum mean error. The mean of the mean errors, though confusingly named, is simply

the mean for each different predicted output variable on each test data, and then the mean

of those means. The maximum mean error is simply the maximum of the means of each

predicted output variable. While these metrics also do not allow direct comparison

between a network with single output variable and one with 32 outputs, it was found to

be a more easily understood metric for comparing different output networks.

36

5.2 Fully Connected Neural Network Model

The original, and in some ways simplest, neural network architecture is the fully

connected architecture. Every node from a given layer is fed into every node of the next

layer. Every function can be approximated by a sufficiently large set of hidden layers.

However, training for arbitrarily complex functions becomes difficult and unreliable.

This is the major drawback of fully connected networks. In theory, a fully connected

layer will be able to solve any problem, but in practice, this theoretical ideal network is

not easily discovered.

The fully connected network is often tried first for a given machine learning

problem. For this problem, fully connected networks were thoroughly explored and

ultimately provided the best accuracy.

The modeling problem is to predict 32 outputs for the metasurface pattern’s

electric and magnetic reflection and transmission for each polarization.

Table 5.1 lists the exact training accuracies on the various metamaterial problems

with Bezier control points encodings. The combinations listed are the 3x3 and 5x5

complexity patterns each with the constraints of four-fold symmetry, two-fold symmetry,

and no symmetry. The errors given are shown as the discussed mean of the mean errors.

37

Table 5.11: Mean of the mean errors for 32 output predictions for the fully connected neural

network architecture.

3x3 5x5

4-Fold Symmetric 1.70% 3.72%

2-Fold Symmetric 2.01% 5.26%

Arbitrary/Non-symmetric 2.56% 9.19%

Table 5.2 shows the same networks with same combinations of pattern

complexity and symmetry but with the metric of the maximum of the mean errors.

Table 5.22: Maximum of the mean errors for 32 output predictions for the fully connected neural network

architecture.

3x3 5x5

4-Fold Symmetric 5.43% 16.7%

2-Fold Symmetric 6.07% 24.9%

Arbitrary/Non-symmetric 7.87% 27.7%

5.3 Convolutional Neural Network Model

Given their surge in popularity over the last several years, CNNs seemed like

good candidates for an application that can be easily encoded as an image, and where

38

spatial relations are crucial. Many architectures were attempted, but the convolutaional

neural networks were unable to achieve a similar performance as the fully connected

methods.

On the problem of the 3x3 Bezier control point encoding of the metamaterial

patterns, a mean of the mean averages of 6.77% and a maximum of the means of 27.5%

was achieved. The other problems were also explored but the CNNs reliably had

significantly worse than the fully connected architectures for the same problem.

5.4 Comparison of Fully Connected and CNN

For every tested problem, the best performance came from neural networks with a

fully connected architecture compared to a convolutional architecture. There are

countless additional convolutional methods that could be explored and compared, but

many types of networks were considered. Many depths and widths of CNNs were tested,

as well as transfer learning from popular CNN architectures. However, there are some

important and inherent limitations to convolutional neural networks for an application

like this.

There is electromagnetic intuition that points to a few possible problems with

CNNs for this application. The primary limitation comes from the kernel size. A kernel

size that is, for example, 11x11 pixels applied to a binary metamaterial image that

100x100 pixels will inherently prohibit any learning or understanding of interactions that

happen between antenna components outside of the kernel size.

39

From an electromagnetic understanding of antenna elements, a metamaterial

antenna cannot be understood as the combination of local interactions. CNNs are greatly

limited in their abilities to capture relationships that happen at scales much larger than

their kernel. Perhaps, the kernel sizes could be greatly increased, but this dramatically

reduces the computational speed that is a major benefit of convolutional neural networks.

As the kernel approaches the size of the images being modeled, the CNNs effectively

become very similar to fully connected layers.

Perhaps there are hybrid methods that could employ CNN layers in parallel with

fully connected layers, or employ skip-connections, to improve the performance of the

CNN methods for this problem, but the highly resonant and non-localizable aspects of

this problem will inherently cause modeling difficulty for CNNs.

5.5 Hyperparameters

While no theoretically provable recommendations for hyperparameters can be

easily determined, discussion of the empirical hyperparameters can be useful for applying

to similar problems. This section will discuss some of the empirically determined better

hyperparameters and considerations of the hyperparameters.

5.5.1 Number and Size of Layers

For both the fully connected and convolutional neural network architectures,

many combinations of the number and size of layers were tested. In general, the method

40

for determining the best combination of the number and size of layers was to start small

and slowly grow. Once growing the number and size of layers showed worsening error,

then the number and size of layers is finalized. This is certainly not a perfect method, and

there is significant debate in the wider field of machine learning, but there are only

heuristic methods for determining the ideal network architecture [22].

Typically, the fully connected networks showed worsening once 10 or more

layers were added. For the fully connected network, layer sizes were also heustrically

determined. Some of the tested architectures used a cascading layer size, going from very

large layers and progressively shrinking, while others maintained a consistent layer size.

For cascading architectures, an initial hidden layer of 10,000 nodes seemed to be the

approximate point of no returns. For architectures with constant layer size, 1000 to 2000

nodes was often the point with no returns.

5.5.2 Dataset Size

Since data is able to be generated relatively quickly, about 50,000 patterns in 12

hours, the training is not dataset-size limited. However, it is still worth exploring the

necessary dataset size. The point of diminishing returns--more data does not seem to

drastically help--happened around 50,000 to 100,000. This is the approximate elbow

point in the Figure 5.1 for the 3x3 = 9 control-point problem. It is likely more complex

patterns would require significantly more training data.

41

Figure 5.118: Plot of the data set size versus the validation RMSE.

42

Chapter 6

Extensions of Method

In addition to the neural network method developed, two extensions of the

method were explored as ways of improving the method and extending its ability to be

applied to meaningful problem. The extension for improving the method used CMA-ES

as an optimization tool for determining better hyperparameters. The extension for

applying the method to meaningful problems used neural network inversion for

generating metamaterial patterns with desired electromagnetic properties.

6.1 CMA-ES Optimizing the optimization

CMA-ES, or covariance matrix adaptation for multi-objective optimization, is a

method for optimizing several dependent variables [24]. The method utilizes an

evolutionary strategy and the covariance of matrices representing the objective variables

to explore the solution space of an objective function. Often, CMA-ES is an effective and

efficient optimization for multi-objective problems.

In the context of this paper, the multi-objective problem needing to be solved was

the hyperparameters of a fully connected network. Other work has performed a similar

optimization of neural network parameters using CMA-ES [25].

The three hyperparameters being optimized were the learning rate, the size of

each layer, and the number of layers. Each hidden layer of the neural network was

constrained to be the same size.

43

CMA-ES was used in place of a random or linearly-spaced sweep of

hyperparameters, which is often done but is computationally intensive [22].

Figure 5.219: Plot of the average mean error throughout 170 generations of CMA-ES optimizing the

neural network’s hyperparameters of learning rate, layer size, and number of layers.

Figure 5.2 shows the non-smooth convergence over the CMA-ES generations.

The first several generations show a quick decrease in error. However, the last many

generations do not exhibit improved learning. The unrepeatable nature of neural network

training caused by random initializations make it a very difficult multi-objective

optimization problem.

44

Figure 5.320: Three scatterplots. One scatterplot for each of the parameters being optimized

simultaneously during 170 iterations of CMA-ES on the neural network hyperparameters. The top plot

shows the learning rate. The middle plot shows the number of layers. The bottom plot shows the size of the

layers.

Despite the unreliable convergence, this CMA-ES optimization does show

valuable information when viewed by the individual optimization variables. As shown in

figure 5.3, the number of layers of the network showed clear convergence to 7 layers. The

learning rate showed convergence near 0.8 x 10^-3, but its convergence was less clear.

And the size of the layers showed the least definitive convergence. All of these

observations help inform the significance of these hyperparameters in influencing the

neural network accuracy.

45

6.2 Inverse Neural Network Method for Direct Pattern Generation

This inverse neural network method aims to use a trained neural network and

gradient descent to generate metamaterial patterns with desired electromagnetic

properties. This paper employs a very similar method of backpropagating error gradients

into the input layer as described in this work [26].

6.2.1 Motivation

Once a neural network is trained, there are various methods for inverting the

neural network to solve the inverse problem. For the work in this thesis, the main

problem--or the forward problem--is to input a metamaterial pattern and accurately

generate the electromagnetic transmission and reflection. However, the inverse problem

is, in many ways, even more useful. Ideally, there would be a method for inputting the

desired electromagnetic properties and outputting an appropriate metamaterial pattern.

This method of neural network inversion attempts to take the neural network

trained on the forward problem and use it to generate metamaterial patterns with the

desired properties.

46

6.2.2 Pseudocode of Method

The method uses backpropagation and gradient descent to iteratively change a

random shape to one with the desired properties.

To invert the trained neural network:

1. Guess a random metamaterial shape and set it as the input layer of the trained

network

2. Forward propagate this random guess through the network

3. Find the output error based on compared to the desired transmission properties

4. Backpropagate the error gradients through the network and all the way into the

input layer

5. Update the random guess in the input layer based on this error gradient multiplied

by a learning rate

6. Repeat steps 2-5, iteratively improving the original guess until a defined stopping

point is reached

6.2.3 Results of Inverse Neural Network Method

For evaluating this method, the neural network was limited to only a single

polarization of the transmission of the electric field, represented as a real number and an

47

imaginary number. This allows 2-dimensional plots to represent the output space of the

neural network.

There are several types of figures generated to represent this method. All types are

similar but were generated with slightly different goals. All figures are plotted on the real

and imaginary axes of the neural network output space. They also All have several

thousand red points depicting random input combinations projected in the neural network

output space. This helps depict the possible and likely outputs of the neural network

given the constraints of the input.

Figure 6.1 shows the inverse method attempting to start at one random point and

find solutions to 50 different targets. This was the most ambitious, and most useful,

application of the method, but it ultimately fails to converge to the majority of the target

outputs. The targets that are closest to the starting in output space are not necessarily the

points closest input space--which input space is the actual space being changed--but

targets close in output space tend to have the best success in convergence.

48

Figure 6.121: Plot of the output space encoded as real and imaginary numbers. The X marks are

targets and the corresponding trail of the same color shows the inversion method’s attempt to reach each X.

The red dots show several thousand random input points mapping out the neural network in output space.

After performing several more similar runs, some performed appreciably better

than others. The run in figure 6.2 seems to have found a circular path that allowed

gradient to reach most of the target Xs. This suggests the random starting point has a

significant impact on convergence.

49

Figure 6.222: Plot of the output space encoded as real and imaginary numbers. The X marks are

targets and the corresponding trail of the same color shows the inversion method’s attempt to reach each X.

The red dots show several thousand random input points mapping out the neural network in output space.

 Related to the last point, figure 6.3 shows a starting position that caused the

inversion method to hardly reach any of the target points. The method seems to perform

50

better when it starts in a position densely populated in output space. Figure 6.3 starts in a

very sparse spot.

Figure 6.323: Plot of the output space encoded as real and imaginary numbers. The X marks are

targets and the corresponding trail of the same color shows the inversion method’s attempt to reach each X.

The red dots show several thousand random input points mapping out the neural network in output space.

Figures 6.4 and 6.5 depict a trial that starts at 50 very close points in input space

that all try to converge to the same output target. While very close in input space, these

points also appear very close in output space. The yellow starting points try to converge

to the grey X and convergence trails end with a green marker. This method ultimately had

much more success than the previous method of trying to reach any point. While the

majority of points were still unable to converge to the target, several points were able to

reach the target output. Since only one actual point needs to reach the target to have a

desirable metamaterial, then this is sufficient.

51

Figure 6.424: Plot of the output space encoded as real and imaginary numbers. 50 inversion

iterations are started from very similar positions. Several of the paths successfully reach the target X. The

red dots show several thousand random input points mapping out the neural network in output space.

Figure 6.525: Zoomed in depiction of the previous figure. Plot of the output space encoded as real

and imaginary numbers. 50 inversion iterations are started from very similar positions. Several of the paths

52

successfully reach the target X. The red dots show several thousand random input points mapping out the

neural network in output space.

Performing several more of these trials with start points close in input space

showed convergence was inconsistent. The example in figure 6.6 was intentionally

chosen as appearing close in output space as the previous example but having a target

slightly further away in output space. This example of trying to traverse a farther distance

in output space was successful in having at least one iteration reach the target, but far

fewer than the closer previous example.

Figure 6.626: Plot of the output space encoded as real and imaginary numbers. 50 inversion

iterations are started from very similar positions. Now the target path is farther from the starting point and

fewer of the paths reach the target. The red dots show several thousand random input points mapping out

the neural network in output space.

53

6.2.4 Limitations and Drawbacks

 This method of inverting the neural network for direct pattern generation

is susceptible to several problems. Firstly, it is inherently dependent on the accuracy of

the original trained neural network. If the original neural network has an average of 1%

error in its predictions, this inversion accepts that 1% error prediction to be ground truth

and will never be able to perform better than the error inherent to the neural network.

 Assuming a perfect underlying neural network, this inversion method is

still susceptible to other drawbacks. Most of these problems are related to gradient

descent and being trapped in local extrema. It is very possible a randomly chosen input

point will be unable to reach the target through gradient descent. And since the target is

defined in output space, there will be several points in input space matching to the target

output, so gradient descent will not have a clear, single direction to follow. This is the

many-to-one problem, where several possible choices map to the same target output.

This method also has no mechanism for determining if a target has a possible

solution. In the forward problem, the inputs to the neural network are guaranteed to be

physically realizable devices. In the inverse problem, depending on the constraints of the

metamaterials and size of the exploration space in the training data, there will likely be

points in the output space that are impossible to realize, and the neural network has no

method for considering this possibility.

Fundamentally, this inversion method would only be useful if it is

computationally quicker than optimization methods using the forward neural network.

Unfortunately, a single iteration of the inversion method is unable to vectorize and

54

parallelize its computation to benefit from the same computationally speed-up other

methods have. In the example where many trials start in similar input spaces and have the

same target, the method could be parallelized, but there is still only one target being

computed. The alternative forward neural network methods can simply simulate many

thousand patterns and compute them in parallel, hoping one will be close to the target.

Ultimately, this neural network inversion method has unreliable convergence for

the problem of randomly guessing a point in input space and converging to an arbitrary

target in output space. However, there might be merit to combining this method in a

hybrid technique with other methods. Perhaps, rather than using entirely random points,

the forward pass of the neural network could be used to generate several thousand

random points. Then the closest several random points could be fed into this inversion

method to fine-tune the metamaterial patterns and their output characteristics.

55

Chapter 7

Conclusion and Future Work

7.1 Summary

 This work explored several neural network methods for modeling

electromagnetic metamaterials. This motivation for using neural network methods in

computational electromagnetics is the computational speed-up enabled by the neural

network algorithms and parallelization of GPU computations. Electromagnetics intuition

and machine learning methods for neural networks were combined to develop a

successful model of a class of metamaterials. Important factors like the exploration space

and parameterization of the metamaterials, the architecture of the neural network, and

required accuracy of the final model were considered for assessing the method.

Computational electromagnetics is dependent on quick algorithms, and this

method used neural networks to develop a metamaterial method that was computationally

quicker than previous methods. A critical caveat of this claim is that the method

described requires using conventional computational electromagnetics methods to build a

dataset to train the network. While this new machine learning is still dependent on the

slower conventional methods, the computational speed-up for certain problems exists--

there is just an economy of scale comparison that must be made. This machine learning

method can be a few orders of magnitude faster if many metamaterial elements within the

same class are needed to populate an array. However, if only a single metamaterial

element is needed, the conventional methods can still be faster.

56

Some of the underlying and essential electromagnetics intuition of metamaterial

devices helped inform and debug some the neural network design and training decisions.

Most importantly, the shortcomings of the CNN models are most likely related to the

inability for CNN kernel to model relationships that happen at spatial scales much larger

than the kernel size. For the problem explored in this work, a kernel size of even

11x11pixels will struggle to capture the relationships between opposite corners of a

100x100 pixel binary image representing the metamaterial. Having kernel sizes much

larger is computationally impractical. This is a major reason the convolutional neural

network model likely performed worse than the fully connected model on the same

problem.

The fully connected neural network was the preferred model and discussions of

hyperparameters and training methods were discussed to offer insight into how machine

learning can be applied to other problems within computational electromagnetics and

antennas in general. While there are few theory-driven approaches to determining

hyperparameters on new machine learning problems, the hyperparameters of similar

work can offer a good, heuristic starting point for further research.

Additionally, two extensions of this neural network method were briefly

discussed. The optimization algorithm CMA-ES was applied to a hyperparameter sweep

of neural network parameters in an attempt to more quickly improve the neural network

model. The method was better than random guessing, but it did not converge smoothly to

ideal hyperparameters. The other additional method explored was neural network

inversion for direct metamaterial pattern generation. Once a neural network is trained,

there are methods that attempt to invert this neural network--to iteratively backpropagate

57

error weights into the input layer. Ultimately, this method showed some promise for

reaching a pattern with the desired electromagnetic properties, but its convergence was

unreliable. Neural network inversion is not a robust method for generating metamaterial

patterns, but there are ways it can be incorporated to improve other methods.

7.2 Future Work

As mentioned above, the primary purpose of the work of this thesis was to

provide a computational speed-up for analyzing metamaterials such that optimizing a

device metamaterial becomes more computationally tractable. The faster the algorithms,

the more complex a problem becomes solvable. The work of this thesis is intended to be

applied to metamaterial optimization. This will involve thousands or millions of function

calls to the neural network scheme developed by this work. Building upon previous

metamaterial optimization techniques, incorporating a trained neural network with

function calls up to 1000 times faster for parallelizable problems will enable a richer

complexity of problems to be solved.

There are many cutting-edge neural network methods that could very immediately

be applied to this work. Some of the most obvious methods are hybrid architectures, skip-

connections, autoencoders, and generative adversarial methods. There are almost

certainly ways to improve the performance of convolutional methods, but convolutional

methods alone will still find problems in capturing spatial relationships that happen

outside of their kernel size.

58

There are additional future work concepts to more directly improve the method

developed in this thesis. One of the most important and likely successful candidates

involves transfer learning. If the neural network method developed in this thesis can then

use transfer learning on smaller training sets of similar but distinct classes of

metamaterials, then the major computational limit of this method will be dramatically

improved. There is a good chance a neural network trained on a certain type of silicon

metamaterial could be trained much more quickly on a new problem on a certain metal

metamaterial compared to training a new model from scratch.

This method will hopefully be applicable to problems in robustness and coupling

of metamaterial elements. In these problems, this neural network method can be greatly

helpful because the total number of function evaluations to simulate a metamaterial

element are incredibly high. This suggests running 50,000 or 100,000 simulations using

conventional computational electromagnetics methods to develop a training dataset will

not be comparatively slow. Rather, once the training dataset is developed and a neural

network trained, problems involving metamaterial arrays, like robustness and element

coupling, can be computed several orders of magnitude more quickly.

59

References

[1] S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner,

“Review of numerical optimization techniques for meta-device design [Invited],”

Opt. Mater. Express, vol. 9, no. 4, p. 1842, Apr. 2019, doi: 10.1364/OME.9.001842.

[2] S. D. Campbell, R. P. Jenkins, P. J. O’Connor, and D. H. Werner, “The Explosion of

Artificial Intelligence in Antennas and Propagation: How Deep Learning is

Advancing Our State of the Art,” to appear in Antennas and Wireless Propagation

Magazine special issue on Artificial Intelligence in Electromagnetics.

[3] D. R. Prado, J. A. López-Fernández, M. Arrebola, and G. Goussetis, “Efficient

Shaped-Beam Reflectarray Design Using Machine Learning Techniques,” in 2018

48th European Microwave Conference (EuMC), Sep. 2018, pp. 1545–1548, doi:

10.23919/EuMC.2018.8541763.

[4] H. M. Yao, W. E. I. Sha, and L. Jiang, “Two-Step Enhanced Deep Learning

Approach for Electromagnetic Inverse Scattering Problems,” IEEE Antennas Wirel.

Propag. Lett., vol. 18, no. 11, pp. 2254–2258, Nov. 2019, doi:

10.1109/LAWP.2019.2925578.

[5] L.-Y. Xiao, W. Shao, T.-L. Liang, and B.-Z. Wang, “Artificial neural network with

data mining techniques for antenna design,” in 2017 IEEE International Symposium

on Antennas and Propagation USNC/URSI National Radio Science Meeting, Jul.

2017, pp. 159–160, doi: 10.1109/APUSNCURSINRSM.2017.8072122.

[6] Q. Wu, H. Wang, and W. Hong, “Broadband Millimeter-Wave SIW Cavity-Backed

Slot Antenna for 5G Applications Using Machine-Learning-Assisted Optimization

Method,” in 2019 International Workshop on Antenna Technology (iWAT), Mar.

2019, pp. 9–12, doi: 10.1109/IWAT.2019.8730801.

[7] C. Finn, P. Christiano, P. Abbeel, and S. Levine, “A Connection between Generative

Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models,”

ArXiv161103852 Cs, Nov. 2016, Accessed: Mar. 29, 2020. [Online]. Available:

http://arxiv.org/abs/1611.03852.

[8] D.-J. Yun, I. I. Jung, H. Jung, H. Kang, W.-Y. Yang, and I. Y. Park, “Improvement in

Computation Time of the Finite Multipole Method by Using K-Means Clustering,”

IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 9, pp. 1814–1817, Sep. 2019, doi:

10.1109/LAWP.2019.2930674.

[9] S. An et al., “A Deep Learning Approach for Objective-Driven All-Dielectric

Metasurface Design,” ACS Photonics, vol. 6, no. 12, pp. 3196–3207, Dec. 2019, doi:

10.1021/acsphotonics.9b00966.

[10] J. Jiang and J. A. Fan, “Simulator-based training of generative models for the

inverse design of metasurfaces,” Nanophotonics, vol. 0, no. 0, Nov. 2019, doi:

10.1515/nanoph-2019-0330.

[11] G. Cybenko, “Approximation by Superpositions of a Sigmoidal Function,”

Control Signal Syst., no. vol. 2, 4, pp. 303–314, Dec. 1989.

[12] M. Nielsen, “Neural Networks and Deep Learning,” Determ. Press, 2015.

[13] Y. LeCun, “Efficient Backpropagation,” Springer, 1998, Accessed: Mar. 29,

2020. [Online]. Available: http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf.

60

[14] C. Szegedy et al., “Going Deeper with Convolutions,” ArXiv14094842 Cs, Sep.

2014, Accessed: Mar. 29, 2020. [Online]. Available: http://arxiv.org/abs/1409.4842.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks,” in Advances in Neural Information

Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

Eds. Curran Associates, Inc., 2012, pp. 1097–1105.

[16] A. Cleeremans, D. Servan-Schreiber, and M. J, “Finite State Automata and

Simple Recurrent Networks,” Neural Comput, vol. 1, no. 3, pp. 372–381, Sep. 1989.

[17] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput.,

vol. 9, no. 8, pp. 1735–1780, 1997.

[18] I. J. Goodfellow et al., “Generative Adversarial Networks,” ArXiv14062661 Cs

Stat, Jun. 2014, Accessed: Mar. 29, 2020. [Online]. Available:

http://arxiv.org/abs/1406.2661.

[19] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in

deep neural networks?,” in Advances in Neural Information Processing Systems 27,

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.

Curran Associates, Inc., 2014, pp. 3320–3328.

[20] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift,” p. 9.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” p. 30.

[22] A. Ng, “Deep Learning,” Coursera.

https://www.coursera.org/specializations/deep-learning (accessed Jan. 26, 2020).

[23] J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis. Institut

d’Optique, 2005.

[24] C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation for Multi-

objective Optimization,” Evol. Comput., vol. 15, no. 1, pp. 1–28, Mar. 2007, doi:

10.1162/evco.2007.15.1.1.

[25] I. Loshchilov and F. Hutter, “CMA-ES for Hyperparameter Optimization of Deep

Neural Networks,” ArXiv160407269 Cs, Apr. 2016, Accessed: Mar. 29, 2020.

[Online]. Available: http://arxiv.org/abs/1604.07269.

[26] C. A. Jensen et al., “Inversion of Feedforward Neural Networks: Algorithms And

Applications,” in Proc. IEEE, 1999, pp. 1536–1549.

61

ACADEMIC VITA

Philip O’Connor

pjo5097@psu.edu

EDUCATION:

The Pennsylvania State University, Schreyer Honors College

Electrical Engineering – BS/MS – Expected May 2020

 Five-year Dual Degree for Bachelors and Masters – Integrated Undergraduate-Graduate (IUG) Program

 Relevant Coursework in: C++, MATLAB, Computer Vision, Machine Learning, Signal Processing

Computational Science Minor – Focusing on Machine Learning and Statistics

English Minor – Focusing on the interplay of Technical Writing and Creative Writing

PROFESSIONAL EXPERIENCE:

The Boeing Company – Internship – Seattle, WA Summer 2018 – 11 weeks

Electromagnetics Effects Intern for the Presidential Aircraft Recapitalization and KC-46 Tanker Programs

 Performed analysis on antennas to determine distances for FAA Hazardous Effects of Radiation to Personnel

 Led the troubleshooting and rework for several flightline aircraft manufacturing defects in wiring

 Supported aircraft-level tests for electromagnetic hardening against precipitation-static interference

The NASA Jet Propulsion Laboratory – Internship – Pasadena, CA Spring 2018 – 16 weeks

Researcher for project on Magneto-Quasistatic Nuclear Magnetic Resonance (long-range MRI)

 Explored near-field magnetic phenomena for applications in imaging, positioning, and communications

 Led the hardware implementation for a prototype desktop nuclear magnetic resonance device

 Transferred related research in through-the-wall magnetic field techniques to nuclear magnetic resonance

IBM – Internship – Poughkeepsie, NY Summer 2017 – 12 weeks

 Engineering Intern for Designing and Implementing Thermal Qualification Equipment in LabVIEW

 Utilized LabVIEW to measure the heat dissipation and the pump reliability for the Z-System Mainframe

 Performed long-term tests with pressure transducers, flowmeters, and thermocouples with Agilent DAQs

 Contacted suppliers to determine equipment specifications and budget

ACADEMIC EXPERIENCE:

Computational Electromagnetics and Antennas Research Laboratory – Dr. Douglas Werner 2016 – Present

 Ongoing Thesis Research: Full-time: 2019 – Present

 Developed and trained deep neural network architecture for simulating meta-surface antenna elements

 Encoded antenna elements into 2D images for over 1000x speed increase over state-of-the-art full-wave EM solvers

 Created iterative tolerance measurements and optimization made possible through neural network speed increase

 Past Projects: Part-time: 2016 – 2018

 Simulated gold nano-loop antennas (~100nm radius) to analyze unique plasmon-induced directive properties

 Explored applications of metamaterial anten nas for wearable medical devices

Teaching Intern for Electrical Engineering Design Process Summer 2019 – Present

 Gained experience teaching lectures, creating assignments, and holding office hours

Class Projects 2015 – 2019

 Computer Vision – MATLAB – Video object tracking, machine learning image classification, stereo depth estimation

 Remote Sensing – MATLAB – Single-rotational-axis model satellite using momentum wheel and photo star-tracker

 Antenna Engineering – FEKO/MATLAB – Phased Array Antenna design using randomization to prevent grating lobes

 EE Design – LabVIEW/breadboard – robot mouse navigation, optical theremin, karaoke circuit

 Object-Oriented Programming – C++ – Chess program, scheduling system

RELATED EXPERIENCE:

Personal Projects

 Checkers AI based on genetic algorithm neural network in MATLAB Ongoing

 Stock trading algorithm based on modular LSTM neural networks in MATLAB Ongoing

 Software-defined radio reception of NOAA weather satellite broadcast 2018

 Independently developed the smoothing filter to win 8th grade science fair by classifying images of sand 2011

62

Mentoring
 IEEE Mentor – One-on-one mentoring for 3 underclassmen in electrical engineering 2018

 Electrical Engineering Envoy – Provided tours of the EE department for prospective students 2018 – 2019

 Engineering Orientation Network – Head Mentor – Led 10 students in mentoring 200 incoming freshmen 2015 – 2017

Granted Patent entitled “Reverberation-Induced Magnetic Field Alteration to Enhance Sound” 2014 – 2017

 Developed an innovative method for coating the resonant wood of a musical instrument with magnetic material

 Enabled an electromagnetic pick-up to interact directly with the magnetized wood of a guitar

Lunar Lion – Penn State student-led Rocket Club – Guidance, Navigation, and Control 2015 – 2016

 Designed camera vision software to detect craters during a lunar landing in Python through GitHub

 Created a 3D simulation of a lunar landing using Blender - CAD Animation

PERSONAL ACTIVITIES: Backpacking, Video Game Programming, Book Club, Ukulele Club, Intermural Sports

