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ABSTRACT 

Computational electromagnetics has found success in the design and simulation of 

metamaterial devices for many applications. This work explores machine learning as a 

tool for computationally efficiently modeling metamaterial devices. Conventional 

methods have proven effective, though computationally expensive and slow, for 

analyzing metamaterials. By using a dataset of geometric metamaterials generated by 

traditional computational electromagnetic methods, a neural network can be trained to 

generate and analyze new metamaterial designs more quickly than previous methods. 

This work develops and presents a method for parameterizing a dataset of 

geometric metamaterial patterns and electromagnetic properties for a neural network to 

generalize these electromagnetic properties to new patterns. The motivation for training a 

neural network on this computationally expensive process of analyzing the 

electromagnetic properties of geometric metamaterials is to ultimately utilize the quick 

computation of neural networks. Through parallelized GPU computing, thousands of 

metamaterials can be simulated by the trained neural network in the same time 

conventional methods can analyze a single design. 
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Chapter 1 

Introduction 

Computational electromagnetics is a field study that utilizes Maxwell’s equations 

to model the interactions of electromagnetic waves and the surrounding environment. 

This field of study is constantly battling the limitations of computational power, 

algorithmic efficiencies, and electromagnetic modeling. Increasingly more powerful 

modeling tools enable the design of increasingly more complex and useful 

electromagnetic devices. All three frontiers--computation, algorithms, and 

electromagnetics--are areas of study that progress the field of computational 

electromagnetics.  

This thesis presents an algorithmic advancement, specifically a method for 

leveraging deep learning with neural networks to simulate electromagnetic metamaterial 

devices. Additionally, there will be brief discussion of the GPU computation that enables 

the computational efficiency of neural networks. 

1.1 Motivation  

Machine learning is quickly finding its way into almost every research discipline. 

Machine learning is especially applicable to fields that involve significant computation, 

like computational electromagnetics. This thesis explores a method for combining the 

potential computation speed-ups of machine learning methods and the modeling of 

computational electromagnetics. 
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Neural networks are a quickly growing and popular method for modeling all sorts 

of data. Neural networks are universal function approximators, so they make a good 

candidate for accurately modeling the nonlinear problems within computational 

electromagnetics. 

1.2 Background 

1.2.1 Metamaterial Antennas  

Metamaterial antennas come from a field of study known as computational 

electromagnetics, which basically refers to methods for designing antennas that rely on 

optimization methods and computation without necessarily modeling the broader type of 

antenna [1].  

Metamaterial antennas specifically are a field of study that uses complex 

geometric shapes to essentially emulate and customize light-molecule interactions. 

Similar to the way 700nm visible red light behaves differently with glass and metal, these 

light interactions can be manipulated by changing the size scales of the “molecules” to be 

on the order of 100nm rather than ~1nm for molecules. At this 100nm size scale, various 

manufacturing techniques can create complex and well defined shapes. If the right 

“molecule” shapes are chosen, this meta-material can have unique and desirable 

properties. This is a highly nonlinear problem with frequency-geometry resonances often 

dominating the behavior of metamaterial antennas, and antennas in general. 
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In contrast to computational metamaterial antennas, a conventional antenna, like a 

patch antenna, dipole antenna, or Yagi Uda array, are designed based on equations 

derived from Maxwell’s equations. These well established designs and shapes have 

popular simplifications and approximations to Maxwell’s equations that make their 

electromagnetic properties as antennas simple to predict. 

 In contrast, metamaterial antennas are generated through time-intensive 

computation of Maxwell’s equations or through full-wave finite element analysis. Figure 

1.1 shows a metamaterial antenna array generated from the extrusion of a less model-able 

2D shape.  

 

Figure 1.1: Rendering of a metamaterial array with the cross-section of the repeated single element 

depicted in the upper left. 

In summary, the method to simulate a complex metamaterial shape like this one is 

relatively simple but time-intensive. And this makes it difficult to design a metamaterial 

antenna with the desired behavior. 
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This problem becomes even more difficult when designing complex metamaterial 

antenna arrays, with multiple complex shapes.

 

Figure 1.2: (left) Rendering of a metamaterial array with the cross-section of the three repeated 

elements depicted on the right. 

1.2.2 Applying Machine Learning to Metamaterial Antennas 

The computational complexity discussed above seemed like a great potential 

application of machine learning and neural networks. The hope would be to generate a 

training set of data, train a neural network, and then use a much quicker and 

computationally parallelized method for simulating these complex shapes. 

 The intuition supporting this hope lies in the ability of a neural network to 

learn a dimensionally compressed version of the problem based on the specifics of the 

defined constraints on the metamaterial antenna. For example, often a researcher in my 

lab will have a good understanding of constraints on the metamaterial antenna--perhaps 

there are material decisions, like silicon or metal plating, or height and size 

considerations for individual antenna elements that are known before modeling. 
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However, the current non-machine-learning methods for simulating these antennas 

cannot make use of these known constraints for computational speed-up.  

The full-wave solvers are told the shape is silicon, for example, but this 

information is used in the equation for every calculation of a silicon metamaterial. In 

contrast, a neural network trained on just silicon metamaterials will have an easier 

problem to solve. 

However, the dataset generation and neural network training must be faster than 

the conventional method for this new method to be useful. Or at least there must be a 

quicker transfer learning method onto subtly new problems, like the difference of training 

a silicon neural network model vs a metal-plated neural network model. 

1.3 Original Contributions of this Work 

 A method for using fully connected neural networks to model 

electromagnetic metasurfaces 

 Discussion of the machine learning training methods for understanding 

and modeling a problem in electromagnetics 

 Exploration of a neural network inversion method for metasurface pattern 

generation  
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Chapter 2 

Related Work 

Machine learning is becoming more popular for many different problems, and the 

field antennas and propagation is no exception. Many conventional problems are being 

explored for more efficient machine learning solutions while entirely new methods are 

being developed to better integrate machine learning solutions. Within the last few 

decades, machine learning has seen direct implementations of the some of the most 

similar sub-domains, i.e. image recognition, remote sensing, and signal processing [2].  

This section will briefly discuss related work within the larger field of 

electromagnetics while the following section will discuss the theoretical work within the 

domain of machine learning. 

2.1 Machine Learning Work in Antennas and Propagation 

Many recent papers explore various machine learning methods in the broad field 

of antennas and propagation. While neural networks are becoming a very popular 

machine learning technique for a wide array of problems, other machine learning 

methods are also being explored. Support vector machines, or SVMs, can be used to 

model and design reflectarrays [3]. The design method is faster and maintains accuracy 

compared to method-of-moments solvers. 
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Neural networks have become an exceptionally popular technique. A 

convolutional neural network based on work from the machine learning and image 

recognition field can be applied to an inverse electromagnetic scattering problem [4]. The 

neural network can be applied to complex-valued, like electromagnetic scattering while 

maintaining accuracy. 

Methods for improving neural networks are also being developed by the antennas 

and propagation community. A method was developed to reduce the required dataset size 

for using a neural network approach to design a patch antenna [5]. The method uses data 

mining techniques to essentially create new trainable data from the data that is already 

present. 

New machine learning algorithms intertwined with electromagnetic intuitions can 

be developed for specific antenna problems. A new antenna optimization method was 

developed for the design of a cavity-backed slot antenna and then applied to 5G 

applications [6]. The designed antenna was then manufactured and shown to have 

accurate and realizable properties. 

Generative adversarial networks, or GANs, are also becoming very popular 

among many fields, as well as the field of antennas and propagation. GANs make use of 

two competing networks in a reinforcement learning context to develop more accurate 

models. An energy-based model was used a proof-of-concept for employing GANs in 

general modeling methods [7]. 

Unsupervised methods can be applicable to antenna problems as well. By using 

the popular K-means algorithm to cluster similar groups of basis functions, multipole 

design approaches can be applied to antenna design [8].  
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2.2 Machine Learning Work in Computational Electromagnetics 

Machine learning methods are also being explored for computational 

electromagnetics problems, like designing metamaterial devices. Supervised learning 

methods, like neural networks, have been particularly effective. 

The metamaterial elements can be parameterized as various simple shapes, 

simulated using conventional methods, and then used to train a neural network. Once 

trained, the neural network can accurately and quickly simulate similar metamaterial 

elements [9]. There is however discussion and complications with directly applying this 

trained neural networks to new but related metamaterial problems. 

Different parameterizations of metamaterial patterns allows for larger or smaller 

exploration spaces. A 1-dimensional barcode-like encoding was used with a generative 

adversarial network approach to develop a method that allows computationally more 

efficient design of metamaterial arrays [10]. The work can likely be applied to solving 

other inverse design problems as well.  
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Chapter 3 

Fundamentals of Neural Networks 

3.1 Neural Networks as Universal Function Approximators 

Neural networks have been mathematically shown to be capable of approximating 

any arbitrarily complex function, even nonlinear functions. In theory, a large enough 

neural network can model anything [11]. Unfortunately, the neural network needs to be 

exponentially larger for a linearly more complex problem. However, the practical 

difficulty comes in learning this ideal neural network for a given problem.  

3.1.1 General Neural Network Structure 

Neural networks are a system of nodes and connections. These connections are 

directed from the input layer, generally portrayed on the left, to the output layer, 

portrayed on the right. There are different ways these connections are structured and 

different ways these connections react to a node’s value. 

In general, the neural network input layer is populated with the values from the 

input data, then various activation functions are used to perform combinations of this 

input layer to populate the successive hidden layers of the neural network until the output 

layer is populated. The structure of the neural network also enables backward 

computations, the backbone of neural network training.  



10 

 

 

Figure 3.1: Graphical representation of the connections and nodes of a fully connected neural 

network. 

Figure 3.1 depicts the structure of a fully connected neural network. The inputs 

are fed into nodes then layers of nodes are connected through activation function until 

reaching the outputs. 

3.1.2 Nonlinear Activation Functions 

The nonlinear modeling capability of neural networks comes from the choice of a 

nonlinear activation function. The first prominent nonlinear activation function was the 

sigmoid function, shown in figure 3.2. The combination of many of these simple 

nonlinear functions enable the neural network as a whole to model very complex, 

nonlinear functions. 
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Figure 3.24: Plot of the sigmoid activation function (unitless). 

3.2 Gradient Descent and Backpropagation 

The backbone of neural network training is the backpropagation algorithm. This is 

the algorithm that enables a neural network to iteratively improve its prediction ability 

using pairs of input and output data. Backpropagation is a gradient descent method that 

calculates the error of every parameter in the neural network--every connection and bias 

term. This error then determines whether any given parameter should be increased or 

decreased to improve the network’s ability to predict a given training example. 

 Without discussing the full details of the algorithms, the vector forms of 

the equations are shown below [12]. For each of the multiplicative weight terms and the 
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constant bias terms, the error is calculated backwards from the output layer (equations 3.1 

and 3.2) where ⊙ refers to the Hadamard product [13].  

 𝛿𝐿 =  ∇𝑎 𝐶 ⊙  σ′ (z𝐿) (3.1) 

 𝛿𝑙 = ((𝑤𝑙+1)𝑇 𝛿𝑙+1)  ⊙  σ′ (z𝑙) 

 

(3.2) 

Then the gradient of this error with respect to each network parameter is 

calculated (equations 3.3 and 3.4). 

 𝛿𝐶

𝛿𝑏𝑙
𝑗

=  𝛿𝑙
𝑗 

(3.3) 

 𝛿𝐶

𝛿𝑤𝑙
𝑗𝑘

=  𝑎𝑙−1
𝑘 𝛿𝑙

𝑗 
(3.4) 

3.3 Hyperparameters 

The hyperparameters of a neural network are all the heuristically determined 

design decisions that affect the architecture and training of neural networks. The many 

different machine learning methods have many different possible hyperparameters to 

describe the method for training and structure of the neural network. Common 

hyperparameters in the training of neural networks are the learning rate, the depth of the 

network, and the width of layers of a network. There is often a trade-off between 

computational speed and the likelihood of improved training. 
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3.3.1 Learning Rate 

The learning rate of neural network training refers to the multiplicative factor 

given to the error gradients during backpropagation to actually adjust the network 

parameters. Generally, just taking the error gradients as actual values would cause too 

steep an adjustment in model parameters, so generally the learning rate is much less than 

1 to offer a more smooth convergence to better network parameters. 

The learning rate can be a fickle hyperparameter for neural network training, 

especially due to the practicality of wanting to increase the speed of neural network 

training. Having a very large learning rate can cause the backpropagation algorithm to 

worsen the accuracy of a neural network and prevent convergence. Having too small a 

learning rate will cause the training to take an exceptionally long time. A common 

compromise is to have an adjustable learning rate. The intuition is that training can start 

with a large learning rate to quickly train the broader relations captured in a neural 

network, and as training progresses, a smaller learning rate allows gradient descent to 

converge to the extrema to model the finer details. 

There are many important considerations for choosing the correct learning rate, 

but there are really only heuristic methods for finding good learning rates for a given 

problem. For example, the learning rate for training a convolutional neural network to 

identify images of cats has no obvious implication for a good learning rate for training a 

fully connected neural network to model metamaterial elements. However, choosing 

learning rates from similar published applications is generally the best starting point 

available. 
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3.3.2 Number of Layers and Size of Layers 

Similar to learning rate, the number of layers and size of layers in a neural 

network are heuristically determined. There are no steadfast rules, and many celebrated 

advances in machine learning come from new combinations of the number and size of 

layers. In general, more layers and larger layers allow for a greater modeling capacity, 

but there definitely a critical point where neural network training fails to extend to larger 

networks. Larger networks guarantee slower training, but they also can prevent the 

network from learning. This field of study is what puts the “deep” in “deep learning.” 

Some architectures are more or less susceptible to problems with going deeper. 

3.3.3 Dataset Size 

While not always considered a hyperparameter, the size of the dataset is a critical 

consideration for ensuring a neural network will generalize beyond the training data. In 

general, there are rigorous methods for predicting a sufficient dataset size. There are 

ways to predict the ceiling, or the maximum that would be needed, but they are often 

orders of magnitude larger than practical, and many estimates are orders of magnitude 

larger than needed.  

Depending on how data is generated, the simplest method for determining a 

sufficient dataset size is often to keep producing data until more data no longer seems to 

help improve the accuracy of the neural network. Another possible method is to simply 

review similar published work describing their sufficient dataset sizes. 
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3.4 Types of Neural Networks 

There are many types of artificial neural networks (ANNs), and hybrids of these 

many types, so only the most popular types will be mentioned below. Also, these neural 

networks will be discussed in a supervised learning context, though all of them could be 

used for unsupervised and reinforcement learning methods as well. 

3.4.1 Fully Connected Neural Networks 

The fully connected, or feedforward, neural network is the original, and in many 

ways simplest, neural network. Every node in a given layer of a fully connected neural 

network connects to every node in the next layer. As described above in the general 

neural network architecture section, a fully connected network connects nodes with a 

simple nonlinear activation function, like a sigmoid or ReLU (rectified linear unit). 

Fully connected neural networks are often a good starting point for a new 

machine learning problem because they can offer early insights into the complexity of 

modeling the problem. There are fewer hyperparameters to change for a fully connected 

neural network, so a hyperparameter sweep can be more quickly performed. Ideally, a 

relatively simple fully connected network will offer good performance and maybe that is 

sufficient for a specific application. But if the fully connected network is not sufficient, it 

might at least suggest what network architecture will be needed. 
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3.4.2 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a class of ANNs that utilize 

convolution to learn hierarchical patterns within data. CNNs preserve spatial relations 

between data and generalize across different spatial scales, so they are well posed for 

image data, in any dimensionality. 

CNNs use kernels to determine connections between nodes of a network. The 

kernels are convolved with the data to geometric representations of the data. CNNs make 

use of backpropagation to iteratively apply gradient descent to the weights of the kernels. 

The equations for backpropagating through a CNN are more complex than the simple 

fully connected network, but they can still be vectorized and parallelized to utilize the 

computation speed-ups of computation on a GPU. 

Deep learning is an area of particular interest. Methods are being developed to 

enable very large and deep networks to be effectively trained [14]. Convolutional neural 

networks have been empirically shown to be particularly good at training very deep 

networks [15].  

3.4.3 Recurrent Neural Networks 

Recurrent neural networks (RNNs) are a class of ANNs that utilize backward (or 

feedback) connections to enable a memory of internal states between successive passes to 

the network. RNNs can process collections of successive input data and are well-posed 

for learning series data [16]. 
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Relatedly, long short-term memory (LSTM) neural networks are a type of 

recurrent neural networks that use a memory cell with “forget” gates [17]. They are 

empirically shown to perform well on series data that involves multiple time scales, like 

the stock market or language interpretation. 

3.4.4 Generative Adversarial Neural Networks 

Generative adversarial neural networks are a class of machine learning systems 

wherein two ANNs compete to improve each other’s’ models [18]. The generative 

network learns to create inputs indistinguishable from the training data while the 

discriminative network learns to identify true data from data created by the generative 

network. GANs have recently become popular for problems across many research topics, 

and some machine learning researchers doubt their supremacy, but they have undeniably 

found success in many problems. Part of this success is likely in their intuitive method of 

operation.  

3.5 Training Methods 

3.5.1 Transfer Learning 

Transfer learning is a method for taking a previously trained neural network and 

using some of its weights for connections as the initialization for a new network on a new 

problem [19]. Transfer learning works best when this new problem is closely related to 

the problem of the original network. Transfer learning can dramatically reduce the 
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computational time required to achieve good accuracy on a new problem. This is 

especially true for very deep networks, with hundreds of layers. Rather than retraining a 

whole new convolutional neural network to, for example, identify cats in images, a 

researcher can use one of many open-sourced pre-trained neural networks on similar 

image classification problems.   

3.5.2 Batch Normalization 

Batch Normalization is a method for improving the training time and accuracy of 

neural networks. Batch Normalization works by rescaling and normalizing the activations 

of connections during the forward pass and backpropagation of neural network training 

[20]. This helps spread the learning of the neural networks across all the nodes rather than 

allowing a small subset of the nodes to dominate the learning and reduce the 

generalizability and modeling capacity of the network. It has been empirically shown 

improve accuracy and computational time.  

3.5.3 Dropout 

Dropout is a method to randomly disable nodes in a neural network during 

training to reduce dependency on any given node [21]. A certain dropout rate will be 

defined during training to remove that percentage of nodes in a given layer. It has been 

empirically shown that this helps the network generalize and avoid overfitting.   
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3.6 Computational Speed-up of GPU Parallelization 

The major benefit of using neural networks in the pursuit of computationally 

quicker algorithms is the ability for neural network computations to be vectorized and 

computed in parallel on a GPU (graphics processing unit). Every single training pair of 

inputs and outputs can be computed in parallel since they are all independent of each 

other. In practice, usually subsets of the entire training data are taken due to GPU 

memory limitations, but these training subsets, or batches, greatly increase the 

computation speed. 

The calculations for the forward pass and backpropagation of a neural network 

can be vectorized, meaning there are vector notation forms of all the equations. GPUs are 

specifically designed to calculate thousands or millions of similar and simple 

computations at the same time [22]. While the actual application of graphics is best 

solved with these simultaneous computations, neural networks can also greatly benefit 

from simultaneous, parallel computation. 

This computational speed-up for the neural network forward pass and 

backpropagation of gradient descent enabled by GPUs is reason for the explosion of 

neural network research in the last decade. Many of the algorithms for the foundations of 

neural networks were developed decades ago, but the vectorization and parallelization 

enabled by GPUs are what brought neural networks to the cutting edge of computation 

and modeling. The work of this thesis is largely dependent on the computational speed-

ups of neural networks calculations being performed on GPUs.   
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Chapter 4 

Encoding Metamaterials for Neural Networks 

The conventional method for simulating a metamaterial is to create the 

geometrical structure in an electromagnetics software, like HFSS or COMSOL, and 

assign the corresponding material types to different parts of the structure, like silicon or 

various metals. Then the software uses full-wave solvers, finite-element analysis, and/or a 

lot of Maxwell’s equations to slowly but surely simulate the structure. This method is 

computationally very slow. 

 The work in this thesis is specifically focused on 2-dimensional metamaterials. 

While there is existing work on the more complex 3-dimensional metamaterials, they are 

much more difficult to manufacture and are less common in practical applications. 

Another benefit of 2-dimensional metamaterials is there are some equations to closely 

approximate their behavior at a fraction of the computational time.  

4.1 Data Generation 

Without digging into the details of the grating solver method, Reticolo allows for 

2-dimensional metamaterials to be simulated relatively quickly compared to full-wave 

and finite-element solvers [23]. The simulations run by defining the geometric cross-

section, the extrusion height, the operating frequency, and the material of the 

metamaterial shape. Given these inputs, Reticolo will then compute the electromagnetic 
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transmission and reflection of an incident wave. The geometric cross-section is defined 

by an arbitrary resolution binary image of the exact shape. 

Using this Reticolo method, about 50,000 2-dimensional metamaterials patterns 

can be simulated in about 12 hours on a 10-core intel CPU. These simulations produce 

the electromagnetic transmission and reflection properties of interest. 

 

 

Figure 4.15: Depiction of a metamaterial binary image encoding for a pattern generated from 5x5 

control points with enforced 4-fold symmetry. 

An important additional design decision is what 50,000 patterns should actually 

get simulated. This question relies on some familiarity with metamaterials and some level 

of intuition about the specific application for the final metamaterial device. The question 

really is how complex of metamaterial shapes will be needed for the final application. 

Allowing for a very large solution space will require much more computation to search 

through that space, and many more patterns to accurately train a neural network. These 

design decisions will be discussed in more detail in the remainder of this section. 
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After the data is generated, the output is saved as magnitude and phase values for 

the 2 different polarizations of each the electric and magnetic components of the 

transmission and reflection, for a total of 32 values.  

4.2 Input Encoding 

 There are several possible ways to encode an electromagnetic 

metamaterial for a neural network. The two methods explored in this paper are: an 

arbitrary resolution binary image of the pattern and a Bezier surface control point 

encoding. 

4.2.1 Binary Image Encoding 

The binary image encoding uses the same encoding as the original data 

generation--an arbitrary resolution binary image of the exact cross-sectional pattern. The 

benefits of this method are the neural network will be training on the exact metamaterial 

shape used to create the output data--there are no approximations made to represent the 

data.  

The inherent drawback to this method is the data size and significant computation 

complexity of large images. Based on the data generation method and previous validation 

work, an image resolution of 100x100 pixels gives an accurate result from the Reticolo 

method [23].  
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Representing the geometric metamaterial data as a binary image also has machine 

learning applications. For those familiar with neural networks, an image-type input 

immediately suggests the use of convolutional neural networks. CNNs are often the best 

method for reducing the large dimensionality of images for a neural network.  

4.2.2 Bezier Control Point Encoding 

The Bezier surface control point encoding allows for a significantly reduced 

dimensionality by parameterizing and limiting the space of possible shapes.  

A Bezier surface is a type of spline that is defined by coordinate positions and 

smoothly interpolated. The Bezier surfaces in this work are surfaces existing in 3-

dimensions. The simplest analogy is to think of a bedsheet pulled tight by several people. 

Now imagine there are puppet strings attached to certain spots above and below the 

bedsheet. The strings can be manipulated up and down to change the shape of this 

bedsheet. 

 

Figure 4.26: (left) Depiction of the Bezier surface defined by the green control points. (right) The 

cross section of the Bezier surface that is used as a metamaterial pattern. 
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Once this Bezier surface is defined, then a cross-section is taken to define a two 

dimensional shape, and that is the shape used as the 2-dimensional metamaterial pattern. 

One key feature of this Bezier surface cross-section method is that it produces 

smooth shapes, which allows for a relatively continuous change in electromagnetic 

properties between very similar shapes. 

Additionally, this method results in a significantly smaller input dimensionality 

compared the binary image method. Now, a small number of control points directly 

represent the metamaterial shape. This work explores Bezier representations by 3x3 and 

5x5 control points, so even 5x5 = 25 control points is significantly less than 100x100 = 

10,000 pixels for the binary image representation. 

4.3 Output Encoding 

After the data is generated, the output is initially encoded as magnitude and phase 

values for the 2 different polarizations of each the electric and magnetic components of 

the transmission and reflection, for a total of 32 values.  

The two tested encodings for the output values were to leave the values as 

magnitude and phase and to convert the values to real and imaginary numbers. 

4.3.1 Magnitude and Phase Encoding 

After a few tests of training a neural network on magnitude and phase encodings 

of the transmission properties, it became clear there was significant error caused by 
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phase-wrap-around. This encoding caused very similar metamaterial patterns to be 

recorded as having drastically different phases. As shown in figure 4.3, these two patterns 

are very similar, and have very similar phases, but they are on the arbitrary cut-off of 

where phase happens to be referenced, so they are recorded as having the most different 

possible phases. 

 

 

Figure 4.37: Two very similar metamaterial patterns with very similar phases. However, phase 

wrap-around leads to the two phase being parameterized as nearly 360 degrees apart. 

To further explore this exact problem, the plot in figure 4.4 show the absolute 

difference between the predicted phase values and the true phase values. There is a clear 

trend on the boundaries of the -180 to 180 degree phase range. Some patterns that are 

truly -180 degree phase are predicted to be 180, and vice versa. There is simply no 

mechanism for a neural network to learn and accurately characterize this wrap-around 
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Figure 4.48: Plot of the absolute difference of predicted and actual phase on the test data set. There 

is noticeably higher error near the boundaries of -180 and 180 degrees phase. 

Additionally, the figure above shows an interesting difference between patterns 

with phases closer to -180 degree phase and patterns closer to 180 degree phase. There is 

noticeably more error on the 180 degree phase end. 

To explore this inconsistency in neural network accuracy depending on phase, the 

plot in figure 4.5 is two overlapping plots--the orange is a scatter plot showing the same 

metric as above, the absolute difference between prediction and true phase, and the blue 

is a histogram of the total number of patterns of a given phase. There is a clear data bias 

to having a dataset with patterns that coincidentally have a phase centered around -140 

degrees. 
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Figure 4.59: Two overlapping plots. In orange, there is a scatter plot of the absolute difference 

between the predicted and actual phase showing a tendency for higher error near the boundaries of -180 and 

180 degree. This scatter plot also shows even higher error near the positive 180 degree boundary. In blue, 

there is a histogram of all the true phase of the test set. The higher number of phases near the -180 degree 

boundary explains the lower error on this side. 

This exploration of phase-encoding the output data also led to a discovery in the 

dataset of a data bias stemming the particular solution space of metamaterial patterns 

being explored. While this is not inherently bad, it is an important consideration moving 

forward. If the final training is data-limited, as in more training empirically seems like it 

would produce an appreciably more accurate neural network, then it might be worthwhile 

to keep this dataset bias in. If the dataset empirically seems to be a sufficient size, or even 

larger than necessary, it might be more appealing to remove some of the data centered 

around this bias at -140 degrees phase and flatten out the histogram.  
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4.3.2 Real and Imaginary Encoding 

As discussed above, the magnitude and phase encoding of the transmission and 

reflection properties of the metamaterials causes problems due to phase wrap-around, so 

the simplest solution is to convert the values to real and imaginary numbers.  

Using this real and imaginary encoding removed the phase-dependent error of the 

neural network prediction 

4.3.3 Geometric Sorting to Explore Output Continuity 

During the exploration of the data, a study of the sensitivity of the output 

parameters was conducted. Metamaterials patterns were sorted by geometric similarity. 

An arbitrary starting pattern was chosen as the starting pattern. Then the highest 

correlating pattern was chosen as the following pattern. And this process was repeated 

until the patterns were sorted such that nearby patterns would be geometrically similar. 

Figure 4.6 shows the results of plotting the electromagnetic transmission encoded 

both as real and imaginary numbers and as the magnitude and phase. 
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Figure 4.610: There are four plots showing the magnitude and phase encoding and the real and 

imaginary encoding, all linearly normalized between -1 and 1. They are plotted along x-axis by index of 

geometric similarity. The thing of note for this plot is which encodings are most sensitive to changes in 

value from small changes in geometry. 

Some of the important understandings to be derived from figure 4.6 are which 

encodings are more sensitive to small changes in geometry and how many total changes 

in direction any of the patterns take. This two observations help inform the necessary 

modeling capacity of the neural network. Seemingly, there are 30 to 50 nonlinear changes 

in electromagnetic output parameters. 

4.4 Exploration Space of Patterns 

The exploration space of solutions being considered is an important consideration 

for designing a metamaterial element irrespective of machine learning methods. Ideally, 

the exploration space will be sufficiently complex to offer a rich variety of metamaterial 
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solutions while not being prohibitively complex to be computationally tractable. The 

problem unfortunately becomes entangled with machine learning once the neural network 

complexity and training become a limiting factor. 

4.4.1 Solution Space for Data Generation 

Relying on intuitions from previous work with metamaterials, the starting point 

for this work was on 3x3 control point encodings for data generation. These patterns 

could be fed through the data generation method described above and applied to either a 

binary image encoding or a Bezier control point encoding. Additionally, the 5x5 control 

Compared to other methods for generating metamaterial geometries, the Bezier 

control point method offers an easily parameterized exploration space that changes 

smoothly and minimizes resonances.  

One considered method for data generation was using optionally symmetric 

random-walk patterns. This would result in a significantly larger exploration space than 

the Bezier control point encodings for a comparable pixel resolution. The random-walk 

patterns could be smaller images scaled up, but there are other difficulties with random-

walk patterns as well. They have many more discontinuities and nonlinear resonances 
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due to the geometric jaggedness.

 

Figure 4.711: Five depictions of random-walk metamaterial patterns are shown. 

 Ultimately, the work of this thesis was performed on the Bezier control 

point encodings. 

4.4.2 Pattern Symmetry 

Another important consideration relating to limiting the exploration space is to 

optionally enforce a symmetry in the geometry of the metamaterial pattern. Enforcing 

either a 2-fold or 4-fold symmetry reduces the exploration space while allowing some 

larger and more complex patterns.  

Figures 4.8, 4.9, and 4.10 depict metamaterial patterns generated using a less 

complex 3x3 control point Bezier surface method. These patterns are simpler than the 

5x5 control point patterns. Figures 4.11, 4.12, and 4.13 show 5x5 control point patterns. 

Figure 4.8 shows the 3x3 control point pattern with 4-fold symmetry enforced. 

These are the geometrically simplest patterns. 
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Figure 4.812: Nine depictions of metamaterial patterns generated with 3x3 Bezier control points and 

with 4-fold symmetry. 

 

Figure 4.913: Nine depictions of metamaterial patterns generated with 3x3 Bezier control points and 

with 2-fold symmetry. 
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Figure 4.1014: Nine depictions of metamaterial patterns generated with 3x3 Bezier control points 

and with no symmetry. 

 

Figure 4.1115: Nine depictions of metamaterial patterns generated with 5x5 Bezier control points 

and with 4-fold symmetry. 
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Figure 4.1216: Nine depictions of metamaterial patterns generated with 5x5 Bezier control points 

and with 2-fold symmetry. 

 

Figure 4.1317: Nine depictions of metamaterial patterns generated with 5x5 Bezier control points 

and with no symmetry.  
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Chapter 5 

Neural Network Implementation and Results 

Based on the discussion in Ch. 3, various neural network considerations can be 

implemented for different data encodings.  

5.1 Metric for Error 

There are many ways to characterize the error of a neural network, and there are 

different metrics used for classification and regression problems. Root mean square error 

(RMSE) is often used for regression problems, and it is the square root of the sum of the 

squared errors. RMSE essentially encapsulates a square factor into its computation of 

error. The biggest problem with only using RMSE as a metric, at least for this work, is 

that RMSE changes when the number of output regression targets. A network trying to 

predict a single number and a network trying to predict 32 numbers cannot intuitively be 

compared through RMSE. 

This work focuses on two different metrics: the mean of the mean errors and the 

maximum mean error. The mean of the mean errors, though confusingly named, is simply 

the mean for each different predicted output variable on each test data, and then the mean 

of those means. The maximum mean error is simply the maximum of the means of each 

predicted output variable. While these metrics also do not allow direct comparison 

between a network with single output variable and one with 32 outputs, it was found to 

be a more easily understood metric for comparing different output networks. 
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5.2 Fully Connected Neural Network Model 

The original, and in some ways simplest, neural network architecture is the fully 

connected architecture. Every node from a given layer is fed into every node of the next 

layer. Every function can be approximated by a sufficiently large set of hidden layers. 

However, training for arbitrarily complex functions becomes difficult and unreliable. 

This is the major drawback of fully connected networks. In theory, a fully connected 

layer will be able to solve any problem, but in practice, this theoretical ideal network is 

not easily discovered. 

The fully connected network is often tried first for a given machine learning 

problem. For this problem, fully connected networks were thoroughly explored and 

ultimately provided the best accuracy. 

The modeling problem is to predict 32 outputs for the metasurface pattern’s 

electric and magnetic reflection and transmission for each polarization. 

Table 5.1 lists the exact training accuracies on the various metamaterial problems 

with Bezier control points encodings. The combinations listed are the 3x3 and 5x5 

complexity patterns each with the constraints of four-fold symmetry, two-fold symmetry, 

and no symmetry. The errors given are shown as the discussed mean of the mean errors. 
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Table 5.11: Mean of the mean errors for 32 output predictions for the fully connected neural 

network architecture. 

 
3x3 5x5 

4-Fold Symmetric 1.70% 3.72% 

2-Fold Symmetric 2.01% 5.26% 

Arbitrary/Non-symmetric 2.56% 9.19% 

 

Table 5.2 shows the same networks with same combinations of pattern 

complexity and symmetry but with the metric of the maximum of the mean errors.  

Table 5.22: Maximum of the mean errors for 32 output predictions for the fully connected neural network 

architecture. 

 
3x3 5x5 

4-Fold Symmetric 5.43% 16.7% 

2-Fold Symmetric 6.07% 24.9% 

Arbitrary/Non-symmetric 7.87% 27.7% 

 

5.3 Convolutional Neural Network Model 

Given their surge in popularity over the last several years, CNNs seemed like 

good candidates for an application that can be easily encoded as an image, and where 
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spatial relations are crucial. Many architectures were attempted, but the convolutaional 

neural networks were unable to achieve a similar performance as the fully connected 

methods.  

On the problem of the 3x3 Bezier control point encoding of the metamaterial 

patterns, a mean of the mean averages of 6.77% and a maximum of the means of 27.5% 

was achieved. The other problems were also explored but the CNNs reliably had 

significantly worse than the fully connected architectures for the same problem. 

5.4 Comparison of Fully Connected and CNN 

For every tested problem, the best performance came from neural networks with a 

fully connected architecture compared to a convolutional architecture. There are 

countless additional convolutional methods that could be explored and compared, but 

many types of networks were considered. Many depths and widths of CNNs were tested, 

as well as transfer learning from popular CNN architectures. However, there are some 

important and inherent limitations to convolutional neural networks for an application 

like this. 

There is electromagnetic intuition that points to a few possible problems with 

CNNs for this application. The primary limitation comes from the kernel size. A kernel 

size that is, for example, 11x11 pixels applied to a binary metamaterial image that 

100x100 pixels will inherently prohibit any learning or understanding of interactions that 

happen between antenna components outside of the kernel size.  
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From an electromagnetic understanding of antenna elements, a metamaterial 

antenna cannot be understood as the combination of local interactions. CNNs are greatly 

limited in their abilities to capture relationships that happen at scales much larger than 

their kernel. Perhaps, the kernel sizes could be greatly increased, but this dramatically 

reduces the computational speed that is a major benefit of convolutional neural networks. 

As the kernel approaches the size of the images being modeled, the CNNs effectively 

become very similar to fully connected layers.  

Perhaps there are hybrid methods that could employ CNN layers in parallel with 

fully connected layers, or employ skip-connections, to improve the performance of the 

CNN methods for this problem, but the highly resonant and non-localizable aspects of 

this problem will inherently cause modeling difficulty for CNNs. 

5.5 Hyperparameters 

While no theoretically provable recommendations for hyperparameters can be 

easily determined, discussion of the empirical hyperparameters can be useful for applying 

to similar problems. This section will discuss some of the empirically determined better 

hyperparameters and considerations of the hyperparameters. 

5.5.1 Number and Size of Layers 

For both the fully connected and convolutional neural network architectures, 

many combinations of the number and size of layers were tested. In general, the method 
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for determining the best combination of the number and size of layers was to start small 

and slowly grow. Once growing the number and size of layers showed worsening error, 

then the number and size of layers is finalized. This is certainly not a perfect method, and 

there is significant debate in the wider field of machine learning, but there are only 

heuristic methods for determining the ideal network architecture [22].  

Typically, the fully connected networks showed worsening once 10 or more 

layers were added. For the fully connected network, layer sizes were also heustrically 

determined. Some of the tested architectures used a cascading layer size, going from very 

large layers and progressively shrinking, while others maintained a consistent layer size. 

For cascading architectures, an initial hidden layer of 10,000 nodes seemed to be the 

approximate point of no returns. For architectures with constant layer size, 1000 to 2000 

nodes was often the point with no returns. 

5.5.2 Dataset Size 

Since data is able to be generated relatively quickly, about 50,000 patterns in 12 

hours, the training is not dataset-size limited. However, it is still worth exploring the 

necessary dataset size. The point of diminishing returns--more data does not seem to 

drastically help--happened around 50,000 to 100,000. This is the approximate elbow 

point in the Figure 5.1 for the 3x3 = 9 control-point problem. It is likely more complex 

patterns would require significantly more training data. 



41 

 

 

Figure 5.118: Plot of the data set size versus the validation RMSE.   
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Chapter 6 

Extensions of Method 

In addition to the neural network method developed, two extensions of the 

method were explored as ways of improving the method and extending its ability to be 

applied to meaningful problem. The extension for improving the method used CMA-ES 

as an optimization tool for determining better hyperparameters. The extension for 

applying the method to meaningful problems used neural network inversion for 

generating metamaterial patterns with desired electromagnetic properties. 

6.1 CMA-ES Optimizing the optimization 

CMA-ES, or covariance matrix adaptation for multi-objective optimization, is a 

method for optimizing several dependent variables [24]. The method utilizes an 

evolutionary strategy and the covariance of matrices representing the objective variables 

to explore the solution space of an objective function. Often, CMA-ES is an effective and 

efficient optimization for multi-objective problems. 

In the context of this paper, the multi-objective problem needing to be solved was 

the hyperparameters of a fully connected network. Other work has performed a similar 

optimization of neural network parameters using CMA-ES [25].  

The three hyperparameters being optimized were the learning rate, the size of 

each layer, and the number of layers. Each hidden layer of the neural network was 

constrained to be the same size.  
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CMA-ES was used in place of a random or linearly-spaced sweep of 

hyperparameters, which is often done but is computationally intensive [22].  

 

 

Figure 5.219: Plot of the average mean error throughout 170 generations of CMA-ES optimizing the 

neural network’s hyperparameters of learning rate, layer size, and number of layers. 

Figure 5.2 shows the non-smooth convergence over the CMA-ES generations. 

The first several generations show a quick decrease in error. However, the last many 

generations do not exhibit improved learning. The unrepeatable nature of neural network 

training caused by random initializations make it a very difficult multi-objective 

optimization problem. 
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Figure 5.320: Three scatterplots. One scatterplot for each of the parameters being optimized 

simultaneously during 170 iterations of CMA-ES on the neural network hyperparameters. The top plot 

shows the learning rate. The middle plot shows the number of layers. The bottom plot shows the size of the 

layers. 

Despite the unreliable convergence, this CMA-ES optimization does show 

valuable information when viewed by the individual optimization variables. As shown in 

figure 5.3, the number of layers of the network showed clear convergence to 7 layers. The 

learning rate showed convergence near 0.8 x 10^-3, but its convergence was less clear. 

And the size of the layers showed the least definitive convergence. All of these 

observations help inform the significance of these hyperparameters in influencing the 

neural network accuracy. 
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6.2 Inverse Neural Network Method for Direct Pattern Generation 

This inverse neural network method aims to use a trained neural network and 

gradient descent to generate metamaterial patterns with desired electromagnetic 

properties. This paper employs a very similar method of backpropagating error gradients 

into the input layer as described in this work [26]. 

6.2.1 Motivation 

Once a neural network is trained, there are various methods for inverting the 

neural network to solve the inverse problem. For the work in this thesis, the main 

problem--or the forward problem--is to input a metamaterial pattern and accurately 

generate the electromagnetic transmission and reflection. However, the inverse problem 

is, in many ways, even more useful. Ideally, there would be a method for inputting the 

desired electromagnetic properties and outputting an appropriate metamaterial pattern. 

This method of neural network inversion attempts to take the neural network 

trained on the forward problem and use it to generate metamaterial patterns with the 

desired properties. 
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6.2.2 Pseudocode of Method 

The method uses backpropagation and gradient descent to iteratively change a 

random shape to one with the desired properties. 

To invert the trained neural network: 

1. Guess a random metamaterial shape and set it as the input layer of the trained 

network 

2. Forward propagate this random guess through the network 

3. Find the output error based on compared to the desired transmission properties  

4. Backpropagate the error gradients through the network and all the way into the 

input layer 

5. Update the random guess in the input layer based on this error gradient multiplied 

by a learning rate 

6. Repeat steps 2-5, iteratively improving the original guess until a defined stopping 

point is reached 

6.2.3 Results of Inverse Neural Network Method 

For evaluating this method, the neural network was limited to only a single 

polarization of the transmission of the electric field, represented as a real number and an 
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imaginary number. This allows 2-dimensional plots to represent the output space of the 

neural network. 

There are several types of figures generated to represent this method. All types are 

similar but were generated with slightly different goals. All figures are plotted on the real 

and imaginary axes of the neural network output space. They also All have several 

thousand red points depicting random input combinations projected in the neural network 

output space. This helps depict the possible and likely outputs of the neural network 

given the constraints of the input. 

Figure 6.1 shows the inverse method attempting to start at one random point and 

find solutions to 50 different targets. This was the most ambitious, and most useful, 

application of the method, but it ultimately fails to converge to the majority of the target 

outputs. The targets that are closest to the starting in output space are not necessarily the 

points closest input space--which input space is the actual space being changed--but 

targets close in output space tend to have the best success in convergence.  
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Figure 6.121: Plot of the output space encoded as real and imaginary numbers. The X marks are 

targets and the corresponding trail of the same color shows the inversion method’s attempt to reach each X. 

The red dots show several thousand random input points mapping out the neural network in output space. 

After performing several more similar runs, some performed appreciably better 

than others. The run in figure 6.2 seems to have found a circular path that allowed 

gradient to reach most of the target Xs. This suggests the random starting point has a 

significant impact on convergence.  
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Figure 6.222: Plot of the output space encoded as real and imaginary numbers. The X marks are 

targets and the corresponding trail of the same color shows the inversion method’s attempt to reach each X. 

The red dots show several thousand random input points mapping out the neural network in output space. 

 Related to the last point, figure 6.3 shows a starting position that caused the 

inversion method to hardly reach any of the target points. The method seems to perform 
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better when it starts in a position densely populated in output space. Figure 6.3 starts in a 

very sparse spot. 

 

Figure 6.323: Plot of the output space encoded as real and imaginary numbers. The X marks are 

targets and the corresponding trail of the same color shows the inversion method’s attempt to reach each X. 

The red dots show several thousand random input points mapping out the neural network in output space. 

 

Figures 6.4 and 6.5 depict a trial that starts at 50 very close points in input space 

that all try to converge to the same output target. While very close in input space, these 

points also appear very close in output space. The yellow starting points try to converge 

to the grey X and convergence trails end with a green marker. This method ultimately had 

much more success than the previous method of trying to reach any point. While the 

majority of points were still unable to converge to the target, several points were able to 

reach the target output. Since only one actual point needs to reach the target to have a 

desirable metamaterial, then this is sufficient. 
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Figure 6.424: Plot of the output space encoded as real and imaginary numbers. 50 inversion 

iterations are started from very similar positions. Several of the paths successfully reach the target X. The 

red dots show several thousand random input points mapping out the neural network in output space. 

 

Figure 6.525: Zoomed in depiction of the previous figure. Plot of the output space encoded as real 

and imaginary numbers. 50 inversion iterations are started from very similar positions. Several of the paths 
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successfully reach the target X. The red dots show several thousand random input points mapping out the 

neural network in output space. 

Performing several more of these trials with start points close in input space 

showed convergence was inconsistent. The example in figure 6.6 was intentionally 

chosen as appearing close in output space as the previous example but having a target 

slightly further away in output space. This example of trying to traverse a farther distance 

in output space was successful in having at least one iteration reach the target, but far 

fewer than the closer previous example. 

 

 

Figure 6.626: Plot of the output space encoded as real and imaginary numbers. 50 inversion 

iterations are started from very similar positions. Now the target path is farther from the starting point and 

fewer of the paths reach the target. The red dots show several thousand random input points mapping out 

the neural network in output space. 
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6.2.4 Limitations and Drawbacks 

 This method of inverting the neural network for direct pattern generation 

is susceptible to several problems. Firstly, it is inherently dependent on the accuracy of 

the original trained neural network. If the original neural network has an average of 1% 

error in its predictions, this inversion accepts that 1% error prediction to be ground truth 

and will never be able to perform better than the error inherent to the neural network. 

 Assuming a perfect underlying neural network, this inversion method is 

still susceptible to other drawbacks. Most of these problems are related to gradient 

descent and being trapped in local extrema. It is very possible a randomly chosen input 

point will be unable to reach the target through gradient descent. And since the target is 

defined in output space, there will be several points in input space matching to the target 

output, so gradient descent will not have a clear, single direction to follow. This is the 

many-to-one problem, where several possible choices map to the same target output. 

This method also has no mechanism for determining if a target has a possible 

solution. In the forward problem, the inputs to the neural network are guaranteed to be 

physically realizable devices. In the inverse problem, depending on the constraints of the 

metamaterials and size of the exploration space in the training data, there will likely be 

points in the output space that are impossible to realize, and the neural network has no 

method for considering this possibility. 

Fundamentally, this inversion method would only be useful if it is 

computationally quicker than optimization methods using the forward neural network. 

Unfortunately, a single iteration of the inversion method is unable to vectorize and 



54 

 

parallelize its computation to benefit from the same computationally speed-up other 

methods have. In the example where many trials start in similar input spaces and have the 

same target, the method could be parallelized, but there is still only one target being 

computed. The alternative forward neural network methods can simply simulate many 

thousand patterns and compute them in parallel, hoping one will be close to the target. 

Ultimately, this neural network inversion method has unreliable convergence for 

the problem of randomly guessing a point in input space and converging to an arbitrary 

target in output space. However, there might be merit to combining this method in a 

hybrid technique with other methods. Perhaps, rather than using entirely random points, 

the forward pass of the neural network could be used to generate several thousand 

random points. Then the closest several random points could be fed into this inversion 

method to fine-tune the metamaterial patterns and their output characteristics.  
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Chapter 7 

Conclusion and Future Work 

7.1 Summary 

 This work explored several neural network methods for modeling 

electromagnetic metamaterials. This motivation for using neural network methods in 

computational electromagnetics is the computational speed-up enabled by the neural 

network algorithms and parallelization of GPU computations. Electromagnetics intuition 

and machine learning methods for neural networks were combined to develop a 

successful model of a class of metamaterials. Important factors like the exploration space 

and parameterization of the metamaterials, the architecture of the neural network, and 

required accuracy of the final model were considered for assessing the method. 

Computational electromagnetics is dependent on quick algorithms, and this 

method used neural networks to develop a metamaterial method that was computationally 

quicker than previous methods. A critical caveat of this claim is that the method 

described requires using conventional computational electromagnetics methods to build a 

dataset to train the network. While this new machine learning is still dependent on the 

slower conventional methods, the computational speed-up for certain problems exists--

there is just an economy of scale comparison that must be made. This machine learning 

method can be a few orders of magnitude faster if many metamaterial elements within the 

same class are needed to populate an array. However, if only a single metamaterial 

element is needed, the conventional methods can still be faster. 
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Some of the underlying and essential electromagnetics intuition of metamaterial 

devices helped inform and debug some the neural network design and training decisions. 

Most importantly, the shortcomings of the CNN models are most likely related to the 

inability for CNN kernel to model relationships that happen at spatial scales much larger 

than the kernel size. For the problem explored in this work, a kernel size of even 

11x11pixels will struggle to capture the relationships between opposite corners of a 

100x100 pixel binary image representing the metamaterial. Having kernel sizes much 

larger is computationally impractical. This is a major reason the convolutional neural 

network model likely performed worse than the fully connected model on the same 

problem. 

The fully connected neural network was the preferred model and discussions of 

hyperparameters and training methods were discussed to offer insight into how machine 

learning can be applied to other problems within computational electromagnetics and 

antennas in general. While there are few theory-driven approaches to determining 

hyperparameters on new machine learning problems, the hyperparameters of similar 

work can offer a good, heuristic starting point for further research. 

Additionally, two extensions of this neural network method were briefly 

discussed. The optimization algorithm CMA-ES was applied to a hyperparameter sweep 

of neural network parameters in an attempt to more quickly improve the neural network 

model. The method was better than random guessing, but it did not converge smoothly to 

ideal hyperparameters. The other additional method explored was neural network 

inversion for direct metamaterial pattern generation. Once a neural network is trained, 

there are methods that attempt to invert this neural network--to iteratively backpropagate 
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error weights into the input layer. Ultimately, this method showed some promise for 

reaching a pattern with the desired electromagnetic properties, but its convergence was 

unreliable. Neural network inversion is not a robust method for generating metamaterial 

patterns, but there are ways it can be incorporated to improve other methods. 

7.2 Future Work 

As mentioned above, the primary purpose of the work of this thesis was to 

provide a computational speed-up for analyzing metamaterials such that optimizing a 

device metamaterial becomes more computationally tractable. The faster the algorithms, 

the more complex a problem becomes solvable. The work of this thesis is intended to be 

applied to metamaterial optimization. This will involve thousands or millions of function 

calls to the neural network scheme developed by this work. Building upon previous 

metamaterial optimization techniques, incorporating a trained neural network with 

function calls up to 1000 times faster for parallelizable problems will enable a richer 

complexity of problems to be solved. 

There are many cutting-edge neural network methods that could very immediately 

be applied to this work. Some of the most obvious methods are hybrid architectures, skip-

connections, autoencoders, and generative adversarial methods. There are almost 

certainly ways to improve the performance of convolutional methods, but convolutional 

methods alone will still find problems in capturing spatial relationships that happen 

outside of their kernel size. 
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There are additional future work concepts to more directly improve the method 

developed in this thesis. One of the most important and likely successful candidates 

involves transfer learning. If the neural network method developed in this thesis can then 

use transfer learning on smaller training sets of similar but distinct classes of 

metamaterials, then the major computational limit of this method will be dramatically 

improved. There is a good chance a neural network trained on a certain type of silicon 

metamaterial could be trained much more quickly on a new problem on a certain metal 

metamaterial compared to training a new model from scratch. 

This method will hopefully be applicable to problems in robustness and coupling 

of metamaterial elements. In these problems, this neural network method can be greatly 

helpful because the total number of function evaluations to simulate a metamaterial 

element are incredibly high. This suggests running 50,000 or 100,000 simulations using 

conventional computational electromagnetics methods to develop a training dataset will 

not be comparatively slow. Rather, once the training dataset is developed and a neural 

network trained, problems involving metamaterial arrays, like robustness and element 

coupling, can be computed several orders of magnitude more quickly. 
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