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ABSTRACT 

The purpose of this thesis is to provide a new method for solving repetitive game theory 

problems. A game theory problem consists of players with two or more possibilities, and the 

outcome is dependent on the choices of all of the players’ decisions. A repetitive game theory 

problem includes playing many iterations of the same game, incorporating aspects of learning for 

both players.  Solutions to contested decisions or strategic games are typically represented by 

game theory, which will be called Classical Game Theory in this thesis. For repetitive games, tit-

for-tat strategy and grim trigger solutions are most popularly used in Classical Game Theory.  

This thesis will use a new approach called Chemical Game Theory to analyze how players learn 

throughout repetitive games and update their strategy from game to game. The shortcomings of 

either Classical Game Theory or Chemical Game Theory in repetitive games will be discussed. 
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Chapter 1 

 

Introduction 

Chemical Game Theory provides an alternative approach to representing and solving 

both one-shot game theory problems, as well as repetitive games. This method produces unique 

results from Classical Game Theory.  A main contribution of Chemical Game Theory is that it 

accounts for what player’s actually do, whereas Classical Game Theory only considers what 

rational players should do.  Chemical Game Theory can do this by incorporating chemical 

engineering fundamentals such as decision reactions, thermodynamic principles, and perception 

functions. The key question that will be answered in this thesis is: 

Does the process control learning model of Chemical Game Theory explain experimental 

data better than Classical Game Theory learning models?  

 To answer this question, the probability that a player will choose a decision throughout a 

repetitive game, while updating his strategy from round to round will be analyzed. Existing 

learning algorithms and biology comparisons will also be examined to show significance of 

feedback control, which is a main component in the Chemical Game Theory model. 1 

Additionally, the methods for calculating both the Classical and Chemical Game Theory 

solutions in repetitive games will be shown. The results will then be compared directly to 

experimental data, testing both Classical Game Theory and Chemical Game Theory solutions in 

repetitive games. 2 The answer to this key question can be summarized in Table 15.  

 
1 Velegol, Darrell. Physics of Community Course Notes for Fall 2019. 
2 Velegol, D.; Suhey, P.; Connolly, J.; Morrissey, N.; Cook, L. Chemical Game Theory. Industrial & Engineering 

Chemistry Research 2018, 57 (41), 13593–13607. 
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Chapter 2 

 

Classical Game Theory  

2.1 Classical Game Theory in One-Shot Prisoner’s Dilemma Game 

 

 Classical Game Theory has been studied to find solutions to strategic games in 

which two or more players make decisions that directly affect each other. John von Neumann 

and Oskar Morgenstern describe solutions to these games in their work, Theory of Games and 

Economic Behavior. 3 Much of modern game theory is based on the mathematical models within 

this work. These models have a very critical assumption, which is that each player acts 

rationally. Acting rationally indicates that all players act in their own self-interest and are making 

decisions that will offer them the greatest utility. It is also assumed that players know their self-

interest and are able to compute it.  

A common game that is solved within Classical Game Theory is called the Prisoner’s 

Dilemma.4 This game is played between two players, Player A and Player B. In this game, these 

players have started to commit a robbery together but are caught by the police before completing 

the act. They are taken to the police station, having no contact with each other. In separate 

rooms, the district attorney gives them each the decision to “tell “or “be quiet”. By “telling”, the 

player will be revealing that the other individual was planning on robbing the bank. By “being 

quiet”, the player will not reveal any information about the other player’s intentions.   Based on 

the players’ decisions, there are four possible outcomes and payoffs.  These are described below: 

 
3 Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior. Princeton: Princeton University 

Press, 2007. 
4 Gintis, H. “Game Theory Evolving.” Princeton University Press, 2000. 
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1. Both players can remain quiet and not give any information away to the district 

attorney, receiving one year of prison time each.  

2. Both players can tell on each other, betraying each other, and each player will 

receive two years of prison time.  

3. Player A can tell on Player B while Player B remains quiet. This will cause Player 

A to receive zero years in prison and Player B will receive three years in prison.  

4. Player B can tell on Player A while Player A remains quiet. This will cause Player 

B to receive zero years in prison and Player A will receive three years in prison.  

These scenarios can be described in normal form by a payoff matrix. A payoff matrix has 

three main components, which include players, payoffs, and strategies. In the Prisoner’s 

Dilemma game, the players are Player A and Player B, the strategies are to stay quiet or tell, and 

the payoffs are number of years in prison. The payoff matrix for Prisoner’s Dilemma is shown in 

Table 1. 

Table 1: Payoff matrix for a Prisoner’s Dilemma game 

 Player B Quiet Player B Tell 

Player A Quiet 1,1 3,0 

Player A Tell 0,3 2,2 

 

The Nash Equilibrium solution to this one-shot game, a game that is only played once, is 

for both players to choose to tell on the other player. This solution is considered a Nash 

equilibrium, which is a stable state in which no player can gain more utility by changing his or 

her strategy if the strategy of the other player remains unchanged.5 To come to this solution, the 

 
5 Nash, J. (n.d.). Non-Cooperative Games. Cournot Oligopoly, pp. 82–94. 
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players are considered individually. For example, it is assumed that Player B’s choice is held 

constant at tell. If Player A stays quiet, Player A will receive three years of prison time. 

However, if Player A chooses to tell then he will only receive two years of prison time. In this 

scenario, Player A will self-interestingly always choose to tell. Instead, Player B’s choice can be 

held constant at quiet. If Player A choses to quiet, he will receive one year of prison. If Player A 

chooses to tell, he will receive zero years in prison. In this scenario, Player A will also always 

choose to tell. This logic is concurrent for Player B, which results in the same strategy of both 

players telling.  

2.2 Tit-for-Tat and Grim Trigger Solutions in Iterated Prisoner’s Dilemma Game 

 

The Nash Equilibrium model is used particularly for one-shot games in Classical Game 

Theory; however, different models are used for repetitive games.  These include the tit-for-tat 

and grim trigger strategies, which are the currently the most widely accepted solutions to 

reoccurring games.  A repetitive game indicates that players will interact repeatedly with the 

same payoffs and available choices. A distinguishing feature of the repetitive games is that the 

players have the opportunity to learn about both the other player and the game itself. This 

enables the player to update their strategy from game to game.  An iterated Prisoner’s Dilemma, 

a repetitive game, can be solved using both tit-for-tat and grim trigger.   

The tit-for-tat strategy was introduced by Anatoni Rapoport and is noted for its simplicity 

in direct competition.6  A player using tit-for-tat strategy will tend to initially cooperate. For 

example, in the Iterated Prisoner’s Dilemma game, the players will initially choose not to tell on 

 
6 Nowak, M., Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's 

Dilemma game.  Nature, 364, 56–58. 
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each other. The players will then duplicate their opponent's previous action. If the opponent 

previously chose not to tell, then the player will also choose not to tell. If the opponent 

previously chose to tell, then the player will also choose to tell. This tit-for-tat solution is shown 

in Table 2 and Table 3, where “T” indicates tell and “Q” indicates to remain quiet.  

 

Table 2: Tit-for-tat solutions to an Iterated Prisoner’s Dilemma game when both player’s 

start with the same play. Vertical axis indicates the player’s identity and the horizontal axis 

indicates the trial number  

 1 2 3 4 5 

Player A Q Q Q Q Q 

Player B  Q Q Q Q Q 

 

Table 3: Tit-for-tat solutions to an Iterated Prisoner’s Dilemma game when both player’s 

start with different play. Vertical axis indicates the player’s identity and the horizontal axis 

indicates the trial number  

Trial Number  1 2 3 4 5 

Player A Q T Q T Q 

Player B  T Q T Q T 

 

This strategy heavily relies on the input of the opponent. A visual representation of the tit-for-tat 

strategy is shown in Figure 1. 
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Figure 1: Visual representation of tit-for-tat strategy in an Iterated Prisoner’s Dilemma game 

Another popular strategy for iterated games is called grim trigger. 7 A player using grim 

trigger strategy will always cooperate at first. When his opponent defects, the player will then 

defect for the rest of the game. This indicates that one defect by the opponent triggers a 

permanent defection. Table 4 shows the solution to an Iterated Prisoner’s Dilemma game using 

the grim trigger strategy.  

 

Table 4: Grim trigger solutions to an Iterated Prisoner’s Dilemma game when both 

players initially cooperate. Vertical axis indicates the player’s identity and the horizontal 

axis indicates the trial number  

 1 2 3 4 5 

Player A Q Q T T T 

Player B  Q T T T T 

 
7 Chincarini, Ludwig B., Experimental Evidence of Trigger Strategies in Repeated Games (2003). Rydex Working 

Paper.  
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Chapter 3 

 

Chemical Game Theory  

3.1 Chemical Game Theory Addresses Shortcomings of Classical Game Theory 

 

Chemical Game Theory utilizes a distinctive model to solve game theory problems, 

including Prisoner’s Dilemma. Chemical game theory, or CGT, uses different methods than 

Classical Game Theory and arrives at different solutions. This model was created to address the 

apparent shortcomings of Classical Game Theory. A major shortcoming of Classical Game 

Theory is the assumption of rational players. 8 Many experimental players do not act rationally or 

act only in self-interest. There are many reasons why players may not choose the Nash 

equilibrium. Some these reasons could include an existing relationship between players, previous 

experiences with playing the game, or altruistic personalities. Due to this, CGT models each 

player as a reactor and the reactions are called “decision reactions”. The entropy of each 

“decision reaction” causes the CGT solution to yield different results than Classical Game 

Theory.  A reaction in Gibbsian thermodynamics includes an associated Gibbs free energy and 

an initial concentration. In CGT, the Gibbs free energy is correlated to the “pain” of the decision. 

A more negative Gibbs free energy of a decision reaction, or less “pain”, will cause the reaction 

to move in a more favorable direction. The “initial concentration” is correlated to the pre-bias 

associated with a decision. In CGT, these possibilities and players are represented by 

“knowlecules”, or metaphorical molecules. Figure 2 is a visual representation of these 

knowlecules in Player A’s mind.  

 
8 Kaplow, L., Shavell, S. Fairness Versus Welfare. Harvard University Press. 2006. 
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Figure 2: A21 is formed when knowlecules a2 and b1 react. A21 is an intermediate decision of 

Player A 

 

 Figure 2 shows one of four possible decision reactions that occur in Player A’s mind. 9 

The knowelecules are represented as a1, a2, b1, and b2 in Player A’s brain. In a Prisoner’s 

Dilemma game, a2 is Player A’s pre-bias towards telling and b1 is Player A’s perception of 

Player B’s pre-bias towards staying quiet. These two knowlecules combine with “A”, which is a 

knowlecule that holds all of Player A’s personality and history. This process is aided with a 

catalyst to form the product of A21. This process occurs in parallel within Player B’s mind, 

however, the product is B21. Instead, the knowlecule of “B” holds all of Player B’s personality 

and history. The four products for Player A are: A11, A12, A21, B22. The four products for 

Player B are: B11, B12, B21, and B22.  This process is further detailed in Figure 3.10 

 

 
9 This figure was adopted from Velegol, D.; Suhey, P.; Connolly, J.; Morrissey, N.; Cook, L. Chemical Game 

Theory. Industrial & Engineering Chemistry Research 2018, 57 (41), 13593–13607. 
10  This figure was adopted from Jacob Scioscia, Chemical Game Theory: Asymmetric Rock Paper Scissors Design 

Strategy, Fall 2019 SHC thesis 
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Figure 3: The block flow diagram of the decision reaction system. 

 

Figure 3 shows that after reactor A and B form products, a decomposition step occurs. 

This causes the products to return into a1, a2, b1, and b2 knowlecules. These products then enter 

a third reactor that is the “decision reactor” or “Reactor D” to form the final products of D11, 

D12, D21, and D22.  For the Prisoner Dilemma’s game, this reactor belongs to the final decider, 

the attorney general. The purpose of this reactor is to incorporate the influence of a third party. 

However, if there is no third party, the Gibbs free energies of each reaction are set to large 

negative quantities, which will ensure that the reactions will virtually go to full conversion. By 

doing this, “Reactor D” essentially has no influence on the final outcomes and the products can 

be calculated based on the concentrations of the reactants.  



10 

3.2 Perception Functions and Pain Values 

 

In CGT, the pain values or Gibbs free energies are determined using a perception 

function. This perception function takes the form of a Weber-Fechner function and requires 

surveying from either the players or a representative sample population. 11 The purpose of using 

a perception function is to find a dimensional, scaled value of the pain or Gibbs free energy of a 

reaction decision for a player. Each player will not experience the same level of pain for each 

decision due to personality differences, which may include level of competitiveness. Equation 1 

takes the form of the Weber-Fechner function and Equation 2 is in slope-intercept form,  

𝑝 = 𝑝0𝑙𝑛
𝑠

𝑠0
  (1) 

𝑝 = 𝑝0𝑙𝑛𝑠 − 𝑝0𝑙𝑛𝑠0  (2) 

where 𝑝 is pain and 𝑠 is the variable that is causing this pain. Since Equation 2 is in slope-

intercept form, y=mx+b, the following relationships apply.  

𝑥 = 𝑙𝑛𝑠 

𝑏 = −𝑝0𝑙𝑛𝑠0 

𝑚 = 𝑝0 

𝑦 = 𝑝 

When collecting data from the players for 𝑝 and 𝑠, it is possible to fit a line to find 𝑚 and 𝑏. This 

can be done using linear regression analysis. When these values are determined, the perception 

function for pain is established, giving a more precise representation of the players. A perception 

 
11 Nutter, F.W., Esker, P.D. The Role of Psychophysics in Phytopathology: The Weber–Fechner Law Revisited. Eur 

J Plant Pathol 114, 199–213 (2006). 
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function has similarities to a chemical potential in thermodynamics. This process is described in 

Appendix A.   

3.3 Chemical Game Theory Solutions to One-Shot Prisoner’s Dilemma Game 

 

D11 in a Prisoner’s Dilemma game indicates that Player A and Player B both stay quiet. 

D12 indicates that Player A stayed quiet while Player B told. D21 indicates that Player A told 

while Player B stayed quiet. D22 indicates that both Player A and Player B tell on each other.  

The final concentrations, D11, D12, D21, and D22 are normalized to represent the final 

probabilities of each decision.  These probabilities are represented by yD11, y D12,  y D21, and yD22. 

For a game with two players that have two choices, this system can be solved with Excel. The 

chemical game theory solution for the Prisoner’s Dilemma game with pains of 0-1-2-3 is yD11 = 

0.523, yD12 = yD21 = 0.183, and yD22 = 0.111.12 These results indicate that the decision of both 

players staying quiet happens 52.3% of the time, the decision of one player staying quiet and the 

other telling happens 18.3% of the time, and the decision of both players telling on each other 

happens 11.1% of the time. This is different from Classical Game Theory that has one solution of 

both players telling, 100% of the time. These CGT results for a one-shot game show a more 

accurate correlation to experimental data than Classical Game Theory results. 13  

 
12  Natalie Morrissey, Chemical Game Theory: Entropy in Strategic Decision-Making, Spring 2018 SHC Thesis 
13  Nash, J. Non-cooperative Games. Annals of Mathematics 1951, 54 (2), 286-295. 
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3.4 Chemical Game Theory Solutions to Iterated Prisoner’s Dilemma Game 

Chemical Game Theory’s solution to an iterative game uses the same methods, however, it 

incorporates an updating function. As a player learns from game to game, their initial concentrations or 

pre-biases towards a decision change. This change in concentrations for a decision shows that players 

learn about their opponent, themselves, and the game itself throughout trials. Chemical Game Theory 

utilizes process control to represent iterative games.  This is shown by the process flow diagram in Figure 

4.  
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Figure 4: Chemical Game Theory Process Flow Diagram for Iterative Games and Updating 

Strategies 

In Figure 4, Player A and Player B both have initial pre-biases and therefore both players 

have initial concentrations that enter  their respective reactors. These knowlecules react to form 

A12, A21, A11, and A22 in reactor A and B12, B21, B11, and B22 in reactor B.  It is implied 

that any unreacted reactants are removed from the product stream. These products then undergo 

a decomposition step in which they decompose back into a1, a2, b1, and b2 knowlecules.  After 

this process, the knowlecules are fed into reactor D. The normalized concentrations of D12, D21, 

D11, and D22 are the final probabilities that each decision will occur. The final step of the 

system is a decomposition of D11, D12, D11, and D22 into a1, a2, b1, and b2. The 
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concentrations of these knowlecules are then measured using a sensor. The sensor measures the 

error, which is the difference between the set point and the control variable. Depending on the 

magnitude of the error, the controllers signal a need for adjustment in the final control element. 

The final control elements are the valves that are positioned on the feed streams going into 

reactors A and B. When signaled, the valve will either increase or decrease its openness 

percentage. This is based on whether or not the concentration of a specific type of knowlecule 

needs to increase or decrease from the previous game. The use of process control in CGT allows 

the model to represent how humans learn from game to game. It is important to note that the set 

point for each player may differ based on personal interests and stakes in the game.  This process 

control system is an example of a negative feedback loop, which utilizes the output of the system 

to reduce fluctuations and error. 14 

 

3.4 Thermodynamic Analogies in Chemical Game Theory  

 

Analogies can be established between thermodynamics and Chemical Game Theory. 

Each thermodynamic property can be related to a factor within a game such as Prisoner’s 

Dilemma. These definitions are shown in Table 5. 

 
14 J.F.MacGregor ; T.Kourti.(1995), Statistical process control of multivariate processes. Control Engineering 

Practice. 3, 403-414. 
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Table 5: Chemical Game Theory definitions in terms of thermodynamic properties  

Thermodynamics 

Term 

Definition in CGT 

Gibbs Free Energy Pain associated with choosing a particular decision  

 

 

Enthalpy  The player’s utility  

 

 

Entropy The randomness of a decision based on external circumstances 

or the “fairness” in a game 

 

Temperature Excitement level or the inverse of choosiness 

 

 

Extent of Reaction The percentage of how often a player will choose a particular 

decision  

Concentrations 

 

Initial and final (pre-bias) 

 

 

Chemical Potential Perception function  

Chapter 4 

 

Definitions of Learning 

4.1 Existing Definitions of Learning and Biology Comparisons 

 

There are many existing definitions of learning in the areas of cognitive psychology, 

behavioral ecology, and machine learning. One specific definition of learning in psychology is 

that “learning refers to the process by which an animal (human or non-human) interacts with its 
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environment and becomes changed by this experience so that its subsequent behavior is 

modified.” 15 This suggests that the learning process is a change in behavior because of previous 

experiences, which is essentially the framework that CGT uses to define the learning. 16 

Additionally, the immune system is one of the most prevalent representations of learning 

in the human body. The human immune system specifically uses a negative feedback loop to 

maintain bodily functions. There are two main divisions of the immune system; one division is 

the adaptive immune system and the other is the innate immune system. The adaptive immune 

system will be specifically described in this paper because it illustrates how the body is learning 

based on its environment. The adaptive immune system both flags foreign invaders that are not 

initially recognized and eradicates them from the body. It will then produce antibodies that will 

be able to recognize the invader in a subsequent attack, resulting in a more efficient immune 

response. This response for identifying foreign invaders in the body is a result of trial and error 

of the linkages between B cell receptor sites and the invaders. After multiple iterations, the B cell 

adapts its receptor sites and effectively tags the invader for destruction. This phenomenon is an 

example of a negative feedback loop, reducing error in trials to reach the desired state. These 

antibodies are analogous to the “memory” of humans within the Chemical Game Theory model. 

It is hypothesized that the way in which players update their decision-making in strategic games 

is analogous to the learning of the human adaptive immune system.  

 Using process control in regard to biological phenomena is a relatively new study. There 

are therefore few experiments that have been performed. Despite this, Proportional-Integral 

control, or PI control, has been used as the most common control mode to represent biological 

 
15 Sih, A., Ferrari, M. C., & Harris, D. J. (2011). Evolution and behavioural responses to human-induced rapid 

environmental change. Evolutionary applications, 4(2), 367–387.  
16 Kadambari Prabakar, current CGT lab member 
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processes. This is because PI control incorporates delay times for these non-instantaneous 

processes. One experiment was performed to test the effectiveness of PI control within the 

context of protein expression.17 In this experiment, the concentration of glucose and galactose 

were controlled to either promote or terminate protein expression until the desired amount of 

protein was produced. It was found that PI control was successful for a total of 24 hours in 

producing the desired quantity of proteins given a significant delay time and disruptions. Figure 

5 represents how PI control operates within this experiment.  

 

Figure 5: The process-integral control loop utilized for glucose and galactose expression 

 

This use of PI control in a biological phenomenon will be further explored for the Chemical 

Game Theory model. It will be determined if PI control of initial concentrations is the most accurate type 

of control to represent the continuous process of learning. 

 

 

 
17 Menolascina, F., Fiore, G., Orabona, E., De Stefano, L., Ferry, M., Hasty, J., di Bernardo, M., & di Bernardo, D. 

(2014). In-vivo real-time control of protein expression from endogenous and synthetic gene networks. PLoS 

computational biology, 10(5).  
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4.1 Chemical Game Theory’s Definition of Learning 

 

 The Chemical Game Theory model utilizes these biology comparisons to formulate a 

definition of learning. The definition of learning in this model is characterized by the following 

parameters. First, changes in decision-making are based on knowledge drawn from previous 

experience. This previous experience is defined as an individual’s direct participation in an event 

or accumulated knowledge through observations. Second, learning is indicated by several 

continuous changes in decision-making rather than a single permanent one.18 As knowledge is 

accumulated through previous experience, decision-making strategies adapt as a response to this 

new experience. Third, individuals have a finite capacity for processing information. This is 

described as bounded rationality, which accounts for an individual’s limited cognitive capacity, 

with regards to both limitations of knowledge and computational capacity. 19 Fourth, memory in 

the context of this model is the utilization of previous experience to influence current 

behavior.  After initial learning, humans utilize their memories to apply the knowledge, which can 

be considered relearning.  Finally, learning will be measured based on short-term timescale.20 

Chapter 5 

 

Testing 

5.1 Experiment Prompt  

 

 
18 Ellie Alberti, current CGT lab member  
19 Simon, H. A.; “Models of Bounded Rationality.” MIT Press, 1997 
20 Kadambari Prabakar, current CGT lab member 
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To test the accuracy of Chemical Game Theory’s learning model in comparison to 

Classical Game Theory’s learning models, an IRB (International Review Board) was approved to 

test 125 Penn State Students’ ability to learn in a game that is similar to Iterated Prisoner’s 

Dilemma. Portions of the IRB can be seen in Appendix C.  A “lemonade stand” game was used 

as the game that the students would have to learn how to play.  This game was run as a trial 

between a group of 3 students. The following prompt was given:  

You and your neighbor are both selling lemonade today and you set up your stands 

 directly across the street from each other. Your neighborhood has a fixed number of 

 customers and it has been determined that the quality of both of your lemonade is equal. 

 You both start by selling your lemonade for the same price. As a seller, you have the 

 option to either lower the price of your lemonade or keep it the same.  

With this prompt, the following scenarios are possible: 

1. Both players keep the same price and each get roughly 50% of the customers. 

2. Player A lowers his price and Player B does not. Player A will attract more of the 

customers than Player B, and make more money 

3. Player A keeps the price the same and Player B lowers it . Player A attracts less 

customers than Player B, and make less money 

4. Both players lower their prices (assuming they both lower it by the same dollar 

amount). Both players get roughly 50% of the customers, but both their total 

profits are lower 

Table 6 describes the “pain matrix” of this game. Note that the highlighted score goes with the 

left side or Player A, while the non-highlighted goes with the top or Player B. A negative score 

is more desirable. The goal is to have the least  total pain. 
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Table 6: The pain matrix for each outcome of the “lemonade stand” game  

 

No change (B) Lower price (B) 

No change (A) 0, 0 +10, -10 

Lower price (A) -10,+10 +5, +5 

 

The players were given the option to stop playing the game at any point. At the end of the game, 

each player was individually surveyed with the following prompt, 

 Assume you could stop playing at any point during the game. If your score from the 

 previous game were the value below, what is your probability of continuing to play? 

 Remember, a more negative score is still more desirable.  

The purpose of this survey was to create the perception function for each player, which enables 

the CGT solutions to be more accurate for each individual. Table 7 was presented to each player 

to fill out. 

Table 7: After the final trial of the game, each player determines the probability of 

continuing to play the game after receiving a particular score 

Your score of previous run Probability of continuing to play 
(0-100%) 

-15 
 

-10 
 

-5 
 

0 
 

5 
 

10 
 

15 
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5.1 Running the Experiment  

  

 Three players are involved in this study: Player A, Player B, and Player C. The analysis 

applies specifically to Player A, who is learning from game to game. There are three trials that 

consist of 20 games each, indicating 60 games total are played. Player A and Player B play in the 

first trial. In the first trial, both players are able to see what their opponent played and their final 

score from each round. Figure 6 shows an example of how Player A enters his decision into the 

experiment spreadsheet and how he can view his score for the first trial. Player A enters “1” into 

the green cells to indicate keeping the same lemonade price or “’2” to indicate lowering the 

lemonade price.  

 

Figure 6: Player A’s perspective when playing the “lemonade game” for the first trial 

 

 For the next trial, Player A and Player B play the exact same game, however, they do not 

have access to the information of what their opponent’s play was. Each player sees a note that 

reads “played” rather than an actual decision from his opponent. Additionally, the players are 

unable to see their final score from this trial. The point of this trial is to gather a general 
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understanding of each player’s strategy when they cannot learn or tell what their opponent’s 

strategy is. Figure 7 shows how player A enters his decisions to the spreadsheet during the 

second trial and what he sees as he plays.  

 

Figure 7: Player A’s perspective when playing the “lemonade game” for the second trial 

  

For the third trial, Player A and Player C play each other. They are both able to see their 

opponent’s strategy as they play the game, as well as their score. Figure 8 illustrates what Player 

A views for the third trial in the spreadsheet.  

 

 

Figure 8: Player A’s perspective when playing the “lemonade game” for the third trial 
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5.2 Analysis of Experimental Data  

 

 The first step of the analysis was to create a perception function for each individual 

player. This was possible given the data collected from the survey at the end of the experiment. 

Three separate perception functions were created for each respective player, allowing the 

Chemical Game Theory model to use an accurate representation of each player.  With these 

perception functions, each player’s “real” pain was assessed from the original values displayed in 

the pain matrix. These “real” pains are used in the CGT solver as the Gibbs Free Energies.  

 The next step of the analysis was to find the initial concentrations or pre-bias of each 

player.  This is a component of the game that remains unknown and must be solved for. Since all 

other variables are defined, Excel Solver can be used to find the initial concentrations of each 

player. This a new finding for Chemical Game Theory and a method for determining someone’s 

early thoughts entering a game. Figure 9 is a visual representation of how these concentrations 

were found.  
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Figure 9: Representation of the analysis of experimental data for the first trial 

 

 This method of analysis illustrated in Figure 9 works backward instead of forward. The 

outcomes of the game are used to solve for the initial concentrations. This can be done from the 

first game to the last game. A change of initial concentration indicates that the player is learning 

or changing behavior based on the results of the previous game and their environment.  

 

 The analysis for the second trial is consistent with the first trial. The only difference 

between these trials is that the final outcomes are unknown to both players. This method of 

analysis is described in Figure 10.  
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Figure 10: Representation of the analysis of experimental data for the second trial 

  

 Since player A and player B do not have any true interaction or effect on one another, it 

is hypothesized that the players will show no learning throughout this period. There initial 

concentrations should be similar or the same as the initial concentrations at the end of the first 

trial. The intention of this trial is to see what strategy Player A has after he or she has learned 

from the first trial. This hypothesis is visually represented in Figure 11, where each game in the 

second trial will lead to the same initial concentration when no learning occurred.  
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Figure 11: Representation of the hypothesis that the initial concentrations of a1, a2, b1, and 

b2 for Player A will not change when no learning occurs 

 

 

 The analysis used for the third trial differs slightly from the other two. Instead of working 

backwards for the initial concentrations, the final concentrations of decisions are solved for. This 

trial is between player A and player C. Player A is expected to have learned from the previous 

trials and have some insights about how the game works. This gives Player A an advantage over 

Player C. It is assumed that Player C goes into this trial with an initial concentration of 50-50 

between lowering their price or keeping it the same. Therefore, the initial concentrations for 

Player A from the second trial are used in the CGT solver and the initial concentration of 50-50 

is used for player C in the CGT solver. The CGT solver calculations can be seen in Appendix B. 

The results are then calculated and compared to the data collected from the experiment. The final 

probabilities, or normalized concentrations of D12, D21, D11, and D22 are expected to be 

similar to what is seen from the outcomes of the experimental data. This will determine the 

accuracy of the CGT model and the accuracy of the model’s representation of learning. Figure 12 

illustrates this analysis for the third trial.  
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Figure 12: Representation of the analysis performed for the third trial, predicting the final 

outcomes of the player’s decisions 

5.3 Results and Discussions  

 

A new “pain matrix” was made using the perception functions for each player. These new 

pain matrices show the “real” pain that each player feels when receiving a certain amount of 

money.  Due to different personal experiences, these values can vary greatly. Table 8 and  

Table 9 show these differences in pain for each player.  

Table 8:  Pain matrix of the “real” pains for Player A and Player B for the first and second 

trials of the experiment 

 Player B keeps the same price Player B lowers the price 

Player A keeps the same price -1.01, -0.83 -0.99, -0.86 

Player A lowers the price -1.04, -0.82 -1.00, -0.82 
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Table 9:  Pain matrix of the “real” pains for Player A and Player C for the third trial of the 

experiment 

 Player C keeps the same price Player C lowers the price 

Player A keeps the same price 

-1.01 -0.38 

 

-0.99, -0.46 

 

Player A lowers the price 

-1.04, -0.33 

 

-1.00, -0.35 

 

 

This data indicates that Player A receives the greatest utility from winning and Player C receives 

the highest pain for losing.  

  Table 10 shows the initial concentrations that were calculated for Player A and Player B 

in the first trial, using the CGT solver and final outcomes of the experimental data.  

Table 10: Initial concentrations solved for Player A and Player B for the first trial  

Initial Concentrations Player A Player B  

a1 0.56 0.50 

a2 0.24 0.50 

b1 0.10 0.00 

b2 0.90 1.00 
 

 

This data clearly shows that Player A has an initial pre-bias towards not changing the 

price and believes that Player B has a strong propensity towards lowering the price. Player B, 

however, believes that Player A does not have any pre-bias towards one decision and is very 

biased towards lowering the price of the lemonade. In the second trial, Player A reveals her new 

strategy after learning how Player B plays the game. The initial concentrations from the second 

trial were again solved for in the same method as the first trial. This is shown in Table 11. 
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Table 11: Initial Concentrations Solved for Player A and Player B for the second trial 

Initial Concentrations Player A Player B  

a1 0.24 0.50 

a2 0.56 0.50 

b1 0.00 0.00 

b2 1.00 1.00 

 

This data from Table 11shows learning. Player A illustrates that she learned Player B’s 

strategy by changing her initial concentrations of b1 and b2. She now perceives that Player B 

will always lower the price of lemonade. She then responded to this learning by changing her 

own initial concentrations of a1 and a2, decreasing a1 and increasing a2. When Player A began 

playing Player C, she had more insight into the game than when she started. Table 12 shows the 

initial concentrations that were assumed for the analysis of the third trial.  

 

Table 12: Assumed concentrations from the third trial between Player A and Player C for 

the CGT solver 

Assumed Initial 

Concentrations 

Player A Player C 

a1 0.24 0.50 

a2 0.56 0.50 

b1 0.00 0.50 

b2 1.00 0.50 

  

The assumption for Player A is that she keeps her initial concentrations from the second 

trial. Since there has been no further learning within the second trial, these concentrations are 

expected not to change.  The assumption for Player C is that he does not have any preference 

towards keeping the lemonade price or lowering. He has not played the game yet and therefore 

should not have any specific intuitions into the game or how Player A makes decisions. With 
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these assumptions, the initial concentrations were inserted into the CGT Solver and the final 

CGT results are given in Table 13.  

Table 13: Final concentrations calculated using the CGT Solver between Player A and 

Player C 

Strategies Final 

Concentrations 

D11 0.15 

D12 0.15 

D21 0.34 

D22 0.35 

 

These are the solutions from the CGT Solver. They are then compared to the results seen 

from experimental data, which is shown in Table 14. 

Table 14: Final Concentrations from Experimental Data between Player A and Player C 

Strategies Final 

Concentrations 

D11 0.10 

D12 0.15 

D21 0.45 

D22 0.30 

 

These results show that the CGT results can explain the experimental data results. Both 

CGT and experimental data show that both players will not choose to keep the same price very 

often. Additionally, both methods show that the outcome of Player A choosing to keep the price 

the same and Player C choosing to lower the price does not happen often. One discrepancy 

between the CGT solutions and the experimental data is that the CGT solutions predict that both 

players will lower the price most of the time. Contrary to this, the experimental data shows that 

the outcome of Player A lowering the price and Player C keeping the price the same happens 

most often. This difference could be contributed to the assumption that Player C has no pre-bias 
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to one decision over the other. To make the CGT solutions more accurate, an analysis of Player 

C’s initial concentration should be executed. This is something that can be continued in future 

CGT work. Table 15 is aimed to compare the results of this game from Classical Game Theory, 

Chemical Game Theory, and the experimental data.  

Table 15: Comparison between the solutions of Classical Game Theory, Chemical Game 

Theory, and the experimental data. RMS indicates root mean square 

Final 

Concentrations 

CGT 

Method 

Grim 

Trigger 

Tit-for-tat  Experimental 

Data 

D11 0.15 0.00 0.25 0.10 

D12 0.15 0.00 0.30 0.15 

D21 0.34 0.00 0.25 0.45 

D22 0.35 1.00 0.20 0.30 

RMS of Error 13.1% 85.1% 30.8% 0.00% 

 

Table 15 indicates that the CGT solutions are most similar to the experimental data with a 

13% error. This indicates that the accuracy of Chemical Game Theory is more precise than the 

solutions from Classical Game Theory in terms of learning.  This can be contributed to the 

inclusion of pains and priors within the CGT model, which does not exist in the Classical Game 

Theory.  This experiment will be run multiple times to ensure that these results and conclusions 

are consistent and reproducible.  

Chapter 6 

 

Conclusions 

 The findings in this thesis indicate that Chemical Game Theory yields solutions that 

reflect experimental data. In comparison to Classical Game Theory, Chemical Game Theory 

showed the smallest error in comparison to the experimental data. The total error of CGT 
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solutions for the “lemonade game” was 13%. Tit-for-tat strategy proved to be a more accurate 

strategy than grim trigger for this experiment with an error of approximately 31%. The process 

control learning model of Chemical Game Theory explained experimental data better than 

Classical Game Theory learning models for this particular game. 

Chemical Game Theory continues to solve various types of games that apply beyond just 

game theory. Future work for this model includes solving problems such as investing in the stock 

market, creating public health policies, negotiations with employers, etc.  Since Chemical Game 

Theory measures various parameters of each game or problem, it is versatile and adaptable to 

almost any situation.  Future work will be to determine how many pieces of information humans 

can retain within a short time frame. Bounded rationality will be incorporated into the Chemical 

Game Theory model. Additionally, temperature will be studied, and its affects within the CGT 

reactors.  The game is also intended to be extended to n-number of possibilities with n-number of 

players.  With the approval of the IRB application, the experimental data will be expanded. 

There will be approximately 125 players and 40 games to analyze. With this analysis, the 

accuracy of Chemical Game Theory will be further tested and improved. 
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Appendix A 

Perception Function Calculation 

 

Figure 13: Linear regression used to find coefficients for perception function  

 
 

 
 
 

Figure 14: Values of coefficients with variation for perception function  

 



 

 
Figure 15: Perception function used to find the “real” pain or “p predict” 

 

 

 

 

 

 

 

 

 



 

Appendix B 

 

Figure 16: CGT Excel solver used for Reactor A  

 

 



 

 

 

Figure 17: CGT Excel solver used for Reactor B  

 

 



 

 

Figure 18: CGT Excel solver used for Reactor D 



 

Appendix C 

Parts of IRB Application 

 

Figure 19: Main study objectives for experiment 

 
Figure 20: Background and gaps in current CGT model 



 

 
Figure 21: Previous data collected and study rationale 
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