
THE PENNSYLVANIA STATE UNIVERSITY

SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNDERSTANDING DOUBLE DESCENT BEHAVIOR IN DEEP LEARNING NEURAL

NETWORKS.

SHUBHANGAM DUTTA

SPRING 2020

A thesis

submitted in partial fulfillment

of the requirements

for a baccalaureate degree

in Computer Engineering

with honors in Computer Engineering

Reviewed and approved* by the following:

Mehrdad Mahdavi

Assistant Professor of Computer Science and Engineering

Thesis Supervisor

John Morgan Sampson

Assistant Professor of Computer Science and Engineering

Honors Adviser

* Electronic approvals are on file.

i

ABSTRACT

 The statistical understanding of the phenomenon of the U- shaped curve in performance

of modern machine learning regimes owes to the existence of the bias–variance tradeoff between

the models. However, most modern deep learning networks exhibit a double descent behavior

where an increase in certain parameters such as model size, epochs leads to an increase in

performance superseding the U-shaped curve past an interpolation threshold. The notion of

Effective Model Complexity incorporates all these factors and conjectures a generalized double

descent with respect to these factors [1]. This research work builds upon this notion of Effective

Model Complexity and tests these various factors across the ResNet v2 model. This research

paper also elaborates on the reason behind picking this particular model to test this hypothesis

and demonstrates the effect of external parameters such as label noise on this double descent

behavior.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Introduction .. 1

1.1 Bias and Variance .. 1
1.2 Bias-Variance tradeoff and Double Descent .. 2

Chapter 2 Effective Model Complexity .. 4

Chapter 3 Why ResNets? .. 6

Chapter 4 Experiments & Analysis... 9

4.1 Experiments to verify Model Wise Double Descent Behavior 9
4.2 Experiments to verify Epoch Wise Double Descent Behavior 13
4.3 Experiment to verify Sample wise Non-Monotonicity ... 21

Chapter 5 Discussion & Evaluation .. 23

Chapter 6 Conclusion .. 24

Appendix A ..
Code for our Experiments ... 25

A.1 The Code Setup ... 25
A.2 The ResNet v2 model .. 28

Appendix B Sample wise Non-Monotonicity in a Transformer 32

BIBLIOGRAPHY .. 33

iii

LIST OF FIGURES

Figure 1: Classical U-shaped Curve (Risk vs Model Complexity) [2] 2

Figure 2: Double Descent Curve (Risk vs Model Complexity) [2] ... 3

Figure 3: Intuitive representation of gradient pathways in ResNet .. 7

Figure 4: ResNet v1 and ResNet v2 Model [10] .. 8

Figure 5: Initial Layers of ResNet v2-20 Width Parameter = 8 ... 10

Figure 6: Final Layers of ResNet v2-20 Width Parameter = 8 .. 10

Figure 7: Test Error after multiple simulations (averaged & smoothened) vs Model Size...... 11

Figure 8: Train Error after multiple simulations (averaged & smoothened) vs Model Size 11

Figure 9: Test Error after single simulation vs Epochs .. 14

Figure 10: Test Error after single simulation vs Epochs .. 14

Figure 11: Test Error after single simulation vs Epochs .. 15

Figure 12: Test Error after multiple simulations (averaged & smoothened) vs Epochs 15

Figure 13: How Noise ratio affected Test accuracy, Label precison and Label Recall on CIFAR-

10 .. 16

Figure 14: Test Error after single simulation vs Epochs .. 16

Figure 15: Test Error after multiple simulations (averaged & smoothened) vs Epochs 17

Figure 16: Train Error after multiple simulations (averaged & smoothened) vs Epochs 17

Figure 17: Test Error after single simulation vs Epochs .. 18

Figure 18: Test Error after multiple simulations (averaged & smoothened) vs Epochs 18

Figure 19: Train Error after multiple simulations (averaged & smoothened) vs Epochs 18

Figure 20: Test Error after multiple simulations (averaged & smoothened) vs Epochs 19

Figure 21: Test Error after multiple simulations (averaged & smoothened) vs Model Width

Parameter for 5000 and 25000 Samples .. 22

Figure 22: Transformer Embedding Dimension vs Cross-Entropy Test Loss 32

iv

LIST OF TABLES

Table 1: Experimental Setup used to test Model Wise Behavior ... 9

Table 2: Experimental Setup used to test Epoch Wise Behavior ... 13

Table 3: Experimental Setup used to test Sample wise Non-Monotonicity 21

v

 ACKNOWLEDGEMENTS

I want to thank my thesis supervisor Dr. Mehrdad Mahdavi for introducing this topic as

well as providing me resources to aid my research. I also would like to thank my thesis advisor

Dr. John Morgan Sampson in supporting me during my tenure at Penn State as an advisor as well

as in reading my thesis.

I would also like to thank my parents Mr. Bibhutosh Dutta and Mrs. Barsha Dutta for

encouraging me to join Schreyer Honors College and in keeping me motivated towards my final

goal as well as my friends who supported me throughout my time at my University.

1

Chapter 1

Introduction

Recently there has been an abundant interest in the area of Machine Learning, and how it

is being widely used in science and technology because of its cognitive abilities. The cognitive

features of these machine learning models amount to the ability of these algorithms to make out

of sample predictions based on the training data these models are fed. According to the statistical

analyses, to make out of sample predictions by reducing the generalization error, these models

calibrate according to the bias (approximation error) vs variance (estimation error) tradeoff by

controlling the effective model complexity [2]. The section below describes bias and variance in

machine learning models in detail.

1.1 Bias and Variance

 Bias (approximation error) is the expressive power of a model and exists because of our

assumption about the model space. The model makes these simplifying assumptions to make the

target function easier to approximate. Whereas as the variance (estimation error) equals to how

well parameters can be estimated. It is the amount that the estimate of the target function will

change if different training data were used [3].

 Statistically speaking, assume that there is a function with noise 𝑦 = 𝑓(𝑥)+ ∈ , 𝑓(𝑥) is the true

function and ∈ is the noise on the sample 𝑆 = {(𝑥1, 𝑦1) … (𝑥𝑛, 𝑦𝑛)}.

2

Let 𝑔(𝑥; 𝑆) be the function that approximates the true function and we optimize mean squared

error to approximate the function. Then bias and variance can be expressed as,

𝐵𝑖𝑎𝑠𝑆[𝑔(𝑥; 𝑆)] = 𝐸𝑠[𝑔(𝑥; 𝑆)] − 𝑓(𝑥)

𝑉𝑎𝑟𝑆[𝑔(𝑥; 𝑆)] = 𝐸𝑠[𝑔(𝑥; 𝑆)2] − 𝐸𝑠[𝑔(𝑥; 𝑆)]2

Where 𝐸𝑠[𝑔(𝑥; 𝑆)] is the expected error on an unknown sample [4][5]. (Note:

𝐸𝑠 [(𝑦 − 𝑔(𝑥; 𝑆))
2

] = (𝐵𝑖𝑎𝑠𝑆[𝑔(𝑥; 𝑆)])2 + 𝑉𝑎𝑟𝑆[𝑔(𝑥; 𝑆)] + 𝜎2 (Irreducible Error))

1.2 Bias-Variance tradeoff and Double Descent

 One of the most fundamental principles in classical statistical learning is the bias-

variance trade-off. The application of this principle is omnipresent in machine learning models in

the under-parameterized regime where the models are adjusted according to this principle.

Following this principle, increasing the (effective) model complexity will lead to an increase in

the accuracy until it reaches a “sweet spot”, once the (effective) model complexity passes this

threshold, models overfit with the variance term dominating the test error, and this leads to a

decrease in performance as shown in Figure 1.

 Figure 1: Classical U-shaped Curve (Risk vs Model Complexity) [2]

3

However, most deep learning neural networks tend to use overparametrized models to achieve

near-zero training accuracy and are still able to decrease the test risk and perform much better on

many tasks than even smaller models [2]. In fact, Figure 2 below represents the behavior of

machine learning models in overparametrized regime and articulates the contradictory behavior

of these models to the above principle. It is evident from the plot that past a certain interpolation

threshold, increasing the (effective) model complexity leads to a decrease in test risk.

 Figure 2: Double Descent Curve (Risk vs Model Complexity) [2]

This double descent behavior occurs across a variety of tasks, architectures, and optimization

methods. In this research work, we conjecture the various factors such as model size or epochs

that lead to this behavior in the notion of Effective model complexity (first described by

Nakkiran et al. [1]) and verify the performance of these functions in the ResNet v2 model.

4

Chapter 2

Effective Model Complexity

The notion of Effective model complexity incorporates the various functions which affect

this double descent behavior in the modern machine learning regimes. It was first defined in the

research published by Nakkiran et al. [1]. According to Nakkiran et al., the effective model

complexity can be defined as follows:

Let 𝑇 be any training procedure that takes as input a set 𝑆 = {(𝑥1, 𝑦1) … (𝑥𝑛, 𝑦𝑛)} of

labeled training samples and outputs a classifier 𝑇(𝑆) mapping data to labels. The Effective

Model complexity of 𝑇 with respect to the distribution 𝐷 to be the maximum number of samples

𝑛 on which 𝑇 achieves on average close to zero training error.

𝐸𝑀𝐶𝐷,𝜖(𝑇) = max{𝑛 | 𝐸𝑆~𝐷𝑛[𝐸𝑟𝑟𝑜𝑟(𝑇(𝑆))] ≤ 𝜖

Here 𝐷 is the distribution, 𝜖 is a parameter whose value is greater than 0 and 𝐸𝑟𝑟𝑜𝑟𝑆(𝑀) is the

mean error of the model 𝑀 on the train sample S.

According to Nakkiran et al., the deep double descent behavior in deep learning neural networks

can be categorized into 3 different regimes:

If 𝐸𝑀𝐶𝐷,𝜖(𝑇) << 𝑛, the model will be in under-parameterized regime and any increases in

effective complexity will decrease the test error.

5

If 𝐸𝑀𝐶𝐷,𝜖(𝑇)) >> 𝑛, the model will be in over-parameterized regime any increase in effective

complexity will decrease the test error.

If 𝐸𝑀𝐶𝐷,𝜖(𝑇) ≈ 𝑛, the model will be in critically-parameterized regime and any perturbation of T

that increases its effective complexity might decrease or increase the test error.

Where 𝑇 is the neural-network-based training procedure and 𝐷 is any natural data distribution

[1]. Note: While 𝑛 here accounts for the sample size used for training, it is sometimes confused

with only the number of data points. While this case can be true for single output, for multiclass

classifications, the n accounts for the number of data points * number of outputs.

 The advantage of utilizing this notion over model complexity is that model complexity

generally accounts for only the model parameters (or size) and architecture while evaluating the

test risk of the classifier across a varying number of parameters. However, the notion of effective

model complexity not only incorporates the model parameters and architecture of the classifier

but also the training procedure and data distribution used during the evaluation of the test risk.

 In this research work, we build upon this hypothesis of effective model complexity and

conduct various experiments to verify these factors that affect the double descent behavior on the

ResNet v2 model. But before conducting these experiments, it is mandatory to justify the reason

for picking this particular neural network. In Chapter 3 we briefly elaborate on properties of

ResNets and provide justification for using this model to conduct experiments.

6

Chapter 3

Why ResNets?

In recent years, acknowledging the double descent behavior in neural networks, many

practitioners used deeper networks to train their models to increase the performance by training them in

overparameterized regimes. However, while training these deeper networks, instead of observing an

enhancement in performance, the problem of accuracy degradation was observed i.e. adding more layers

to the network either made the accuracy value to saturate or it abruptly started to diminish. The reason

behind this accuracy degradation is the vanishing gradient effect which is observed prominently in deeper

networks.

 During backpropagation, the error is calculated, and gradient values are determined. The

gradients are then sent back to the hidden layers and the weights are updated accordingly. This process of

gradient determination is continued between the subsequent hidden layers until the input layer is reached.

Throughout this process, the gradients gradually decrease and eventually diminish as they reach the end

of the network. This leads to the weights of the initial layers being updated very slowly or they remain

almost unchanged i.e. the initial layers of the network don’t learn effectively. Hence, the accuracy during

training either starts to degrade or diminish to a certain value. Although this hindrance was minimized

using the normalized initialization of weights, the performance of these deep learning models still didn’t

improve [7].

 To diminish this effect of vanishing gradients, ResNet uses the notion of “identity shortcut

connection” which involves skipping one or more layers, as shown in the Figure 3.

7

 Figure 3: Intuitive representation of gradient pathways in ResNet

Note: For the sake of simplicity, the weight layers and activation function are not included in this

diagram.

 As you can see in the above figure, during backpropagation, the gradient can pass from the

residual mapping way (and eventually suffer vanishing gradient effect) or skip the residual mapping and

transit from the identity mapping i.e. through gradient pathway-1. Transiting from this path, the gradients

don’t have to encounter any weight layer, hence, there won’t be any change in the value of computed

gradients after they reach the initial layers, thereby helping them to learn the weights accurately [7].

 In general, in a multilayer neural network, the learning algorithm will tune all of the weights to fit

the training data, typically using versions of optimizers like Adam, with backpropagation to compute

partial derivatives [8]. Since the calculation of partial derivatives is crucial for the loss function, the effect

of identity mapping eradicates the effect of vanishing gradient present in other neural networks. This

makes ResNet fit for evaluating this behavior. Additionally, since we are using the Cross-entropy function

to evaluate the train error, this loss function makes the calculation of partial derivatives easier as it

reduces the optimization problem to be a convex function to be computed by optimizers like Adam or

SGD [8].

8

 The ResNet Model (imported from Keras) comes in 2 versions, the principal difference is that in

version 2, batch normalization and ReLU activation comes before 2D convolution and the uses stack of 1

× 1 - 3 × 3 - 1 × 1 BN-ReLU-Conv2D [9]. Because of the slight improvement, will use ResNet v2 for our

experiments. In this Chapter 4 we will elaborate on the experiments performed on ResNet v2.

 Figure 4: ResNet v1 and ResNet v2 Model [10]

9

Chapter 4

Experiments & Analysis

4.1 Experiments to verify Model Wise Double Descent Behavior

 Experimental Setup

To verify the model wise double descent behavior, ResNet v2-20 model was used, and the optimizer used

for this model was Adam [8]. The learning rate was set to be constant at 0.001 and the parameter width

was varied. The loss function used was categorial-crossentropy and data augmentation was also done to

achieve better accuracy. The dataset used for this experiment was CIFAR-10 which was subsampled into

half for validation. The details of the experimental setup are summarized below:

Table 1: Experimental Setup used to test Model Wise Behavior

Model ResNet v2 -20

Parameter Width 1-64

Optimizer Adam

Learning Rate 0.001

Loss function Categorial Crossentropy

Dataset CIFAR-10

Label Noise ratio 0

Kernel size 3

Strides 1

Padding Same

Regularization Disabled

Data augmentation Yes

10

 The figures below give a detailed model summary of the Resnetv2-20 for parameter width = 8.

The ResNet v2 model uses Batch normalization and ReLu activation and comprises of a 20 layer deep

Convolutional layers.

Figure 5: Initial Layers of ResNet v2-20 Width Parameter = 8

Figure 6: Final Layers of ResNet v2-20 Width Parameter = 8

11

 Results & Analysis

 The test and train errors evaluated after varying the parameter width of ResNet v2-20 is

summarized below. The training across varying parameter widths were simulated multiple times and the

errors were averaged (and smoothened) across a fixed number of epochs. The resulting plots are given

below. The resulting code is given in Appendix A.

Figure 7: Test Error after multiple simulations (averaged & smoothened) vs Model Size

Figure 8: Train Error after multiple simulations (averaged & smoothened) vs Model Size

As observed the Resnet v2-20 model exhibits a parameter wise deep double descent behavior.

The model is able to reduce the test error until the test error reaches a “sweet spot” after which the test

error starts to increase and reaches the interpolation threshold. The resulting plots indicate an

12

interpolation threshold at approximately parameter width ≈ 27. The training plots also indicate something

similar as the training error reaches close to zero at parameter width ≈ 32. Since this plot use averaging

and smoothening of multiple simulations, we believe that the slight discrepancy between the exact

parameter width where the interpolation occurs because of this.

The model is in under-parameterized regime for the model parameter width approximately

ranging from 1 to 25, followed by a critically parameterized regime for parameter widths ranging from 26

to 35 and eventually follows into an over-parametrized regime after that. After reaching the interpolation

threshold, the test error starts to decrease while the training error remains almost stagnant.

When the model size (parameter width) is much smaller compared to the sample size, classical

statistical arguments imply that the training risk is close to the test risk. Thus, for small models increasing

the parameter width increases the number of trainable parameters which yields improvements in both the

training and test risks. However, as the number of parameters approach the sample size (number of data

points * outputs) after the increment in the parameter width, parameters not present or only weakly

present in the data are forced to fit the training data nearly perfectly. This results in classical over-fitting

as predicted by the bias-variance trade-off. To the right of the interpolation threshold, multiple models are

able to minimize the training loss to almost zero error. While this might not always guarantee an

enhancement in test accuracy, the intuition is that with the increase in the number of interpolating models

will help us constructively make better approximations in finding the function with the small categorial

cross-entropy. This intuition is confirmed from Figures 7 and 8.

13

4.2 Experiments to verify Epoch Wise Double Descent Behavior

 Experimental Setup

For the purpose of testing the epoch wise behavior, the ResNet v2-20 model was used (imported

from Keras [9].) The details of the experimental setup are summarized below:

Table 2: Experimental Setup used to test Epoch Wise Behavior

Model ResNet v2 -20

Parameter Width 8,16,64

Optimizer Adam

Learning Rate 0.001

Loss function Categorial Crossentropy

Dataset CIFAR-10

Label Noise ratio 0/0.2

Kernel size 3

Strides 1

Padding Same

Regularization Disabled

Data augmentation Yes

14

 Results & Analysis

The test error of the ResNet v2-20 models was tested across various parameter widths and the

results of a few models are given below:

 Parameter width - 8

 Figure 9: Test Error after single simulation vs Epochs

 Parameter width – 64

 Figure 10: Test Error after single simulation vs Epochs

As observed from the results, the epoch wise double descent behavior is barely visible in these

models with no label noise. The test errors almost show a monotonic behavior as the test error decreases

15

with an increase in epochs, for a fixed parameter width. The results of the average and smoothening of

multiple simulations of these test results for ResNet v2-20 model (parameter width = 8, noise ratio = 0 %)

validates this observation even further.

 Parameter Width- 16

 Figure 11: Test Error after single simulation vs Epochs

 Figure 12: Test Error after multiple simulations (averaged & smoothened) vs Epochs

 To evaluate the epoch wise behavior by varying the label noise on ResNet v2-20 Parameter

width = 16, the trained with noisy labels, the noisy dataset was split into two halves and we perform

cross-validation: training on a subset and testing on the other. The noise pattern was symmetric, and the

16

label noise used for the testing was 0.2. The figure below represents how the noise ratio affects test

accuracy, label precision, and label recall on manually corrupted CIFAR-10.

 Figure 13: How Noise ratio affected Test accuracy, Label precison and Label Recall on CIFAR-10

 The results of testing different models with a Noise Ratio of 0.2 are given below:

 Noise Ratio 0.2

 Parameter Width – 16

 Figure 14: Test Error after single simulation vs Epochs

17

 Figure 15: Test Error after multiple simulations (averaged & smoothened) vs Epochs

 Figure 16: Train Error after multiple simulations (averaged & smoothened) vs Epochs

As observed from the above plots, the test error for the ResNetv2-20 Parameter width=16

decreases with epochs (Noise Ratio = 0.2) when under the under-parameterized, reaches a sweet spot and

then starts to overfit until around 150 epochs, with almost a constant test error after that.

18

 Noise Ratio 0.2

 Parameter Width - 64

 Figure 17: Test Error after single simulation vs Epochs

 Figure 18: Test Error after multiple simulations (averaged & smoothened) vs Epochs

Figure 19: Train Error after multiple simulations (averaged & smoothened) vs Epochs

19

We can notice in the above plots, the model possesses a deep double descent behavior, where the

model reaches the interpolation threshold at around 75 epochs as observed from the above plot. The test

error is observed to decrease past this threshold.

The amalgamation of test errors of these two models with different parameter width is plotted below.

 Figure 20: Test Error after multiple simulations (averaged & smoothened) vs Epochs

Based on our observations from these experiments, the medium-sized model’s test error tends to

decrease because the model tries to decrease the generalization error until it reaches its sweet spot, after

the sweet spot the model starts to overfit for a large number of epochs until it reaches an almost constant

rate. For larger models, the epoch wise test behavior exhibits a double descent behavior for some label

noise ratio.

However, models that were trained with 0 noise ratio tend to exhibit monotonic behavior even

after varying parameter widths for a large number of epochs. The intuition behind this (also mentioned in

Narikkam 2020) is that around interpolation thresholds, there is usually one model that fits the train data

this interpolating model is very sensitive to noise since noisy labels can affect the model’s calculated

20

parameters and thereby reducing its accuracy which is evident on medium-sized models [1]. Having no

label noise will, therefore, ensure the model doesn’t go through much perturbation making double descent

behavior difficult to observe.

 While epochs increase, larger models will eventually reach overparametrized regions, which

leads to these models having a greater number of models that fit the train set. With an increase in epochs,

the larger model is able to find even more interpolating models. Eventually one of these models will start

to perform well (by absorbing the noise) using the optimizers like Adam which eventually leads to greater

accuracy [1].

Note: Small models weren’t plotted since they tend to be in under parameterized regime for a large

number of epochs masking any deep double descent behavior.

21

4.3 Experiment to verify Sample wise Non-Monotonicity

 Experimental Setup

Using the same Resnetv2-20 model sample wise test error was produced across 25000 samples

and 5000 samples. L2-regularization was not used for this evaluation. According to the research work ,

double descent phenomenon is largely observed for unregularized or under-regularized models in

practice. For non-isotropic Gaussian covariates, we can achieve sample-wise monotonicity with a

regularizer (that depends on the population covariance matrix of data.) In order to avoid conflict with the

effect of regularization, this experiment uses regularizer-less setting. The results produced are plotted

below. The details of the experimental setup are summarized below:

 Table 3: Experimental Setup used to test Sample wise Non-Monotonicity

Model ResNet v2 - 20

Parameter Width 1 - 64

Optimizer Adam

Learning Rate 0.001

Loss function Categorial Crossentropy

Dataset CIFAR-10

Label Noise ratio 0

Kernel size 3

Strides 1

Padding Same

Regularization Disabled

Data augmentation Yes

22

 Results & Analysis

Figure 21: Test Error after multiple simulations (averaged & smoothened) vs Model Width Parameter for

5000 and 25000 Samples

As evident from the plots, with a greater number of samples, the test error has decreased.

However, the interpolation threshold for the model trained on a larger sample size is shifted to the right as

compared to the model trained on smaller sample size.

While for the experiment on Resnetv2-20, the test error is still less for a model trained on a larger

sample size, it is quite illustrative that for certain sample sizes slightly close to the sample size of 25000,

more data can have an opposite effect by decreasing accuracy. In fact, there are certain experiments

conducted in the past (Appendix B) that have demonstrated this intuition.

23

Chapter 5

Discussion & Evaluation

There has been a multitude of experiments conducted in the field of Deep Learning Neural

Networks that demonstrate the presence of Double Descent behavior in the performance of these models

with respect to model complexity [1][2][11][12][13]. The notion of effective model complexity sheds

light on the interaction between optimization algorithms, model size, and test performance with this

behavior and helps reconcile some of the competing intuitions about them [1]. The experiments

conducted in this research-work demonstrate certain interesting results that build upon the hypothesis

stated by Nakkiran et al. and affect our understanding of the significance of various intrinsic and extrinsic

parameters such as model size, sample size, noise, and epochs in the training of the model.

The experimental results demonstrate that the test performance across these models isn’t just a

function of model complexity (or size), but it can also be affected by the data distribution, the number of

epochs, and the label noise. In section 4.2, we demonstrate that with minor label noise the Resnet v2

model exhibits a double descent behavior when tested against the number of epochs. This result

demonstrates that for a certain number of epochs (around the interpolation threshold), an increase in

epochs results in the degradation of test performance for a certain model.

In section 4.3, we demonstrate a similar yet even more drastic analogy that affects our

understanding of the amount of sample size required for training. According to this analogy, for a certain

amount of parameter widths (or model complexity) the model shows little or no improvements in

increasing the sample size. In fact, in Appendix B, we demonstrate an experiment conducted by Nakkiran

et al. that shows that for certain embedding dimensions, an increase in samples leads to an overall

decrease in test loss [1]. This result stands contradictory to the popular notion that more data will always

improve performance.

24

Chapter 6

Conclusion

This paper introduces the concept of bias and variance and how the bias-variance tradeoff

determines the classical U-shaped curve observed in the performance of various machine

learning models across a range of model complexity in the under-parameterized and before the

critically-parameterized regime. This research paper then elaborates upon the double descent

behavior initially demonstrated in Belkin et al. where modern deep learning neural networks tend

to perform well in overparameterized regimes [2]. This double descent behavior is conjectured

under the notion of effective model complexity as defined in Nakkiran et al. and in our

experiments, we test the factors that affect this double descent behavior [1]. To evaluate these

factors such as model & epoch wise double descent behavior and sample non-monotonicity we

chose ResNet v2 (imported from Keras) in our experiments [8].

The research builds upon and emphasizes the findings of Nakkiran et al. in their paper by

providing experimental results and theoretical analysis of these results. However, this research

work differed from Nakkiran et al.’s work in various aspects such as the experimental setup,

model used, training samples, noise encoding method, and the justification of establishment of a

particular setup [1]. Additionally, the model chosen for this experiment was also discussed in

detail and the justification for choosing it for these experiments was provided. The noise ratio

encoded to the labels were also discussed by demonstrating how the label noise ratio encoded,

affected the test accuracy, label precision, and label recall in different models trained on

corrupted CIFAR -10 database.

25

Appendix A

Code for our Experiments

These experiments were conducted on Google Colab Pro with Hardware accelerator set as “GPU”

and the runtime shape set as “High-RAM”. The base of these experiments was based on the setup created

on https://github.com/chenpf1025/noisy_label_understanding_utilizing and the Resnet v2 model was

imported from it’s implementation on Keras [9].

To vary the number of parameter width in the ResNet v2 model, the number of input filters in the

ResNet v2 model was varied according to the input supplied. This in turn generated models of various

sizes.

A.1 The Code Setup

from keras.callbacks import Callback, LearningRateScheduler

from keras import optimizers

from keras.preprocessing.image import ImageDataGenerator

from keras.utils import multi_gpu_model

from sklearn.metrics import accuracy_score

import data

import numpy as np

import os

#os.environ['CUDA_VISIBLE_DEVICES']='1'

import argparse

""" parameters """

noise_ratio = 0 #args.noise_ratio

noise_pattern = 'sym' #args.noise_pattern #'sym' or 'asym'

batch_size = 128

epochs = 50

save_dir = 'Theory'

network = 'ResNet20'

if not os.path.isdir(save_dir):

26
 os.makedirs(save_dir)

filepath = os.path.join(save_dir,network+'.h5')

print('\n#######################################\n noise_ratio: %.2f noise

_pattern: %s\n#######################################\n'

 %(noise_ratio,noise_pattern))

##

""" Data preparation """

x_train, y_train, _, _, x_test, y_test = data.prepare_cifar10_data(data_di

r='/content/drive/My Drive/noisy_label_understanding_utilizing-

master/data/cifar-10-batches-py')#data/cifar-10-batches-py')

y_train_noisy = data.flip_label(y_train, pattern=noise_pattern, ratio=nois

e_ratio, one_hot=True)

input_shape = list(x_train.shape[1:])

n_classes = y_train.shape[1]

n_train = x_train.shape[0]

np.save('y_train_total.npy',y_train)

np.save('y_train_noisy_total.npy',y_train_noisy)

clean_index = np.array([(y_train_noisy[i,:]==y_train[i,:]).all() for i in

range(n_train)])# For tracking only, unused during training

noisy_index = np.array([not i for i in clean_index])

Generator for data augmantation

datagen = ImageDataGenerator(width_shift_range=4./32, # randomly shift im

ages horizontally (fraction of total width)

 height_shift_range=4./32, # randomly shift i

mages vertically (fraction of total height)

 horizontal_flip=True

) # randomly flip images

##

""" Build model """

val_idx = np.array([True for i in range(n_train)])

val_idx_int = np.array([i for i in range(n_train) if val_idx[i]]) # intege

r index

np.random.shuffle(val_idx_int)

n_val_tenth = int(np.sum(val_idx)/10)

val1_idx = val_idx_int[:n_val_tenth] # integer index

val2_idx = val_idx_int[n_val_tenth:] # integer index

#checkpoint = ModelCheckpoint(filepath=filepath, monitor='val_acc', verbos

e=1, save_best_only=False)

class Noisy_acc(Callback):

 def on_epoch_end(self, epoch, logs={}):

 idx = val2_idx[np.random.choice(len(val2_idx),1000)] # train on th

e first half while test on the second half

 predict = self.model.predict(x_train[idx,:])

 predict = np.argmax(predict,axis=1)

27
 _acc_mix = accuracy_score(np.argmax(y_train_noisy[idx,:],axis=1),

predict)

 _acc_clean = accuracy_score(np.argmax(y_train_noisy[idx,:][clean_i

ndex[idx],:],axis=1), predict[clean_index[idx]])

 _acc_noisy = accuracy_score(np.argmax(y_train_noisy[idx,:][noisy_i

ndex[idx],:],axis=1), predict[noisy_index[idx]])

 print("- acc_mix: %.4f - acc_clean: %.4f - acc_noisy: %.4f\n" % (_

acc_mix, _acc_clean, _acc_noisy))

 return

noisy_acc = Noisy_acc()

def lr_schedule(epoch):

 # Learning Rate Schedule

 lr = 1e-3

 print('Learning rate: ', lr)

 return lr

lr_callback = LearningRateScheduler(lr_schedule)

Define optimizer and compile model

optimizer = optimizers.Adam(lr_schedule(0))#, beta_1=0.9, beta_2=0.999, ep

silon=1e-08, decay=0.0)

for s in range(1,64):

 model = create_model(input_shape=input_shape, classes=n_classes, name=ne

twork,k=s, architecture=network)

 model.summary()

#parallel_model = multi_gpu_model(model, gpus=2)

 model.compile(optimizer=optimizer, loss='categorical_crossentropy', metr

ics = ['accuracy'])

##

 results = model.fit_generator(datagen.flow(x_train[val1_idx,:], y_train_

noisy[val1_idx,:], batch_size = batch_size),

 epochs = epochs,

 validation_data=(x_train[val2_idx,:], y_tra

in_noisy[val2_idx,:]),

 callbacks=[noisy_acc, lr_callback])

 rr=[]

 for t in results.history['val_accuracy']:

 rr.append(1-t)

 test_err7[s]=rr

 rs=[]

 for t in results.history['accuracy']:

28
 rs.append(1-t)

 train_err[s]=rs

 rl=[]

 for t in results.history['loss']:

 rl.append(1-t)

 t_loss[s]=rl

 scores = model.evaluate(x_test, y_test, verbose=1)

 print('Test loss:', scores[0])

 print('Test accuracy:', scores[1])

 test_e[s] = 1 - scores[1]

 y_pred = np.argmax(model.predict(x_train[val2_idx,:]), axis=1)

 y_true_noisy = np.argmax(y_train_noisy[val2_idx,:],axis=1)

 select_idx = val2_idx[y_pred==y_true_noisy]# integer index

 print('Noisy Validation Accuracy: %.4f'%(len(select_idx)/len(y_pred)))

 print('Label Precision: %.4f'%(np.sum(clean_index[select_idx])/len(selec

t_idx)))

 print('Label Recall: %.4f'%(np.sum(clean_index[select_idx])/np.sum(clean

_index[val2_idx])))

 y_test_pred = np.argmax(model.predict(x_test), axis=1)

 print('Noise ratio: %.2f'%noise_ratio)

A.2 The ResNet v2 model

The create_model function was used to create an instance of Resnet v2-20 as seen below.

def create_model(input_shape, classes, name,k, architecture='ResNet20'):

 if architecture == 'ResNet20':

 return resnet_v2(input_shape,k, depth=20, num_classes=classes)

The ResNet v2 model used in our experiments is given below:

def resnet_layer(inputs,

 num_filters=16,

 kernel_size=3,

 strides=1,

 activation='relu',

 batch_normalization=True,

 conv_first=True):

29

 """2D Convolution-Batch Normalization-Activation stack builder

 # Arguments

 inputs (tensor): input tensor from input image or previous layer

 num_filters (int): Conv2D number of filters

 kernel_size (int): Conv2D square kernel dimensions

 strides (int): Conv2D square stride dimensions

 activation (string): activation name

 batch_normalization (bool): whether to include batch normalization

 conv_first (bool): conv-bn-activation (True) or

 bn-activation-conv (False)

 # Returns

 x (tensor): tensor as input to the next layer

 """

 conv = Conv2D(num_filters,

 kernel_size=kernel_size,

 strides=strides,

 padding='same',

 kernel_initializer='he_normal',

 #kernel_regularizer=l2(1e-4)

)

 x = inputs

 if conv_first:

 x = conv(x)

 if batch_normalization:

 x = BatchNormalization()(x)

 if activation is not None:

 x = Activation(activation)(x)

 else:

 if batch_normalization:

 x = BatchNormalization()(x)

 if activation is not None:

 x = Activation(activation)(x)

 x = conv(x)

 return x

def resnet_v2(input_shape,k, depth, num_classes=10):

 """ResNet Version 2 Model builder [b]

 Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as

 bottleneck layer

 First shortcut connection per layer is 1 x 1 Conv2D.

 Second and onwards shortcut connection is identity.

30

 At the beginning of each stage, the feature map size is halved (downsa

mpled)

 by a convolutional layer with strides=2, while the number of filter ma

ps is

 doubled. Within each stage, the layers have the same number filters an

d the

 same filter map sizes.

 Features maps sizes:

 conv1 : 32x32, 16

 stage 0: 32x32, 64

 stage 1: 16x16, 128

 stage 2: 8x8, 256

 # Arguments

 input_shape (tensor): shape of input image tensor

 depth (int): number of core convolutional layers

 num_classes (int): number of classes (CIFAR10 has 10)

 # Returns

 model (Model): Keras model instance

 """

 if (depth - 2) % 9 != 0:

 raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')

 # Start model definition.

 num_filters_in = k

 num_res_blocks = int((depth - 2) / 9)

 inputs = Input(shape=input_shape)

 # v2 performs Conv2D with BN-

ReLU on input before splitting into 2 paths

 x = resnet_layer(inputs=inputs,

 num_filters=num_filters_in,

 conv_first=True)

 # Instantiate the stack of residual units

 for stage in range(3):

 for res_block in range(num_res_blocks):

 activation = 'relu'

 batch_normalization = True

 strides = 1

 if stage == 0:

 num_filters_out = num_filters_in * 4

 if res_block == 0: # first layer and first stage

 activation = None

 batch_normalization = False

 else:

31

 num_filters_out = num_filters_in * 2

 if res_block == 0: # first layer but not first stage

 strides = 2 # downsample

 # bottleneck residual unit

 y = resnet_layer(inputs=x,

 num_filters=num_filters_in,

 kernel_size=1,

 strides=strides,

 activation=activation,

 batch_normalization=batch_normalization,

 conv_first=False)

 y = resnet_layer(inputs=y,

 num_filters=num_filters_in,

 conv_first=False)

 y = resnet_layer(inputs=y,

 num_filters=num_filters_out,

 kernel_size=1,

 conv_first=False)

 if res_block == 0:

 # linear projection residual shortcut connection to match

 # changed dims

 x = resnet_layer(inputs=x,

 num_filters=num_filters_out,

 kernel_size=1,

 strides=strides,

 activation=None,

 batch_normalization=False)

 x = keras.layers.add([x, y])

 num_filters_in = num_filters_out

 # Add classifier on top.

 # v2 has BN-ReLU before Pooling

 x = BatchNormalization()(x)

 x = Activation('relu')(x)

 x = AveragePooling2D(pool_size=8)(x)

 y = Flatten()(x)

 outputs = Dense(num_classes,

 activation='softmax',

 kernel_initializer='he_normal')(y)

 # Instantiate model.

 model = Model(inputs=inputs, outputs=outputs)

 return model

32

Appendix B

Sample wise Non-Monotonicity in a Transformer

Figure 22: Transformer Embedding Dimension vs Cross-Entropy Test Loss

Nakkiran et al. conducted an experiment where test loss (per-token perplexity) as a

function of Transformer model size (embedding dimension dmodel) on language translation

(IWSLT‘14 German-to-English). The curve for 18k samples is generally lower than the one for

4k samples, but also shifted to the right, since fitting 18k samples requires a larger model. Thus,

for some models, the performance for 18k samples is worse than for 4k samples for width

parameter ranging from 50 to 100 [1].

33

BIBLIOGRAPHY

[1] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak and I. Sutskever, "Deep

Double Descent: Where Bigger Models and More Data Hurt", arXiv.org, 2020. [Online].

Available: https://arxiv.org/abs/1912.02292.

[2] M. Belkin, D. Hsu, S. Ma and S. Mandal, "Reconciling modern machine learning

practice and the bias-variance trade-off", arXiv.org, 2020. [Online]. Available:

https://arxiv.org/abs/1812.11118.

[3] J. Brownlee, "Gentle Introduction to the Bias-Variance Trade-Off in Machine

Learning", Machine Learning Mastery, 2020. [Online]. Available:

https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-

machine-learning.

[4] G. James, D. Witten, T. Hastie, R.Tibshirani An Introduction to Statistical Learning.

Springer. 2013.

[5] T. Hastie; R. Tibshirani, J. H. Friedman. The Elements of Statistical Learning. 2009.

[6] U. Gupta. "Detailed Guide to Understand and Implement ResNets - CV-Tricks.com",

CV-Tricks.com, 2020. [Online]. Available: https://cv-tricks.com/keras/understand-implement-

resnets.

[7] "chenpf1025/noisy_label_understanding_utilizing", GitHub, 2020. [Online].

Available: https://github.com/chenpf1025/noisy_label_understanding_utilizing.

[8] D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization", arXiv.org,

2020. [Online]. Available: https://arxiv.org/abs/1412.6980.

34

[9] "CIFAR-10 ResNet - Keras Documentation", Keras.io, 2020. [Online]. Available:

https://keras.io/examples/cifar10_resnet/.

 [10] A comparison of residual blocks between ResNet v1 and ResNet v2. March 20,

2020. Retrieved From

https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781788629416/2/c

h02lvl1sec13/resnet-v2

 [11] S. Spigler, M. Geiger, S. d’Ascoli, L. Sagun, G. Biroli and M. Wyart, "A jamming

transition from under- to over-parametrization affects generalization in deep learning", 2020.

[Online]. Available: https://arxiv.org/abs/1810.09665.

 [12] M. Geiger et al., "Scaling description of generalization with number of parameters in

deep learning", 2020. [Online]. Available: https://arxiv.org/abs/1901.01608.

 [13] S. Mei and A. Montanari, "The generalization error of random features regression:

Precise asymptotics and double descent curve", arXiv.org, 2020. [Online]. Available:

https://arxiv.org/abs/1908.05355.

 ACADEMIC VITA

SHUBHANGAM DUTTA

Shubhangam.dutta@gmail.com

 Objective

 To obtain a full time opportunity in the field of Information Technology/ Computer Science or

Cybersecurity.

 Education

Pennsylvania State University – University Park, PA

Bachelor of Science in Computer Engineering (Intended Minor in Cybersecurity). Expected graduation – May 2020

• Academic Honors/Awards – Dean’s list, Certificate of merit from honor’s society of Penn State

• Awards/Honors – Scholar blazer holder (3 consecutive years with scholar badge), Presentation project winner, proficiency

certificate holder.

 Experience/ Projects

• Software Engineering Intern at Hughes Network Systems, Germantown, Maryland. May 2019 – August 2019

o Participated in Design and development of Identity and Access Management systems.

o Project on deploying the IAM software on Amazon Web Services Cloud using a VPC.

o Developed solutions in Java, JavaScript and web-based technologies.

o Involved in Development of Responsive User Interface for user management.

• Software Development Intern at Four Colors Technology, LLC in North Carolina. May – August 2018

o Project on Machine Learning in Python using the data from Boeing Aircraft.

o Created an application in Python for Data preprocessing and predicting the change in the upcoming years.

o Worked with software developers under a professional and an agile environment.

• Undergraduate Researcher (Computer and Data Science) at Penn State. January 2019 - Present

o Completed honors research work on the topic of Double Descent behavior in Machine Learning.

o Researched on various factors that affect the performance of deep learning neural networks.

• Data Structure and Algorithms Grader and Mathematics Tutor at Penn State learning.

o Teaching and Grading higher level mathematics and Computer Science respectively to undergraduates.

 Clubs / Projects

• Designing an interactive robotics platform and a tablet friendly GUI of the robotics platform that can be used to illustrate

cybersecurity concepts for cyber-physical systems.

• Developed an application in Python that converts chunks of data from Excel to machine interpretable models for better data

analysis and management.

• Represented Penn State University at the Cyberthreat Case Competition held at Deloitte University.

• Completed numerous projects using concurrent programming, LINUX and system’s programming.

• Researched on developing techniques to improve cache performance in the CPU.

• Designed a single-cycle CPU (written in Verilog) using the Xilinx design package for FPGAs.

• Club: Institute of Electrical and Electronics Engineers (IEEE).

• Penn State Cricket Club

Skills / Specialization

▪ C/C++ ▪ Machine Learning ▪ Computer architecture ▪ Angular

▪ Python ▪ AWS Cloud ▪ Agile SWD ▪ REST API

▪ Java ▪ JavaScript ▪ Cybersecurity ▪ DS & Algorithms

▪ Verilog ▪ HTML ▪ IAM ▪ MIPS

▪ Linux ▪ CSS/ Bootstrap ▪ FPGA ▪ MATLAB

