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ABSTRACT 
 

Osteoarthritis (OA) is a common joint disease, affecting roughly half of people age 55 or 

older.  Currently, there is no reliable, noninvasive method for OA diagnosis in advance of the 

onset of symptoms.  Recently, MRI, as an alternative to radiography, has shown promise for 

identifying pre-radiographic disease signatures.  In this work, textural features calculated from 

MRIs of knee cartilage are used to train an automatic classifier that is designed to predict changes 

due to OA years prior to both their symptomatic presentation and radiographic detection.  Also, a 

feature selection algorithm is used to identify a smaller feature set that has comparable 

performance to the initial larger feature set.  The algorithm is tested by repeatedly splitting the 

patient data into equally-sized training and test sets, then using the training set to train a classifier 

and perform feature selection while the test set is used to estimate the performance.  This 

experiment is repeated for 100 trials, and the algorithm achieves an average accuracy of 74.6% 

with an average sensitivity of 79.2% and average specificity of 68.5% using the selected smaller 

feature set.  In its present state, the algorithm described in this work presents a viable method for 

detecting OA in the early stages of the disease, and with further development the algorithm could 

become a significant tool for early clinical OA diagnosis and for identifying study populations for 

both epidemiological and drug studies.  
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Chapter 1  
 

Introduction 

Knee osteoarthritis (OA) is a common degenerative joint disease.  This disease causes 

cartilage loss and inflammation that results in pain and stiffness in the joint, which in some cases 

can be so severe that it inhibits daily activity.  Roughly half of people age 55 and older are both 

symptomatic and show radiographic evidence of OA, but there is also a significant population of 

individuals with joint pain symptoms but no radiological signs of the disease [1].  This is partly 

because the disease is known to present heterogeneously, which has made it difficult to diagnose 

in its early stages.  The most common method of diagnosis is a patient presenting symptoms and a 

physical examination.  Currently, there is no reliable, non-invasive method to detect and diagnose 

cartilage damage at an early stage, before the presentation of symptoms. 

The most commonly applied imaging technique for evaluating the progression of OA is 

radiography.  However, radiographs are generally only useful for detecting large joint changes 

that do not occur until the later stages of OA, such as joint space narrowing and osteophytes.  The 

more subtle microstructural and molecular changes in cartilage tissue that occur during earlier 

stages are not visible on a radiograph [2].  This greatly reduces the effectiveness of radiographs to 

detect early OA symptoms.  An alternative to radiography is magnetic resonance imaging (MRI), 

which captures the cartilage structure and its molecular biochemistry in three spatial dimensions.  

A specific type of MR imaging called T2 mapping probes both cartilage water content and 

collagen fiber orientation, which can help to assess the structural integrity of the cellular matrix 

[3].  T2 intensity has also been used to measure molecular changes that are useful for OA 

detection, including anisotropy of water and proteoglycan content [4,5,6].  In this thesis, we will 
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demonstrate that T2 mapping can be used to perform fairly accurate longitudinal prediction of 

OA status, as early as three years prior to the onset of symptoms. 

While T2 maps may possess a large amount of information relevant to OA detection, 

there is no simple “signature” of the disease that can be easily interpreted from the images.  

Instead, evidence of the disease may appear as subtle changes in image texture, which could 

occur anywhere within the large space of voxels in the T2 map.  Also, human expert reading of 

these (and similar) images is both expensive and time-consuming.  The use of automated 

statistical classification techniques is directly motivated by problems of this nature, where the 

data is high-dimensional and manual categorization is costly [7].  Other than providing automated 

diagnosis, there are two other benefits to applying statistical classification to medical image 

analysis: 1) When validating the classifier, one must measure sensitivity and specificity, which 

indicate the discriminative power of the image modality and associated features used by the 

classifier; 2) When designing the classifier, one usually performs a feature selection step to 

remove unnecessary features and possibly improve the generalization accuracy of the classifier.  

This feature selection step can help identify “biomarker” features which can give clues to the 

presentation of the disease, and the spatial location of these features can help localize the disease.   

The features used in this study are primarily texture measurements derived from the T2 

map of the femoral cartilage.  Texture is chosen because, in general, these features represent the 

statistical distribution of T2 intensity as well as the spatial distribution of the intensity.  A voxel’s 

intensity and its relationship to its neighbors should provide insight into the interior structure of 

the cartilage.  Since it is not known a priori what measurements and what locations are important, 

there are bound to be many redundant, noisy, and possibly unhelpful features.  This characteristic 

leads to the “curse of dimensionality” (COD), which is the idea that the relatively large number of 

feature dimensions will lead to the classifier overfitting the training data and therefore having 

poor generalization accuracy.  The COD is combated in two ways in this study: 1) The chosen 
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classification scheme is the support vector machine (SVM), which has built-in mechanisms to 

prevent overfitting [8]; 2) A feature selection method called margin-maximizing feature 

elimination (MFE) is integrated into the training process to reduce the dimensionality of the 

feature space. 

This study differs from the existing literature in its specific use of imaging modality and 

machine learning algorithms.  The study uses MR imaging of the knee combined with textural 

features, SVMs, and wrapper feature selection, and to the best of the author’s knowledge no 

previous study has assessed knee OA longitudinally using these methods.  However, these 

methods have been significantly studied separately in existing literature.  Pattern classification, 

and specifically SVM, methods have been used before in medical research with success.  For 

example, SVMs are often used to identify subsets of genes useful for cancer diagnosis, prognosis, 

and discovery [9,10] and it is being investigated for its ability to automatically identify 

Alzheimer’s disease through the use of brain MR images [11,12].  In the OA literature, 

measurements derived from MRI signal intensities have been a recent topic of interest.  For 

example, [13] discovered that T2 relaxation times have a significant correlation with OA severity, 

and [14] attempted to use T1 sequences to separate healthy and early OA patients.  Cartilage 

textural measurements from MRIs have been a specific research interest [15,16].  Previous 

studies have been conducted that used feature selection and classification to automatically 

identify OA using biomedical imaging.  Boniatis et al [17] assessed hip OA using radiographs, 

textural features, and an artificial neural network classifier.  This study’s patient data was 

relatively small (only 36 patients, 18 each for healthy/symptomatic) and it made no attempt to 

longitudinally study the disease.  Shamir et al [18] investigated the automatic classification of 

knee radiographs using textural features (among many others), a filtering algorithm for feature 

selection, and a nearest neighbor classifier.  This previous study’s purpose is very similar to the 

methods proposed in this thesis, but our use of MRI, a more robust classifier, and a wrapper 
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feature selection algorithm could lead to better performance.  In addition, the use of linear SVMs 

allows us to determine the effect of each spatial location and feature, which allows us to propose 

a method that can identify the area of the knee with the most OA damage.  The methods proposed 

in this thesis could also be further developed to allow for multi-class classification or regression, 

allowing for automatic identification of OA in various stages. 

The hypothesis of this study is that MRI and SVMs can be used to predict OA changes 

prognostically, several years prior to symptom onset.  This thesis is set up as follows: Chapter 2 

explains the preprocessing needed to prepare the patient data, Chapter 3 explains the feature 

selection and classification scheme in detail, Chapter 4 presents the results of the experiment, 

Chapter 5 discusses the results and potential future research areas, and Chapter 6 concludes the 

thesis.
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Chapter 2  
 

Preprocessing 

Patient data was selected from the Osteoarthritis Initiative (OAI) database, and the 

dataset consisted of 89 healthy and 121 symptomatic patients for a total of 210.  The method for 

assigning class labels is based on the Western Ontario and McMaster Universities Arthritis Index 

(WOMAC), which has been shown to be a reliable and efficient tool for OA clinical trials [19].  

The healthy patients are taken exclusively from the OAI control cohort and they must have a 

baseline WOMAC score <= 5 and a change in score at the 3-year followup <= 5.  The 

symptomatic patients are taken exclusively from the OAI incidence cohort and they must have a 

baseline WOMAC score <=10 and a change in score at the 3-year followup >= 10.  Two different 

types of MR images of the right knee of each patient are used: dual echo steady-state (DESS) 

images and raw T2 echoes.  More information about the OAI imaging procedure can be found in 

Peterfy et al [20].  Before the feature selection and classification experiments can be performed, 

the knee images must undergo a lengthy preprocessing process that includes registration, 

segmentation, segmented mask division, feature calculation, and feature normalization.  The 

block diagram of this process is shown in Figure 2-1. 
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Figure 2-1: Block diagram of the preprocessing stage 
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T2 Map Creation 

The OAI database only provides raw T2 echoes.  These raw echoes were converted to T2 

maps with the use of qMRI, developed at the Penn State Hershey Center for NMR Research [21].  

The same qMRI settings were used for each patient.  Each patient has a minimum of 27 T2 maps 

(taken at consecutive sagittal slices through the right knee) with some patients having as many as 

33.  Only the first 27 maps are used in the next preprocessing steps since it was found that almost 

all of the cartilage for every patient is contained in these first slices. 

Registration 

Even though the features used in this study are derived from the T2 map signal 

intensities, different tissues in the T2 images do not have a significant contrast from the cartilage 

structure.  This would make segmentation using T2 maps extremely difficult.  Instead, the DESS 

images are traditionally used for cartilage segmentation since there tends to be a better separation 

between the cartilage and surrounding tissue.  However, the raw DESS and T2 images from the 

OAI database are not registered to each other, so registration must be performed so that the DESS 

image of the cartilage aligns with the T2 map.  The registration is fully automated and uses the 

algorithm in [22]. 

Segmentation 

After registration, the registered DESS images are used to create segmentation masks for 

the medial, lateral, and patella compartments of the femoral cartilage.  The segmentation 

algorithm is semi-automatic (requiring user interaction) and is presented in [23].  The author of 

this thesis segmented all 210 patients.  In general, there are a total of 27 registered DESS images 
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per patient (taken at consecutive sagittal slices through the right knee) and the majority of these 

images contain usable cartilage regions from at least one of the three compartments. 

Mask Division 

The segmented masks for a single slice in the lateral, patella, and medial compartments 

for a single patient are shown in Figure 2-2, as well as the corresponding registered DESS image 

and T2 map.  From this figure one can see that the cartilage region for the lateral and medial 

compartments resembles an arc or semi-circle.  In order to add an extra level of spatial 

localization ability to the feature set, the lateral and medial masks are divided into 5 sections 

each.  The expected section boundaries are also shown in Figure 2-2, as well as the standard 

numbering scheme for the sections.  Note that the medial and lateral masks are divided 

independently, so the section boundaries for the medial compartment are not necessarily the same 

as the ones for the lateral compartment.  The automatic mask division algorithm is as follows: 

1. Find all segmented masks within the current patient’s current compartment 

(medial or lateral). 

2. Superimpose all segmented masks onto a single image. 

3. Find θ, the angle of the “arc” of cartilage. 

4. Divide θ by 5 to find θS, and then draw section boundaries at intervals of θS. 

5. Starting on the far left and rotating counterclockwise, number the sections 1-5. 

Note that the patella masks are usually much smaller than the lateral and medial masks, so they 

are not divided and are treated as a single section.  Therefore, there are 5 medial sections, 5 lateral 

sections, and 1 patella section for a total of 11 sections.  Each feature is measured independently 

in each section, so in general there are 11 instances of each feature.  
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(a) 

 

(b) 

 

(c) 

 

  

Figure 2-2: Registered DESS, segmented mask, and T2 map for: a) lateral b) medial c) patella.  The crosshairs 

in the DESS images point to the cartilage.  The mask section boundaries are not drawn to scale. 
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Voxel Extraction and Feature Calculation 

Each mask is used to extract the appropriate voxels from the corresponding T2 map.  As 

mentioned before, there are 5 medial sections, 5 lateral sections, and 1 patella section for a total 

of 11 sections that voxels can originate from.  Features are measured independently for the voxels 

from each section, creating 11 instances of the same feature, each from a different location in the 

right knee. 

Primarily, textural features were chosen to represent the images.  This is because texture 

can measure statistical properties and spatial distribution of the image intensities [24].  This fact 

makes textural features very attractive for predicting OA status from the T2 map, and many of the 

initial features have been used in previous OA studies.  The initial feature set can be split into 

four categories: 1) histogram; 2) gray level co-occurrence matrix (GLCM); 3) gray level run-

length matrix (GLRL); 4) z-score.  All feature calculations are performed with custom-made 

Matlab functions.  There are 725 total features in the initial feature set, and the distribution among 

the four categories and 11 sections is shown in Table 2-1.  In the following sections, let Ij(u,v,w) 

be the intensity of the pixel at index (u,v,w) in section j and Sj is the set of all voxel indices in 

section j. 

 

 Histogram GLCM GLRL Z-Score 

Lateral 115 150 40 25 

Patella 22 30 8 5 

Medial 115 150 40 25 

Total 252 330 88 55 

 

Table 2-1: Total number of features in each category for each knee compartment. 
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Histogram Features 

For each section, a 32-bin histogram is calculated from the intensity values of the T2 

maps.  The histogram in section j is calculated according to the equation: 

       
                                                                

                            
,  x = 0, 1, …, 31              (2-1) 

Note that within section j, the histogram pj actually does not depend on the spatial location of the 

voxels.  This means that all histogram features do not depend on the location of the voxels within 

their specified section, but instead the histogram features measure the statistical properties of the 

voxel intensities.  Even though there is no spatial dependency, histogram features are still often 

used in texture measurement.  Also, some level of spatial information is included in this feature 

category since each feature is measured independently in each section, so each feature instance is 

localized to one specific location in the knee.  The following equations define the histogram 

features and are found in [25]. 

Mean:             
  
       (2-2)    

Variance:   
          

 
     

  
       (2-3) 

Dispersion:        
  
                         (2-4) 

Average Energy:         
  
     (2-5) 

Energy:          
   

       (2-6) 

Entropy:          
  
                                                         (2-7) 

Skewness:     
         

 
     

  
                                                      (2-8) 

Kurtosis:    
          

 
     

  
        (2-9) 

In addition to these features, the median, mode, minimum value, maximum value, and range of 

values is calculated from the histogram.  An 8-bin histogram is also calculated for each section j 

and the occupancy of each bin is used as a feature.  Also, the following two additional 
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miscellaneous features are included in this category even though they are not calculated using the 

histogram. 

Relative Size:  
                      

                                             
 (2-10) 

L2 norm:               
 

           (2-11) 

Note that the “relative size” feature is not calculated for the patella section because there is only a 

single section in the patella compartment, which would make this feature equal to 1 for all 

patients. 

Gray Level Co-Occurrence Matrix (GLCM) 

Histogram features alone cannot completely characterize texture since they do not 

measure the spatial characteristics of the cartilage region.  The second-order histogram, called the 

gray level co-occurrence matrix (GLCM), is a common tool for measuring cartilage [26].  In this 

study, the GLCM is calculated for a distance of 1 (the voxels must be immediate neighbors in the 

specified direction) and for direction θ = 0⁰, 45⁰, 90⁰, 135⁰, and 90⁰ in the z (third dimension) 

direction.  Before the GLCM is calculated, the intensities are quantized down to 8 gray levels, 

which results in each GLCM being an 8x8 matrix.  The GLCM for section j is defined as: 

                                                                              (2-12) 

If hj,θ(x,y) is divided by the total number of neighboring pixels in section j, then the GLCM 

becomes an estimate of the joint probability fj,θ(x,y).  The following features are calculated from 

fj,θ(x,y).  These features were originally proposed in [26] and the following equations use notation 

from [24]. 

Angular Second Moment:              
  

   
 
    (2-13) 
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Contrast:                  
 
   

 
      (2-14) 

Absolute Value:                 
 
   

 
    (2-15) 

Inverse Difference:   
         

        
 
   

 
    (2-16) 

GLCM Entropy:                          
 
   

 
    (2-17) 

Correlation:   
                 

    

 
   

 
    (2-18) 

Note that µu, µv and σu, σv are the means and standard deviations of the marginal distributions 

created by the row and column sums of the matrix, respectively.  There are 5 different GLCMs (1 

for each direction) calculated for each section, and since there are 11 sections this means that 

there are 55 total GLCMs calculated for a single patient.  Each feature is measured independently 

for each GLCM. 

Gray Level Run-Length Matrix (GLRL) 

The gray level run-length matrix (GLRL) is another typical tool used in texture analysis.  

In fact, features derived from this matrix were used in a previous paper studying the application 

of an artificial neural network classifier to detect hip OA [17].  The GLRL gj,θ(x,y) is defined as 

the number of runs of length y in the direction θ consisting of points with gray level x in section j 

[27].  Before the GLRL is calculated, the cartilage image intensities are quantized down to 8 gray 

levels.  The GLRL is calculated for θ=0⁰,90⁰.  The largest possible run length is the largest 

number of voxels that lie in direction θ, but the run lengths are quantized to 4 possible ranges.  

Let Pj be the total number of voxels in section j, and let Nj,θ be the sum of all elements in gj,θ.  The 

following features are calculated from the GLRL gj,θ(x,y).  They were originally proposed in [27]. 

Short Runs Emphasis:   
         

  
 
   

 
         (2-19) 
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Long Runs Emphasis:              
 
   

 
         (2-20) 

Gray Level Nonuniformity:             
 
      

         (2-21) 

Run Percentage:            
 
   

 
       (2-22) 

There are 2 different GLRLs per section, which means there are 22 total GLRLs calculated per 

patient.  Each feature is calculated independently for each GLRL. 

Z-Score 

[13] proposed a special normalization procedure that produced features that had a 

significant correlation with OA damage.  This normalization is defined as: 

                                                   
                     

          
 (2-23) 

where µj,control and σj,control are the mean and standard deviation of section j for only the patients in 

the control group.  This can be seen as normalization to “healthy” voxels, and therefore it may 

help the “symptomatic” voxels stand out more than normal.  From the transformed intensities    , 

the features calculated are the mean, variance, minimum value, maximum value, and range of 

values.  Similar to the histogram features, the z-score features do not have the ability to identify 

spatial characteristics of the voxels within section j.  However, since the features are measured 

independently from each section, each feature instance is a localized measurement. 

Feature Normalization 

For each feature independently, each feature instance is normalized to the range [-1,1].  

This is done because there might simultaneously be very large and very small feature values, 

which could cause numerical problems in the classifier training procedure. 



15 

 

 

Chapter 3  
 

Feature Selection and Classification 

Given the features, we need to calculate a classification decision for each patient.  The 

classification decision is reduced to a binary decision (healthy or symptomatic) for simplicity.  In 

this case, each patient is treated as a 725-dimensional feature vector and the classifier maps this 

vector into a binary value.  Since the feature space is very high-dimensional (especially 

considering there are only 210 patients in this 725-dimensional space), decreasing the 

dimensionality of this space could potentially lead to better generalization accuracy.  Feature 

selection and classifier training are performed using a training set of patients, and then the 

generalization accuracy is estimated on a patient test set that is disjoint from the training set.  This 

chapter is set-up as follows: the following section describes the support vector machine (SVM) 

classifier and the reason it was chosen, then the next section describes the feature selection 

algorithm margin-based feature elimination (MFE), and then the final section explains the 

structure of the feature selection and classification experiment. 

Support Vector Machine (SVM) 

Each patient is represented as a data point in k-dimensional space, with k being the 

number of features.  As mentioned previously, the number of initial features before the feature 

selection phase is 725 and the number of classes is 2.  For now, assume these data points are 

linearly separable; in other words, the two classes can be separated using a single linear surface 

(hyperplane) of dimension k-1.  This separating hyperplane essentially splits the k-dimensional 

space in two, with each subspace corresponding to one of the two classes.  This hyperplane is 
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known as the linear discriminant function (LDF), and in the case of SVM this hyperplane has the 

form    

          (3-1) 

where w is the kx1 SVM weight vector, x is the kx1 feature vector, and b is a scalar bias term.  In 

this case, w is a vector normal to the hyperplane and         is the perpendicular distance 

between the hyperplane and the origin where     is the Euclidean norm of the weight vector. 

  The choice of this separating hyperplane is not unique, and the choice of a particular 

hyperplane is the strength of SVM.  A brief overview of the derivation is included below.  For a 

more detailed explanation of SVM theory consult [28,29].  

 Since there are two classes, there are two class labels: -1 and +1, corresponding to 

healthy and symptomatic respectively.  Let yi be the class label for patient i and xi be the feature 

vector for this patient.  The SVM decision score for patient i is di and is written as 

                   
    (3-2) 

and the actual classification decision for patient i is  

    
          (3-3) 

where sgn is the signum function.  For all training patients in a linearly separable data set, the 

following inequality holds: 

          (3-4) 

It can be shown that the patients from each class closest to the hyperplane are a perpendicular 

distance 1/    away from it.  This distance is called the margin of the hyperplane, and these 

patients are called the support vectors.  The structure of this separating hyperplane, support 

vectors, and the margin are illustrated in Figure 3-1 for the 2-dimensional case.  The SVM 

procedure chooses a separating hyperplane such that the margin is maximized while satisfying the 
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inequalities in (3-4) for every training instance.  This can be stated formally as an optimization 

problem: 

  Minimize      

  subject to          (3-5) 

 

 

 

The hyperplane is chosen to maximize margin because this hyperplane is proven to have 

better accuracy on unseen data points.  Refer to Figure 3-2.  The hyperplane on the left in this 

figure separates the training data perfectly, but the margin is very small.  Since we do not know 

the true distribution of data points in the feature space, the unseen data points may easily cross the 

separator and therefore be classified incorrectly.  The hyperplane on the right in the figure has a 

maximized margin.  As you can see, this separator appears to account for the training set 

distribution more accurately and therefore this hyperplane should have a better generalization 

accuracy.  This is why the separating hyperplane is chosen such that the margin between support 

vectors is maximized: the hyperplane with largest margin will typically account for the 

Figure 3-1: 2-Dimensional data space with a separating hyperplane, support vectors, and margin.  The 

hyperplane is the solid line and the support vectors are circled.  Originally appeared in [28]. 
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distribution of the classes better than other separators, and therefore it should perform better on 

unseen test data. 

 

 

 

 

 

Other than maximizing margin between the classes and separating hyperplane, the 

strength of SVMs is the use of support vectors.  In the derivation of the weight vector w and bias 

b, the support vectors are the only data points that affect w and b.  This means that the classifier is 

uniquely determined by the choice of support vectors and only the support vectors.  The number 

of model parameters in the classifier derivation depends on the number of support vectors.  

Therefore, unlike in other classifiers, the number of model parameters is not determined by the 

feature dimensionality and is instead bounded by the number of training instances, which causes 

the SVM to be more robust against overfitting.  This characteristic makes SVMs a very attractive 

classification method and is the reason why SVMs have been used extensively in many different 

pattern recognition tasks. 

Figure 3-2: Two different separating hyperplanes.  The hyperplane on the left has a small margin, 

while the one on the right has a maximum margin.  Originally appeared in [29]. 
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Note that only the case where the training data is linearly separable is considered above.  

However, when the data is nonlinearly separable or when there are outliers in the training set that 

violate the decision boundary, this can be overcome by introducing “slackness” or nonlinear 

kernels.  Slackness basically allows some training points to be misclassified, and kernels map the 

training points to a higher dimensional space to allow for a nonlinear decision boundary.  In this 

study, the initial data is linearly separable and the feature selection process terminates just before 

the data loses separability, so slackness and kernels are not used for the SVM training process. 

SVM training and classification is performed using the LIBSVM Matlab interface [30].  

This software has been used extensively for SVM research and it is an accepted SVM software 

implementation. 

Margin-Based Feature Elimination (MFE) 

Feature selection is integrated into the classifier training process for this study.  Selecting 

a subset of features from the initial feature set is necessary in order to eliminate redundant and 

non-informative features, and it is also possible to improve the generalization performance of the 

classification process.  A review of feature selection methods can be found in [31].   

Since margin-maximization is the goal of the SVM training procedure, a feature selection 

method was chosen that uses this margin as the criterion for removing features.  This algorithm is 

called margin-based feature elimination (MFE), and it was shown to outperform other SVM-

based algorithms, such as recursive feature elimination (RFE), on a number of UC Irvine datasets 

[32].  The goal of MFE is to maximize the SVM margin with each feature elimination step.  This 

is a wrapper algorithm, meaning the trained classifier is used to determine the order of feature 

removal.  In other words, classifier training is a part of the feature selection process, and the 

classifier is retrained many times to determine the usefulness of the features.  Wrapper methods 
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were shown to outperform filter-based methods (features are removed before training) on some 

datasets [33].  Therefore, MFE represents a computationally-efficient feature elimination 

algorithm that works together with the goal of the SVM training procedure and has been shown to 

perform well on standard datasets. 

The MFE algorithm for linear SVMs is found in [32].  The algorithm is implemented 

using a custom-made Matlab function.  A simplified version of the algorithm is explained below. 

1. Train a SVM using the current feature set. 

2. Calculate the effect on the SVM decision function of removing each feature 

separately. 

3. Remove the feature whose removal results in the largest SVM margin. 

4. If linear separability is lost, stop.   

5. Go to step 1, using the reduced feature set. 

Note that in the version of MFE used in this study, the feature elimination is terminated 

when the training data becomes linearly nonseparable.  MFE could be altered to continue 

removing features after this point, but this would require introducing slackness into the SVM 

training procedure.  SVM training and MFE is simplified by not using slackness, and it was found 

experimentally that this method works well without considering slackness. 

Classification Experiment 

The experiment is designed to estimate the performance of the combined SVM/MFE 

procedure.  We must do this by using the 210 fully-preprocessed patients.  According to the 

suggestions in [34], the patient set used to test the classifier performance must be completely 

disjoint from the patient set that is used to train the classifier and perform feature selection.  

Therefore we test the performance of the classification and feature selection methods by splitting 
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the entire patient set into two equally-sized disjoint sets, training and test.  The training set is 

formed by randomly sampling (without replacement) the full dataset.  Each set has the same ratio 

of classes as the original dataset.  The training set is used to select the sparse feature set and train 

the SVM, and the test set is used to estimate the generalization accuracy of the trained classifier 

and the selected feature set.  This procedure is repeated for 100 trials using 100 different training 

sets (and therefore 100 different test sets), and the final performance of these methods are 

estimated by averaging the results from each trial.  A block diagram of this experiment is shown 

in Figure 3-3. 

 

Figure 3-3: Classification and feature selection experiment. 
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Chapter 4  
 

Experimental Results 

Using all 725 features, the average accuracy was 79.1% with a standard deviation of 

4.1%.  There were 10.95 false positives and 10.95 false negatives on average, corresponding to an 

average sensitivity of 81.8% and an average specificity of 75.7%.  After MFE was used to 

remove features, on average only 19.8 of the 725 features were retained.  The average accuracy of 

the system with MFE feature selection dropped to 74.6% (standard deviation of 4.3%), with 

average sensitivity of 79.2% and average specificity of 68.5%.  These results are summarized in 

Table 4-1.  The accuracy, sensitivity, specificity, and number of features selected for each trial is 

shown in Figure 4-1. 

 

 Using Full Feature Set Using MFE Feature Set 

Average # Features Used 725 19.8 

Average Accuracy (+/- Stand. Dev.) 79.1% (+/- 4.1%) 74.6% (+/- 4.3%) 

Average True Positives 49.05 47.53 

Average False Positives 10.95 14.19 

Average True Negatives 34.05 30.81 

Average False Negatives 10.95 12.47 

Average Sensitivity (+/- Stand. Dev.) 81.75% (+/- 5.7%) 79.2% (+/- 7.2%) 

Average Specificity (+/- Stand. Dev.) 75.7% (+/- 7.2%) 68.5% (+/- 7.3%) 

  
Table 4-1: Results for the 100 trial classification experiment 
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(b) 

 

(c) 

 

(d) 

                             

 

 

 

Figure 4-2 shows the accuracy, sensitivity, and specificity measured on the test set for a 

specific trial as features are removed.  The performance estimates change very little during the 

first few hundred feature elimination steps.  This suggests that many features are redundant or do 

not provide useful information and their removal does not significantly affect the classifier 

performance.  At the point where there are roughly 100 or fewer features remaining, classification 

accuracy starts to change more and more with each additional feature eliminated.  This suggests 

that these features are more important than the ones that were removed in the earlier stages.  Note 

also that the MFE termination point (the loss of linear separability) coincides with the point 

where performance starts to degrade significantly.  While the exact performance characteristic 

Figure 4-1: Results of each of the 100 trials.  A) Accuracy B) Sensitivity C) Specificity D) # Features 

Selected.  The solid black line in each plot is the mean of the result and the dashed lines represent 1 standard 

deviation away from the mean. 
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varies (along with the order of feature elimination) for each trial, the general trend of classifier 

performance as a function of number of retrain features is well-represented by Figure 4-2. 

 

 

 

 

 

Figure 4-3 shows histograms of the value of the SVM score function (equation 3-2) for 

healthy and symptomatic test set patients for a single trial.  The score should be positive for 

symptomatic patients and negative for healthy patients.  This figure visually illustrates the 

classification accuracy achieved by the system and the fact that most misclassified patients have 

scores that are close to the decision boundary (zero); a score close to zero may indicate further 

patient clinical evaluation is needed before making a definitive prognosis. 

Figure 4-2: The accuracy, sensitivity, and specificity of the classifier on the test set as a 

function of the number of features removed. 
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 The SVM decision function is calculated by taking a linearly weighted sum of the 

features.  By separately considering the features from each compartment (lateral, medial, patella) 

and finding the weighted partial sum for each section, we can determine the effective contribution 

of each compartment to the overall decision and thus to the diagnosis.  Let Flat, Fpat, and Fmed be 

the selected features from the lateral, patella, and medial compartments.  We can write equation 

(3-2) as 

                                                    (4-1) 

Equation (4-1) can be split into the partial sums of the features from each compartment in the 

following way: 

                        ,                      
 ,                       (4-2) 

Figure 4-3: Histogram of the SVM score for test set patients in a single trial.  The top graph is 

control patients and bottom graph is symptomatic patients. 
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For symptomatic patients that are correctly classified, the most positive partial sum 

amongst the three compartments contributes most to the correct decision.  It can thus be inferred 

that the compartment with this partial sum is likely the one undergoing the most OA changes.  

Also, a significant disparity between the largest and second largest partial sums for an individual 

patient suggests OA changes may only be occurring in the knee compartment with the largest 

partial sum.  For healthy patients, ideally all 3 partial sums would be negative (or have a very 

small positive magnitude).  Figure 4-4 shows histograms of equation (4-2), for correctly classified 

symptomatic and healthy patients in the test set for a particular trial.  The two most positive sums 

are shown for the symptomatic patients, and the two most negative sums are shown for the 

healthy patients.  For now, the location of the most significant partial sums does not matter.  Note 

the substantial separation between the two symptomatic histograms, which suggests that for many 

patients there is a dominant compartment which (primarily) influenced the correct (symptomatic) 

decision.  This indicates that this knee compartment should perhaps be the focus of attention and 

early treatment.  Note that there is a similar separation between the healthy patient histograms, 

and as mentioned above the two most negative partial sums are negative or very slightly positive. 
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(a) 

 

(b) 

Figure 4-4: Histograms of dominant compartment partial sums for: a) correctly classified 

symptomatic test patients; b) correctly classified healthy test patients. 
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Chapter 5  
 

Discussion and Future Work 

Based on the results in the previous section, SVM classification integrated with MFE 

feature selection using texture features provides a viable method for early onset detection and 

localization of OA using T2 maps.  The initial feature set consisted of 725 features measured 

from the lateral, medial, and patella cartilage compartments, and this set was reduced to 19.8 

features on average.  This great reduction in the number of features caused only a modest 

reduction in average test set accuracy, from 79.1% to 74.6%.  This suggests fairly accurate 

classification can be achieved using a small set of features.  However, it was also observed that in 

every experimental trial, all three sections had features that were retained. Thus, taken over the 

whole population of patients, features from all three knee compartments appear to be necessary 

for making accurate OA status decisions.  However, as previously discussed in the Results 

section, for individual correctly classified symptomatic patients there is generally one 

compartment that dominantly influences the classification decision.  Therefore, it is possible that 

the classifier can also determine the area of the knee that has the most severe damage.  This could 

help determine the best possible treatment for each patient. 

One of the motivations for performing feature selection is the ability to identify a small 

subset of features that can identify OA.  This subset can be thought of as a set of textural features 

that serve as a unique signature for OA.  For each of the 100 feature trials, the selected features 

are recorded.  Then, from the 19.81 features on average that are chosen, it is determined how 

many features from each group are selected on average.  The features are grouped together by 
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section, by feature category, and by feature type.  The grouping by knee section is shown in Table 

5-1.   

 

Section Average # of 

features 

Proportion of 

selected subset 

Proportion of 

original set 

Lateral Section 1 1.03 .052 .090 

Lateral Section 2 2.34 .118 .090 

Lateral Section 3 1.95 .098 .090 

Lateral Section 4 1.59 .080 .090 

Lateral Section 5 3 .151 .090 

Patella 1.78 .090 .090 

Medial Section 1 1.17 .059 .090 

Medial Section 2 1.65 .083 .090 

Medial Section 3 1.63 .082 .090 

Medial Section 4 1.56 .079 .090 

Medial Section 5 2.11 .107 .090 

     (a) 

Compartment Average # of 

features 

Proportion of 

selected subset 

Proportion of 

original set 

Lateral 9.91 .499 .450 

Patella 1.78 .090 .090 

Medial 8.12 .410 .450 

     (b) 

 

 

 

Table 5-1: Average number of features chosen from: a) each knee section; b) each knee compartment. 
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In Table 5-1b, note that the lateral, medial, and patella compartments occupy roughly the same 

proportion of the selected subset as they do in the original feature set, but the lateral compartment 

is slightly favored over the medial compartment.  In Table 5-1a, note that there is not a significant 

difference between the proportions of each section, except for section 1 and 5 in both the lateral 

and medial compartments.  The proportion of section 1 features in the selected subset is smaller 

than the proportion in the original set, suggesting that section 1 cartilage may have less 

importance in identifying OA.  The opposite conclusion can be reached for section 5 for both 

compartments.  However, the majority of sections have the same proportion in the selected and 

original feature sets, which suggests that OA classification cannot be done using a single section. 

 The grouping by feature category is shown in Table 5-2.  The GLCM category is the only 

one whose proportion actually decreases.  This is most likely because the GLCM category is the 

largest and consequently has many redundant or useless features.  Also, the GLRL proportion 

increased the most, suggesting these features have a significant relationship with OA 

classification.  

 

Category Average # of 

features 

Proportion of 

selected subset 

Proportion of 

original set 

Histogram 8.19 .413 .348 

GLCM 5.05 .255 .455 

GLRL 4.72 .238 .121 

Z-score 1.85 .093 .076 

 

  

Table 5-2: Average number of features chosen from each feature category. 
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Feature Average # of 

Features 

Proportion of 

selected subset 

Proportion of 

original set 

Max value 0 0 .0152 

Min value 0 0 .0152 

Relative size .98 .0495 .0138 

Energy .41 .0207 .0152 

Mean value .35 .0177 .0152 

Variance .38 .0192 .0152 

Dispersion .23 .0116 .0152 

Average energy .15 .0076 .0152 

Median value .22 .0111 .0152 

Mode value .29 .0146 .0152 

Range 0 0 .0152 

Entropy .41 .0207 .0152 

Skewness .21 .0106 .0152 

Kurtosis .54 .0273 .0152 

L2 norm .17 .0086 .0152 

Hist bins 3.85 .194 .1214 

GLCM energy .86 .0434 .0759 

Correlation .8 .0404 .0759 

Contrast 1.59 .0803 .0759 

Absolute value .66 .0333 .0759 

Inverse difference .96 .0485 .0759 

GLCM entropy .18 .0091 .0759 

Short runs 1.87 .0944 .0303 

Long runs .71 .0358 .0303 

GL nonuniform .64 .0323 .0303 

Run percent 1.5 .0757 .0303 

Z mean .1 .0050 .0152 

Z variance .29 .0146 .0152 

Z min .85 .0429 .0152 

Z max .39 .0197 .0152 

Z range .22 .0111 .0152 

 

 

 

The grouping by feature type is shown in Table 5-3.  The only features not selected in 

any trials are the max, min, and range of values calculated from the histogram.  This is most 

likely because most of the T2 maps have at least one voxel with the largest and smallest possible 

intensity value in each section, and therefore these features contain no information that can be 

used to separate the patients.  Kurtosis, relative size, and histogram bins are the histogram 

features whose proportion increases the most.  Kurtosis measures the “sharpness” of peaks in the 

histogram, relative size measures the percentage of voxels that appear within each section 

Table 5-3: Average number of features chosen for each feature type. 
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(relative to the number of voxels in the entire compartment), and histogram bins represent the 

statistical distribution of the T2 intensities.  Of the GLCM features, the only feature whose 

proportion did not decrease is the contrast feature.  Every GLRL features’ proportion increased, 

with the short runs emphasis feature increasing the most.  This feature measures the portion of 

shorter runs in the run-length matrices, where a run-length matrix with many short runs suggests 

the image does not have large uniform areas.  From the Z-score features, the minimum and 

maximum value features perform the best.  These features measure the maximum intensity 

difference from “healthy” cartilage. 

Note that this particular classifier can only determine if the patient will develop OA 

symptoms within three years after the MRIs were taken.  If it is determined that OA symptoms 

will develop within three years, we currently cannot predict when the OA symptoms began.  If it 

is determined that OA symptoms will not develop within three years, we currently cannot make 

any prediction beyond this period.  Also, the classification decision is binary, so even if OA is 

detected we are not predicting the severity of symptoms.  However, the SVM decision score (see 

the histogram in Figure 4-3) may at least give some indication of the grade or stage of OA.  A 

more direct approach to this problem may be investigated in future studies via multiclass (> 2 

class) classification, regression, or a more sophisticated model that can predict both OA presence 

and severity at multiple time points. 

There are multiple ways to potentially improve our system's classification accuracy.  

Additional texture features, such as those derived from a wavelet or Fourier transforms, and other 

patient characteristics such as age, weight, and patient exercise/physical activities could improve 

accuracy.  Alternative classification model and feature selection strategies (consult [7]) could also 

be evaluated. There is a theoretical limit to the accuracy of any classifier for a given domain; we 

know it is possible to achieve an accuracy of close to 80% for OA status prognosis, but it is 

unknown how close this is to the theoretical limit for the OA problem. 
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 This study only used a linear SVM without slackness.  One of SVMs greatest strength is 

the ability to use nonlinear kernels and slackness, which allows it to work well on data that is not 

linearly separable or data that is better represented with a nonlinear discriminant function.  

Including slackness or a nonlinear kernel may improve the accuracy of the final classifier and 

these more sophisticated methods should be explored in future work. 

The methods presented in this study are completely automated, except for segmentation.  

Even though the segmentation process we used is much faster than manual hand segmentation, it 

is still necessary for the user to place several seed points on the cartilage for each slice.  Since our 

system requires user interaction, different users may create slightly different segmentation masks 

for each patient, which introduces a potential source of variability in the classification results and 

their accuracy.  It is unknown to what extent user-specific segmentation and mask quality affects 

classification decisions and their accuracy.  A completely automatic segmentation, which would 

remove this source of variability and make our entire system fully automated, is a feasible option 

[35] that will be investigated in future.  With these further developments beyond the present 

study, it may be possible to create a highly accurate, completely automated, and greatly 

informative objective method for detecting and localizing OA in its very early stages. 
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Chapter 6  
 

Conclusion 

Osteoarthritis (OA) is a prevalent joint disease affecting millions.  Current imaging 

techniques are unable to detect OA in its early stages, especially before symptom presentation.  In 

this study, we presented a MRI-based automatic classification technique for identifying OA up to 

three years before significant symptoms develop.  This method has an average accuracy of 74.6% 

using an average of 19.8 textural features derived from T2 maps of knee cartilage.  It also has an 

average sensitivity of 79.2% and an average specificity of 68.5%.  This study presents a viable 

alternative to expert readings of radiographs and patient self-reporting of symptoms, and with 

further research and development of this system it could become an invaluable tool for early 

diagnosis and clinical trials.  This paper lays the groundwork for an accurate and automatic 

computer-based technique for identifying a common degenerative joint disease.
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