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ABSTRACT 

This work provides an unsupervised machine learning method to examine the 

microstructure of 17-4 stainless steel. Using a variant of a k-means algorithm, features of steel 

samples imaged via transmission electron microscopy were analyzed and clustered into unique 

regions. Each of these regions may correspond to an individual phase in the material. This 

technique did not require a priori description or labeling of the target material system. The 

described method may be used in an automated manner which has the potential to be effective in 

rapid identification of phases across a large data set. The work presented here is the first step in 

developing a larger automated method to identify and characterize the microstructure of 17-4 

stainless steel. 
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Chapter 1 INTRODUCTION 

One of the basic principles of materials science is the fact that structure and properties are 

intimately related. Control of microstructure can be strongly related to the ability to govern the 

resulting properties of the material. With this consideration in mind, knowledge of material 

microstructure is understandably paramount for development of materials with desirable 

properties. Consequently, materials characterization is necessary to understand material 

microstructure. A key element of materials characterization is the ability to observe and interpret 

material microstructures. Through the application of various microscopic techniques, images of 

microstructure can be obtained. Once these images have been obtained, it is then up to scientists 

and researchers to derive information from these images. However, going forward, 

computational methods to analyze images should be strongly considered. One method which 

holds promise for this application is the use of artificial intelligence. 

Artificial intelligence-based computational methods are powerful tools which have been 

applied for great effect across a wide range of disciplines. Within the broader category of 

artificial intelligence lies a subfield known as machine learning. Machine learning is utilized in 

many now common applications including speech recognition, image recognition, and the feed 

of your Facebook account. Many of the predominant large-scale applications of machine 

learning fall within technologically oriented fields. However, machine learning applications are 

increasingly finding success in applications related to science and scientific research.  

In this work, a machine learning method was developed and applied to analyze the 

microstructure of 17-4 stainless steel. Specifically, an unsupervised machine learning method 
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was used to find trends in data without the need for a large pre-existing training data set. 

Utilizing a k-means clustering algorithm as a base point, an algorithm to examine the 

microstructure of 17-4 stainless steel – the most widely used precipitation hardened steel – was 

developed. Microstructure of the steel was captured via transmission electron microscopy (TEM) 

imaging. The algorithm was subsequently applied to individual micrographs of the 17-4 stainless 

steel and was able to identify distinct clusters within the microstructure. These cluster regions 

may correspond to individual phase microstructures in the metal. This work constitutes a solid 

first step into the development of a robust methodology for the analysis of the microstructure of 

17-4 stainless steel.  

1.1 ABET Engineering Considerations  

Given the computational nature of this work, the work presented here may not be directly 

applied to some of the ABET consideration such as environmental issues or social and political 

issues. However, the application of machine learning approaches has potential for significant 

impact through its use as an element for automation to increase efficiency. How this idea relates 

to three of the ABET considerations is briefly addressed in the following sections.  

1.1 (a) Manufacturability 

As previously stated, one of the key tenets of materials science is the interrelation 

between structure and properties. Understanding of a material’s microstructure is paramount to 

controlling the properties and behavior of the product. Control of material properties over 

industrial-scale production requires significant investment into verification technologies ensuring 

that correct microstructure is produced. A machine learning approach presents an efficient 
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method to verify material microstructures. Additionally, given enough data to support such an 

algorithm, a machine learning approach may be more accurate than similar verification processes 

undertaken by a human which has risks of human error. Such benefits may enable more effective 

manufacture of materials which require certain elements to be present in their microstructure.  

1.1 (b) Economic Issues 

From an economic standpoint, the application of machine learning processes is 

potentially beneficial in industry due to two main reasons. Firstly, automation of a process 

through machine learning means a lower requirement for human personnel and thereby a lower 

cost. Secondarily, a machine learning process has potential to decrease costs generally associated 

with the development and manufacture of a material. As has been emphasized, machine learning 

has the potential to greatly increase efficiency and accuracy of the manufacturing process. Such 

an impact should additionally be found beneficial from an economic perspective.  

1.1 (c) Sustainability 

As mentioned in the previous sections, usage of a machine learning application as is 

presented here potentially increases efficiency of production by increasing the ability to ensure 

uniformity in the resulting microstructure. This may manifest over a long term as increased 

structural stability or wear resistance. These types of material characteristics may be negatively 

affected by small faults in the microstructure which have a potentially higher probability of being 

missed given human oversight. This additionally has potential benefits regarding health and 

safety, for example, if flaws are caught due to the use of machine learning as a verification tool.  
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Chapter 2 BACKGROUND 

2.1 Transmission Electron Microscopy and Microstructural Characterization 

An understanding the mechanism behind transmission electron microscopy (TEM) and 

how it relates to materials characterization, particularly with respect to metals is critical for this 

work. TEM, generally, functions by transmitting an electron beam through a specimen. Images 

can then be created by observing how the electron beam interacts with the sample. Electrons are 

initially generated from a tungsten needle via a thermionic emission process and accelerated by 

an electron potential towards the sample. Electrostatic and electromagnetic lenses focus the 

individual electrons into a beam. As the electron beam is transmitted through the specimen, it 

changes in electron density, phase, and periodicity as the electron beam interacts with the 

sample. Images are then generated when the electron beam, having passed through the sample, 

interacts with a screen.1 A schematic of the overall workings of a TEM microscope is displayed 

in Figure 1.2 
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Figure 1: Schematic of a TEM microscope 

There are two major modes in which a TEM may be operated: imaging mode and 

diffraction mode. For this work, only data from imaging TEM was utilized. However, for 

completeness, diffraction TEM will be briefly discussed. Diffraction imaging is directly related 

to the unique crystallographic planes which are present in each material. A material’s diffraction 

pattern is directly related to how the electron beam interacts with the interplanar spacing within 

the material. Analysis of the diffraction pattern can then be used to derive information about the 

sample. A crystalline material will generate a spread of dots while a polycrystalline or 

amorphous material will possess a diffraction pattern composed of arcs or rings. An example 

diffraction pattern for 17-4 stainless steel is shown in Figure 2. 
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Figure 2: Diffraction pattern of a 17-4 stainless steel sample 

TEM’s imaging modalities can be further divided into two main categories: bright-field 

or dark-field imaging. In visual appearance, the images generated by these two modes may be 

considered opposite. Image contrast found in TEM images is a result of differences in local 

electron density in the sample. As the electron beam interacts with the sample, the amplitude and 

phase of the beam changes. These differences are manifested in the image as regions of different 

color. For a bright-field image, electrons directly transmitted through the sample are captured by 

the image aperture – thus areas of the sample with high mass or crystallinity appear dark. 

Conversely, for a dark-field image, the opposite is observed. Electrons scattered from the beam 

are preferentially captured to form the image, in this case resulting in darkness in areas where the 

sample is not present.3 An example of the difference in bright-field versus dark-field imaging 

modalities is seen in Figure 3.4  



7 

 

Figure 3: Comparison of bright-field (left) vs. dark-field (right) imaging 

2.2 Composition and Microstructure of 17-4 Stainless Steel 

Stainless steel is one of the most used structural materials across a wide range of 

applications. Stainless steel is an iron-based alloy characterized specifically by the presence of 

chromium. Within the greater stainless-steel category, there are families into which specific 

alloys fall, the largest of those being austenitic, ferritic, and martensitic stainless steels. 17-4 

stainless steel falls into the martensitic family. Additionally, it is a precipitation hardened alloy 

and is the most used alloy of the precipitation hardened stainless steels.5 It is heat treated in order 

to introduce fine particles of impurity phases to impede dislocation movement throughout the 

metal crystal lattice. This process increases the yield strength of the alloy. The standard alloy 

composition of 17-4 stainless steel is displayed in Table 1.6  
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Table 1: Standard composition of 17-4 stainless steel 

Element Content (%) 

Iron, Fe 73 

Chromium, Cr 15.0 - 17.5 

Nickel, Ni 3.0 - 5.0 

Copper, Cu 3.0 - 5.0 

Manganese, Mn 1.0 

Silicon, Si 1.0 

Tantalum, Ta 0.45 

Niobium, Nb (Columbium, Cb) 0.45 

Nb + Ta 0.15 - 0.45 

Carbon, C 0.070 

Phosphorous, P 0.040 

Sulfur, S 0.030 

  

Martensitic steels form given a critical cooling rate for which excess carbon in the normal 

face-centered cubic austenite is unable to diffuse out of the crystal structure. The carbon instead 

is trapped in interstitial locations in the iron matrix forming a body-centered tetragonal structure. 

This martensitic form may be considered a supersaturated solid solution of carbon in iron, which 

strongly contributes to the body-centered tetragonal structure.7  

The microstructure of 17-4 stainless steel is primarily martensitic in composition with 

potentially retained austenite and δ ferrite phases. The martensitic phases are generally 

characterized by either plate or lath martensite, or a combination of both. Microstructure of a 

martensitic steel is shown in Figure 4.7 In 17-4 stainless, there may be small precipitates of Cr 

and Nb carbides in addition to nano-Cu precipitates due to the precipitation hardening process.8 
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Figure 4: Example microstructures of lath martensite (left) and plate martensite (right) 

2.3 Artificial Intelligence and Machine Learning 

Artificial intelligence can be considered “intelligence” demonstrated by machines. It can 

be thought of as using computers to mimic the natural functions associated with the human mind, 

including capabilities such as learning and responding to stimuli. Within the broader field of 

artificial intelligence, one large subset field is that of machine learning. As might be gleaned 

from its name, machine learning is a field of study focused on developing algorithms which are 

capable of learning. Machine learning uses algorithms and statistical models to perform tasks 

without the need for explicit instructions given by a user or programmer, instead becoming more 

accurate over repeated iterations through an exercise. Machine learning algorithms generally rely 

on observing or establishing patterns in data to improve and accomplish tasks. 

What might be the most common and well-known approach to machine learning is 

known as supervised machine learning. Supervised machine learning is centered around training 

an algorithm or model through sample data. This training data allows the algorithm to develop a 
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set of rules based on the training data.9 The training data provides a set of correct input and 

outputs which the algorithm can then use as a basis to draw conclusions when analyzing real or 

novel data.  

2.3 (a) Unsupervised Machine Learning and Cluster Analysis 

For this work, however, a supervised learning approach was not taken. Instead, an 

unsupervised machine learning algorithm was used. The key point of an unsupervised learning 

algorithm is that no labelled training data is used. Instead, data is input without the set of correct 

input and output values that would be used with a supervised learning approach. An 

unsupervised learning algorithm works by identifying commonalities or trends in a set of data.  

One avenue by which this is done is through cluster analysis. This method of 

unsupervised learning divides the input data into individual objects and then groups those objects 

into clusters. Objects are defined by some parameter which is used to separate them into clusters. 

Each cluster is unique from the others because all the objects grouped into that cluster are more 

alike in some way than the objects placed into other clusters.10  

One popular methodology of clustering uses centroids to establish clusters. In this 

methodology, clusters are defined by a central data point which may or may not be a part of the 

dataset itself. Clusters are assigned around this central data point, referred to as a centroid, by 

considering some parameter which differentiates the centroid from the input data. For example, a 

common metric is to define clusters based on Euclidean distance from the centroid. An example 

of this method of clustering is shown in Figure 5 – data points in the same cluster are visualized 

to have the same color.  
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Figure 5: Assignment of data points to centroids (highlighted by arrows) 

When the number of centroids – and therefore the number of clusters – is fixed, it is 

referred to as a k-means clustering algorithm, where k is the number of allowed clusters. The 

general goal of a k-means approach is to assign all data values into clusters and minimize the 

variance of the values sorted into each cluster. This goal is typically accomplished by traveling 

through multiple iterations to refine which data points are included in each specific cluster. 

Generally, the process is termed “the k-means algorithm,” though it is also referred to as Lloyd’s 

algorithm.11 Traditionally, this algorithm entails alternating between an assignment step and an 

update step. During the assignment step, each object is assigned to a cluster – traditionally, to the 

cluster with the smallest Euclidean distance. This results in cluster partitions assigned based 

upon a Voronoi diagram corresponding to the values.12 An example of a generated Voronoi 

diagram generated after an iteration is seen in Figure 6.  
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Figure 6: Voronoi diagram possibly generated via a k-means clustering iteration 

After all objects in the data are assigned to clusters, the algorithm then moves on to the 

update step. At this point, the algorithm recalculates the value of the centroids. Figure 7 shows 

how centroids may be updated given certain points of data.13  
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Figure 7: Potential result of a clustering analysis where each cluster is shown with a 

different color 

This update is based upon the new clusters generated in the previous assignment step. 

Following the update step, the algorithm then re-enters the assignment step, now using the 

updated centroid to generate clusters. This two-step process continues to repeat until there is no 

longer a change in centroid values during the update step. In this work, a modified version of a k-

means algorithm was used, with assignment and update both based upon color difference instead 

of Euclidean distance.  

2.4 Literature Review 

Machine learning has been applied in conjunction with microscopy with significant 

success in the biological field. In this field, machine learning has found perhaps its greatest 



14 
success in automated identification of cells. Specific identification of several cell types has been 

accomplished via machine learning. This includes identification of induced-pluripotent stem 

progenitor cells, white blood cells, and cancerous cells.14–16 These studies have incorporated both 

supervised and unsupervised learning approaches in combination with imaging modes beyond 

electron microscopy. 

With regards to microstructural identification in the materials science world, machine 

learning has also been studied. For individual material systems, unique machine learning 

approaches must be developed. Research focused on applying machine learning to material 

microstructure is predominantly focused on classification of a specific morphology in a material 

system. Pattan, Mytri, and Hiremath developed a neural network-based approach that was able to 

classify cast iron morphology via differentiation of the graphite grain morphologies that were 

present. This work utilized a labeled data set comprised of reference images classified by 

experts.17 In another work, Chowdhury et. al. developed a classification algorithm to identify 

dendritic morphology using computer vision and a neural network machine learning approach.18 

In a recent study, Chan et. al. used an unsupervised machine learning technique combining 

topological classification, image processing, and clustering to both identify and characterize 

material microstructure in three dimensions. This work was able to examine a broad spectrum of 

microstructure types by integrating information from a variety of characterization sources.19   
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Chapter 3 METHODOLOGY 

3.1 Microscopy of 17-4 Stainless Steel and Data Acquisition 

TEM micrographs of steel microstructure were obtained using a 300 keV Titan scanning 

transmission electron microscope (FEI Company, Hillsboro, OR). Steel samples were examined 

by a staff scientist at the National Institute of Standards and Technology and images were saved 

to a central file server specifically designated to host the image data generated by the Nexus 

facility. The data associated with each image file were saved in proprietary file formats 

corresponding to the manufacturer of the device used to capture the image. In order to access the 

data saved in these formats, the HyperSpy Python library was used.20 HyperSpy allowed for 

access into the data generated by the detectors. This included access to the images captured by 

the detectors and the metadata associated with those images. Example images captured and used 

for analysis are shown in Figure 8. 
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Figure 8: Examples of 17-4 stainless steel TEM micrographs used 

For preliminary setup of the machine learning model, only images and data associated 

with 17-4 stainless steel samples should be utilized. Ideally, this process would be undertaken 

automatically. However, the image metadata output from the microscope system did not contain 

enough data labels to automatically parse the 17-4 stainless steel files. Therefore, the 17-4 

stainless steel files were instead filtered by utilizing the data labelling system employed by the 

scientist who captured the images. Each time the scientist used the microscope to analyze a 17-4 

stainless steel sample, the files were all saved together, including both microstructural images 

and diffraction patterns. Thus, the 17-4 stainless steel images were further differentiated by 
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image type such that only the microstructural images were used for the machine learning 

algorithm. Differentiation of these image types was simply accomplished by filtering using a 

metadata label which described whether an image was a diffraction pattern or microstructural 

image. After parsing of the image types, the microstructural images of 17-4 stainless steel then 

can be utilized for the machine learning algorithm. 

3.2 Steel Micrograph Image Interpretation 

The first step undertaken was to translate the image file into a dataset which can be used 

by the computer. This was accomplished by using the Python Imaging Library. The Python 

Imaging Library was used to load each micrograph image and translate it into a two-dimensional 

array of values. Within the array, each cell corresponded to an individual pixel in the image, and 

the data value of each cell corresponded to the RGB color value of the associated pixel. This set 

of data was then further organized into a DataFrame structure using the Python Data Analysis 

Library (pandas). Under this data structure, the position of the pixel along the x-axis (i.e. width) 

and y-axis (i.e. height) was saved, in addition to saving the red, green, and blue color values of 

the pixel.  

3.3 Clustering of Steel Microstructural Features 

Centroids were initialized using individual pixels in the image. A variable number of 

centroids were initialized for each run of the algorithm. This value ranged from three to ten 

centroids. To initialize each centroid, a random pixel in the image is selected. The centroid then 
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takes on the color value of that pixel. It is that color value which was used to define the initial 

cluster around that centroid image based upon the color difference of the other pixels from the 

color of the centroid. An example distribution of randomly initialized centroids is shown in 

Figure 9, where there is a single pixel selected at each of the highlighted points. 

 

Figure 9: Example distribution of 4 randomly initialized centroids  

Color difference between the centroid and the surrounding pixels was evaluated by a 

difference formula as depicted in Figure 10 where R, G, and B correspond to the red, green, and 

blue color values of the centroid pixel and surrounding pixel, respectively. 

 

Figure 10: Equation to calculate color distance between a centroid and another pixel 

For each centroid in an individual image, the color distance between that pixel and all 

other pixels in the image was calculated. Once the color difference for all pairs of centroid pixel 
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and surrounding pixels was calculated, every pixel in the image was assigned to a specific 

cluster. Clusters were assigned by based upon the smallest color difference between the pixel and 

the centroid; for each pixel, the centroid to which it had the closest color was the cluster to which 

the pixel was assigned. An example initial cluster pattern is shown in Figure 11. 

  

Figure 11: Clusters established (right) for the left image using the initial centroid 

values  

After clusters were assigned, centroid values were updated by taking the average red, 

green, and blue colors of all pixels within that cluster. The resulting average values were used as 

the updated centroid colors; thereafter each centroid no longer corresponded to a specific pixel 

but instead had its own value. After the value assigned to each centroid was updated, the color 

difference of each pixel in the image was again calculated against the updated centroid value. 

Following this new set of calculations, each pixel in the image was once again assigned to a new 

cluster based on the smallest color difference between the pixel and the centroid. The color value 

of each centroid was then updated again by taking the average color of all the pixels assigned to 

the corresponding cluster. This process of updating centroids and reassigning pixels to clusters 
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continued until there was minimal change in the new centroid values – specifically that none of 

the updated centroids differed from their previous values by greater than two units in the RGB 

color system. A progression in the clusters over four iterations is shown in Figure 12. 

 

Figure 12: Iterations of the assignment and update process to reach stability in the 

centroid values 
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Chapter 4 RESULTS AND DISCUSSION 

The k-means algorithm was able to accurately create clusters using the electron 

micrographs as a basis. Clusters determined by the algorithm for some micrographs are shown in 

Figure 13. The clusters accurately match the microstructural features seen in the TEM image. 

However, there are points to consider with regards to the effectiveness of the identification 

algorithm. 
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Figure 13: Clusters (right) defined by the algorithm for each of the adjacent images. 

k = 4 for all images presented 
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 One concern of the method described here is the randomized initialization of the 

centroids. Because the centroids are randomly initialized, there is a potential for inconsistencies 

in the resulting clusters identified. While the iterative update process should compensate for the 

randomized initialization, in the most extreme case there still exists the potential for entire 

phases in the material to be ignored, particularly if they are a minor phase. All images seen in 

Figure 14 are derived from the same microstructure and have the same number of clusters (k 

value). The position of the initial pixel used as the initial centroid is highlighted for each of the 

micrographs. Because the initial centroid values are taken at random, there is some degree of 

variation in the results of the algorithm, particularly in regions with more complex 

microstructure. However, when observing the differences between the entire cluster pattern for 

each respective image, there is small apparent difference. The algorithm was particularly 

effective at accurately clustering large areas of a single phase together, as can also be seen in 

Figure 14.  



24 

 

Figure 14: Clusters defined, all with k =4, but with differing initial centroids. Initial 

centroid positions are highlighted on the original micrographs 
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A key point of consideration is k, the number of clusters that was assigned for each 

image. Because k must be pre-defined for the algorithm to function, there exists the possibility 

that phases can be either over-accounted or under-accounted for. Figure 15 shows images of the 

same micrograph with differing k values. Proceeding from image (a) to image (d), k is three, 

four, six, and ten, respectively.  It can be seen in this example that an increased k value results in 

additional clusters being defined at cluster edges. At regions where clusters border each other 

given lower k values, the clustering using an increased k value creates a new cluster along the 

border which previously existed. This may be indicative of over-counting of the number of 

phases in the material. Particularly in the image with k = 10, the features seen in the micrograph 

are over-divided into clusters, no longer properly correlating to the actual division of phases. 
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Figure 15: Each cluster pattern originates from the same micrograph but has a 

different k value of 3, 4, 6, and 10, respectively 

There is some degree of “fuzziness” at the edges of clusters. Particularly for micrographs 

with a lower resolution, there is not a clean, high contrast edge which differentiates phases in the 

material. This factor can be particularly prominent when there are finer phases interspersed 
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within a larger major phase, as seen in Figure 16. In the micrographs at lower resolution or with 

more finely interspersed phase features, a color gradient is found at boundaries. It is particularly 

at these areas of gradient that finer microstructural features are lost during the assignment of 

clusters. This gradient is then interpreted as a single phase in the microstructure, instead of a 

mixed-phase region.  

  

Figure 16: Loss of cluster resolution due to interspersion of features in the 

microstructure 

4.1 Limitations 

The largest limitation of the present study is an intrinsic characteristic of an unsupervised 

machine learning methodology. It is difficult to verify that the results of the algorithm are 

accurate in a vacuum. This is difficult due to the nature of an unsupervised method which does 

not utilize a dataset of known inputs and outputs to obtain results, as would be used for a 

supervised learning method for example. Because the algorithm functions insularly on the input 

data by finding patterns, the meaning of the result may not necessarily be the intended output – 
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in the case of this work, microstructural features of the steel. As such, verification procedures are 

necessary. Such procedures may include cross examining the algorithm’s results against known 

data, for example. 

The usage of a k-means-based algorithm presents some difficulty due to the requirement 

for a predefined k value. In the context of this work, the k value corresponds loosely to the 

number of unique phases present in the microstructure. As such, knowledge of the number of 

phases present in the material is necessary for the k-means algorithm to function most 

effectively. This factor significantly limits the application of the algorithm as it is presented in 

this work for uses as a discovery tool. In a case in which the number of phases is unknown, or a 

specific phase is sought after, it would be difficult to use a k-means algorithm effectively. That 

said, in cases where the system is well-known, the algorithm presented here has potential to be 

useful in automated processing of micrographs or in verification procedures ensuring the 

material is presented as expected. 

  



29 

Chapter 5 CONCLUSIONS AND FUTURE DIRECTION 

This work successfully developed an unsupervised machine learning method which 

identified patterns in the microstructure of 17-4 stainless steel. Through the machine learning 

algorithm, the microstructure of 17-4 stainless steel was successfully divided into regions which 

potentially correspond to individual phases in the metal. The work presented here can is a first 

step into applying machine learning to analyze the microstructure of 17-4 stainless steel. Such a 

method presents possible significant benefits to increase both precision and efficiency in the 

characterization of the microstructure of 17-4 stainless steel. Even beyond the stainless steel 

material system, a fully developed machine learning approach has the potential to greatly 

improve microstructural characterization in general. 

5.1 Future Directions of Work 

It would be beneficial to continue analysis of the clusters generated by the algorithm. In 

its current form, the algorithm operates on a single micrograph to create clusters and thereby 

examine microstructure. Because it uses only a single image to generate clusters, the algorithm is 

especially sensitive to defects and other flaws which may be present in the material. This can be 

compensated for in future study by performing analysis on the clusters that are generated by the 

algorithm. A potential avenue would be to gain an understanding of the trends generated clusters 

across a large dataset. This includes an analysis of the color associated with each of the clusters 

identified as well as an analysis of the morphology of the clusters defined. Indeed, one of the 

more powerful potential applications which could result from this work is the ability to use the 
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clusters defined by the algorithm presented here as data for further analysis of feature 

morphology, for example.  

Another avenue for future work, is creation and application of a supervised learning-

based algorithm to pursue analysis of the microstructure of 17-4 stainless steel. Using such an 

approach may present more accurate outcomes as compared to an unsupervised method. 

Certainly, it would be interesting to compare the results of each methodology. However, 

application of this method would require access to a sizable set of data which would need to be 

labelled. Such a data set may be difficult to acquire and process for such a purpose.  
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APPENDIX 

Code used: 

1. #!/usr/bin/env python   

2. # coding: utf-8   

3.    

4. # In[1]:   

5.    

6.    

7. import os   

8. import numpy as np   

9. import pandas as pd   

10. import math   

11. import copy   

12. import random   

13. import time   

14. from PIL import Image   

15.    

16.    

17. # In[2]:   

18.    

19.    

20. file_location = 'C:/Users/tfbin/Desktop/steel images/'   

21. files = []   

22. for file in os.listdir(file_location):   

23.     files.append(os.path.join(file_location, file))   

24.    

25. # crop all HyperSpy generated plots to only microscope image   

26. crop_left = 25   

27. crop_right = 329   

28. crop_top = 46   

29. crop_bottom = 320   

30.    

31. for image in files:   

32.     temp = Image.open(image)   

33.     cropped = temp.crop((crop_left, crop_top, crop_right, crop_bottom))   



 

34.     cropped.save('C:/Users/tfbin/Desktop/Cropped Images/' + image.split('/')[-1])   

35.    

36.    

37. # In[3]:   

38.    

39.    

40. cropped_location = 'C:/Users/tfbin/Desktop/Cropped Images/'   

41. # create list of file paths to all cropped images   

42. cropped_image_locations = []   

43. for file in os.listdir(cropped_location):   

44.     cropped_image_locations.append(os.path.join(cropped_location, file))   

45.        

46. # create list of all cropped images   

47. cropped_images = []   

48. for location in cropped_image_locations:   

49.     cropped_images.append(Image.open(location))   

50.    

51.    

52. # In[4]:   

53.    

54.    

55. # work with only one image initially   

56. file_num = 0   

57. working_image = cropped_images[file_num]   

58. pixels = working_image.load()   

59. copied_image = working_image.copy()   

60. pixel_copy = copied_image.load()   

61.    

62. # k = number of centroids   

63. k = 5   

64. centroids = {   

65.     i+1: [np.random.randint(0, working_image.width), np.random.randint(0, working_ima

ge.height)]   

66.     for i in range(k)   

67. }   

68.    

69. # set of color values each cluster will be shown as when viewing   

70. cluster_colors = []   

71. for i in range(k):   



 

72.     cluster_colors.append([random.randint(1,255), random.randint(1,255), random.randint(

1,255)])   

73.    

74. initial_centroid_colors = []   

75. for _ in centroids.keys():   

76.     centroid_coord = centroids[_]   

77.     centroid_rgb = pixels[centroid_coord[0], centroid_coord[1]]   

78.     initial_centroid_colors.append(list(centroid_rgb)[0:-1])   

79.    

80. # change the centroid pixels to pink for visualization   

81. for i in centroids.keys():   

82.     temp_coord = centroids[i]   

83.     pixel_copy[temp_coord[0], temp_coord[1]] = (255, 51, 236)   

84.    

85. copied_image.save('C:/Users/tfbin/Desktop/Figures/{}'.format(cropped_image_locations[

file_num].split('/')[-1]+' initial.png'))   

86.    

87.    

88. # In[5]:   

89.    

90.    

91. # create dataframe with coordinates and color for each pixel of an image   

92. image_column_names = ['x', 'y', 'R', 'G', 'B']   

93. image_data = pd.DataFrame(columns = image_column_names)   

94. iteration = 0   

95. for i in range(working_image.width):   

96.     for j in range(working_image.height):   

97.         rgb = pixels[i,j]   

98.         image_data.loc[iteration] = [i, j, rgb[0], rgb[1], rgb[2]]   

99.         iteration = iteration + 1     

100.    

101.    

102. # In[6]:   

103.    

104.    

105. # create dataframe which will have the spacial and color distances from the centro

ids for each pixel   

106. diff_data = pd.DataFrame(columns=None)   

107.    

108. for i in centroids.keys():   



 

109.     centroid_coord = centroids[i]   

110.     centroid_color = pixels[centroid_coord[0], centroid_coord[1]]   

111.        

112.     temp_columns = ['distance_from_{}'.format(i), 'color_diff_from_{}'.format(i)] 

  

113.     temp_df = pd.DataFrame(columns = temp_columns)   

114.        

115.     diff_data = pd.merge(temp_df, diff_data, how='outer', left_index=True, right_i

ndex=True)   

116.    

117. diff_data = diff_data.iloc[:, ::-

1] # reverse order so centroid 1 is first, then 2 - 3 - etc.   

118.    

119.    

120. # In[7]:   

121.    

122.    

123. #Iterate through image_data, calculate differences, and assign to diff_data datafra

me   

124. for index, row in image_data.iterrows():   

125.     pixel_rgb = [row['R'], row['G'], row['B']]   

126.     pixel_coord = [row['x'], row['y']]   

127.        

128.     temp_values = []  # temporary arry containing difference values from each cent

roid e.g. [color_diff_from_1,   

129.                       # distance_from_1, color_diff_from_2, distance_from_2, etc.]   

130.     for i in centroids.keys():   

131.         centroid_coord = centroids[i]   

132.         centroid_color = pixels[centroid_coord[0], centroid_coord[1]]   

133.                    

134.         # append color difference from centroid   

135.         color_diff = math.sqrt((centroid_color[0] - pixel_rgb[0])**2 + (centroid_col

or[1] - pixel_rgb[1])**2                                + (centroid_color[2] - pixel_rgb[2])**2)   

136.         temp_values.append(color_diff)   

137.            

138.         # append linear pixel distance from centroid   

139.         distance = math.sqrt((centroid_coord[0] - pixel_coord[0])**2 + (centroid_co

ord[1] - pixel_coord[1])**2)   

140.         temp_values.append(distance)   

141.        



 

142.     diff_data.loc[index] = temp_values   

143.    

144. df = pd.DataFrame.join(image_data, diff_data) # combine image_data and diff_da

ta into one dataframe   

145.    

146.    

147. # In[8]:   

148.    

149.    

150. # create and initialize dictionary containing empty lists, one for each centroid & a

ssociated cluster   

151. clusters = {}   

152. for i in range(k):   

153.     clusters['{}'.format(i+1)] = []   

154.        

155. # assign pixels to clusters based upon smallest color difference    

156. # - > update to create centroids of a specific color, not a specific pixel   

157. for index, row in df.iterrows():   

158.     color_differences = [] # array to hold color_diff values from each centroid for t

he pixel selected in the loop   

159.     for i in range(k):   

160.         color_differences.append(row['color_diff_from_{}'.format(i+1)])   

161.        

162.     assigned_cluster = color_differences.index(min(color_differences)) + 1   

163.     clusters[str(assigned_cluster)].append(index)   

164.    

165.    

166. # In[9]:   

167.    

168.    

169. # update centroid color values based on newly defined clusters   

170. updated_centroid_colors = []   

171. for key in clusters:   

172.     temp_df = image_data.loc[clusters[key], ['R', 'G', 'B']]   

173.     avg_rgb_vals = temp_df.mean(axis=0)   

174.     updated_centroid_colors.append(list(avg_rgb_vals.iteritems()))   

175.    

176.    

177. # In[10]:   

178.    



 

179.    

180. # find color differences between the updated centroids and initial centroids, for ea

ch centroid   

181. color_diffs_after_update = []   

182. for i in range(k): # iterate through each centroid   

183.     temp_updated = updated_centroid_colors[i]   

184.     temp_updated = [x[1] for x in temp_updated] # select out second value from ea

ch of the RGB tuples   

185.     temp_initial = initial_centroid_colors[i]   

186.     # calculate color difference between previous and updated centroid RGB values

   

187.     color_diff = math.sqrt((temp_initial[0] - temp_updated[0])**2 + (temp_initial[

1] - temp_updated[1])**2                                + (temp_initial[2] - temp_updated[2])**2)   

188.     color_diffs_after_update.append(color_diff)   

189.    

190.    

191. # In[11]:   

192.    

193.    

194. # initialize DataFrame with columns: INDEX COLOR_DIFF_FROM_1..2..3.. to t

rack color differences against new centroids   

195. color_diff_from = []    

196. for i in range(k):   

197.     color_diff_from.append('color_diff_from_{}'.format(i+1))   

198. diff_df = diff_data.loc[:, color_diff_from]   

199.    

200. num_updates = 1   

201. # looping update process   

202. while max(color_diffs_after_update) > 2:   

203.     # colorize & save figure showing clusters for each loop   

204.     iteration = 0   

205.     for key in clusters:   

206.         temp_df = image_data.loc[clusters[key], :]   

207.         for index, row in temp_df.iterrows():   

208.             pixel_copy[row['x'], row['y']] = cluster_colors[iteration][0], cluster_colors

[iteration][1], cluster_colors[iteration][2])   

209.         iteration = iteration + 1   

210.        

211.     copied_image.save('C:/Users/tfbin/Desktop/Figures/{}'.format(cropped_image

_locations[file_num].split('/')[-1]+' '+str(num_updates)+'.png'))   



 

212.        

213.     # keep track of number of loops   

214.     num_updates = num_updates + 1   

215.            

216.     # recalculate color difference between pixels and new centroid colors    

217.     for index, row in image_data.iterrows():   

218.         pixel_rgb = [row['R'], row['G'], row['B']]   

219.        

220.         temp_values = []  # temporary arry containing difference values from each ce

ntroid e.g. [color_diff_from_1,   

221.                           # color_diff_from_2, color_diff_from_3, etc.]   

222.                

223.         for i in updated_centroid_colors:      

224.             centroid_rgb = [x[1] for x in i]   

225.             # append color difference from centroid   

226.             color_diff = math.sqrt((centroid_rgb[0] - pixel_rgb[0])**2 + (centroid_rgb

[1] - pixel_rgb[1])**2                                + (centroid_rgb[2] - pixel_rgb[2])**2)   

227.             temp_values.append(color_diff)   

228.        

229.         #update diff_df DataFrame with new row of color difference values   

230.         for i in range(k):   

231.             diff_df.at[index, 'color_diff_from_{}'.format(i+1)] = temp_values[i]   

232.        

233.     # create and initialize dictionary containing empty lists, one for each centroid &

 associated cluster   

234.     clusters = {}   

235.     for i in range(k):   

236.         clusters['{}'.format(i+1)] = []   

237.        

238.     # assign pixels to clusters based upon smallest color difference    

239.     for index, row in diff_df.iterrows():   

240.         # array to hold color_diff values from each centroid for the pixel currently se

lected in the loop   

241.         color_differences = []    

242.         for i in range(k):   

243.             color_differences.append(row['color_diff_from_{}'.format(i+1)])   

244.        

245.         assigned_cluster = color_differences.index(min(color_differences)) + 1   

246.         clusters[str(assigned_cluster)].append(index)   

247.        



 

248.     # update centroid colors based on average values of previous clusters   

249.     previous_centroid_colors = copy.deepcopy(updated_centroid_colors)   

250.     updated_centroid_colors = []   

251.     for key in clusters:   

252.         temp_df = image_data.loc[clusters[key], ['R', 'G', 'B']]   

253.         avg_rgb_vals = temp_df.mean(axis=0)   

254.         updated_centroid_colors.append(list(avg_rgb_vals.iteritems()))   

255.            

256.     # find color differences between the updated centroids and updated centroids, f

or e  ach centroid   

257.     color_diffs_after_update = []   

258.     for i in range(k): # iterate through each centroid   

259.         temp_updated = updated_centroid_colors[i]   

260.         temp_updated = [x[1] for x in temp_updated]   

261.         temp_previous = previous_centroid_colors[i]   

262.         temp_previous = [x[1] for x in temp_previous]   

263.         # calculate color difference between previous and updated centroid RGB val

ues   

264.         color_diff = math.sqrt((temp_previous[0] - temp_updated[0])**2 + (temp_pr

evious[1] - temp_updated[1])**2                                + (temp_previous[2] - temp_update

d[2])**2)   

265.         color_diffs_after_update.append(color_diff)   



 

ACADEMIC VITA 

THOMAS BINA 

EDUCATION 

The Pennsylvania State University, Schreyer Honors College 

                  B.S.: Materials Science and Engineering, Minor: Microbiology 

 

RESEARCH EXPERIENCE 

National Institute of Standards & Technology (NIST), Materials Measurement Laboratory 

Guest Research Fellow  

Supervisor: Dr. June Lau 

Jun 2019 – May 2020 

 

Penn State University, Department of Bioengineering, Materials Research Institute 

Undergraduate Research Assistant  

Supervisor: Dr. Siyang Zheng 

Sept 2018 – May 2019 

 

University of Pittsburgh, Department of Mechanical Engineering and Materials Science 

Undergraduate Research Assistant  

Supervisor: Dr. Anne Robertson 

May 2018 – Aug 2018 

 

Penn State University, Department of Materials Science and Engineering 

Undergraduate Research Assistant  

Supervisor: Dr. James Adair 

Jan 2018 – May 2018 

 

University of Pittsburgh, Department of Chemistry 

Undergraduate Research Assistant  

Supervisor: Dr. Geoff Hutchison 

May 2017 – Aug 2017 

 

PUBLICATIONS 

1. Petroff, C.A., Bina, T.F. & Hutchison, G.R. Highly Tunable Molecularly Doped Flexible 

Poly(dimethylsiloxane) Foam Piezoelectric Energy Harvesters. ACS Applied Energy 

Materials (2019), 2, 9, 6484-6489 

2. Kunkle, D.E., Bina, T.F., Bina, X.R. & Bina, J.E.  Vibrio cholerae OmpR Represses the 

ToxR Regulon in Response to Membrane Intercalating Agents that are Prevalent in the 

Human Gastrointestinal Tract. Infection and Immunity (2019) DOI: 10.1128/IAI.00912-

19 



 

3. Bina, X.R., Wong, E.A., Bina, T.F. & Bina, J.E. Construction of a Tetracycline Inducible 

Expression Vector and Characterization of its Use in Vibrio cholerae. Plasmid (2014) 76, 

87–94 

 

PRESENTATIONS 

• “PEEK: An Innovative Material for Musculoskeletal Implants” 

o MATSE 492: Materials Engineering Methodology and Design 

• “Development of the Microscopy Laboratory Information Management System”  

o SURF Colloquium at NIST, Gaithersburg, MD 

 

TEACHING EXPERIENCE 

Penn State University Undergraduate Teaching Assistant 

• MATSE403 / BME443:  Biomedical Materials    Aug 2019 – Dec 2019 

 

HONORS & AWARDS 

• Dean’s List         2016-2020 

• Penn State Academic Excellence Award     2016-2020 

• Schreyer Honors Scholar        2016-2020 

• William and Estelle Turney Scholarship      2018-2020 

• Lola G. Duff and William H. Duff Merit Scholarship    2016-2020 

• Richard M. Wardrop, Jr. Honor Scholars Scholarship   2018-2019 

• John G. Miller Scholarship       2017-2018 

• Helen and Van Leichliter Scholarship     2017 

• R&M Peiffer Scholarship in Materials Science & Engineering  2017 

• Matthew J. Wilson Honors Scholarship     2016-2017 

 

ACTIVITIES 

• Penn State Materials Advantage      2016-2020 

• Penn State Club Ultimate Frisbee      2016-2018 

• PSU Magic: The Gathering Club (Webmaster)    2016-2020 

• Super Smash Brothers Club at PSU     2018-2020 


