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ABSTRACT 

 

Microscopic autofocusing is an essential technique for long-period image acquisition 

process. The hardware autofocus of the optical microscope detects small drifting distances of the 

sample slide. However, hardware autofocus fails especially when samples have unevenly coated 

coverslip, which makes the drifting distance exceed the limit of the optical detection system. My 

research aims to develop autofocusing software, to distinguish axial distances of phase-contrast 

yeast cell images (40-fold magnification). I first explored a deep Convolutional Neural Network, 

and then built other classification and regression by extracting features with different focus-

measure methods. The classification models trained by focus-measure features can do a quick 

preliminary check of in-focus and out-of-focus images with over 99% accuracy. The shallow 

neural network with regression and selected combination of focus measure was able to distinguish 

different z-stacks taken from 0 micron to 17 microns with 1-micron step- size, both above and 

below focal plane. The RMSE of the best validation reached 0.33 um and the best prediction 

accuracy was about 87% on the independent dataset, both of which outperformed the original 

method.  

 



ii 

 

TABLE OF CONTENTS 
 

LIST OF FIGURES ..................................................................................................... iii  

LIST OF TABLES ....................................................................................................... iv 

ACKNOWLEDGEMENTS ......................................................................................... v 

Chapter 1 Background ................................................................................................. 1 

1.1 Hardware Autofocusing in Optical Microscope ......................................................... 2 
1.2 Image Acquisition & TimeLapse ................................................................................ 3 
1.3 Focus Measures in Shallow Neural Network ............................................................. 5 
1.4 Conclusion ................................................................................................................. 6 

Chapter 2 Convolutional Neural Network for Focus Determination ........................... 7 

2.1 Introduction ................................................................................................................ 7 
2.2 Network & Training ................................................................................................... 7 
2.3 Results & Evaluation .................................................................................................. 8 
2.4 Conclusion .................................................................................................................. 11 

Chapter 3 Preliminary Training Using Classification .................................................. 12 

3.1 Introduction ................................................................................................................ 12 
3.2 Multi-Class Training .................................................................................................. 13 
3.3 Binary-Class Training ................................................................................................ 16 
3.4 Conclusion ................................................................................................................. 18 

Chapter 4 Feedforward Shallow Neural Network & Non-Linear Regression ............. 19 

4.1 Introduction ................................................................................................................ 19 
4.2 Methods ...................................................................................................................... 20 
4.3 Results ........................................................................................................................ 22 
4.4 Conclusion ................................................................................................................. 24 

Chapter 5 Feature Engineering .................................................................................... 25 

5.1 Introduction ................................................................................................................ 25 
5.2 Feature Importance in Classification.......................................................................... 25 
5.3 Individual Feature Evaluation in Regression ............................................................. 26 
5.4 Collinearity Check & Implications ............................................................................ 27 

Chapter 6 Summary & Future Directions .................................................................... 29 

Appendix A Table of Details of Thirty Focus Measures [2] ......................................... 31 



iii 

 

Appendix B Distributions of the Other Fifteen FM’s .................................................. 32 

Appendix C Corresponding Classes for Multi- and Binary-Class Training with 

Classification ........................................................................................................ 33 

Appendix D Variance Plot of Principal Components .................................................. 34 

Appendix E Training Performance in Multi-class Classification with Different 

Combinations of FM ............................................................................................. 35 

Appendix F Training Performance in Binary-class Classification with Different 

Combinations of FM ............................................................................................. 36 

Bibliography ................................................................................................................ 37 

 

 



iv 

 

LIST OF FIGURES 

Figure 1.1 Uneven Coating that Causes the Failure of Hardware Autofocus .......................... 1 

Figure 1.2 Hardware Autofocus in Optical Microscope using a Detection Sensor [1] ............. 2 

Figure 1.3 Z-Stack Method for Image Acquisition .................................................................. 4 

Figure 1.4 Example of Phase-Contrast Image of Yeast Cells at Different Z-Stack ................. 4 

Figure 1.5 Distribution of Fifteen FM (focus value vs. stack number) .................................... 5 

Figure 2.1 Training Process and Network Structure of CNN with Regression ....................... 8 

Figure 2.2 CNN Training Progress of Overfitting ................................................................... 9 

Figure 2.3 Edge Detection via Circular Hough Transform ...................................................... 10 

Figure 2.4 Fraction of In-Focus Cells Captured by Hough Transform .................................... 10 

Figure 3.1 PCA Plot for Observations labeled by 5-Class ....................................................... 15 

Figure 3.2 Euclidean Distance Map of Observations labeled by 5-Class ................................ 15 

Figure 3.3 Equation of Euclidean Distance ............................................................................. 16 

Figure 3.4 PCA Plot for In- and Out-of-Focus Clusters .......................................................... 17 

Figure 4.1 Hypothesis Function of Non-Linear Regression Fitting ......................................... 19 

Figure 4.2 Equation of Mean Square Error[7] ........................................................................... 19 

Figure 4.3 Extracting Ratios of Focus Values using 3-Stack Method ..................................... 21 

Figure 4.4 Feedforward Shallow Neural Network Structure ................................................... 22 

Figure 4.5 Training Curve of Best Combo of FM ................................................................... 23 

Figure 4.6 Comparison between Annotation and Prediction ................................................... 24 

Figure 5.1 Rank of Variable Importance in KNN .................................................................... 26 

Figure 5.2 Individual Prediction Accuracies of Thirty FM's ................................................... 26 

Figure 5.3 Pearson Correlation Map for Thirty FM ................................................................. 28 

 

file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639246
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639247
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639248
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639249
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639252
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639256
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639258
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639259
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639260
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639261
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639262
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639263
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639264
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639265
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639266
file:///C:/Users/dell/OneDrive/文档/Yujie%20Yan_thesis%20draft%20(1).docx%23_Toc66639267


v 

 

LIST OF TABLES 

Table 3-2 Comparison of Prediction Accuracy among KNN Multiclass Training .................. 14 

Table 3-3 Comparison of Prediction Accuracy among K-Means Binary-class Trainings ....... 17 

Table 4-1 Gradient Descent Algorithm [7] ................................................................................ 20 

Table 4-2 Comparison between focus value ratios predicts the direction ................................ 21 

 



vi 

 

ACKNOWLEDGEMENTS 

 

I would like to begin by thanking Dr. Bai for giving me the tremendous opportunities of 

exploring these wonderful research projects in the past two years in Bai Lab. It has truly been the 

best experience in my college life. I still remember the day that I had an interview with her, 

answering many questions about chemistry experiments and cell biology as a physics student. 

That’s my first time contemplating my career path in interdisciplinary fields and it turned out to 

be the beginning. I would like to then thank my first mentor, Dr. Manyu Du, for treating me as a 

friend and student both at the same time, making me feel warm and comfortable as working in our 

lab or better phrased as a family. Dr. Bai and Dr. Du’s kindness, enthusiasm, and accessibility 

were exactly what drove me to work with them in the lab. Then I would like to thank my current 

mentor, future Dr. Fan Zou, for putting up with me as a programming neophyte who liked to ask 

thousands of questions at a time. I appreciate his many-minute-long explanations on each of my 

questions, intensive hands-on guidance, and his sense of organization, allowing me to know how 

to be a good researcher.      

I then would like to thank Dr. Richard Robinett for his unwavering supports on each of my 

decisions and truly sincere advice on each of my questions, both on life and academics. I still 

remember every advising meeting and meaningful talks that we had during the past four years. 

The help and care offered by Professor Robinett made my college experience much better than 

what I can expect at Penn State.  

I would also like to thank Penn State Physics REU and NSF for the support of research 

funding during my REU in 2019.  



vii 

 

I also appreciate the help from other lab members – Hengye, James, Yi, and Hungyo. Thank 

them for spending time chatting with me about my concerns and worries during my first REU 

summer, every day when I struggled with results and the final presentations. I learned that the true 

meaning of research is about exploration and dealing with unknowns all the time through talking 

with them after lunch. I hope to have more time working in the lab (if there’s no pandemic) and 

maybe have lunches with Jenna and Holly, who I wish I could know better.  

For my college friends outside the lab, Elizabeth, Hugo, Hinkal, Waka, Brenda, and 

Summer, I would like to thank them all for their encouragements and accompaniment during the 

pandemic. Many of them had their thesis project going on and the mutual inspirations drive through 

this road to completion.  

Finally, I would like to give a virtual hug to my parents and my grandparents, who were 

always there whenever I needed them, telling me to take some time off and relax rather than 

spending all my time on academics. I always remember their enthusiasm and excitement on my 

publication and presentations of research. I am truly grateful to have them as my family. I hope to 

go back home this year and meet them in person instead of just video calls. 



1 

 

Chapter 1 Background 

Microscopic autofocusing is an essential technique for the long-period image acquisition 

process (i.e. movies) in a biophysics lab to explore chromosomal dynamics in yeast cells. The 

hardware autofocus of the optical microscope detects small drifting distances of the sample slide, 

but it sometimes fails especially when the sample is covered with uneven coating. Before a 

continuous live-cell imaging is initialized, the focal position is manually preset based on the focus 

of cells at one position. During this process, small drift can be detected and adjusted by the 

hardware autofocus by moving the sample stage, but the uneven coating always causes large drifts 

that exceed the limit of the hardware detecting system (see Figure 1.1). Even though these large 

drifts can be manually adjusted once we spot them images, it is not efficient at all to stare at the 

screen, particularly for movies that last hours. A gradient-based software autofocusing method 

using machine learning has been applied to compensate for the large-distance limitation of the 

hardware detection sensor. However, the implementation of this software is not perfectly reliable 

and when it fails, the whole movie can go into waste.  

 

Thence our aim of this project is to explore other software autofocusing methods, through 

unsupervised and supervised learning, ensuring that samples (i.e. yeast cells) are always at focus 

Figure 1.1 Uneven Coating that Causes the Failure of Hardware Autofocus 
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position during long live-cell imaging processes. Methods involve Convolutional Neural Network 

(CNN) which has no feature specification or output labeling (i.e. deep structure and unsupervised 

learning algorithm), and classification/regression using focus measure as predictors with output 

labeled (i.e. shallow structure and supervised learning algorithm). Before I discuss these methods, 

I would like to introduce the microscope, TimeLapse program, and focus measures (FM) in this 

chapter.   

1.1 Hardware Autofocusing in Optical Microscope 

Figure 1.2 shows the imaging of the Leica optical microscope and how autofocusing 

adjustments by the detection sensor works. A LED light ray passes the objective and gets reflected 

by the sample stage, pointing to the detection sensor. The focal position corresponding to certain 

Figure 1.2 Hardware Autofocus in Optical Microscope using a Detection Sensor [1] 
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light spots on the detection sensor needs to be pre-set so that the sensor can tell how far the focus 

of each position differs from others vertically if the light spot moves. However, as I mentioned 

before, such detection of focus differences by the sensor has a limit and if they are out of range, 

hardware autofocus will not work well. As a result, we started exploring software autofocus to 

improve image quality, mainly through machine learning, which requires four major steps: 

preprocessing, network construction, network training, and refinement.   

1.2 Image Acquisition & TimeLapse 

 The in- and out-of-focus images for training are taken using a z-stack method implemented 

in the TimeLapse program. The camera takes images at different z-positions with preset step size 

and these images are called z-stacks. Take the example shown in Figure 1.3. Starting from the 

most top z-stack, the camera moves down with a step size of 0.3-0.4 microns and takes 9 

consecutive images according to the size of sphere-shaped hypoid yeast cells. The stacks taken 

above the focal plane are labeled with a minus sign. “- 1 um” means 1 micron away above the 

focus. The middle stack, which is the 5th, is expected to be exactly in-focus if the stage doesn’t 

shift during imaging. However, this isn’t always consistent so the focal/central stack must be 

selected by human eyes.    
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By examining the visual features of phase-contrast images of yeast cells taken at different 

z-positions, we found that the in-focus cells tend to have a sharp edge and a bright “halo” around 

the edge while the out-of-focus cells have multiple bright “halos” (see Figure 1.4).  

 

Figure 1.3 Z-Stack Method for Image Acquisition 

Figure 1.4 Example of Phase-Contrast Image of Yeast Cells at Different Z-Stack 
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1.3 Focus Measures in Shallow Neural Network 

In supervised learning, certain features and patterns around the cell edges can be explored 

and exploited in the determination of focal positions. We defined several focus measures, including 

contrast, curvature, gradient, gray level variance, and wavelet transform, etc., which can be 

extracted from the image data and feed into a shallow neural network to determine the focal point. 

Consequently, thirty focus measures were found to extract focus values, whose distributions are 

demonstrated in Figure 1.5 (also see Appendix A for full names and Appendix B for the other 

fifteen features).[2]  

 

Figure 1.5 Distribution of Fifteen FM (focus value vs. stack number) 

 

After normalization in terms of the central, maximum focus value, most of their 

distributions should look like a “bell-shaped” curve. Even though these focus measures are 
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featured by their Gaussian distributions, which a traditional nonlinear regression (e.g. curve fitting) 

might fit well, we still believed that the neural network could be better at coping with 

nonlinearity.[3] Finally, since focus measures were incorporated as predictors, such nonlinear 

regression with a neural network didn’t require as many hidden layers as CNN’s, whose deep 

structure was essential for feature extraction.  

1.4 Conclusion  

In this chapter, I introduced the objectives of this autofocus project, the apparatus, the 

preparation of z-stack images, and focus measures used to extract features from images. The 

software autofocus will mainly involve preprocessing of images and different models in machine 

learning and their training with processed images. In the following chapters, I will discuss the 

machine-learning models and their training, including Convolutional Neural Network, supervised 

and unsupervised classification, and shallow neural network with non-linear regression.  
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Chapter 2 Convolutional Neural Network for Focus Determination 

2.1 Introduction 

 Artificial Neural Networks (ANN) with multiple layers have been considered a powerful 

tool in handling large data using deep learning techniques over the last few decades. Especially, 

Convolutional Neural Network (CNN), as the most popular deep neural network, has been widely 

and successfully used in image processing, such as pattern recognition, image classification, and 

natural language processing.[3] MathWorks released a document of training CNN for regression, 

stating that the prediction of continuous data, such as distances and angle, can be achieved by 

including a regression layer at the end of CNN.[4] To predict the axial distances between the 

position where images were taken and the focal plane, I trained this model with 9-stack phase-

contrast image data sets.  

2.2 Network & Training 

 To collect images for training and testing, we took in-focus (z=0) and out-of-focus (z= ± 

0.1~2 micron with a step of 0.3 micron) images of hypoid budding yeast both above and below the 

focal plane. More than 4000 images were randomly distributed for training and the remaining 1000 

images were used for testing. The data set contains both the downsized, normalized phase-contrast 

images, and the corresponding z positions.  

 The image preprocessing involved cropping a certain size of images from the original 

images with a larger field of view and much more pixels. This helped reduce time cost and remove 



8 

 

as much noise as possible from the background or dead cells. 512x512 (pixel) image data are used 

in the following training mentioned in this thesis. 

 After cropped images were imported in training, convolutional filters walked through each 

image to extract features and the regression layer at the end of the network helped to classify 

images with continuous values of distances according to patterns computed and learned by middle 

activation layers (see Figure 2.1).  

 
Figure 2.1 Training Process and Network Structure of CNN with Regression 

 

2.3 Results & Evaluation   

 After the first round of training, we found that the model was overfitted based on the large 

root-mean-square-error (RMSE). A good fitting would demonstrate a monotonical decrease of 
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both RMSE and loss function, with similar validation training curves but we didn’t observe it in 

the training curve, shown in Figure 2.2.  

 

  

 

 

 

 

 

 

 

 

  

 There are few reasons that can explain this overfitted training, including the difficulty of 

learning assignments and the processing of original images. First, the step size of z-stacks may be 

too small for the model to tell the differences. We did an explicit feature analysis through Circular 

Hough Transform, which returns the relative intensity and sharpness of cell edges (i.e. metric 

value). Figure 2.3 shows that out-of-focus images tend to have more than one circle detected for 

one cell due to the haloes around the edge. By examining a lot of images and cells, we set a cutoff 

(metric value > 1) of in-focus cells metric value and check how different these cell edges are by 

defining a fraction of in-focus cells they selected. Figure 2.4 shows the fraction drop at around 1 

micron, suggesting that we should consider 1 micron as the step size. Second, CNN may be more 

sensitive to the orientation, shape, and number of cells on an image based on its existing 

Figure 2.2 CNN Training Progress of Overfitting 
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applications. Without further control, it cannot prioritize features on cell edges, in which we are 

interested.  

 

 

 

 

 

 

 

 

Figure 2.3 Edge Detection via Circular Hough Transform 

 

 
Figure 2.4 Fraction of In-Focus Cells Captured by Hough Transform 

 

 Finally, 100x-magnification images may capture too many useless details. Wei and Roberts 

have used CNN and classification layer for detection of focal positions of yeast cell images, and 

they achieved this using 10x-magnification images which were taken with 5-micron step size and 
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a much larger range (e.g. 0 to 75 microns).[5] Consequently, we decided to switch to 40x-

magnification images with 1-micron step size and 35 stacks (ranging from 0 to 17 microns), which 

is also more commonly used in long-time image acquisition (i.e. movies).    

2.4 Conclusion 

CNN demonstrates its potential at recognizing focal position as the literature shows but it 

is not suitable for our specific task. Moreover, as a deep neural network, the training is usually 

time-consuming and requires much more data than regular machine learning methods. As a result, 

besides the adjustment of data, including switching to 40x magnification, using larger step size at 

1 micron, and taking 35 stacks at one position, we also wanted to try tradition classification and 

shallow neural network with focus measures as pre-controlled parameters.    
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Chapter 3 Preliminary Training Using Classification 

3.1 Introduction 

Before we shift to regression, which may indeed be a more straightforward way to fulfill 

our purposes of predicting continuous distances, it is necessary to do some preliminary training to 

check these FM’s. This aims to roughly evaluate how well FM’s can distinguish in- and out-of-

focus images using classification models. Here then comes the problem of how to separate classes. 

To figure this out, I look through the distributions of different focus measures and find the common 

pattern of “suitable” ones from our perspective. Focus values of one set of images are all 

normalized based on the maximum in this set, so the values range from 0 to 1.  

   
 As it was mentioned in Chapter 1, most FM distributions are “bell-shaped”, where the 

maximum is always in the middle, the curve is symmetric concerning the maximum, and focus 

values decrease monotonically as the z-stack goes further from the focal plane (i.e. z=0). It is also 

interesting that within a certain distance (e.g. less than 4 or 5 microns), the focus values decrease 

so drastically that the model can probably easily distinguish differences. However, starting from 

4- or 5-micron separation from the focal position, the focus value (e.g. intensity, contrast, gradient, 

blurriness, etc. See Appendix A for full names of all thirty features) barely changes as we move to 

further stacks. According to the patterns of distributions, z-stacks were separated into multi classes, 

including 5-class, 6-class, and 7-class, to test the potential of classification models. I also set up 

an assignment of binary classes, with only in- and out-of-focus, to check if FM’s can perfectly 

select out very “bad” images, meaning very far from the focal position. Classes are shown in Figure 
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3.1 where Arabic numerals represent distances from the focus and Roman numerals represent class 

numbers (see more details in Appendix C).  

 

3.2 Multi-Class Training 

For the multi-class training, I selected one commonly used classification model, K-Nearest 

Neighbors (KNN). In KNN, data points for training are plotted in a multi-dimensional space, which 

depends on the number of parameters. Then the test data are also plotted in the same space to be 

compared with the existing, classified training data. “Given a positive integer K and a test 

observation x0”, the KNN model first identifies K closest data points among training observations, 

namely, “neighbors” and assign x0 to the class where most neighbors lie. [6] 

During data pre-processing, FM mathematical functions were applied to extract focus 

values from raw images and the focus values were normalized within one set of 35 z-stack (from 

-17 micron to +17 micron) based on the maximum focus value. During training, I also used 10-

fold cross validation to test my training results, which were evaluated by prediction accuracy. The 

Figure 3.1 Demonstration of corresponding Multiclass Separation 
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prediction accuracy is defined by the ratio of the number of test observations classified into the 

correct category to the total number of test observations.  

 It was found that with larger number of classes, the prediction accuracy decreased as 

expected. Moreover, the prediction accuracy of multiple FM combinations tends to be higher than 

the one trained by the “original gradient-based method” (OLDG). The best FM combination was 

accomplished by feature selection, which would be discussed in detail in Chapter 5.  

Table 3-1 Comparison of Prediction Accuracy among KNN Multiclass Training 

 

 Moreover, I plotted part of the observations, with 5-class labels, on a PCA plane to 

visualize the separations among different classes. PCA stands for Principal Component Analysis, 

“a popular approach for deriving a low-dimensional set of features from a large set of variables”.[6] 

In Figure 3.2, the first two principal components could capture almost 90% of the characteristics 

(also see Appendix B).   

 

Prediction Accuracy 5-class  

(> 4um) 

5-class 

(>10um) 

6-class 7-class 

Only OLDG  0.89 ± 0.007 0.802 ± 0.005 0.744 ± 0.007 0.668 ± 0.011 

Best FM Combo  0.925 ± 0.005 0.926 ± 0.005 0.901 ± 0.007 0.825 ± 0.011 

All 30 FM  0.906 ± 0.004 0.902 ± 0.008 0.805 ± 0.010 0.745 ± 0.014 
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  Figure 3.2 PCA Plot for Observations labeled by 5-Class   

 The PCA plot below didn’t demonstrate clear separations among classes. Instead, the 

differences may not be large enough to distinguish small distances since there were overlapping 

regions all over the classes. The data points looked very continuously connected and regression 

methods were thought to fit better. A distance map shown below (Figure 3.3) also supported the 

ambiguous separation among labeled classes.  

 

 

 

 

 

 

 

 

 

Figure 3.3 Euclidean Distance Map of Observations labeled by 5-Class 
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The Euclidean distances were calculated based on the following equation in 30-dimensional space 

where ai and bi represent two data points and the subscript i ranging from 1 to 30 represents thirty 

dimensions/predictors/FM’s.   

 

Figure 3.4 Equation of Euclidean Distance 

 

Compared with other average inter-class distances, the one between Class 1 (0 ≤ d ≤ 1) and 

Class 5 (d > 10) is relatively large and may be adequate to distinguish differences. To confirm this 

thought, I decided to do a binary classification for only in- and out-of-focus categories.  

3.3 Binary-Class Training  

 For binary-class training, I selected K-means clustering to classify in- and out-of-focus (see 

Table 3-1 for definition) images. Each training observation was randomly assigned to one of the 

K clusters and within one cluster, the K-means algorithm would minimize the Euclidean distances 

among data points by reassigning them into the ideal cluster.[6] I used both the original FM 

parameters and PCA parameters (i.e. dimension reduced) and compared their performance based 

on prediction accuracy under three conditions, only OLDG, best FM combination, and all 30 FM. 

Note that PCA must have more than two predictors. It was found that the best prediction 

performance using K-means and multiple FM combination was better than using only OLDG and 

all 30 FM’s. The overall prediction accuracy was almost perfect, especially ones with multiple, 

selected FM combinations (see Table 3-3).   
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Independent Prediction Accuracy PCA + K-Means K-Means 

Only OLDG × 0.9978  

Best FM Combo 0.9992 0.9993 

All 30 FM  0.9949 0.9975 

Table 3-2 Comparison of Prediction Accuracy among K-Means Binary-class Trainings 

 

 The visualization of in- and out-of-focus clusters can also explain this high prediction 

accuracy (see Figure 3.5). PC1, the first principal component, capturing almost 90% of the 

characteristics of focus measures, successfully distinguishes these two classes with a relatively 

large separation, namely, large average inter-class Euclidean distance.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 PCA Plot for In- and Out-of-Focus Clusters 

Out- of-Focus In- Focus 
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3.4 Conclusion  

 Preliminary training with classification methods in both supervised and unsupervised 

learning demonstrated the advantage of FM over CNN: patterns were quickly and more explicitly 

recognized. The use of FM helped achieve 99.9% prediction accuracy of in- and out-of-focus 

images. However, the classification might not be the most suitable method for such a continuous 

distribution extracted by FM. As the number of classes increased, the performance of prediction 

deteriorates. The distance plot and matrix also showed this limitation because some inter-class 

Euclidean distances were indeed very small. Consequently, we decided to use non-linear 

regression in our training and applied a novel 3-stack method to distinguish both distances and 

directions of z-stacks.  

 

  



19 

 

Chapter 4 Feedforward Shallow Neural Network & Non-Linear Regression 

4.1 Introduction  

 It was implied in the previous chapter that regression may fit our goal better, to generate 

predictions of continuous distances using focus measures. Chapter 4 introduced how we built a 

feedforward neural network with the nonlinear fitting of distributions of FM’s. The hypothesis  

 

function (see Figure 4.1) demonstrates the relationship between predicted output (i.e. predicted 

distances) Z and predictors (i.e. values of focus measure) xi. For example, x1 is a vector of focus 

values of the first FM, so on, and so forth. ni, w1, and b are respectively power of predictors, weight 

(i.e. coefficient), and bias (i.e. intercept).  

 To measure the overall prediction error of the entire data set, Mean Squared Error (MSE) 

was used as the loss function, defined as the following, where m is the total number of input data 

points, z is the real recorded distance, and Z is the predicted distance.  

 

 

 

 To minimize MSE, a method called gradient descent was applied in training 

optimization.[7,8] The error curve for w or b is expected to have minima, where the gradient is zero. 

Starting at some randomly assigned parameter w or b, we moved with a step to “downhill” of the 

Figure 4.1 Hypothesis Function of Non-Linear Regression Fitting 

Figure 4.2 Equation of Mean Square Error[7] 
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“error well” based on the change of gradient. This process gets iterated until a local minimum was 

reached by recalculating the gradient to be zero. The step size is called learning rate and the error 

curve represents the loss function. More details about the gradient descent algorithm are shown in 

the table below.  

Gradient Descent Algorithm  

1: Initialize random w and b 

2: Set initial epoch n = 1 

3: Set a learning rate ∝ 

2: Repeat  

3:    Compute loss function J, in this case, MSE  

4:    Compute Partial derivative of J with respect to w and b 

       
𝝏 𝑱

𝝏 𝒘
 =  

𝟏

𝒎
∑ ((𝒘𝒙𝒊  +  𝒃)  −  𝒛𝒊)(𝒙𝒊

𝑻)𝒎
𝒊=𝟏 ;  

𝝏 𝑱

𝝏 𝒃
 =  

𝟏

𝒎
∑ ((𝒘𝒙𝒊  +  𝒃)  − 𝒛𝒊)

𝒎
𝒊=𝟏  

5:   Update w and b  

       𝒃 ∶=  𝒃 − ∝
𝝏 𝑱

𝝏 𝒘
 ; w∶=  𝒘 − ∝

𝝏 𝑱

𝝏 𝒘
 

6:    n = n + 1 

7: Until ‖𝒘𝒏+𝟏  −   𝒘𝒏‖ 𝑨𝑵𝑫 ‖𝒃𝒏+𝟏  −   𝒃𝒏‖ 𝒂𝒓𝒆 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆𝒅 

8: Ouput the arrays of w and b 

 

   Table 4-1 Gradient Descent Algorithm [7] 

4.2 Methods  

As we determined the model type and training algorithms, the problem of not being able 

to distinguish directions (e.g. above or below the focal plane) remains. As a result, we came up 

with a 3-stack method in image preprocessing besides normalization of focus values that was also 

applied in classification training in Chapter 3. The focus values of three stacks separated by equal 

distance were selected and numbered, where the most up one was labeled as “feature 1”, the middle 

one was “feature 2”, and the one taken at the lowest z-position was labeled as “feature 3” (see 
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Figure 4.3). Then the ratio of feature 1 to feature 2 and the one of feature 3 to feature 2 were 

calculated and compared (see Table 4-2). The comparison between these ratios would be enough 

to tell the direction of the middle stack due to the Gaussian distributions of most focus measures 

chosen in the training.   

Comparison between two ratios The direction of the middle stack  

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 1

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 2
 < 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 3

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 2
 Above focal plane 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 1

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 2
 = 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 3

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 2
 Right at the focal plane 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 1

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 2
 > 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 3

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 2
 Below focal plane 

 Table 4-2 Comparison between focus value ratios predicts the direction  

 

 

 

 

 

 

 

 

 

 After the preprocessing of image data, we were able to distinguish both distances and 

directions of a stack by training a shallow neural network with two hidden layers and one output 

layer. Since each layer also has its weight and bias, the gradient descent is also applied to the 

optimization of parameters of layers. As the processed image data were input into the network, the 

Figure 4.3 Extracting Ratios of Focus Values using 3-Stack Method 
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direction of the middle stack among the three stacks would be quickly recognized based on ratios 

and the distance would also be predicted through a nonlinear fitting. Note that there were about 

680 sets of 35-stacks used in training and independent data, taken at a different time, used in 

testing. The training would stop when MSE stayed stable.  

  

4.3 Results 

 As it was mentioned in the introduction of this chapter, MSE was used in evaluating the 

performance of both training and testing (a.k.a. validation). Compared with MSE, the Root Mean 

Square Error (RMSE) may be better to describe the average error of distance. Figure 4.5 showed 

one successful training with its training error and validation RMSE reduced to 0.34 micron. The 

agreement between training and validation demonstrates a robust fitting of our model. This model 

was then trained by the best combination of FM, which will be discussed with more details in 

Chapter 5.  

Figure 4.4 Feedforward Shallow Neural Network Structure 
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 We also defined an accuracy by counting the number of stacks whose individual error was 

within 1 micron. It was shown that 98.73% of predictions of stacks in training data were considered 

as accurate and 87% of independent predictions were thought to be so based on this criterion. We 

used the same network but with only OLDG to train the same data set again. It was shown that 

both training accuracy (around 94%) and independent testing accuracy (around 75%) were lower. 

Finally, to ensure that the prediction accuracy of stacks at each position (-17 um to +17 um) was 

consistent with the overall accuracy, we plotted the comparison between the predicted position 

and annotated position corresponding to each stack in our training data set (see Figure 4.6). The 

diagonal demonstrated that at each stack, predicted positions were mostly consistent with their real 

distances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Training Curve of Best Combo of FM 
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4.4 Conclusion 

 In summary, the nonlinear regression implemented in feedforward neural network, based 

on gradient descent optimization, was a robust model for predictions of focus in terms of Gaussian 

distributed focus measures. It can output continuous distances within a relatively large range (e.g. 

-17 um to 17um), with high prediction accuracies in both validation and independent testing. The 

use of combined focus measures was shown to have a better performance than the old, gradient-

based feature. Most importantly, picking three equally spaced stacks from a set of 35-stack images 

and comparing their ratios of FM values allowed us to distinguish the direction of the middle stack, 

whether it was above or below the focal plane. The success of 3-stack method also implied that 

training might be done with much fewer stacks at one position, but the in-focus/middle stack must 

remain because others were normalized by the corresponding maximum. Such training can be done 

in the future to check if the prediction accuracy decreases.  

Figure 4.6 Comparison between Annotation and Prediction 
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Chapter 5 Feature Engineering 

5.1 Introduction   

  This chapter demonstrated a variety of methods used in feature selection, including 

backward selection, feature importance, and Pearson correlations. A function in R, VarImp on 

package ‘caret’, regarding the sum of accuracy decrease as more variables are added, was used to 

evaluate the importance of each FM.[9] Backward selection is applied manually to find the actual 

features in the combination that provides the highest prediction accuracy by using a for loop. 

Prediction accuracies given by cross validations are recorded as features were removed one by one 

according to the rank of feature importance. After the best-combined FM are determined, the 

potential collinearity problem was also examined through Pearson correlations.   

5.2 Feature Importance in Classification 

 The importance of each FM was ranked in descending order and a sharp decrease of 

importance measure was found between the 16th and the 17th feature. As it was shown in Figure 

5.1, the first sixteen highest-ranked features all have importance above 80%. Starting with the first 

sixteen features, multiple trials of training with ten-time cross validations were performed as 

features are removed one by one. All possibilities, including binary-class, 5-class, 6-class, and 7-

class, were considered to generate curves of “average prediction accuracy vs. number of FM” (see 

Appendix E & F). It was demonstrated that the 13-FM combination tends to produce the highest 

accuracy, which is larger than the ones from 30-FM combination and OLDG 

.  
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5.3 Individual Feature Evaluation in Regression  

 Individual performance of each feature was evaluated regarding prediction accuracy 

generated by every single-FM training with regression, meaning that only one FM was used as the 

predictor. Figure 5.2 showed the percentage of accurate prediction (i.e. error within 1 micron) of 

all thirty FM’s, some of whose performances were better than OLDG. These were selected and 

combined in further training, which produced better performances shown in Chapter 4.  

  

 

 

 

 

 

 

 

 

Figure 5.1 Rank of Variable Importance in KNN 

Best FM Combo: 

2, 3, 5, 8, 9, 10, 

13, 17, 21, 23, 

24, 29, 30 

Best FM Combo: 

2, 3, 5, 8, 9, 10, 

13, 17, 19, 23, 

24, 29, 30 Prediction  

Accuracy 

 

Error distance in um Figure 5.2 Individual Prediction Accuracies of Thirty FM's 

    OLDG         Other Features except Intensity 
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 Moreover, the highest-ranked FM’s in classification and regression were generally 

consistent even though the ranking criteria were slightly different. It was ensured that these 

selected FM’s were more “important” than others, generating both higher individual overall 

prediction accuracies.  

 

5.4 Collinearity Check & Implications  

 Before I made conclusions, it was necessary to check the collinearity to get rid of variable 

redundancy. As a result, the Pearson correlation map was generated with features selected by 

previous steps. It was not surprising to see many high correlations among different variables (see 

Figure 5.3) according to the highly comparable “bell-shaped” distributions of our selected features. 

However, they should not be considered as redundant variables regarding the results from 

backward model selection – a certain combination of collinear variables still generate the highest 

prediction accuracy so far. A more comprehensive model selection, incorporating all possibilities 

of every different tuning parameter and FM can be done for further research. This can be 

accomplished in MATLAB using multiple nested for loops to go through every possible setup and 

to verify our feature evaluations discussed in this chapter before we implemented the best 

combination of FM’s.   
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Figure 5.3 Pearson Correlation Map for Thirty FM 
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Chapter 6 Summary & Future Directions 

This thesis demonstrated the exploration of improving software autofocus of phase-

contrast images of yeast cells. CNN was first built with a regression layer to perform a task on 

predict continuous positions where images were taken. It was shown that CNN may not extract 

and prioritize features from 100-fold magnification images with a very small separation (0.05-

micron step size) among stacks. Then thirty pre-recognized features -- focus measures -- were 

extracted from 40-fold images with 1-micron separation and used as predictors. Training with 

classification and regression was performed and validated to select the best-combined features. It 

was demonstrated that the selected combined features could provide higher prediction accuracies 

than the original software autofocusing did. It was also demonstrated that the 3-stack method was 

critical in predicting the direction of positions.  

Such methods in machine learning and autofocusing can be applied in many other areas 

(e.g. autofocusing of animal cells), but there is yet much to be done about the refinement. First, 

CNN may be re-evaluated with simpler tasks as it was done for machine-learning classification 

and regression. Second, the success of 3-stack method in shallow neural network of regression 

indicates that fewer stacks (much less than 35-stack) can be sampled and used in training. As a 

result, such training can be done to compare with the one demonstrated in Chapter 4. Moreover, 

there are still many tuning parameters, such as the size of image downsampling, the number of 

stacks chosen for predicting one stack (e.g. 5-stack or 7-stack), the size of hidden layers of the 

neural network, etc. Further studies will be done to incorporate all these variables in more 

comprehensive training. It is suggested that this can be done with multiple “nested for loops” but 

such tasks require supercomputers or GPU to expedite the training process otherwise it may take 
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days or weeks as some preliminary training have already estimated. Finally, the new, optimized 

software will then be implemented into TimeLapse to improve autofocusing.
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Appendix A Table of Details of Thirty Focus Measures [2]  

 

Number Abbr. Full Name 

1 INTEN Intensity 

2 CNTST Contrast 

3 VAR Variance 

4 ACMO Absolute Central Moment 

5 BREN Brenner’s Function 

6 BLUR Image Blurriness 

7 CURV Image Curvature 

8 GDER Gaussian Derivative 

9 GLVA Gray Level Variance 

10 GLLV Gray Level Local Variance 

11 GRAE Energy of Gradient 

12 GRAT Threshold Gradient 

13 GRAS Squared Gradient 

14 HELM Helmli’s Mean Method 

15 HISE Histogram Entropy 

16 HISR Histogram Range 

17 LAPE Energy of Laplacian 

18 LAPM Modified Laplacian 

19 LAPV Variance of Laplacian 

20 LAPD Diagonal Laplacian 

21 SFIL Steerable Filters 

22 SFRQ Spatial Frequency 

23 TENG Tenegrad 

24 TENV Tenegrad Variance 

25 VOLA Vollath’s Correlation 

26 WAVS Sum of Wavelet Coefficients 

27 WAVV Variance of Wavelet Coefficients 

28 WAVR Range of Wavelet Coefficients 

29 OLDG Old Method based on Gradient 

30 GDER2 Gaussian Derivative 2 
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Appendix B Distributions of the Other Fifteen FM’s   
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Appendix C Corresponding Classes for Multi- and Binary-Class Training with Classification 

 

Distance (d)/micron 5-class (a) 5-class (b) 6-class 7-class Binary 

0 ≤ d ≤ 1 Class 1 Class 1 Class 1 Class 1 In-focus (1) 

1 < d ≤ 2 Class 2 Class 2 Class 2 Class 2 × 

2 < d ≤ 3 Class 3 Class 3 Class 3 Class 3 × 

3 < d ≤ 4 Class 4 Class 4 Class 4 Class 4 × 

4 < d ≤ 5 × × Class 5 Class 5 × 

4 < d ≤ 10 × × × × × 

5 < d ≤ 10 × × × Class 6 × 

d > 4 Class 5 × × × × 

d > 10 × Class 5 Class 6 Class 7 Out-of-focus (2) 
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Appendix D Variance Plot of Principal Components   
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Appendix E Training Performance in Multi-class Classification with Different 

Combinations of FM  
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Appendix F Training Performance in Binary-class Classification with Different 

Combinations of FM  
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