
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF COMPUTER SCIENCE

PAIRBOOST: GRADIENT BOOSTED CLASSIFICATION FROM PAIRWISE DATA

NEIL ASHTEKAR
SPRING 2021

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree

in Computer Science
with honors in Computer Science

Reviewed and approved* by the following:

Mehrdad Mahdavi
Professor of Computer Science and Engineering

Thesis Supervisor

Rebecca Passonneau
Professor of Computer Science and Engineering

Honors Advisor

*Electronic approvals on file



i

Abstract

Supervised binary classification requires access to a fully labeled dataset. In many applications,
gathering labels can be costly and difficult, and may even be impossible due to privacy concerns.
However, it is often feasible to obtain alternative feedback such as pairwise comparisons. This
thesis proposes PairBoost – a gradient boosted binary classification algorithm capable of learning
from pairwise comparisons and unlabeled data. Specifically, we consider instance pairs with labels
indicating which of the two instances is more likely to be positive. Our algorithm consists of two
decoupled steps: first, learn a pairwise ranker to transfer the knowledge from pairwise comparisons
to unlabeled instances, and second, learn a boosted binary classifier where the labels are adaptively
assigned based on the discrepancy between the current classifier’s predictions and the confidence
of the pairwise ranker. We evaluate PairBoost on several real-world datasets, showing the practical
usefulness of our approach and demonstrating significant performance improvements over existing
methods.
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In this chapter, we provide relevant background material and introduce the PairBoost problem
setting. We begin by stating the supervised and unsupervised learning settings, then discuss limi-
tations of each approach. Finally, we state the goal of our algorithm and describe two real-world
use cases.

1.1 Supervised Learning
Machine learning is a subset of artificial intelligence describing algorithms which perform tasks

without being explicitly programmed [1]. Machine learning is generally divided into three main
categories: supervised learning, unsupervised learning, and reinforcement learning. Supervised
learning algorithms first learn from labeled data (training data) and then make predictions on unla-
beled data (test data) [2]. Classification refers to supervised learning with categorical labels, while
regression refers to supervised learning with continuous labels. Formally, given feature vectors
x ∈ X and scalar labels y ∈ Y , the goal of supervised learning is to fit a model:

f : X 7→ Y

This is typically accomplished by minimizing a cost function which represents the model’s
prediction error with respect to its parameters. In addition, a regularization term is often included
to penalize model complexity. This prevents overfitting to the training data and allows the model to
generalize to new data. Commonly used cost functions include mean-squared error for regression
and logistic loss for classification [2]:

1

m

m∑
i=1

(yi − f(xi))2

1

m

m∑
i=1

−yi log(f(xi))− (1− yi) log(1− f(xi))

Examples of supervised learning include predicting cancer diagnoses from radiology scans,
predicting if an email will be spam given its content, and predicting how much a customer will
spend when online shopping given their past spending habits. In all of these examples, a supervised
learning algorithm learns from labeled historical data (i.e. radiology scans of past patients known
to have cancer or be cancer-free) to make predictions on future, unlabeled data (i.e. new patients).
The use of labeled data is the defining characteristic of supervised learning.

1.2 Unsupervised Learning
This contrasts with unsupervised learning, in which the goal is to learn structure from unlabeled

data x ∈ X [3]. Unsupervised learning encompasses a variety of settings including clustering,
dimensionality reduction, and synthetic data generation. An example of unsupervised learning is
grouping online shopping users together based on similar purchasing habits in order to make more
accurate targeted recommendations. In this setting, the goal is to learn the underlying structure
of online user data in order to understand the similarities and differences between types of users.
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PairBoost, our proposed algorithm, makes use of ideas from supervised and unsupervised learning
to handle both pairwise comparisons and unlabeled data.

1.3 Data Limitations
Supervised learning can be applied to a huge number of use cases, ranging from medicine to

security to advertising. However, gathering labeled data can challenging due to monetary con-
straints, time constraints, privacy concerns, and more. In these situations, it is often possible to
gather unlabeled data or alternative feedback. Using unlabeled data and unsupervised methods
alone often results in poor performance for supervised learning tasks. In such settings, alternative
feedback (such as comparisons) can help. For example, subjects in a survey may be hesitant to
explicitly state their political or religious beliefs, but may be open to more implicit questions such
as “Who do you share similar beliefs with?” or “Do you agree more with statement A or statement
B?”. Learning from alternative feedback presents unique challenges, as typical supervised learning
algorithms are unusable in such settings.

1.4 Goal and Use Cases
In this thesis, we investigate the binary classification setting with one form of alternative feed-

back – pairwise comparisons. Namely, we consider instance pairs x1i , x
2
i with label ypi indicating

which of the two instances is more likely to be positive. Our proposed algorithm learns a classifier
from both pairwise comparison data as well as unlabeled data, as illustrated in Figure 1.1. Knowl-
edge of a class prior π+, the proportion of true positives in the data, can also be used to improve
performance in some settings.

Figure 1.1: Illustration of our proposed setting versus typical supervised and unsupervised settings.
Arrows point to the instance in each pair which is more likely to be positive.
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Listed below are example use cases and descriptions of each data type:

• Predicting political beliefs

– Pairwise comparisons: voter x1i is more likely than voter x2i to support a given candidate

– Unlabeled data: voter demographic information

– Class prior (optional): actual or predicted proportion of votes for given candidate

• Predicting medical diagnoses

– Pairwise comparisons: patient x1i is more likely than patient x2i to have a given disease

– Unlabeled data: patient medical records

– Class prior (optional): estimated proportion of general population with given disease

Note that the features should have the same format for both the pairwise comparison data as
well as the unlabeled data. These example use cases illustrate how gathering pairwise comparison
labels can be much easier than gathering true labels. In the medical diagnosis example, it may be
easier for a doctor to determine which of two patients is more likely to have a given disease as
opposed to definitively diagnosing both patients.

In addition, the use of a class prior may only be appropriate in some settings. Using a class prior
makes sense when the proportion of positives in the data is known or can be estimated, yet the true
label for each individual instance is unknown. This setting is similar to that of uncoupled regression
[4], in which both unlabeled data and labels are given, but the correspondence between them is
unknown. When the learning from a class imbalanced dataset, including class prior information
can significantly improve performance. These findings are discussed in greater detail in Chapter 3
and Chapter 4.
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Chapter 2

Related Works
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In this chapter, we discuss previous research done on related topics. First, we discuss ap-
proaches to learn from limited labeled data and alternative feedback. Next, we discuss techniques
used in PairBoost, including gradient boosting and ranking.

2.1 Active Learning
A variety of methods have been proposed to perform classification or regression with little to no

labeled training data. One category of related work trains classifiers or regressors using a combina-
tion of pairwise comparisons and labeled data. This is often framed as an active learning problem
with comparison and/or labelling oracles. These works show that the addition of pairwise com-
parisons improves model performance [5] and in some settings allows learning with exponentially
fewer labels [6, 7, 8, 9].

[5] considers the classification setting with limited labeled data and similar/dissimilar pairwise
constraints. (In this context, similar pairs have the same true labels, while dissimilar pairs do not.)
These constraints are incorporated within a maximum-margin framework to improve performance,
implemented as a multi-class pairwise comparison support vector machine. [6] and [8] tackle a
related setting with relative pairwise comparisons rather than similar/dissimilar pairs. These work
shows that pairwise comparisons can be used to rank instances, then direct labels can be queried
using binary search in order to determine a classification threshold. This reduces the direct label
sample complexity to the logarithm of the desired error rate. [9] extends this work to “Reliable and
Probably Useful” (RPU) learning (sometimes called “perfect selective classification”), showing
that the addition of pairwise comparisons makes RPU learning feasible. The pairwise comparison
and direct label setting in regression is discussed in [7]. It is shown that the use of pairwise com-
parisons removes the exponential relationship between a model’s error rate and the dimensionality
of the data, avoiding the infamous “curse of dimensionality”. Unlike our proposed algorithm, the
focus of these works is to supplement labeled data with pairwise comparisons rather than to learn
from pairwise comparisons alone.

2.2 Pairwise Comparisons
An additional category of approaches is to use an unsupervised model with additional con-

straints. Such approaches include constrained K-means clustering [10], classification from spec-
tral clustering [11], and information-theoretic metric learning [12]. All approaches take advantage
of similar/dissimilar pairwise information to improve performance. Constrained K-means cluster-
ing uses similar/dissimilar pairs as must-link and cannot-link constraints during each iteration of
cluster assignment [10]. Alternatively, spectral clustering groups data based on connectivity rather
than compactness. This is accomplished by clustering after performing dimensionality reduction,
then using pairwise constraints for affinity propagation [11]. Finally, information-theoretic metric
learning learns a distance function under the constraint that similar instances must be sufficiently
close together and dissimilar instance must be sufficiently far apart [12]. These methods are limited
given their reliance on assumptions such as the cluster hypothesis and manifold assumption.

Other methods focus on learning explicitly from pairwise comparisons rather than modifying
unsupervised techniques. [13] learns a classifier from similar pairs and unlabeled data, while [14]
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and [15] also incorporate dissimilar pairs in training data. These methods express classification
risk using only similar, dissimilar, and unlabeled data, then learn a model through empirical risk
minimization. [13] and [14] derive model error estimates and convergence rates, and provide
implementations of several pairwise loss functions. Experiments on benchmark datasets reveal that
similar-dissimilar-unlabeled classification outperforms existing methods when the data has a class
imbalance. The problem setting in [14] is the most closely related to that of our proposed algorithm,
with training data including both similar and dissimilar pairs as well as unlabeled data. However,
while [14] requires pairs to be either definitely similar or definitely dissimilar, we only require
relative pairwise comparisons indicating which of two instances is more likely to be positive.

2.3 Gradient Boosting
Many machine learning algorithms optimize a cost function using gradient descent [16]. This

involves taking the gradient of a cost function with respect to model parameters in order to deter-
mine the direction of steepest decrease, then adjusting the parameters accordingly. For a model
with parameters w, cost function C, and learning rate α, this process is described by:

w := w − α∇C(w)

When properly tuned, gradient descent converges to a local minimum of C(w). Gradient de-
scent optimizes a cost function with respect to model parameters, though it is also possible to
optimize a cost function with respect to model predictions. This is the technique used in gradient
boosting [17]. Here, we optimize over a function space, and learn a new model at each iteration
of gradient descent. The first model is trained on the original data, while each successive model is
trained on the gradient of the current model’s predictions. This process is outlined below:

Train f1 on {(x1, y1)...(xm, ym)}

ŷ(1) = f1(x)

z(1) = ∇C(ŷ(1))

Train f2 on {(x1, z1)...(xm, zm)}

ŷ(2) = f1(x) + f2(x)

z(2) = ∇C(ŷ(2))
...

Final model f(x) = f1(x) + f2(x) + . . .+ ft(x)

Gradient boosting is an ensemble method. Ensemble methods often outperform individual
models, as combining different models (each with some degree of randomness) adds stability to
predictions. Gradient boosting typically makes use of nonlinear models, as the final model is
represented as a linear combination. Decision trees [18] are often used due to their predictive
power and low time complexity. PairBoost uses gradient boosting to adaptively assign labels during
training.
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2.4 Learning to Rank
Both steps of our proposed algorithm rely on approaches used in learning-to-rank. The learning-

to-rank problem setting is as follows. Given a set of instances and some partial ordering defined
between instances, we seek to learn a model to optimally order new instances [19]. Partial order-
ings could include pointwise scores indicating the quality of each instance, pairwise comparisons
between instances, or binary labels indicating if an instance is relevant. The model’s ordering is
represented as a permutation of instances.

The first step of PairBoost trains a simple pairwise ranker, while the second step computes
weights similarly to that of LambdaMART [20, 21]. Given cost function C, ranking model f , and
score si = f(xi), [20] defines:

λi,j ≡
∂C(si − sj)

∂si
(2.1)

This λi,j can be thought of as a pairwise gradient between two instances in a ranking. In
addition, for each set of index pairs {i, j} ∈ I such that xi and xj should be ranked differently,
[20] introduces:

λi =
∑

j:{i,j}∈I

λi,j −
∑

j:{j,i}∈I

λi,j (2.2)

Here, λi indicates how instance xi should be moved in a given ranking. Its sign indicates
direction, while its magnitude indicates how much it should move. These ideas are similar those
used to order instances in PairBoost. The weight wi described in Section 3.5 is analogous to λi
discussed above. Additionally, gradient boosted decision trees are particularly apt for this setting,
as used in LambdaMART.
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Chapter 3

Proposed Algorithm
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In this chapter, we formally describe our problem setting and proposed algorithm. We provide
details regarding PairBoost’s inputs, outputs, and learning process. Finally, we discuss how each
of the two main steps of our algorithm (knowledge transfer and label estimation) were derived.

3.1 Problem Setting
PairBoost is a gradient boosted binary classification algorithm capable of learning from pair-

wise comparisons and unlabeled data. The input features are represented as a set of vectors X =
{x ∈ Rd}while the true labels are represented as Y = {+1,−1} indicating instances from the pos-
itive and negative classes. Pairwise comparisons are represented by the set P = {(x1i , x2i , y

p
i )}mi=1.

Here, x1i , x
2
i is a pair of instances with pairwise label:

ypi =

{
+1 if x1i is more likely to be positive than x2i
−1 if x2i is more likely to be positive than x1i

(3.1)

Note that only pairwise labels, not true labels, are available to PairBoost at training. Unlabeled
data is represented as the set S = {x1, x2, . . . , xn} which includes all instances in P as well as
instances with no pairwise labels. Knowledge of a class prior π+ = p(y = +1), indicating the
proportion of true positives in the data, can be used to improve performance in some settings.
Given pairwise labeled data, unlabeled data, and optional class prior information, PairBoost learns
a function f : X 7→ Y which map features to predicted true labels.

3.2 Overview
Our algorithm consists of two decoupled steps. First, a pairwise ranker is learned to transfer

the knowledge from pairwise comparisons to unlabeled instances. Second, a gradient boosted
binary classifier is learned, with labels adaptively assigned based on the the discrepancy between
the current classifier’s predictions and the confidence of the pairwise ranker. This second step is
accomplished by learning an ordering of the training instances from most likely to be negative to
most likely to be positive, then determining a classification threshold. This process is illustrated
by Figure 3.1 and described in further detail in Sections 3.4 and 3.5.

Figure 3.1: Illustration of the training and prediction process in PairBoost
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3.3 Description

Algorithm 1 PairBoost
1: inputs: P = {(x1i , x2i , y

p
i )}mi=1, S = {x1, x2, . . . , xn}, π+

2: output: Binary classifier f : X 7→ Y
3: Learn a pairwise ranker r by training a supervised probabilistic classifier on P
4: Compute Wn×n using predictions from r over all instance pairs:

Wi,j = P (ypi,j = +1|(xi, xj))

5: Initialize f(x) = 0 for all instances, t = 1, and α1 = 0
6: while t ≤ T and αt ≥ 0 do
7: Compute ξi,j for each instance pair using Eq. (3.5)
8: Compute the weight of each instance wi using Eq. (3.6)
9: if π+ is known then

10: Sort instances by weight wi in ascending order
11: Assign label yi = +1 to top π+ proportion of weights
12: Assign label yi = −1 to bottom 1− π+ proportion of weights
13: else
14: Assign labels using weights:

yi = sign(wi)

15: Create training data Dt = {(xi, yi), . . . , (xn, yn)} by sampling based on |wi|
16: Learn a binary classifier ft minimizing the weighted empirical loss over Dt

17: Predict the label of each instance ŷi = ft(xi)
18: Compute the weight of classifier ft as:

αt =
1

2
log

∑n
i,j=1 ξi,jI[ŷi = 1]I[ŷj = −1]∑n
i,j=1 ξi,jI[ŷi = −1]I[ŷj = 1]

19: Update the final classifier:

f(x)← f(x) + αtft(x)

20: end while
21: return f(x)

3.4 Knowledge Transfer to Unlabeled Instances
The first part of the algorithm transfers knowledge from labeled instance pairs to unlabeled

instances in order to utilize all of the available data for training. This is accomplished by learning
a supervised model on pairwise data P . Next, this supervised model is used to make probabilis-
tic predictions for all n × n pairs in order to fill in the W matrix, with entry Wi,j indicating the
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predicted probability that instance xi is more likely to be positive than instance xj . This corre-
sponds to steps 3 and 4 in Algorithm 1. These steps are purposefully left open ended, and allow
PairBoost to be model-agnostic. This means that these steps could be performed with any model
(support vector machine, neural network, etc.) as long as the model includes functionality to make
probabilistic predictions. Additionally, this allows for a variety of pairwise feature representations
(xi, xj concatenated, xi − xj elementwise difference, etc.).

3.5 Boosting with Adaptive Label Estimation
Next, we attempt to learn an ordering of the training data which is consistent with the informa-

tion in matrix W . To do so, we introduce cost C as a function of the model f :

C(f) =
n∑

i,j=1

Wi,jI[f(xj) > f(xi)] (3.2)

where I is the indicator function. This essentially sums the probability that the model is incor-
rect over each pair of instances. However, this function is difficult to optimize as it is step-like and
discontinuous. To fix this problem, we replace the indicator function with a smooth surrogate such
as exponential loss, and the resulting function becomes:

C(f) =
n∑

i,j=1

Wi,j exp(f(xj)− f(xi)) (3.3)

To optimize this function, we first compute its gradient. This gives us a direction to adjust the
model’s weights through gradient descent. For a linear model f(x) = w>x and exponential loss
function, the gradient with respect to the model’s weights w is:

∇wC(w) =
n∑

i,j=1

Wi,j exp(w
>xj − w>xi)(xj − xi) (3.4)

However, what if the model is nonlinear? To handle different types of models, we need a
more general approach. Instead of taking the gradient of the cost function with respect to the
model’s weights, we can take the derivative of the cost function with respect to the model’s pairwise
predictions. Formally, this quantity is ∂C

∂si,j
with pairwise prediction si,j = f(xj) − f(xi). This is

easy to calculate because the derivative of the exponential function is itself. For a single instance
pair xi, xj , we get the derivative:

ξi,j = Wi,j exp(f(xj)− f(xi)) (3.5)

This quantity represents the discrepancy between the current model and the learned ranker for a
single instance pair. Next, we compute the importance of each instance xi by summing over pairs:

wi =
n∑

j=1

ξi,j − ξj,i (3.6)



13

These weights wi indicate how each instance should move in the predicted ordering. Much
like λi in LambdaMART [20], the sign of wi determines if xi should move up or down in the
ordering, while the magnitude of wi determines how much xi should move. Weights wi are used to
adaptively assign labels at each iteration of gradient boosting. This corrects for errors previously
made by the model, reducing the discrepancy with the learned pairwise ranker.

At each iteration, a new binary classifier is trained to predict this discrepancy, thus improving
the predicted ordering. (This is step 16 in Algorithm 1 – note that this step is model-agnostic similar
to step 3.) Each classifier is weighted based on its performance and added to the final model. This
process learns an instance ordering, but cannot perform classification without a threshold to make
predictions. This is where the class prior π+ comes into play. If π+ is known, its value can be used
to determine a threshold as illustrated in Figure 3.1. If π+ is unknown, a threshold is estimated
based on the sign of the weights. Access to π+ generally improves performance when the data
has a large class imbalance (corresponding to π+ close to either 0 or 1), though PairBoost often
performs well on balanced data even when π+ is unknown. These findings are discussed in greater
detail in Chapter 4.
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Chapter 4

Empirical Results
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In this chapter, we evaluate the performance of PairBoost on real-world data. We use nine
binary classification datasets from the UCI Machine Learning Repository [22] and LIBSVM [23].
These datasets are commonly used to benchmark machine learning algorithms. We analyze Pair-
Boost performance against supervised and unsupervised baselines as well as current state-of-the-art
pairwise methods across several settings.

4.1 Baseline Methods
We use K-Means clustering [24] as a simple unsupervised baseline. K-Means clustering is

an iterative, two step algorithm which assigns instances to clusters based their distance to mean
centroid points. As a supervised baseline, we consider XGBoost [25]. XGBoost is an ensemble
method which uses parallelized gradient boosted decision trees [18]. PairBoost is compared to
XGBoost because of their similar structures.

As for pairwise methods, we compare PairBoost to SDU classification [14] which which learns
from similar/dissimilar pairwise data and unlabeled data. As discussed in Section 2.2, this problem
setting is most closely related to that of our proposed method. The SDU classifier described in
[14] is a linear models with weights learned through empirical risk minimization. Specifically, the
similar-dissimilar and dissimilar-unlabeled (SDDU) risk formulation is shown to achieve state-of-
the-art classification performance, thus we compare PairBoost to this implementation.

4.2 Setting
In all experiments, we implement PairBoost using decision trees [18] (step 16, Algorithm 1)

with a maximum depth of 3 for T = 20 iterations of boosting. For each setting, we evaluate two
models of PairBoost: one with the class prior π+ known, and one with the class prior π+ unknown.
We randomly sample m pairwise comparisons across n total instances. Performance is reported on
a test set disjoint from the training set. Our experiments seek to answer three key questions:

1. How is performance affected by the number of pairwise comparisons m?

2. How does our proposed method compare to standard supervised and unsupervised baselines?

3. How does our proposed method compare to state-of-the art pairwise methods?

4.3 Improvement by Pairwise Comparisons
We answer the first question through Figure 4.1 by plotting performance as m varies. Per-

formance generally improves as m increases, though it levels off for larger values. Performance
approaches that of supervised baseline XGBoost [25].

For the banana dataset, PairBoost performance is similar with and without class prior π+
known. For the cod-rna dataset, the model with π+ known clearly outperforms the model without.
We hypothesize that this is because π+ is closer to 0.5 for the banana dataset, while the cod-rna
dataset is more heavily class-imbalanced. The value of π+ and its effect on performance is pre-
sented in Table 4.1 and discussed in further in Section 4.4.
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Figure 4.1: Mean classification error versus the number of pairwise comparisons m over 10 trials.
The number of additional unlabeled instances is fixed at 500.

4.4 Performance versus Baseline Methods

PairBoost SDDU Baselines
Dataset m π+ unknown π+ known Squared Double-Hinge K-Means XGBoost
adult 50 65.0 (0.0) 79.4 (0.0) 61.9 (0.9) 77.7 (0.6) 69.4 (0.0) 77.4 (0.0)

π+ = 24.0 200 66.6 (0.0) 82.2 (0.0) 71.4 (0.7) 82.5 (0.3) 69.4 (0.0) 78.6 (0.0)
banana 50 68.3 (0.1) 67.2 (0.3) 63.9 (1.2) 63.5 (1.1) 54.4 (0.0) 72.4 (0.0)

π+ = 44.8 200 72.2 (0.1) 72.3 (0.1) 66.5 (0.8) 66.9 (0.7) 54.4 (0.0) 85.2 (0.0)
codrna 50 74.1 (0.1) 81.5 (0.2) 78.1 (1.1) 68.5 (0.8) 70.6 (0.0) 83.2 (0.0)

π+ = 33.3 200 76.4 (0.2) 86.6 (0.0) 87.7 (0.6) 72.7 (0.7) 70.8 (0.0) 90.2 (0.0)
ijcnn1 50 77.6 (0.1) 88.5 (0.1) 64.7 (0.8) 68.8 (0.9) 73.7 (0.8) 89.0 (0.0)

π+ = 9.50 200 78.4 (0.1) 90.8 (0.1) 75.1 (0.7) 76.3 (0.5) 72.2 (0.9) 92.6 (0.0)
magic 50 73.3 (0.1) 74.3 (0.0) 65.5 (0.9) 65.1 (1.0) 61.3 (0.0) 77.4 (0.0)

π+ = 35.2 200 72.5 (0.1) 74.8 (0.1) 73.0 (0.6) 71.4 (0.7) 60.0 (0.0) 82.6 (0.0)
phishing 50 86.9 (0.0) 86.7 (0.1) 69.4 (0.8) 80.5 (0.9) 56.9 (0.3) 89.2 (0.0)
π+ = 55.7 200 89.0 (0.0) 88.6 (0.1) 81.7 (0.7) 87.0 (0.4) 52.9 (0.0) 90.2 (0.0)
phoneme 50 63.7 (0.1) 73.1 (0.1) 67.9 (0.9) 69.2 (0.9) 76.8 (0.0) 75.6 (0.0)
π+ = 29.3 200 69.9 (0.1) 77.6 (0.1) 73.5 (0.5) 74.4 (0.4) 76.2 (0.0) 81.6 (0.0)
spambase 50 84.4 (0.1) 84.2 (0.1) 66.7 (0.8) 82.9 (0.6) 80.2 (0.0) 89.2 (0.0)
π+ = 39.4 200 86.7 (0.2) 87.6 (0.2) 77.9 (0.7) 87.5 (0.3) 80.3 (0.0) 92.2 (0.0)

w8a 50 59.3 (0.0) 97.8 (0.0) 60.8 (0.9) 73.2 (0.9) 78.3 (0.1) 97.4 (0.0)
π+ = 3.30 200 63.8 (0.2) 97.8 (0.0) 64.1 (0.7) 80.2 (0.7) 78.8 (0.0) 97.6 (0.0)

Table 4.1: Performance of PairBoost versus competing methods. Mean classification accuracy and
standard error are listed for each setting over 20 trials. Significantly outperforming methods are
bolded, computed using a t-test with α = 0.05 across the PairBoost and SDDU columns.
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Next, we compare performance against supervised and unsupervised baselines as well as state-
of-the-art pairwise methods. K-means clustering [24] is used as a simple unsupervised baseline,
while XGBoost [25] is again used as a supervised baseline. SDU clasification [14] with similar-
dissimilar and dissimilar-unlabeled (SDDU) risk is used as a pairwise baseline.

We evaluate performance with m = {50, 200} randomly sampled pairwise comparisons and
500 additional unlabeled instances. This is almost identical to the setting in [14], however the
SDDU results are reported with a fixed class prior π+ = 0.7. (This is because SDU classification
performs poorly when the class prior is near 0.5.) Since the author’s exact implementation is
unavailable, we compare our results to those published in [14] in the SDDU column. The results
are listed in Table 4.1.

PairBoost significantly outperforms or matches SDDU classification on all nine datasets tested.
When π+ is known, PairBoost outperforms K-means clustering and approaches XGBoost accuracy
on most datasets. Additionally, the difference in PairBoost performance when π+ is known versus
unknown is greatest for datasets with skewed π+ values (i.e. π+ near 0 or 1). For datasets with
balanced π+ values (i.e. π+ near 0.5), the performance difference is generally small.
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Chapter 5

Conclusion
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5.1 Summary
We introduced PairBoost, a novel gradient boosted binary classification algorithm capable of

learning from pairwise comparisons and unlabeled data. We discussed how our algorithm differs
from existing methods in its ability to learn from relative pairwise comparisons rather than re-
quiring supplemental labeled data or similar/dissimilar pairs. We derived PairBoost using ideas
from learning-to-rank and gradient boosting, and described its implementation in detail. Finally,
we showed that our approach significantly outperforms existing pairwise methods through experi-
ments on real-world datasets.

5.2 Future Work
We described PairBoost and evaluated its performance on benchmark classification datasets.

However, we did not focus on specific use cases within the pairwise setting. Perhaps our approach
will be well suited for situations in which user privacy must be preserved. Or maybe PairBoost will
be particularly useful for applications involving survey data with preference relations. It would
be interesting to explore such use cases in future works. Additionally, we did not complete a
theoretical analysis of PairBoost. Understanding our method’s sample complexity and error bounds
(particularly under noisy data) could be valuable when considering potential applications.



20

Chapter 6

Appendix
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6.1 Experiment Details
Unless otherwise specified, default hyperparameter values were used in PairBoost decision tree

submodels, K-Means clustering, and XGBoost as described in [25, 26]. When computing perfor-
mance for K-Means clustering, we set K = 2 and took max(a, 1 − a) with a being classification
accuracy on out-of-sample test data.

6.2 Simulated Pairwise Setting
We faced a unique challenge when conducting our experiments, as we sought to simulate the

pairwise comparison setting using fully labeled datasets. Given labeled data in a typical supervised
setting:

{(xi, yi)}ni=1

with true label yi = ±1 indicating that instance xi belongs to the positive or negative class, we
needed some way to get pairwise comparisons of the form:

{(x1i , x2i , y
p
i )}mi=1

with pairwise label ypi = ±1 indicating if instance x1i is more likely to be positive than instance
x2i . An obvious solution would be to use dissimilar pairs in which one instance’s true label is
positive and the other instance’s true label is negative.

However, this approach is flawed in that it is essentially the same as the supervised setting. Any
instance x1i with a positive pairwise label clearly has a positive true label, and any instance x1i with
a negative pairwise label clearly has a negative true label (the opposite is true for x2i ). A simple
algorithm could easily recover true labels when this approach is used – in fact, PairBoost reduces
to a supervised learning algorithm in this context.

Additionally, this approach ignores an extremely important consideration. Namely, this ap-
proach does not include same-label comparisons, referring to pairwise comparisons in which one
instance is more likely to be positive than another, though both instances have the same true label.
Including same-label comparisons differentiates the pairwise setting from the typical supervised
setting.

To incorporate same-label comparisons, we used a less obvious approach. We started by train-
ing a supervised, probabilistic classifier on fully labeled data {(xi, yi)}ni=1. Next, we randomly
selected m pairs of instances and used our classifier to make probabilistic predictions of the form:

ŷi = P (yi = +1|xi)

Then, we compared ŷ values across instance pairs and assigned pairwise labels based on which
instance was more likely to be positive:

ypi =

{
+1 if ŷi1 > ŷi

2

−1 if ŷi1 < ŷi
2
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This approach incorporates both same-label and different-label comparisons. The proportion
of each type of comparison is determined by the class prior π+. This distinction is very important
in order to accurately simulate how PairBoost would operate in real-world applications.

6.3 Implementation in Python

""" PairBoost Implementation """

import numpy as np
from xgboost import XGBClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_svmlight_file

###########################################################################
# Simulate Pairwise Setting
###########################################################################
def all_diff_pairs(X_train, y_train):

""" Get every pair and true pairwise label from original data """

n = X_train.shape[0]

n_rows = (n * (n + 1)) // 2
n_cols = 3 * X_train.shape[1]

X_diff = np.full(shape=(n_rows, n_cols), fill_value=np.NaN)
y_diff = np.full(shape=n_rows, fill_value=np.NaN)

k = 0

for i in range(n):

for j in range(n):

X_diff[k] = np.hstack((X_train[i], X_train[j],
X_train[i] - X_train[j]))

# Can’t use same label comparisons at this point
if y_train[i] == y_train[j]:

continue

elif y_train[i] > y_train[j]:
y_diff[k] = 1.0

elif y_train[i] < y_train[j]:
y_diff[k] = -1.0

k += 1

# Cut NaN rows
return X_diff[˜np.isnan(y_diff)], y_diff[˜np.isnan(y_diff)]
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def predict_pair_labels(X_train, y_train, X_diff, y_diff, m,
random_seed=None):

""" Use XGBoost to predict pairwise labels """

np.random.seed(random_seed)

# Randomly choose m pairs to predict labels
idx_pair = np.hstack((

np.random.choice(X_train.shape[0], m).reshape(-1, 1),
np.random.choice(X_train.shape[0], m).reshape(-1, 1)
))

# Get features for predictions
X_pair = np.full(shape=(m, 3 * X_train.shape[1]), fill_value=np.NaN)

k = 0

for (i, j) in idx_pair:

X_pair[k] = np.hstack((X_train[i], X_train[j],
X_train[i] - X_train[j]))

k += 1

# Learn XGBoost on all pairs
xgb = XGBClassifier(n_estimators=30)
xgb.fit(X_diff, y_diff)
print(’PRE-PAIRBOOST’)
print(’Accuracy on train set: %.3f\n’ % xgb.score(X_diff, y_diff))

# Make predictions
y_pair = xgb.predict(X_pair)

return X_pair, y_pair

###########################################################################
# Helper Functions for PairBoost
###########################################################################
def cal_uncertainty(y, W):

"""
Computes uncertaintity matrix xi
"""
pair_dist = np.exp(-y).dot(np.exp(y).T)
return W * pair_dist

def cal_weights(xi):
"""
Computes importance (weight) of each instance, wi
"""
return np.sum(xi - xi.T, axis=1)
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def cal_alpha(y, xi):
"""
Calculates the weight of classifier t, alpha
"""
y_p = (y > 0).astype(float).reshape(-1, 1)
y_n = (y < 0).astype(float).reshape(-1, 1)
I_1 = xi * y_p.dot(y_n.T)
I_2 = xi * y_n.dot(y_p.T)
return 0.5 * np.log((np.sum(I_1) + 1e-6) / (np.sum(I_2) + 1e-6))

###########################################################################
# Full PairBoost Algorithm
###########################################################################
def pairboost(X_train, y_train, X_test, y_test, X_pair, y_pair, prior,

T=20, sample_prop=1, max_depth=3, random_seed=None,
verbose=True):

""" Learns PairBoost classifier with decision tree submodels """

if verbose:

if prior:
print(’WITH CLASS PRIOR %.2f’ % prior)

else:
print(’NO CLASS PRIOR GIVEN’)

if random_seed:
print(’Random seed %d’, random_seed)

print(’Using %d classifiers and sample proportion of %d’
% (T, sample_prop))

# Constants
m = X_train.shape[0]
n = X_train.shape[1]
np.random.seed(random_seed)

# Step 3: learn a pairwise ranker
xgb = XGBClassifier(n_estimators=30)
xgb.fit(X_pair, y_pair)

# Step 4: compute W using probabilistic predictions
W = np.full(shape=(m, m), fill_value=np.nan)

for i in range(m):

for j in range(i, m):

X_pred = np.hstack((X_train[i], X_train[j],
X_train[i] - X_train[j]))

y_pred = xgb.predict_proba(X_pred.reshape(1, -1))[:, 1]
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# ’Mirror’ predictions across diagonal
W[i, j] = y_pred
W[j, i] = 1 - y_pred

# Set diagonal
W[i, i] = 0.5

# Step 5: initialize counters
t = 1
alpha_t = 0
acc_train_ls = []
acc_test_ls = []

# Instantiate models and weights
f = []
alpha = []

# Step 6: training
while t <= T and alpha_t >= 0:

# Step 7: compute xi
if t == 1:

curr_pred = np.zeros(y_train.shape)
else:

curr_pred = sum([alpha[i] * f[i].predict_proba(X_train)[:, 1]
for i in range(t - 1)])

xi = cal_uncertainty(curr_pred, W)

# Step 8: compute weights
weight = cal_weights(xi)

# Steps 9 - 14: extract labels
weight_idx = np.argsort(weight)
weight = np.sort(weight)

X_new = X_train[weight_idx]

if prior:
y_new = np.concatenate((-np.ones(m - int(m * prior)),

np.ones(int(m * prior))))
else:

y_new = np.sign(weight)

# Step 15: create training (sample) data by sampling based on weights
p_weight = np.abs(weight)
p_weight /= np.sum(p_weight)
sample = np.random.choice(m, size=m*sample_prop,

replace=True, p=p_weight)
X_sample = X_new[sample]
y_sample = y_new[sample]

# Step 16: learn binary classifier on training (sample) data
clf = DecisionTreeClassifier(max_depth=max_depth)
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clf.fit(X_sample, y_sample)

# Step 17: predict labels using current classifier
y_prob = clf.predict_proba(X_train)[:, 1]
y_pred = np.round(y_prob) * 2 - 1

# Step 18: compute weight of current classifier
xi_t = cal_uncertainty(y_prob, W)
alpha_t = cal_alpha(y_pred, xi_t)

# Make sure alpha is valid
if np.isnan(alpha_t) or np.isinf(alpha_t):

print(’Alpha invalid, terminated’)
break

# Step 19: update final classifier, iteration
f.append(clf)
alpha.append(alpha_t)
t += 1

# Evaluation
y_train_pred = sum(

[(alpha[i] * f[i].predict_proba(X_train)[:, 1] * 2 - 1)
for i in range(t - 1)]
)

y_test_pred = sum(
[(alpha[i] * f[i].predict_proba(X_test)[:, 1] * 2 - 1)
for i in range(t - 1)]
)

y_train_pred = np.sign(y_train_pred)
y_test_pred = np.sign(y_test_pred)

acc_train_ls.append(accuracy_score(y_train, y_train_pred))
acc_test_ls.append(accuracy_score(y_test, y_test_pred))

if verbose:
if t == 2:

print(’t\tPrior\t\tTrain\t\tTest’)
print(’%d\t%.2f\t\t%.2f\t\t%.2f’
% (t - 1, (np.sum(y_sample == 1) / y_sample.size),

acc_train_ls[-1], acc_test_ls[-1]))
if alpha_t < 0:

print(’Alpha %.2f, terminated’ % alpha_t)

# Step 20: end while loop, print summary
if verbose:

print(’\nProportion of positive predictions: %.2f’
% (np.sum(y_train_pred == 1) / y_train_pred.size))

print(’\nTrain: boost diff %.2f, final acc %.2f’
% (acc_train_ls[-1] - acc_train_ls[0], acc_train_ls[-1]))

print(’Test: boost diff %.2f, final acc %.2f\n’
% (acc_test_ls[-1] - acc_test_ls[0], acc_test_ls[-1]))

# Step 21: return components of classifier
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return f, alpha

###########################################################################
# Example
###########################################################################
if __name__ == "__main__":

# Load adult dataset, located:
# www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html#a5a
X_train, y_train = load_svmlight_file(’a5a.txt’, n_features=123)
X_test, y_test = load_svmlight_file(’a5a.t’)
X_train, X_test = X_train.toarray(), X_test.toarray()
X_train, y_train, X_test, y_test = (X_train[:500], y_train[:500],

X_test[:500], y_test[:500])

# Simulate pairwise setting
X_diff, y_diff = all_diff_pairs(X_train, y_train)
X_pair, y_pair = predict_pair_labels(X_train, y_train,

X_diff, y_diff, m=200)

# Get class prior
prior = np.sum(y_train == 1) / y_train.size

# Run PairBoost
pairboost(X_train, y_train, X_test, y_test, X_pair, y_pair, prior, T=20,

sample_prop=1, max_depth=3, random_seed=None, verbose=True)
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