
THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF MECHANICAL ENGINEERING

A COST-EFFECTIVE AUTONOMOUS ZERO-TURN MOWER FOR ORCHARDS

MICHAEL A. PAGAN

SPRING 2021

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree
in Mechanical Engineering

with honors in Mechanical Engineering

Reviewed and approved* by the following:

H.J. Sommer III
Professor of Mechanical Engineering

Thesis Supervisor

Bo Cheng
Assistant Professor of Mechanical Engineering

Honors Advisor

* Electronic approvals are on file.

i

ABSTRACT

Orchard maintenance activities can be time-consuming and potentially hazardous for

humans. Therefore, it is beneficial to automate orchard tasks to remove humans from undesirable

or harmful jobs. One key orchard maintenance activity is mowing between rows of trees. To

automate this task, the mower must know where it is at all times, to a relatively high degree of

accuracy. Achieving cost-effective, high-accuracy localization can be difficult, however.

In this project, a differentially steered unmanned ground vehicle (UGV) named UGV01

was used to develop a mission-based autonomy system. UGV01 was used as a proof-of-concept

platform before implementing the system onto a Cub Cadet RZT-S zero-turn mower.

The latest high-precision satellite localization and waypoint automation technologies

were tested on UGV01. A Pixhawk autopilot controller was used to achieve mission-based

autonomy. High precision satellite localization was achieved through a Real Time Kinetic (RTK)

positioning system established at the testing grounds. The system was built with affordable RTK

boards, thereby demonstrating the ability of modern technology to provide a viable, cost-

effective solution for autonomy. Robot Operating System (ROS) was integrated into the ground

control system of UGV01 to enhance its flexibility and functionality. ROS was used to create an

automated mission-updating routine for UGV01. A simple object-avoidance routine was created

to demonstrate the sensor-integration possibilities of ROS.

The Cub Cadet zero-turn mower was modified to be compatible with the Pixhawk system

developed for UGV01. A custom RS485 interface interpreted the outputs from the Pixhawk

system to successfully control the drive wheels and mowing deck on the Cub Cadet.

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

LIST OF TABLES ... iv

ACKNOWLEDGEMENTS ... v

Chapter 1 Motivation ... 1

Chapter 2 Literature Review .. 2

2.00 Overview ... 2
2.01 Satellite-Based Localization ... 2
2.02 Sensing-Based Localization .. 4
2.03 Unmanned Ground Vehicle Path Planning Using Multiple Sensor Inputs ... 5
2.04 Precision Agriculture with Autonomous UAVs ... 6
2.05 Autonomous Agriculture Vehicle Guidance with GPS and Path Planning .. 7
2.05 Autonomous Orchard Navigation without GPS ... 10
2.06 A Cost Effect Autonomous Zero-Turn Mower for Orchards 13

Chapter 3 Remote Control of a Differential Steer UGV .. 15

3.00 Overview ... 15
3.01 Differential Steer UGV ... 15
3.02 Remote Control Configuration ... 17

Chapter 4 UGV01 Pixhawk 4 Integration .. 22

4.00 Overview ... 22
4.01 Hardware Configuration ... 22
4.02 Software Configuration .. 26

Chapter 5 Testing UGV01 with Pixhawk .. 33

5.00 Overview ... 33
5.01 Creating a Test Track at Rock Springs Orchard ... 33
5.02 UGV01 Ground-Marking Device ... 38
5.03 Evaluating UGV01 Performance on Test Track ... 41

Chapter 6 Establishing an RTK System with Pixhawk ... 46

6.00 Overview ... 46
6.01 Hardware Configuration ... 46
6.02 Cost Consideration .. 53

iii

6.02 Configuring Two Telemetry Radio Pairs ... 54
6.03 Software Configuration of ZED-F9P RTK Boards 58
6.04 Configuring Pixhawk to Integrate the RTK System 65

Chapter 7 Performance Evaluation of the RTK System .. 67

7.01 Overview ... 67
7.02 Assessing the Precision and Accuracy of the RTK System 67
7.03 Testing UGV01 with RTK-Integrated Pixhawk ... 71
7.04 Using the ZED-F9P to Establish a High-Accuracy GCP 76

Chapter 8 Integrating ROS with the Pixhawk.. 81

8.01 Overview ... 81
8.02 Motivation for ROS .. 81
8.03 Using ROS to Communicate with the Pixhawk ... 82
8.04 Assigning Missions to UGV01 with MAVROS ... 85
8.05 Simple Object Avoidance with ROS and Pixhawk 87

Chapter 9 Cub Cadet R/C Control ... 88

9.01 Overview ... 88
9.02 Manual Control System .. 88
9.03 BAC1000 Motor Controllers .. 92
9.04 Manual Power Activation Sequence ... 96
9.05 Cub Cadet Motor Shield ... 98
9.06 Microprocessor Power Activation Sequence .. 101
9.07 User Power-on Sequence .. 102
9.08 Microprocessor Logic Flow .. 103
9.09 Future Control Concepts ... 108

Chapter 10 Retrofitting the Cub Cadet RZT-S Zero .. 109

10.01 Overview ... 109
10.02 Simplifying Control of the Cub Cadet .. 109
10.03 Integrating the Autonomous Control System ... 114

Chapter 11 Future Work .. 123

Appendix A Mission Planner Parameter Lists .. 126

A.1 Non-RTK Configuration .. 126
A.2 RTK GPS Configuration .. 138

Appendix B Python Code ... 150

iv

B.1 inline_pair_UGV01.py ... 150
B.2 mission_update.py .. 154
B.3 backup.py ... 160

Appendix C Arduino Code ... 161

C.1 HCSR04 ... 161

BIBLIOGRAPHY .. 163

v

LIST OF FIGURES

Figure 2.1 - Comparison of carrier-phase (left) and code-phase (right)
calculations by a GPS receiver [3] .. 4

Figure 2.2 – Example of a UGV with multiple sensor inputs [10] 6

Figure 2.3 – Orchard mowing efficiency is improved with mission planning [13] 8

Figure 2.4 - Test rig to record the lateral deviation of an implement [6] 9

Figure 2.5 – Laser-based autonomous orchard vehicle (left) navigating rows
while mapping tree locations (right) [17] ... 12

Figure 2.6 - Unmodified Cub Cadet RZT-S Zero .. 13

Figure 3.1 - UGV01 left side showing track design .. 16

Figure 3.2 - UGV01 top showing motors and aft switch ... 17

Figure 3.3 - Wiring configuration for R/C system in UGV01 18

Figure 3.4 - Signal flow for R/C system in UGV01 .. 19

Figure 3.5 – Conversion between PPM signal and 3 PWM channels [20] 20

Figure 4.1 - UGV01 with basic Pixhawk system installed .. 23

Figure 4.2 - Signal flow comparison for UGV01 with Pixhawk 23

Figure 4.3 - Pixhawk hardware connections .. 24

Figure 4.4 - Power management board connection to the Sabertooth
motor controller .. 25

Figure 5.1 - Rock Springs Orchard .. 34

Figure 5.2 – 6 Ground Control Points (GCPs) at Rock Springs Orchard 35

Figure 5.3 – Recessing a stone paver to establish a test track GCP............................. 36

Figure 5.4 - Completed test track in aisle A1-A2 composed of 4 GCPs 37

Figure 5.5 - Funnel dispenser for marking compound hopper 39

Figure 5.6 - L bracket for marking device mounted to the aft of UGV01 40

vi

Figure 5.7 - Testing functionality of UGV01 with ground marking device 41

Figure 5.8 - First test track mission displayed in Mission Planner 42

Figure 5.9 - A1-A2 SW .. 43

Figure 5.10 - A1-A2 ... 43

Figure 5.11 - A1-A2 NE .. 44

Figure 5.12 - Trace of UGV01 path from A1-A2 to A1-A2 NE during run 2 44

Figure 6.1 - Hardware configuration of the RTK base station 47

Figure 6.2 - RTK base module assembled with critical components 49

Figure 6.3 - Hardware configuration of RTK rover module with the Pixhawk 50

Figure 6.4 – Rover RTK hardware within protective housing on UGV01 51

Figure 6.5 - Updated design of UGV01 with Pixhawk and RTK system 52

Figure 6.6 - UGV01 aft deck with GNSS antenna grounding plane 53

Figure 6.7 - SiK radio configuration tool within Mission Planner 55

Figure 6.8 - RFD900 radio modem pin layout [30] ... 57

Figure 6.9 - u-center configuration window for base RTCM messages 59

Figure 6.10 - Base RTK module port configuration in u-center 60

Figure 6.11 - RTK rover module UART1 configuration settings in u-center 62

Figure 6.12 - U-center configuration of NMEA messages on the rover
RTK module ... 63

Figure 6.13 - U-center configuration of the rover RTK module
navigation frequency .. 64

Figure 7.1 - RTK rover (left) and base station (right) equipment
during accuracy testing ... 68

Figure 7.2 - Example of GNRMC NMEA sentence .. 69

Figure 7.3 - Standard deviation and error of the rover RTK module at each GCP 70

vii

Figure 7.4 - Base and rover GNSS antennas sharing A1 South GCP during testing ... 70

Figure 7.5 - Test track mission created for performance evaluations 72

Figure 7.6 - Non-RTK Pixhawk navigating UGV01 through test-track mission 73

Figure 7.7 - RTK Pixhawk navigating UGV01 through test-track mission 73

Figure 7.8 - Position trace of UGV01 with RTK Pixhawk: west end of test track 74

Figure 7.9 - Position trace of UGV01 with RTK Pixhawk: east end of test track 74

Figure 7.10 - Position trace of UGV01 through orchard block A1 75

Figure 7.11 - UGV01 navigating a narrow orchard row in block A1 76

Figure 7.12 - GNSS antenna mounted on roof to determine GCP location 77

Figure 7.13 - Decrease of position error with logarithmic increase of GNSS
data collection time [36] ... 78

Figure 7.14 - Exporting a high-resolution satellite image from Google Earth Pro 79

Figure 8.1 - ROS communication network for a team of autonomous
orchard vehicles .. 82

Figure 8.2 – Topology of Pixhawk, ROS, and Mission Planner 84

Figure 9.1 - RZT-S Zero electrical block diagram .. 88

Figure 9.2 - RZT-S Zero electrical schematic ... 89

Figure 9.3 - RZT-S Zero Vehicle Control Module (VCM) ... 90

Figure 9.4 - RZT-S Zero control panel .. 91

Figure 9.5 - Cub Cadet motor shield schematic ... 98

Figure 9.6 - Cub Cadet motor shield printed circuit board .. 99

Figure 9.7 - Pololu 2801 dead man RC safety system ... 101

Figure 10.1 - Unmodified Cub Cadet RZT-S Zero .. 110

Figure 10.2 - Comparison of the Cub Cadet RZT-S and ZT1-42 wheel yokes 111

Figure 10.3 - Thrust bushing installed on a caster yoke .. 112

viii

Figure 10.4 - Increased tire spin radius caused by the new caster yoke 112

Figure 10.5 - Fabrication of deck mounting block .. 113

Figure 10.6 – Relocated mowing deck wheel with custom-fabricated mount 114

Figure 10.7 - Relocated deck wheel outside sufficiently far from the
caster yoke spin radius .. 114

Figure 10.8 - Flat deck below seat used for mounting the autonomy platform 115

Figure 10.9 – Wooden base of the autonomy platform on the seat deck 116

Figure 10.10 - Cub Cadet retrofitted with autonomy platform 116

Figure 10.11 - Brake lever bolted to the existing pedal bracket 117

Figure 10.12 - Pixhawk system mounted on the Cub Cadet autonomy platform 118

Figure 10.13 - Signal flow of R/C CCMS system ... 119

Figure 10.14 - R/C receivers wired to the CCMS control box 119

Figure 10.15 - Signal flow of Pixhawk CCMS system in manual mode 120

Figure 10.16 - Signal flow of Pixhawk CCMS system in auto mode 120

Figure 10.17 - Cub Cadet with Pixhawk system installed ... 122

Figure 11.1 - Ultrasonic array design for the Cub Cadet ... 124

Figure 11.2 - Modified old Cub Cadet compared to the new Cub Cadet 125

ix

LIST OF TABLES

Table 3.1 - Spektrum DX8 channel configuration for R/C UGV01 18

Table 3.2 - Dip switch positions on Sabertooth for R/C configuration 21

Table 4.1 - Dip switch positions on Sabertooth for Pixhawk configuration 25

Table 4.2 - Spektrum DX8 channel assignments for Pixhawk UGV01
configuration ... 27

Table 4.3 - ArduPilot parameters for DX8 input compatibility 28

Table 4.4 - Parameters for auxiliary functions on DX8 ... 29

Table 4.5 - ArduPilot parameters for sensor orientation .. 30

Table 4.6 - ArduPilot parameters for exclusive use of the external compass 31

Table 4.7 - ArduPilot parameters for tuning motor PWM outputs 32

Table 5.1 - Deviation of UGV01 during test track missions 42

Table 6.1 - RTK base wiring connections ... 48

Table 6.2 - RTK rover wiring connections .. 50

Table 6.3 – Cost sheet of Pixhawk RTK GPS system ... 54

Table 6.4 - RSSI of Holybro corrections radio throughout the orchard 56

Table 6.5 - Comparison of Holybro and RFD900 radio signal strengths 57

Table 6.6 - RTCM message types sent from the RTK base module 59

Table 6.7 - NMEA message types sent from UART1 of the rover RTK module 62

Table 6.8 - ArduPilot parameters required for ZED-F9P RTK module integration 66

Table 9.1 - VCM write registers for manual control ... 94

Table 9.2 - VCM read registers for manual control with typical values 95

Table 9.3 - External connections to Cub Cadet motor shield 100

Table 9.4 - User Power-On Sequence .. 103

x

Table 9.5 - Skid steer lookup table for left wheel/track ... 106

Table 9.6 - BAC1000 registers for CCMS operation with typical values 107

Table 10.1 – ArduPilot parameter adjustments for Pixhawk CCMS system 121

Table 10.2 - Wiring connections of the CCMS systems .. 121

xi

ACKNOWLEDGEMENTS

My completion of this thesis was made possible by the unending enthusiasm, mentorship,

and brilliance of Dr. H.J. Sommer. Through this fun and challenging project, Dr. Sommer helped

me find my passion for autonomous ground vehicles. I cannot thank him enough for his

contributions to this project and support of my development as a researcher and engineer.

I am very grateful of Randall Bock and all of his help with retrofitting the Cub Cadet

RZT-S Zero for autonomous operation. Randall was always eager to lend a hand and his advice

was critical in several design decisions.

My work with ROS would not have been possible without the help of Chris Hirsh. Chris

went out of his way to do a timely rebuild of the Linux PC, allowing for important project

progress over winter break.

As always, I would like to thank my parents and family. My successes are undoubtedly

rooted in their love for me and their encouragement of excellence.

1
Chapter 1

Motivation

Machinery operations in orchards such as mowing the rows between trees, spraying, etc.

are low-skill, time-consuming, and hazardous. Autonomous machinery is able to remove humans

from these tedious and dangerous tasks, while completing them with greater efficiency.

Consequently, there is a great deal of benefit to be realized from integrating autonomy into

orchard operations.

While the agriculture industry has much to gain from the adoption of autonomous

machinery, high-precision autonomous guidance systems in agriculture have come at a high

price tag for many years, making them unavailable to smaller-scale orchard farmers. Advances in

technology have allowed for low-cost, high-precision GPS systems to become available to

consumers. The emergence of this technology provides an opportunity to make mission-based

autonomy more widely available to orchard farmers.

This project aims to build an autonomous guidance system for an all-electric Cub Cadet

zero-turn mower using an affordable high-precision GPS system. The performance of this system

will gauge the feasibility of retrofitting a factory-built mower for autonomous operation with

current technology. If some degree of success is achieved, further development and research may

lead to widespread adoption of autonomous orchard machinery in the near future.

2
Chapter 2

Literature Review

2.00 Overview

This chapter reviews published research relevant to the development of an autonomous

orchard mower. It also provides key details on concepts related to the project work. Research has

been completed that demonstrates the efficiency increases that autonomy brings to agricultural

applications. Agricultural autonomy has been tested with and without the use of GPS. The

benefits and drawbacks of each approach are discussed.

2.01 Satellite-Based Localization

Before reviewing research related to agricultural autonomy, it is worth explaining the

technology that allows autonomous vehicles to know where they are in space (i.e. localization).

Perhaps most relevant to outdoor autonomous ground vehicles is satellite-based localization. The

Global Positioning System (GPS) is a satellite localization service owned and operated by the

United States Government. Although GPS is the oldest and most widely used satellite system, it

is just one of four that make up the Global Navigation Satellite Systems (GNSS). The others

include BeidDou (China), Galileo (European Union), and GLONASS (Russia) [1]. Using any

one of the systems alone, however, results in precision and accuracy shortcomings.

A satellite receiver finds its position on Earth by calculating its distance from at least

three satellites. This distance is calculated by multiplying the time it takes for signals from each

satellite to arrive at the antenna by the speed of the signal (the speed of light). Every GNSS

3
satellite transmits signals in at least two frequency bands, L1 and L2, the latter being higher in

frequency. Almost all civilian devices use only the L1 band, whereas military and robust

commercial devices use both L1 and L2 bands. These dual-frequency GPS antennas are able to

correct for atmospheric distortions and improve accuracy. In a similar way, receiving signals

from more satellites improves positional accuracy. The best way to accomplish this is to use a

GNSS antenna capable of harnessing all four satellite systems [2]. On the frequencies of the L1

and L2 bands, satellites communicate pseudo-random codes. When a receiver uses these codes to

find its distance from the satellites, it performs code-phase calculations. Since the pulse width of

the codes is relatively long, in other words the frequency is low, the position estimate is, at best,

within 10 ft. Carrier-phase calculations use the unmodulated L1 and L2 waves to find the

distance to a satellite [3]. Since the L1 and L2 frequencies are much higher than those of the

codes, positional accuracy can be as good as a few millimeters [4]. In general, dual-band, carrier-

phase, GNSS devices are limited to large-scale, high-capital applications due to the historically

high cost and physical size of the positioning systems [2].

To further improve the accuracy of satellite positioning, local corrections can be made to

account for errors in satellite signals. Local corrections are categorized into Differential GPS

(DGPS) and Real Time Kinematic (RTK) GPS. Both correction techniques recognize the

variance of satellite errors and aim to correct them in real time. This is done by receiving satellite

data at a base station with a precisely known location. The calculated location is compared with

the known location and position correction signals are sent over radio transmitters. Rovers of

unknown location can then receive these signals to correct their satellite data and achieve a more

accurate position solution. The difference between DGPS and RTK GPS is routed in the method

of position calculation: DGPS uses code-phase calculations whereas RTK GPS uses carrier-

4
phase calculations, as shown in Figure 2.1. Expectedly, DGPS is less accurate (+/- 1m) and

slower, but its radio transmissions have less data and can be utilized far away from the base

station (100-200 km). RTK GPS provides a dynamic accuracy of a few centimeters. Its radio

transmissions are fast and precise but require a large amount of data. Additionally, the rover is

constrained to a smaller operating radius from base station (10-20 km) [5]. Following the trend

of accuracy and cost, RTK GPS is historically one of the most expensive satellite localization

systems [6].

Figure 2.1 - Comparison of carrier-phase (left) and code-phase (right) calculations by a
GPS receiver [3]

2.02 Sensing-Based Localization

Other sensing instruments are common on autonomous vehicles to increase safety and

vehicle awareness. When GPS is unreliable or unavailable, sensory data can be used for both

localization and mapping. Simultaneous Localization and Mapping (SLAM) uses sensor input to

map the surrounding environment, learn the map, and identify its position within the map [7].

Laser ranging with a Light Detection and Ranging (LiDAR) module is commonly used as the

sensor input for SLAM. LiDAR emits lasers pulses that reflect off surrounding surfaces. Upon

5
receiving the reflected light, the distance to those surfaces is measured. A singular, stationary

beam pointed along an axis will produce a 1D scan, a singular laser sweeping along a plane will

produce a 2D scan, and several lasers distributed along the vertical axis sweeping across a

horizontal plane will produce a 3D scan [8]. Ultrasonic sensors can also be used for ranging, but

they perform worse than laser ranging. Ultrasonic sensors emit high-frequency sound waves that

reflect off surrounding surfaces and return to the sensor. Vision-based methods for sensing the

environment are also available. Machine vision processes the images taken by a camera, relying

heavily on computing to process the images and identify objects in its surroundings [9].

2.03 Unmanned Ground Vehicle Path Planning Using Multiple Sensor Inputs

An unmanned ground vehicle (UGV) is a ground vehicle that operates without an

onboard, human operator. UGVs can operate autonomously or by remote control. Autonomous

UGVs take sensor input, decide on the safe path forward, and activate the motors accordingly. In

one study by Rawashdeh and Jasim [10], the UGV shown in Figure 2.2 was able to safely

navigate a clearly delineated grass path with unexpected obstacles by using multiple sensor

inputs. The sensors used to detect the lines and obstacles were machine vision, a digital compass,

a GPS receiver, and LIDAR. The input data from each of these sensors was fused into a cost

matrix to determine the lowest cost path. Detected obstacles were assigned positive cost values

and desired headings were assigned negative cost values. The lowest cost path was the safest

route to follow [10]. Multiple sensor inputs can be utilized to improve the performance of

autonomous vehicles.

6

Figure 2.2 – Example of a UGV with multiple sensor inputs [10]

2.04 Precision Agriculture with Autonomous UAVs

 The promise of augmenting agricultural efficiency with autonomous vehicles can be seen

in the use of unmanned aerial vehicles (UAVs) for field spraying operations. Similar to a UGV,

an unmanned aerial vehicle can be controlled remotely or autonomously. The methods by which

unmanned aerial vehicles are automated can be applied to ground vehicles. Unmanned aerial

vehicles, however, have an additional spatial parameter of concern—altitude—that can be

ignored for UGV autonomy. In one study, a 3-quadcopter crop-spraying simulation was carried

out using two different mission assignment programs. A “mission plan” refers to the path plan

mapped before an autonomous flight. Missions consist of many waypoints, which are latitude-

longitude-altitude locations to be reached in sequence. By pre-calculating an optimal mission

plan, the spraying time was significantly reduced, regardless of the number of quadcopters or

size of field [11]. From this simulation study, it is evident that mission planning for autonomous

7
vehicles allows for performance optimization and consequent overall efficiency increases in

agriculture.

2.05 Autonomous Agriculture Vehicle Guidance with GPS and Path Planning

 Mission planning for autonomous agriculture vehicles requires the use of GPS during

operation. In order to follow the pre-mapped route, the vehicle must be able to locate itself in

space. To study the effect of a mission planner on the efficiency of an autonomous tractor,

Bochtis, Vougioukas, and Griepentrog developed a mission planner to generate an optimal path

for mowing or spraying operations in a field [12]. When an autonomous tractor with RTK GPS

utilized the path developed by the mission planner, the researchers found that non-working time

during one or multiple-field operations was significantly reduced. The high-level mission planner

is effective in achieving maximum efficiency by determining the optimal path.

 In a subsequent study, Bochtis, Vougioukas, and Griepentrog applied their mission

planning methods to orchards [13]. Orchards provide a unique and optimal opportunity for

mission planning due to the unchanging position of tree rows. A planned route for an

autonomous orchard machine is long-lasting as the desired path will be consistent year to year. In

the study, optimal path plans for single and multi-row mowing and spraying operations were

generated for an autonomous tractor with RTK GPS. The optimal operation plans allowed the

autonomous machine to reduce non-working time by up to 32.4% and non-working distance by

up to 40.2%, when compared to the working time and distance of conventional, non-optimized

orchard machine operation, as depicted in Figure 2.3 [13].

8

Figure 2.3 – Orchard mowing efficiency is improved with mission planning [13]

 To effectively utilize the efficiency provided by a mission planner, autonomous tractors

must be able to accurately follow the path. Precision and accuracy are the two error types

concerning GPS quality [14]. Precision is the repeatability of positioning; i.e. how close a

position measurement is to the previous position measurements. Accuracy is how close the

measured position is to the actual position on a map. For tractor guidance systems that require a

human operator on-board, precision is of primary importance because the tractor simply follows

relatively short, straight, adjacent paths. Low-cost GPS systems can only provide 10-meter

accuracy but their precision is less than a meter. The precision is far more acceptable than the

accuracy, but quantization error can cause precision deviations greater than 0.1 meter. A study

was done to improve precision of low-cost GPS receivers with a Kalman filter [14]. The Kalman

filter is a mathematical algorithm that, after taking input data, generates an estimate based on

prediction and observation models. Employing the Kalman filter on a low-cost GPS receiver

decreased quantization error by 43% and standard deviation of heading angle by 75%. Overall,

9
the use of a Kalman filter with low-cost GPS increases localization precision and smooths

vehicle trajectory.

 GPS precision error in autonomous agricultural machines must also be considered for the

implements of the machines. An implement is a piece of equipment attached to the rear hitch of

the tractor. An implement is used to perform operations such as plowing, mowing, baling hay,

etc. An autonomous tractor will not have a perfectly smooth trajectory and, consequently, lateral

implement deviations will occur. In one study, the deviations of an implement on an RTK GPS

autonomous tractor were recorded as shown in Figure 2.4 [6].

Figure 2.4 - Test rig to record the lateral deviation of an implement [6]

 Three implement positions were tested: at the rear axle, 180 centimeters from the rear

axle, and 360 centimeters from the rear axle. The largest root-mean-square extreme lateral

deviations occurred at 7.2 kilometers per hour (highest tested tractor speed) with an implement

mounted 360 centimeters from the rear axle. This root-mean-square deviation was 5.2

centimeters. Slower tractor speeds and closer mounted implements had lower root-mean-square

10
extreme deviations. The use of longer implements on GPS-guided autonomous tractors sacrifices

localization accuracy and therefore efficiency.

 Mission planning and RTK GPS have been used in an orchard-mowing autonomous

tractor system. John Deere researchers conducted a field test of autonomous tractors over several

months using LiDAR and cameras for obstacle avoidance and RTK GPS for localization [15]. A

supervisor gave mowing tasks to the tractors in a citrus orchard and addressed difficulties when

the tractors were unsure of how to safely proceed. The tractors increased orchard maintenance

productivity by 30%. Time operating at full speed was chosen as the indicator of productivity. In

manually operated tractors completing the same mowing tasks, maximum speed range is held for

less than 5% of the total working time. The autonomous tractors in the study operated in the

maximum speed range for 65% of the time. Optimal path planning also positively impacted

productivity and efficiency. Based on the number of acres covered in a day (a direct result of

higher average speed) the autonomous tractors were 30% more productive than manually driven

ones.

2.05 Autonomous Orchard Navigation without GPS

Autonomous vehicles that rely on traditional GPS will run into issues with positional

accuracy. Instead of augmenting GPS data with other sensor inputs, researchers have attempted

GPS-free methods of autonomously navigating orchards. A 2D laser scanner has been used to

successfully guide an unmanned tractor through a row of trees [16]. The test was performed

specifically to determine feasibility within orchards, identifying the difficulties of GPS usage

under large tree canopies. The 2D laser identified tree trunks such that the surrounding tree rows

11
could be mapped. Using the 2D laser scanner (with calibration and noise removal) as the sole

sensing instrument, the unmanned tractor could navigate the tree row in real time with a lateral

and angular heading mean error of 0.11 meters and 0.36 degrees, respectively. Although the

autonomous tractor was successful, a significant limitation must be noted: for the tractor to be

successful, its speed had to be 0.36 meters per second (< 1 mile per hour). For real-world orchard

applications, this speed would be highly inefficient, making adaptation of the technology

unrealistic [16].

In a more real-world application, a GPS-free, all-electric utility vehicle was operated

autonomously in an orchard as shown in Figure 2.5. Laser range sensors were used to detect and

model the rows of trees. The vehicle was able to autonomously navigate eight, 3-meter-wide

orchard rows. The machine would turn at the end of a row, find the next row with its laser range

sensors, and proceed into that row. It should be noted that this vehicle could only pass down the

middle of the row. Canopy and trunk size influenced performance: large canopies obstructed

foresight into the next row and small trunks made row-identification difficult [17]. In a study

done to improve the performance of an autonomous orchard vehicle operating without GPS,

wheel and steering encoders were added. The data from the wheel and steering encoders fed a

path-tracking controller which helped improve the smoothness of turning [18].

12

Figure 2.5 – Laser-based autonomous orchard vehicle (left) navigating rows while mapping
tree locations (right) [17]

 Machine vision has been tested as an alternate method of vehicle localization for

autonomous UGVs operating without GPS. Radcliffe, Cox, and Bulanon used a multispectral

camera and processing computer to detect tree canopies with the sky as the background [19].

Most machine vision applications in orchards aim to detect trunks and canopies, looking forward

with the ground in view. In the sky-based detection study, an autonomous UGV differentiated

the tree canopies from the sky and centered itself between the canopies. Using only this machine

vision technique as its only means of localization, the UGV was able to navigate down the

middle of an orchard row with a root-mean-square center deviation of 2.13 centimeters. There

are two main limitations to this method of localization in orchards. The first is that the size of

tree canopies affects center deviation. The other is that the sky-based imaging becomes useless at

the end of an orchard row. When the canopies are no longer visible, the UGV has no usable

sensor input.

13
2.06 A Cost Effect Autonomous Zero-Turn Mower for Orchards

The focus of this research was to design, build, and evaluate a cost-effective autonomous

zero-turn mower for orchards. A zero-turn mower does not operate like a conventional tractor,

i.e. Ackerman steering (turning the front wheels). Rather, the rear drive wheels are independently

controlled by the operator (differential steering) and the front wheels are free-spinning casters.

An all-electric Cub Cadet RZT-S Zero mower (shown in Figure 2.6) was modified to operate as

an autonomous differential-steer UGV.

Figure 2.6 - Unmodified Cub Cadet RZT-S Zero

One objective was to determine if current technology allows a cost-effective autonomous

control system to be successful on the retrofitted machine. Several previous agricultural

autonomy studies have been done without cost as a focus, namely those utilizing expensive RTK

GPS [6,12,13,15]. Studies that sought to eliminate the cost of precise GPS-based localization

were unable to utilize the efficiency benefits provided by mission planning. Additionally,

environmental factors (canopy, trunk size, etc.) were detrimental to the performance machines

14
without GPS localization [16–19]. To capitalize on the proven efficiency of mission planning,

this design includes necessary satellite-based localization. Fortunately, recent technological

advancements have allowed low-cost RTK systems to become available in the satellite

positioning market. Due to their novelty, these systems have not yet been adopted for agricultural

use. This presents an opportunity to capitalize on low-cost, high precision localization in order to

achieve cost-effective autonomy in an orchard. In pursuing the highest precision possible, it

should be noted that the relatively small footprint of a zero-turn mower with the deck mounted

under the chassis reduces the magnitude of accuracy deviations during operation, increasing

tolerance for GPS error [6]. Improved safety and performance can be achieved through

additional sensing equipment (LiDAR, ultrasonic sensors), but this will also increase cost [10].

By utilizing a low-cost, high-precision RTK GPS system and supplementary sensors, an efficient

low-cost autonomous orchard mower was designed.

15
Chapter 3

Remote Control of a Differential Steer UGV

3.00 Overview

This chapter describes the remote-control differential steer ground vehicle built as a

scaled test prototype. For testing and proof of concept of automation technology, it is more

feasible to utilize a scaled machine. The Cub Cadet RZT-S is a differential steer vehicle, thus the

control system designed for the scaled ground vehicle can be ported to the Cub Cadet after

development and testing.

3.01 Differential Steer UGV

 Project work began with a custom, battery-powered differential-steering UGV named

UGV01. Plastic tank tracks run along the length of UGV01, each guided by a front and rear

sprocket. Suspension for each track is provided by a spring coupling a pair of road wheels as

shown in Figure 3.1.

16

Figure 3.1 - UGV01 left side showing track design

Each track is driven by an 18V Dewalt DW960 right angle drill motor (shown in Figure

3.2) controlled by a Sabertooth 2x60 motor controller (not shown in Figure 3.2). This controller

accepts PWM, PPM, and serial signals, operating the motors at 6-30 V with a 60 A maximum

current output. UGV01 is powered by a 12V 9Ah gel cell battery. A heavy-duty switch mounted

on the aft of the vehicle connects the battery to the motor controller.

17

Figure 3.2 - UGV01 top showing motors and aft switch

3.02 Remote Control Configuration

In order to remotely control UGV01, a Spektrum R/C system was configured with the

Sabertooth motor controller. This system uses a Spektrum DX8 G2 Transmitter, Spektrum

AR8010T Receiver, and SPM9645 DSMX Remote Receiver. The simplest transmitter input

method for controlling a differential steering vehicle is two sticks that spring back to the center,

such that the resting outputs are neutral signals. The right stick on the Spektrum DX8 springs to

center and, by default, up/down controls channel 3 and left/right controls channel 2. Since

Spektrum R/C components are designed for aircraft, common channels are labeled by the aircraft

component they usually control. For example, channel 2 (AIL) is for the aileron, and channel 3

(ELE) is the elevator as shown in Table 3.1. Channel assignment can be customized on the DX8.

More detail is provided in Section 4.02.

18
Table 3.1 - Spektrum DX8 channel configuration for R/C UGV01

DX8 Channel Assignment UGV01 Function

1 (THR) Throttle (left stick up/down) N/A

2 (AIL) Aileron (right stick right/left) Steering

3 (ELE) Elevator (right stick up/down) Throttle

4 (RUD) Rudder (left stick right/left) N/A

5 (GER) Switch A N/A

6 (AUX1) Switch D N/A

7 (AUX2) Right Knob N/A

8 (AUX3) Right Knob N/A

Signals are sent from the DX8 transmitter, captured by the DSMX remote receiver,

relayed to the AR8010T receiver, and sent to the respective channel pinouts as Pulse Width

Modulated (PWM) signal. Channel 2 (AIL) and channel 3 (ELE) of the receiver are connected to

the S2 and S1 terminals of the Sabertooth, respectively, as shown in Figure 3.3.

Figure 3.3 - Wiring configuration for R/C system in UGV01

19
For UGV01 to move forward in a straight line, the left motor must rotate clockwise and

right motor counterclockwise. Both motors are identical, so applying a positive voltage to a

positive lead will cause clockwise rotation. With mixing enabled on the Sabertooth, a forward

throttle command sends positive voltage to M1A and M2A. To achieve counterclockwise

rotation of the left motor, its positive lead must be wired to M2A and negative lead to M2B.

When working with R/C signals, an important distinction must be made between Pulse

Position Modulation (PPM) and PWM. In the UGV01 R/C configuration, both signal types are

present, as shown in Figure 3.4.

Figure 3.4 - Signal flow for R/C system in UGV01

The radio signal containing commands for eight channels is picked up by the DSMX

Remote Receiver. The information for all eight channels is sent as PPM signal on a single wire to

the AR8010T. The purpose of PPM is to transmit multiple PWM signals on one wire, as shown

in Figure 3.5. This is done by spacing short pulses such that the distance between the two leading

edges is the width of one PWM pulse. Therefore, to communicate eight unique PWM signals,

nine PPM pulses are needed. In general, the PPM frame is 20 milliseconds long and the

maximum width for a PWM pulse is 2 milliseconds, or 2000 microseconds. Since the PPM

frame is 20 milliseconds, the refresh rate for each PWM channel is 50 Hz and maximum duty

cycle for each channel is 10%. At any given time, only one PWM channel is at a high voltage to

prevent overloading the power source.

20

Figure 3.5 – Conversion between PPM signal and 3 PWM channels [20]

To move UGV01 correctly, the Sabertooth must be configured to properly control the left

and right motor speeds. The Sabertooth is set to Mode 2, as shown in Table 3.2, to accept the

PWM R/C signals from the AR8010T receiver. Mixing is enabled so that the S1 signal (up/down

on right stick) controls forward/reverse motion and S2 (left/right on right stick) controls turning.

If mixing was disabled, up/down would control the right motor, and left/right would control the

left motor. Motor response is set to exponential to reduce the effects of UGV01’s rapid turning

rate.

21
Table 3.2 - Dip switch positions on Sabertooth for R/C configuration

Switch Position Function

1 Down Accept PWM R/C signal

2 Up Accept PWM R/C signal

3 Up Motors are powered by a non-Lithium battery

4 Up Mix S1 and S2 signals: ELE controls throttle and AIL controls steering

5 Down Exponential throttle response

6 Up 0-5V signal input range

22
Chapter 4

UGV01 Pixhawk 4 Integration

4.00 Overview

This chapter describes the integration of the Pixhawk 4 Autopilot into the remote-control

system for UGV01. A detailed description of the hardware and software configurations is

provided.

4.01 Hardware Configuration

Autonomous operation of UGV01 required that it to know approximately where it is in

space, where it is going, and how it will get there. For UGV01 to have this intelligence, it needed

to be retrofitted with an onboard autopilot system. The Pixhawk 4 Autopilot was selected for

UGV01 due to its stability, flexibility, and robustness. The Pixhawk 4 Autopilot board consists

of a powerful Flight Monitoring Unit (FMU), two accelerometers, two gyro sensors, a barometer,

and a magnetometer (compass). The Pixhawk 4 Autopilot also has an external module containing

a GPS/GLONASS L1 antenna and integrated magnetometer. The brain of the Pixhawk 4 comes

from its software: ArduPilot. When given a mission, ArduPilot takes in sensor data, assesses

current location and trajectory, calculates desired trajectory, and sends out the appropriate R/C

signal to motors to move toward each waypoint.

The Pixhawk needed to be integrated into the control system of UGV01 such that the

Pixhawk ultimately controlled the PWM signal being sent to the left and right motors, as shown

in Figure 4.2. While control of UGV01 via the DX8 transmitter would still be possible in manual

23
mode, Pixhawk needed to be a “gate keeper” for all signals being sent to the motors. With this

configuration, autonomous operation (auto mode) would not require any preceding R/C signal.

Figure 4.1 - UGV01 with basic Pixhawk system installed

Figure 4.2 - Signal flow comparison for UGV01 with Pixhawk

24
 To achieve the desired signal flow shown in Figure 4.2, the Pixhawk hardware

components need to be properly wired into the existing UGV01 R/C system. The GPS module,

DSMX receiver, LiPo battery, telemetry radio, and power management board (PMB) are

connected to the ports shown in Figure 4.3. UGV01 with the Pixhawk hardware installed is

shown in Figure 4.1.

Figure 4.3 - Pixhawk hardware connections

When ArduPilot is configured for a differential-steering rover, the PWM signal for the

left and right tracks are sent on separate channels (more detail on the software configuration of

Pixhawk is provided in Section 4.02). If commanded to throttle forward, Channels 1 and 3 carry

a PWM signal width greater than neutral 1500 microseconds. The Sabertooth interprets this and

outputs a positive voltage of proportional magnitude on M1A and M2B, as shown in Figure 4.4.

For the left motor to spin clockwise, M2B must be wired to the positive lead. For the right motor

to spin counterclockwise, M1A must be wired to the negative lead.

25

Figure 4.4 - Power management board connection to the Sabertooth motor controller

Since the Pixhawk sends PWM to the right and left tracks on separate channels (3 and 1,

respectively), the dip switches on the Sabertooth must be changed to accommodate this control

scheme as shown in Table 4.1. The Sabertooth no longer needs to mix signals because this is

done by ArduPilot in the Pixhawk.

Table 4.1 - Dip switch positions on Sabertooth for Pixhawk configuration

Switch Position Function

1 Down Accept PWM R/C signal

2 Up Accept PWM R/C signal

3 Up Motors are powered by a non-Lithium battery

4 Down No mixing: S1 controls right motor and S2 controls left motor

5 Down Exponential throttle response

6 Up 0-5V signal input range

26
4.02 Software Configuration

The first step in configuring the Pixhawk software is installing a ground control station

(GCS) software on a Windows PC. Mission Planner was selected as the GCS for UGV01 due to

its extensive support and compatibility of the ArduPilot software. Through Mission Planner, the

latest firmware for Rover (i.e. the firmware designed for ground vehicles) was loaded onto the

Pixhawk board. The firmware used throughout this project was Rover V4.0.0. The GCS is

designed to wirelessly communicate with Pixhawk during operation. To achieve a wireless

connection, a telemetry radio pair is needed. For UGV01, a Holybro 500mW telemetry radio pair

was used. Out of the box, one radio was connected to the Pixhawk (as shown in Figure 4.3) and

the other to the GCS computer. The GCS and Pixhawk use MAVLink (Micro Air Vehicle Link)

serial protocol to communicate over the radio connection. More detail on serial communication

and MAVLink can be found in Sections 6.01 and 8.03, respectively.

Within the ArduPilot firmware, there are many parameters that allow the autopilot system

to be tuned for optimal performance. Mission Planner provides a user-friendly interface for

configuring these parameters. The full parameter list can be found within Mission Planner under

the “CONFIG” tab. ArduPilot online documentation provides helpful guides for configuring

parameters to get the Rover firmware running optimally [21]. The Complete Parameter List

section of the documentation is a very helpful reference tool. There is, however, some lack of

clarity in the ArduPilot documentation that caused confusion and unexpected behavior when

configuring UGV01.

The R/C inputs required troubleshooting for the DX8 to work properly with the Pixhawk.

Before adjusting the ArduPilot Parameters, the DX8 controller had to be configured for its signal

output to be compatible with the Pixhawk. The Pixhawk does not interpret the DX8 signal

27
correctly with default channel assignments. The “Rx Port Assignments” on the DX8 must be

changed to accommodate the Pixhawk such that channel 3 (ELE) is received as throttle, and

channel 2 (AIL) is received as roll (steering). To access these settings on the DX8, the following

menu items must be selected, beginning on the Function List menu: 1) System Setup, and 2)

Channel Assign. Selecting Channel Assign brings the user to the Rx Port Assignments menu

where the assignments can be customized to those prescribed in Table 4.2. Selecting NEXT

brings the user to the Channel Input Config menu. Here, channels 5-8 can be assigned a specific

tactile input. The inputs for channels 1-4 are unchangeable because they are automatically

assigned by the DX8 processor.

Table 4.2 - Spektrum DX8 channel assignments for Pixhawk UGV01 configuration

DX8 Channel Rx Port Assignment User Input UGV01 Function

1 (THR) Elevator Left Stick (U/D) N/A

2 (AIL) Throttle Right Stick (L/R) Steering

3 (ELE) Aileron Right Stick (U/D) Throttle

4 (RUD) Rudder Left Stick (R/L) N/A

5 (GER) Gear Switch A Learn Cruise

6 (AUX1) Aux 1 Switch D Mode Selector

7 (AUX2) Aux 2 Switch F N/A

8 (AUX3) Aux 3 Switch G Arm/Disarm

The Pixhawk parameters that control the interpretation of R/C signal from the DX8 are

shown in Table 4.3. The full list of parameters relevant to this chapter are found in Appendix

28
A.1. The values shown for these parameters allow the DX8 and Pixhawk to work well together.

The full list of parameters relevant to this chapter are found in Appendix A.1.

Intuitively, the channel assignments are not logical. One would expect the channel

assignments on the DX8 in Table 4.2 to line up with the parameters in Table 4.3 (channel 2

would be aileron and channel 3 would be throttle). After testing several channel configuration

combinations, it is known that the configurations in Tables 4.2 and 4.3 provide the best DX8 and

Pixhawk compatibility. For manual of control of UGV01 with the Pixhawk to be identical to the

R/C configuration, PILOT_STEER_TYPE must be set to 0. ArduPilot recommends a value of 2

for skid-steering input rovers, but the DX8 is not the conventional skid-steer controller.

SERVO1_FUNCTION and SERVO3_FUNCTION are the parameters that define the steer type

of UGV01 as skid-steer. PILOT_STEER_TYPE only defines the R/C input method for manual

control.

Table 4.3 - ArduPilot parameters for DX8 input compatibility

Parameter Value Function

RCMAP_PITCH 1 Map pitch to channel 1

RCMAP_ROLL 2 Map roll to channel 2

RCMAP_THROTTLE 3 Map throttle to channel 3

RCMAP_YAW 4 Map yaw to channel 4

PILOT_STEER_TYPE 0 Default single-joystick R/C input

SERVO1_FUNCTION 73 Servo 1 controls the left track

SERVO3_FUNCTION 74 Servo 3 controls the right track

29
Additional functionality was given to the DX8 transmitter via auxiliary function

parameters in ArduPilot. The channel assignments detailed in Table 4.2 show that channels 5-8

were mapped to three-position switches. Switch D (channel 6) was mapped to the mode selector

function. On a three-position switch, there are three PWM outputs: 1100 microseconds, 1500

microseconds, and 1900 microseconds. ArduPilot supports the assignment of six modes to six

PWM ranges on the mode selector channel. Thus, the low (MODE1), mid (MODE4), and high

(MODE6) ranges were assigned as auto, manual, and hold modes on the three-position switch.

Switch A (channel 5) was assigned the “Learn Cruise” function, which teaches the Pixhawk the

speed it should reach when in auto mode. Switch G (channel 8) was assigned the arm/disarm

function.

Table 4.4 - Parameters for auxiliary functions on DX8

Parameter Value Function

MODE_CH 6 Map mode selector to channel 6

MODE1 10 Auto mode assigned to low PWM

MODE4 0 Manual mode assigned to neutral PWM

MODE6 4 Hold mode assigned to high PWM

RC5_OPTION 50 Map Learn Cruise function to channel 5

RC8_OPTION 41 Map arm/disarm function to channel 8

After configuring the DX8 and Pixhawk for basic compatibility and functionality, the

system was tuned to achieve optimal performance. First, the positions of sensors on the body of

UGV01 were given to ArduPilot. The default position of the GPS and accelerometer/gyroscope

is the centroid of the vehicle. Stacking all sensors at the centroid of UGV01 was not possible due

30
to geometric constraints and sensor interference. Thus, the offsets were adjusted via the

parameters in Table 4.5.

Table 4.5 - ArduPilot parameters for sensor orientation

Parameter Value (meters) Function

INS_POS1_X, 0.04 X offset for accelerometer/gyro

INS_POS1_Y, 0.05 Y offset for accelerometer/gyro

INS_POS1_Z, 0.045 Z offset for accelerometer/gyro

GPS_POS1_X, 0.185 X offset for GPS/compass

GPS_POS1_Y 0 Y offset for GPS/compass

GPS_POS1_Z -0.175 Z offset for GPS/compass

ArduPilot requires a one-time calibration of the accelerometer and compass before the

motors can be armed. The accelerometer calibration correlated accelerometer readings to

different body orientations of UGV01. The compass calibration allowed the Pixhawk to

compensate for ferrous metal in the frame of UGV01. As previously noted, there is an external

compass in the Pixhawk GPS module and an internal compass on the Pixhawk 4 board. Since the

internal compass was surrounded by metal and nearby UGV01’s drive motors, its readings were

unreliable. Therefore, the external compass was made primary and internal compass disabled via

the parameters in Table 4.6.

31
Table 4.6 - ArduPilot parameters for exclusive use of the external compass

Parameter Value Function

COMPASS_PRIMARY 0 Make first compass primary

COMPASS_USE 1 Enable first (external) compass

COMPASS_USE2 0 Disable second (internal) compass

The ability of the Pixhawk to move UGV01 predictably and accurately to achieve

velocity setpoints was crucial. For example, it is best if UGV01 moves in a straight line when

commanded to do so. If it veers slightly left or right, the Pixhawk must detect and correct the

error, resulting in a non-linear path.

The right-angle drill motors on UGV01 are timed such that a higher speed is achieved in

the clockwise direction. As a result of this non-neutral timing, equal and opposite voltages

applied to a motor will not produce equal and opposite angular velocities. Since the left and right

motors on UGV01 are identical, one must spin clockwise and the other counterclockwise to

move both tracks forward. This design causes UGV01 to naturally veer right when equal and

opposite voltages are applied to the left and right motors. To counteract the non-neutral timing,

and thus the rightward veering, the PWM outputs to the left and right motors were tuned. To

equilibrate the forward speeds of the tracks, the left motor had to be slowed by reducing its

maximum PWM output from 2000 microseconds to 1880 microseconds. The neutral PWM

outputs were kept at 1500 microseconds and the minimum throttle was set to 4% to avoid

problems with the dead zone and unequal static and Coulomb friction. The PWM tuning values

in Table 4.7 are in microseconds.

32
Table 4.7 - ArduPilot parameters for tuning motor PWM outputs

Parameter Value Function

SERVO1_MAX 1880 Maximum PWM output for left motor

SERVO1_MIN 1100 Minimum PWM output for left motor

SERVO1_TRIM 1500 Neutral PWM output for left motor

SERVO3_MAX 1950 Maximum PWM output for right motor

SERVO3_MIN 1100 Minimum PWM output for right motor

SERVO3_TRIM 1500 Neutral PWM output for right motor

MOT_THR_MIN 4 Minimum throttle % applied by Pixhawk

33
Chapter 5

Testing UGV01 with Pixhawk

5.00 Overview

This chapter includes the testing methods and results for the autonomous control of

UGV01 by the Pixhawk. The testing facility is also described. A path-marking device was

created to track the path of UGV01 throughout its missions.

5.01 Creating a Test Track at Rock Springs Orchard

The designated test facility for the autonomous orchard mower was the Russell E. Larson

Agricultural Research Center at Rock Springs. The apple orchard within this research center was

named Rock Springs Orchard. Rock Springs Orchard has six blocks of trees, labeled on the map

in Figure 5.1.

34

Figure 5.1 - Rock Springs Orchard

A ground control point, or GCP, is a physical landmark with a known latitude, longitude,

elevation, and degree of accuracy. Across Rock Springs Orchard, there exist six GCPs with a

latitude, longitude, and elevation precision of three centimeters. The locations of the six GCPs

were found by Dr. Sean Brennan’s Intelligent Vehicles and Systems Group within Penn State’s

Department of Mechanical Engineering. The Intelligent Vehicles and Systems Group utilized

their mapping van equipped with DGPS to find precision coordinates. Each GCP was named

based on its location relative to nearby orchard blocks, as shown in Figure 5.2. For example, A1

S is the GCP South of block A1. All GCPs at Rock Springs Orchard are marked with 11.7 in x

11.7 in stone pavers recessed into the sod.

35

Figure 5.2 – 6 Ground Control Points (GCPs) at Rock Springs Orchard

In order to test the accuracy and precision of the Pixhawk on UGV01, consecutive GCPs

were needed as waypoints. Additionally, the paths between the waypoints had to be obstacle-

free. As shown in Figure 5.2, no straight-line paths between existing GCPs were obstacle-free.

Therefore, new secondary GCPs were needed to form an obstacle-free test track for UGV01. The

aisle between blocks A1 and A2 was selected as the testing grounds due to its large width.

The test track was designed to mimic 2 rows of apple trees, the width between the rows

being of primary concern. While the width of the orchard rows varied, the approximate average

width was found to be 10 ft. Most rows were over 200 ft long, but it was not necessary to make

36
the test track full-length. A shorter track length was desirable for repeated tests because each test

would discharge less energy from UGV01’s battery. The test track had to be positioned

sufficiently far from the west end of the A1-A2 aisle to prevent interference from large pine

trees. Not only would these trees act as ground obstacles, but satellite reception near the trees

would be diminished.

The trees at Rock Springs Orchard grow on trellises, which are structural posts and wires

that run along the length of a row. At the ends of some rows, the trellises had support posts and

wires extending beyond the last tree. To incorporate this obstacle into the test track, UGV01

would have to overshoot each GCP by 15 feet, mimicking the avoidance of trellis brace posts.

Based on these parameters, four additional stone pavers were recessed to create two mock tree

rows, as shown in Figure 5.3. The rows are 10 feet apart, 130 feet long, and the west end of the

test track is 30 feet from the large pine trees, as shown in Figure 5.4.

Figure 5.3 – Recessing a stone paver to establish a test track GCP

37

Figure 5.4 - Completed test track in aisle A1-A2 composed of 4 GCPs

 To establish each test track paver as a new GCP for Rock Springs Orchard, the

coordinates of each paver had to be found to an acceptable degree of accuracy. This was

accomplished with photogrammetry using an orthomosaic of Rock Springs Orchard. A UAV

outfitted with a high-resolution camera swept across the entire orchard capturing images at a

fixed altitude. These images were processed and stitched together to create an undistorted,

uniformly-scaled, high-resolution image of orchard. Figure 5.1 and Figure 5.2 are orthomosaics

created from drone imagery. Since an orthomosaic of Rock Springs Orchard includes the six

original GCPs, the map can be further processed to create a map that is latitudinally and

longitudinally calibrated. More information on calibrated map creation is found in Section 7.04.

Photogrammetry was then performed with the calibrated map to digitally find the locations of the

four test-track secondary GCPs. The accuracy of the secondary locations is estimated to be 14

centimeters. The GCPs were named based on their location within aisle A1-A2. For example,

A1-A2 NW is the GCP at the north-west corner of the test track. The GCPs are labeled in Figure

5.4.

38
5.02 UGV01 Ground-Marking Device

One challenge of testing UGV01 with a basic Pixhawk configuration was quantifying its

performance. A basic evaluation of performance entails comparing UGV01’s true location with

its desired location, namely at waypoints. UGV01 will act based on its perceived location, but

the inaccuracies of its GPS/GLONASS L1 antenna cause perceived location to deviate from the

true location. The difficulty in comparing true location and desired location is recording the true

location of UGV01 throughout a mission. The devised solution was a ground-marking device

that traced the center of UGV01 throughout the mission.

The ground markings had to be clearly distinguishable but temporary so consecutive tests

could be performed in the same location. In order to protect the health of Rock Springs Orchard,

the marking compound also had to be non-toxic. The first marking compound tested was white

sand, due to its reliable and smooth flow rate. The test revealed that pure white sand does not

create a distinguishable ground mark. Rather, the sand falls past the grass, hiding any sand

deposited to the area. To improve the distinction of the marking compound, all-purpose flour was

mixed with sand. With this mixture, sand acted as a steady flow solvent with flour as a distinct

marker. The amount of flour in the mixture had to be limited due to its tendency to clump and

block flow at the aperture. The ideal sand-to-flour mixture ratio was found to be 3:1.

After determining the ideal marking compound, a dispensing device had to be added onto

UGV01. The device used a hopper to hold the marking compound, a funneling shape that leads

to an aperture, and a mounting bracket. The size of the aperture had to be chosen to achieve the

correct flow rate. Based on research from the University of Buenos Aires in Argentina, it is

known that the flow rate of sand through an aperture is constant and depends only on the area of

39
the orifice [22]. The flow rate had to be high enough to mark the ground clearly, but low enough

to be efficient with the use of the supply in the hopper.

A test was performed to find the baseline flow rate of the marking compound. The

bottom of an empty 2-liter soda bottle was removed and a 0.5-inch diameter aperture was bored

into the lid. Five hundred (500) milliliters of the marking compound were added to the bottle and

then flowed onto the ground as the bottle was horizontally translated over grass at a speed similar

to that of UGV01. Five hundred (500) milliliters of the mixture were able to create a line ~100

feet long. While dispensing the compound, the relatively small aperture in the flat lid caused

some instances of flow stoppage. To eliminate this problem, a funneled aperture replaced the

bored cap as shown in Figure 5.5. The threaded cap from the bottle was glued into a funnel with

a 3/8-inch diameter spout. The hole in the cap was enlarged to prevent flow blockage.

Figure 5.5 - Funnel dispenser for marking compound hopper

To fasten the hopper to UGV01, a 6x3x1/8-inch steel plate was bent into an L bracket

and bolted to the aft of UGV01 as shown in Figure 5.6. A 5/16-inch hole was bored into the

bracket to snuggly fit the stainless-steel funnel. The hole was offset far enough from the body to

accommodate the size of the hopper.

40

Figure 5.6 - L bracket for marking device mounted to the aft of UGV01

Before field testing the ground-marking device on UGV01, the flow rate of the device

was determined. Five hundred (500) milliliters of the compound flowed through the funnel for

about 60 seconds, thus the flow rate is 8.33 milliliters per second. Knowing the cruise speed of

UGV01 is about 3.8 feet per second and the length of the test track is 130 feet, it takes UGV01

about 34 seconds to complete one pass on the test track. Therefore, approximately 283 milliliters

of marking compound are needed for every pass on the test track. To verify the functionality of

the ground-marking device mounted to UGV01, marking compound was added to the hopper and

UGV01 was driven manually in a grassy area. The path of UGV01 was clearly marked by the

device, as shown in Figure 5.7, and the markings were easily cleared from the grass.

41

Figure 5.7 - Testing functionality of UGV01 with ground marking device

5.03 Evaluating UGV01 Performance on Test Track

After equipping UGV01 with the ground-marking device, it was brought to the test track

at Rock Springs Orchard to evaluate its autonomous performance. In Mission Planner, a mission

was devised so that UGV01 would pass over three secondary GCPs in the following order: A1-

A2 SW, A1-A2, A1-A2 NE. The last waypoint of the mission was set arbitrarily so that UGV01

would be in motion over the three secondary GCPs. In other words, the secondary GCPs were

made dynamic waypoints. Mission visualization provided by Mission Planner is shown in Figure

5.8. It displays all waypoints, including a “Home Position” waypoint. This waypoint is not used

by an UGV01 during missions. Home position is further discussed in section 8.04.

42

Figure 5.8 - First test track mission displayed in Mission Planner

The mission was uploaded to the Pixhawk and ground-marking compound was filled into

the hopper on UGV01. The vehicle was set several feet behind A1-A2 SW with its heading

pointed toward the GCP. The Pixhawk was switched into auto mode and UGV01 completed the

mission. The procedure was then repeated to document the performance of UGV01 during two

independent missions. The Pixhawk was imprecise (inconsistent performance) but achieved a

decent level of accuracy (lower deviation) during the second run.

Table 5.1 - Deviation of UGV01 during test track missions

GCP Run 1 Deviation [in] Run 2 Deviation [in] Average Deviation [in]

A1-A2 SW 65 10 37.5

A1-A2 49 1 25

A1-A2 NE 59 7 33

Figure 5.9 through Figure 5.11 show the ability of the ground-marking device to quantify

the performance of UGV01 during an autonomous mission. Figure 5.9 and Figure 5.10 have

white arrows overlaying the ground marking to increase clarity. After the first run, the trace of

43
UGV01 at each GCP was documented and then the line was swept away. Figure 5.12 shows a

longer trace made by the ground-marking device, revealing the non-linear path UGV01 took

between the two waypoints.

Figure 5.9 - A1-A2 SW

Figure 5.10 - A1-A2

44

Figure 5.11 - A1-A2 NE

Figure 5.12 - Trace of UGV01 path from A1-A2 to A1-A2 NE during run 2

The performance of UGV01 with the basic Pixhawk L1 GPS/GLONASS antenna was not

precise enough for navigation through an orchard. The largest deviation of UGV01—65 inches

or 5.41 feet—makes this system incompatible with orchard row navigation. The average width of

an orchard row is about 10 feet and the narrowest rows can be about 8 feet wide. The cutting

width of the Cub Cad RZT-S Zero is about 42 inches. This leaves 39 inches between tree trunks

45
and either side of the mowing deck. Protruding branches make row width narrower, thus in

practice the allowable deviation is less than 10 inches. For the Pixhawk system to be capable of

safely navigating between tree rows at Rock Springs Orchard, the precision and accuracy of its

satellite localization system had to be improved.

46
Chapter 6

Establishing an RTK System with Pixhawk

6.00 Overview

This chapter describes the methods used to establish and integrate RTK GNSS into the

Pixhawk on UGV01. The objective of integrating RTK GNSS was to increase the precision and

accuracy of the location information provided to Pixhawk, consequently minimizing UGV01’s

deviations from the mission path.

6.01 Hardware Configuration

 To provide the Pixhawk with high-precision positioning data, an RTK-capable receiver

must be connected to the Pixhawk and correction signals must be supplied to the receiver. The u-

blox ZED-F9P L1/L2 receiver on the SparkFun GPS-RTK-SMA board was selected as the RTK

receiver. In some geographic locations, corrections signals are publicly-available from real-time

networks. To utilize the correction signals, a real-time station must be within 10 kilometers of

the RTK receiver. Since closest real-time station to Rock Springs Orchard is approximately 77

kilometers away, a dedicated real-time corrections source had to be established. Fortunately, the

ZED-F9P module can be configured as either a base (i.e. real-time station) or rover.

 Two SparkFun ZED-F9P boards were acquired to establish the RTK system. Each board

also required a u-blox L1/L2 GNSS antenna to receive signals from GPS, GLONASS, Galileo

and BeiDou satellites. The base communicates with the rover via a telemetry radio pair. As noted

in Chapter 2, dual-band GNSS receivers provide a higher level of precision than GPS or single-

band GNSS receivers. The ZED-F9P RTK modules are capable of one-centimeter horizontal

47
precision [23]. Nathan Seidle from SparkFun has published some helpful documentation for

configuring the ZED-F9P boards [24–27].

 The base hardware consists of the ZED-F9P board, L1/L2 GNSS antenna, and telemetry

radio. The female SMA connector on the GNSS antenna simply connects to its male counterpart

on the RTK board. Correction data sent from the base follows the common messaging protocol

set for communication between base stations and rovers. This protocol was established by the

Radio Technical Commission for Maritime Services, hence the corrections signals are referred to

as RTCM. RTCM is sent from the ZED-F9P board via the RTCM pins, shown in Figure 6.1.

These pins are connected to the “correction UART” chip, labeled UART2. A UART, or

Universal Asynchronous Receiver Transmitter, is a device that allows for simultaneous sending

and receiving of serial data. Serial communication is the transmission of data over a single

channel, one bit at a time. Two critical pins on a UART interface are Tx and Rx. Data is

transmitted out of a UART device from Tx pin and received into the Rx pin.

Figure 6.1 - Hardware configuration of the RTK base station

 To wirelessly transmit the serial data leaving the UART2 port, a telemetry radio is wired

to the 5V power source, ground, Tx2, and Rx2 pins, as shown in Figure 6.1. Logically, the

48
sending Tx pin of the telemetry radio is connected to the receiving Rx pin of the RTK board, and

vice versa. It should be noted that the orange line connecting the radio Tx pin and RTCM Rx2

pin is not transmitting any data. Corrections signals are only sent out from the board, not

received. Table 6.1 summarizes the wiring connections made to the RTK base module.

Table 6.1 - RTK base wiring connections

Board Pinout External Pinout Function

TX2 Radio Rx Send RTCM

RX2 Radio Rx None

GND Radio GND Radio ground

5V Radio 5V Radio power

USB-C port 5V USB source Board power

SMA connector GNSS antenna Receive satellite data

 The board is powered by a 12 V lead-acid battery with a 5V voltage converter via the

USB-C port. The board is housed within a waterproof electronics box and mounted to the top of

a tripod. Protruding from the box are the telemetry radio antenna, power lead, and GNSS antenna

SMA cable, as shown in Figure 6.2.

49

Figure 6.2 - RTK base module assembled with critical components

 The rover RTK hardware configuration is similar to the base and is shown in Figure 6.3.

UART2 is wired to a telemetry radio in an identical fashion. In the case of the rover, however,

the green line connecting the RTCM Tx2 pin to the radio Rx pin is not transmitting data. RTCM

data is only received by the board. The rover RTK board supplies high-accuracy location data to

the Pixhawk via the UART1 Tx pin. The standard messaging protocol used for the satellite

location data is defined by the National Marine Electronics Association (NMEA). The rover

RTK board uses NMEA messages to communicate location data to the Pixhawk. The Serial4

port on the Pixhawk was used to receive these NMEA messages. Justification for the use of this

port is found in Section 6.04. The Serial4 port accepts a six wire JST-GH type cable. Note that

all Pixhawk ports accept JST-GH type cables. The Pixhawk supplies 5V power to the rover RTK

50
board via the Serial4 port. The wiring connections made for the RTK rover module are

summarized in Table 6.2.

Figure 6.3 - Hardware configuration of RTK rover module with the Pixhawk

Table 6.2 - RTK rover wiring connections

Board Pinout External Pinout Function

TX2 Radio Rx None

RX2 Radio Rx Receive RTCM

GND Radio GND Radio ground

5V Radio 5V Radio power

5V Pixhawk Serial4 5V Board power

RX/MOSI Pixhawk Serial4 Tx None

TX/MISO Pixhawk Serial4 Rx Send NMEA

GND Pixhawk Serial4 GND Board ground

SMA connector GNSS antenna Receive satellite data

51
 To accommodate the new RTK system hardware on UGV01, a water-proof electronics

box was installed on the vehicle. Exiting the box is the Pixhawk telemetry radio antenna, RTCM

radio antenna, DSMX satellite receiver wires, motor signal wires, PMB power leads, GNSS

antenna SMA cable, and USB-C cable. The USB-C cable is used for connecting a PC to the RTK

board for troubleshooting and data-logging. The hardware components contained within the

UGV01 electronics box are shown in Figure 6.4.

Figure 6.4 – Rover RTK hardware within protective housing on UGV01

 Demanding high-accuracy autonomous performance from the Pixhawk necessitated an

improvement of the UGV01 prototype. Namely, the compass needed a ferrous-free mount away

from electronics. A pedestal with a carbon rod was used to mount the compass. Also, the

52
electronics needed a sturdier more protective housing. As shown in Figure 6.5, the arrangement

of hardware within the vehicle was redesigned and a wooden deck was installed on the aft.

Figure 6.5 - Updated design of UGV01 with Pixhawk and RTK system

 This deck protected the motors, Sabertooth motor controller, battery, and wire terminals.

The deck also provided a surface to mount the GNSS antenna. The GNSS antenna used in the

RTK system requires a 4-inch diameter ground plane (a circular steel plate) for optimal

performance. The grounding plane is mounted to the deck and the antenna magnetically adheres

to this grounding plane as shown in Figure 6.6.

53

Figure 6.6 - UGV01 aft deck with GNSS antenna grounding plane

6.02 Cost Consideration

Integrating the RTK system with the Pixhawk is necessary to achieve acceptable

accuracy. However, it is also critical to keep cost in mind. The cost of commercial RTK GPS

systems is traditionally a barrier to entry when it comes to precision farming. One modern

agriculture guidance system, FieldBee, offers a complete RTK L1 GPS system for $1,850 [28].

Even at this high price tag, the GNSS antennas within the rover and base modules only receive

one frequency band (L1 or L2). Therefore, the ZED-F9P RTK system receives more satellite

signals than the FieldBee, making its location solutions more consistent and reliable. The cost of

the ZED-F9P RTK base and rover system is broken down in Table 6.3.

The total cost of the system is approximately $850, which is $1000 less than the FieldBee

commercial RTK system. The specifications of the ZED-F9P RTK board is indicative of the

cost-effectiveness of current satellite localization technology. The higher price tag of consumer

products will fall as low-cost, high precision localization technology becomes more widely

54
available. With affordable high-precision satellite localization technology, cost-effective

mission-based autonomy can be achieved for orchard vehicles.

Table 6.3 – Cost sheet of Pixhawk RTK GPS system

Component Quantity Unit Cost

Sparkfun RTK Board 2 $219.95

Long Range Radio Modem 2 $109.50

Long Range Antenna 2 $6.05

Electronics Box 2 $8.50

12 V Battery 1 $24.50

5V Converter 1 $9.86

L1/L2 GNSS Antenna 2 $64.95

Total Cost

$852.25

6.02 Configuring Two Telemetry Radio Pairs

 The RTK GPS system requires a radio connection from the base to the rover for

transmission of RTCM corrections. This adds a second pair of telemetry radios to the Pixhawk

system, as shown in Figure 6.4: one radio pair for Pixhawk to Mission Planner communication

and one pair for RTCM. With factory default configurations, two independent telemetry radio

connections cannot be made without causing major inference and miscommunication of

information. To reconfigure the radios, SiK Radio configuration software was used. SiK radios

are characterized by their lightweight firmware and hardware [29]. Within Mission Planner

under Setup, then Optional Hardware, a SiK radio configuration tool can be found. To establish

55
two independent radio connections, the Net IDs set on each pair of radios must be unique. For

the Pixhawk to Mission Planner radio pair, a Net ID of 5 was set. For the RTCM radio pair, a

Net ID of 105 was set. While all other settings can be left to their default values, it is important

to ensure the baud rate for each radio pair is identical. The baud rate is the speed of the serial

connection in bits per second. For either serial device to correctly interpret serial data, it must

know what speed at which the bits are sent. The baud rate for all four radios was left at 57600

bits per second. An example of the Mission Planner SiK radio configuration tool is shown in

Figure 6.7.

Figure 6.7 - SiK radio configuration tool within Mission Planner

 An important consideration for the RTCM telemetry radio pair is signal strength

throughout the orchard. The performance of UGV01 depends on the accuracy of the rover RTK

location solution, which relies upon the RTCM corrections. If signal is poor, performance will

falter. The first set of radios used for corrections were Holybro 915-megahertz 100-milliwatt

radios. This Holybro radio can be seen clearly in Figure 6.1 and Figure 6.3.

 To evaluate signal strength throughout the orchard, the SiK radio software was used to

capture the local received signal strength indicator (RSSI) by the rover radio. Shown in Figure

6.7, the configuration tool provides the local and remote RSSI’s proceeding “L/R RSSI.” The

56
maximum RSSI for the SiK radios was found to be 220. With the RTK base corrections radio set

at the A1 South GCP, the RSSI of the rover radio at all GCPs was documented. Percentage RSSI

is calculated by dividing the RSSI by the maximum RSSI of 220.

 As shown in Table 6.4, the maximum signal strength reported by the rover corrections

radio was 32%. In light of the poor signal strength achieved by the Holybro radios, the

corrections radios were upgraded to a pair of RFD900 915-megahertz radios. When supplied

with 5V, the RFD900 has a power output of 790 milliwatts, compared to the 100-milliwatt

output of the Holybro radio. The RFD900 corrections radio is pictured in Figure 6.4. To properly

wire the RFD900 radio to the RTK boards, the RFD900 datasheet was referenced. Figure 6.8

shows the pinouts of the RFD900.

Table 6.4 - RSSI of Holybro corrections radio throughout the orchard

Rover Location Rover RSSI Rover % RSSI

A1-A2 65 30%

A2-A3 53 24%

A3 N 41 19%

CW N 71 32%

D S 45 20%

57

Figure 6.8 - RFD900 radio modem pin layout [30]

 Using the SiK radio software, the RFD900 radio settings were configured to match the

settings of the Holybro RTCM pair: NETID and baud rate set to 105 and 57600, respectively.

The same procedure was repeated to test the signal strength throughout the orchard and is

summarized in Table 6.5. Percentage RSSI was improved by at least 25% at each location, with

the lowest signal strength being 56% at the D South GCP.

Table 6.5 - Comparison of Holybro and RFD900 radio signal strengths

Location

Holybro Radio Base RFD 900 Radio Base

% Gained Rover RSSI Rover % RSSI Rover RSSI Rover % RSSI

A1-A2 65 30% 143 65% 35%

A2-A3 53 24% 131 60% 35%

A3 N 41 19% 129 59% 40%

CW N 71 32% 126 57% 25%

D S 45 20% 124 56% 36%

58
6.03 Software Configuration of ZED-F9P RTK Boards

After wiring the ZED-F9P boards as a base and rover pair, software settings must be

adjusted to assign each board its role as either a base or rover. To configure the software on each

board, the USB-C port is used to connect to a windows PC running u-blox u-center, the

manufacturer’s configuration and evaluation software. The documentation published by Nathan

Seidle from SparkFun is helpful for configuring ZED-F9P boards through u-center [26,27]. U-

center can be downloaded from the u-blox website [31].

First, the firmware for both RTK modules was updated by downloading the latest ZED-

F9P firmware (version 1.13) from u-blox. Within u-center, the Firmware Update utility is found

under Tools.

The base module was configured as a fixed-base reference station. To achieve this

function, the board was given the location of its GNSS antenna and the UART2 port was set to

send out RTCM messages. To configure the message settings within u-center, one must select

View, then Messages View, UBX, CFG, and finally MSG. After selecting the desired message

type, transmission port, and transmission frequency, one must use Send to apply the setting to the

connected board. Figure 6.9 shows an example of RTCM message configuration, highlighting

the relevant fields. USB was selected as an additional RTCM transmission port for

troubleshooting purposes. The number fields to the right of the checkbox are the periods of the

message cycle for RTCM. For example, a value of 1 is one message every second and a value of

5 is one message every five seconds.

59

Figure 6.9 - u-center configuration window for base RTCM messages

Several RTCM message types must be sent out from the base RTK module. Each

message type contains specific information. The message types sent from the base RTK module

are summarized in Table 6.6. Message contents of the RTCM messages were sourced from an

article on the SNIP knowledge base [32].

Table 6.6 - RTCM message types sent from the RTK base module

RTCM3.3 Message Type Period [s] Message Contents

1005 1 Location of stationary antenna, quarter phase
alignment details

1074 1 Type 4 Multiple Signal Message (MSM) for
GPS (USA)

1084 1 Type 3 MSM4 for GLONASS (Russia)

1094 1 Type 4 MSM for Galileo (Europe)

1124 1 Type 4 MSM for BeiDou (China)

1230 5 GLONASS L1, L2 Code-Phase Biases

60
 For proper radio transmission of the RTCM messages sent out of the UART2 Tx, the

baud rate of the UART2 port must match the baud rate of the telemetry radio. The long-distance

corrections radios’ baud rate was set to 57600 bits per second, a sufficient speed for RTCM. The

protocol and baud rate for each port on the ZED-F9P board can be set in u-center. To access the

settings one must select View, Messages View, UBX, CFG, and then PRT. The only port that

must be configured for the base module is UART2. The configuration settings for this port on the

RTK base station are shown in Figure 6.10. Note that the port only sends RTCM messages, so

the receiving protocol is irrelevant.

Figure 6.10 - Base RTK module port configuration in u-center

The base module is configured as a fixed-base station, meaning the location of its GNSS

antenna would remain the same each time the board is powered on. To set the known location of

the GNSS antenna for the RTK base station, one must select View, Messages View, UBX, CFG,

and then TMODE3. The location of the RTK base station at Rock Springs Orchard is the A1

61
South GCP. Therefore, the known latitude, longitude, altitude, and accuracy (3 centimeters) of

A1 South was entered into the TMODE 3 configuration fields.

Although the Rock Spring Orchard GCPs were surveyed by Penn State’s Intelligent

Vehicles and Systems Group, the ZED-F9P board can be used to establish a high-accuracy GCP.

This procedure is described in Section 7.04.

For the configuration settings to remain on the board after reboot, one must save them to

the battery-backed RAM and flash devices on the board. This can be done under View, Messages

View, UBX, CFG, and again CFG. Saving a copy of the configuration settings to the PC is also

helpful. This is done by selecting Tools, Receiver Configuration, the file destination, and then

Transfer GNSS -> File.

The rover RTK module was configured to receive RTCM corrections through UART2

and output high-accuracy NMEA messages through UART1. The UART2 port (PRT) settings

for the rover are identical to the base: RTCM3 in and out (noting that RTCM messages are only

received by the board), baud rate 57600 bits per second.

While the UART1 settings are not relevant for the base module, this port is used on the

rover module to send NMEA to the Pixhawk on the rover. For UART1, the output protocol was

set to NMEA. The baud rate was set to 115200 bits per second, to accommodate the large

number of messages and high message frequency. Figure 6.11 shows the UART1 settings for the

rover module.

62

Figure 6.11 - RTK rover module UART1 configuration settings in u-center

The rover module was configured to send several NMEA message types. This

configuration was done in u-center within the MSG settings. Table 6.7 summarizes the NMEA

messages selected for UART1. The message contents of each message type were sourced from

SiRF Technology’s NMEA Reference Manual [33].

Table 6.7 - NMEA message types sent from UART1 of the rover RTK module

NMEA Message Type Message Contents

GxGGA GPS fixed data

GxGLL Geographic position (latitude/longitude)

GxGSA GNSS DOP and active satellites

GxGSV GNSS satellites in view

GxRMC Recommended minimum specific GNSS data

GxVTG Course Over Ground and Ground Speed

63
 Figure 6.12 shows an example of the rover module MSG configuration. The default port

selection for NMEA output was left as all ports. The USB port is useful for troubleshooting and

data logging.

Figure 6.12 - U-center configuration of NMEA messages on the rover RTK module

The number fields to the right of the checkbox are not the periods of the NMEA

messages, as it was with RTCM. Rather, the frequency of the NMEA messages is set in the

RATE configuration menu, as shown in Figure 6.13. The measurement period for UTC

(Coordinated Universal Time), GPS, GLO (GLONASS), BDS (Beidou), and GAL(Galileo) was

set to 200 milliseconds. The navigation frequency must be increased to 5 Hz to make the NMEA

output from the ZED-F9P compatible with the Pixhawk. The lowest position update rate allowed

by Pixhawk is 5 Hz.

64

Figure 6.13 - U-center configuration of the rover RTK module navigation frequency

To fully harness the centimeter-level precision provided by the ZED-F9P, the latitude and

longitude coordinates within the NMEA sentences must have a sufficient number of decimal

places. The latitude and longitude within NMEA are formatted as degrees and minutes. By

default, there are five decimal places (dd.mmmmm) thus the resolution is limited to 0.00001

minutes, or 1.855 centimeters at the equator. The ZED-F9P can be put into high-precision mode,

increasing the number of decimal places to seven (dd.mmmmmmm). The resolution in high-

precision mode is 0.01855 centimeters [24]. To enable high-precision mode one must navigate to

View, Messages View, UBX, CFG, and then NMEA. The “High precision mode” and “Consider

mode” flags must then be activated. The same procedure for saving the configuration settings of

the base module must be followed for the rover module.

65
6.04 Configuring Pixhawk to Integrate the RTK System

After configuring the RTK base module and wiring it to the Pixhawk, ArduPilot needed

reconfiguration to utilize the new source of location data. ArduPilot has the ability to incorporate

two GPS devices, and therefore the ability to take in two streams of location data. By default,

ArduPilot on the Pixhawk 4 wants the second GPS device to be wired to the Serial4 port. Since

the RTK rover module was wired to Serial4, all ArduPilot parameters referring to the second

GPS apply to the RTK module input.

The parameter changes required to integrate the RTK module are summarized in Table

6.8. The full list of parameters relevant to this chapter are found in Appendix A.2. The Serial4

port must first be assigned as a GPS input (by default, this is the case). The baud rate of Serial4

must match the 115200 bits per second output baud rate of the ZED-F9P rover module.

ArduPilot must also know that the messaging protocol of the Serial4 port is NMEA. Knowing

the quality of location data provided by the ZED-F9P is far better than that of the Pixhawk GPS

module, the data stream from the GPS module can be ignored. This is done through the GPS auto

switch parameter by opting to exclusively use the second GPS. Since the ZED-F9P is receiving

satellite signals from four GNSS systems, these systems are bit-masked in ArduPilot. The ZED-

F9P rover module was configured to update its position solution at 5 Hz, the minimum update

rate allowable by Pixhawk. The update interval for the second GPS is set to 5 Hz. Given the

superior 3-centimeter accuracy of the RTK system, the navigational tolerances for waypoints are

constrained to 3 centimeters. The Extended Kalman Filter parameters in Table 6.8 set the GPS

mode to 2D (since UGV01 will remain on the ground), increase the weight of the position

provided by the RTK module, and set the lower accuracy limit of the RTK module to the value

66
defined in the ZED-F9P datasheet [23]. Opting to ignore the input of the Pixhawk GPS module

caused issues with the “GPS Configuration” arming check, so this check is disabled.

Table 6.8 - ArduPilot parameters required for ZED-F9P RTK module integration

Parameter Value [units] Function

SERIAL4_PROTOCOL 5 Assign Serial4 port as a GPS input

SERIAL4_BAUD 115200 [bps] Set Serial4 baud rate to 115200 to match the RTK
module’s UART1 baud rate

GPS_TYPE2 5 Define that the messaging protocol of the RTK
module is NMEA

GPS_AUTO_SWITCH 3 Exclusively use the RTK module for localization

GPS_GNSS_MODE2 77 Use GPS, GLO, BDS, and GAL satellite systems
through the RTK module

GPS_RATE_MS2 200 [ms] Set update interval for RTK module to 200 ms (5
Hz)

WP_OVERSHOOT 0.03 [m] Constrain waypoint tolerance to the accuracy of
the RTK module

WP_RADIUS 0.03 [m] Constrain waypoint tolerance to the accuracy of
the RTK module

EK2_GPS_TYPE 1 Define GPS control mode as 2D velocity and
position

EK2_POSNE_M_NSE 0.1 [m] Set GPS horizontal position noise to 10 cm to
increase the weight of the RTK module
measurements in position solutions

EK2_VELNE_M_NSE 0.05 [m/s] Input lower limit of RTK module velocity
accuracy

ARMING_CHECK 60926 Disable the “GPS Configuration” arming check

67
Chapter 7

Performance Evaluation of the RTK System

7.01 Overview

This chapter presents the methods used to test the precision and accuracy of the ZED-F9P

base-rover pair at Rock Springs Orchard. In light of the improved precision achieved by the RTK

system, a method of establishing a high-accuracy GCP an any geographic location is described.

The performance of UGV01 with the RTK system at Rock Spring Orchard is presented and

compared to the performance of the non-RTK configuration.

7.02 Assessing the Precision and Accuracy of the RTK System

The first tests of the RTK system were done with the RTK rover module removed from

UGV01. The lightweight board with attached radio and GNSS antenna were easy to transport to

and about Rock Springs Orchard when detached from the vehicle. Powering on the base module

and connecting the USB port to a PC running u-center, it was verified that RTCM messages were

being sent out. Powering on the rover module and connecting it to a PC, it was verified that the

board had an RTK fix and high-precision NMEA messages were being sent out.

To evaluate the static precision and accuracy of the rover module, the RTK system was

brought to Rock Springs Orchard. The RTK base station was set up at the A1 South GCP as

shown in Figure 7.1. The GNSS antenna of the base station was placed at the center of the GCP

paver via visual estimation. The rover RTK module, corrections radio, and GNSS antenna were

brought to all six orchard GCPs. At each GCP the GNSS antenna was placed at the center of the

68
paver via visual estimation and the RTK board was connected to a laptop running u-center. It

should be noted that a Holybro radio was used on the rover module for these tests. However,

there were no interruptions in the stream of corrections signals from the base, so the use of the

lower-power radio did not affect accuracy or precision.

Figure 7.1 - RTK rover (left) and base station (right) equipment during accuracy testing

The recording function within u-center was used to log the messages sent out from the

RTK module. The rover RTK module was configured to send location data to the Pixhawk in

NMEA protocol. These NMEA messages were recorded to evaluate the accuracy and precision

of the RTK module. Messages were recorded for about a minute at each GCP.

The raw NMEA sentences logged from the rover RTK module had to be processed to

extract the latitude and longitude coordinates of each position solution. Among the NMEA

sentence types output by the rover module at each update interval, position coordinates were

extracted from the GNRMC sentences, as shown in Table 6.7. This was done by importing all

logged NMEA sentences into a Microsoft Excel sheet, targeting GNRM sentences, and

extracting all unique latitude and longitude coordinates. As shown in Figure 7.2, the latitude and

longitude within a GNRMC sentence are in degrees and minutes (ddmm.mmmmmmm) and

hemisphere is designated by cardinal direction. For ease of analysis, this format was converted to

69
degrees latitude and longitude with hemisphere designation by sign (negative for south and west,

positive for north and east). There are 60 minutes within one degree. For example:

ddmm.mmmmmmm, W = [dd+(mm.mmmmmmm/60)] * (- 1)

Figure 7.2 - Example of GNRMC NMEA sentence

After obtaining data sets of latitude and longitude coordinates at each GCP, statistical

analysis was performed to obtain the standard deviation, mean latitude, and mean longitude. By

comparing the mean coordinates to the known GCP coordinates, the average error was found. In

an effort to produce more spatially meaningful results, the latitude and longitude statistics were

converted into distance using the following equation:

𝑑  𝑓𝑡 364813 𝑙𝑎𝑡2 𝑙𝑎𝑡1 𝑐𝑜𝑠
𝑙𝑎𝑡1 𝑙𝑎𝑡2

2
𝑙𝑜𝑛2 𝑙𝑜𝑛1

This conversion is based on the spherical Earth model provided by MathWorks (mean

radius of 6371000 meters) [34]. This equation assumes 364,813 feet per degree of latitude and

[364,813*cos(mean latitude)] feet per degree of longitude. Figure 7.3 shows the statistics for

each GCP. The standard deviation of the rover RTK module was no more than 0.15 inches at any

GCP. Therefore, the rover RTK module was found to be very precise. The average error at each

GCP was no more than 4 inches. In Section 5.03, the allowable deviation from center was

estimated to be 21 inches. Therefore, the accuracy of the RTK system is acceptable.

70

Figure 7.3 - Standard deviation and error of the rover RTK module at each GCP

 One experimental factor to consider in the determination of accuracy is the visually

estimated placement of the base and rover GNSS antennas. Misplacement of either would cause

an uncontrolled experiment. This is seen in the error for the rover at A1 South. Since the base

station antenna must be at the center of the GCP paver, the rover antenna could not be placed at

the center, as shown in Figure 7.4. This misplacement is reflected in the 3.8-inch error for the

rover RTK module at A1 South.

Figure 7.4 - Base and rover GNSS antennas sharing A1 South GCP during testing

71
7.03 Testing UGV01 with RTK-Integrated Pixhawk

 After independently testing the RTK rover module, it was reconnected to the Pixhawk.

UGV01 with the RTK-integrated Pixhawk was brought to Rock Spring Orchard to evaluate its

autonomous performance.

 To make the creation of Rock Spring Orchard missions more efficient, a Python script

was written by Dr. H. J. Sommer. This script is named inline_pair_UGV01.py and is found in

Appendix B.1. The script references a spreadsheet that contains the latitude and longitude of

every support post. The support posts are at the ends of each orchard row. Since the orchard rows

are straight the location, length, and orientation of each row is known. A user can input specific

rows and the script will generate waypoints between these rows. The list of waypoints is saved as

a tab-delimited *.waypoints file that is uploaded into Mission Planner. A user can also specify

the spacing of these waypoints as well as the overshoot past the ends of the rows. Overshoot is

necessary to navigate past the wires bracing the support posts. The reference spreadsheet also

contains the locations of the test track secondary GCPs. Therefore, the script can be used to

create test track missions.

 The inline_pair_UGV01.py script was utilized to generate a test track mission for

performance evaluation. UGV01 was to complete two loops around the rectangular test track,

driving over the GCPs, overshooting them by 15 feet, and pivoting 90 degrees at the end of a

pass. An intermediate waypoint was created at the halfway point of each long pass. This mission

visualized in Mission Planner is shown in Figure 7.5.

72

Figure 7.5 - Test track mission created for performance evaluations

 To get a baseline performance of the non-RTK Pixhawk on UGV01, the ArduPilot

parameters were reverted to the non-RTK configuration. The performance of UGV01 was

evaluated by logging the location output from the ZED-F9P onboard the vehicle as it navigated

the mission. This was done by connecting a long USB cable to the module and following

UGV01 with a laptop running u-center. The recording function in u-center was used to log

position data. Using the calibrated map feature on u-center, a precise and dimensionally

consistent trace of UGV01 was plotted. For more information on the calibrated map feature, see

section 7.04.

 The position trace of UGV01 controlled by the non-RTK Pixhawk is shown in Figure 7.6.

In this figure, the red circles mark the positions of the GCPs. The overlaid image of UGV01

shows the navigation direction of UGV01 and is not to scale. UGV01 missed some waypoints by

several feet and the paths between waypoints were largely non-linear.

73

Figure 7.6 - Non-RTK Pixhawk navigating UGV01 through test-track mission

The position trace of UGV01 with the RTK Pixhawk is shown in Figure 7.7. The RTK

system greatly improved the performance of the Pixhawk. Paths between waypoints were

straight with little deviation. The center of UGV01 came within inches of the center of each

GCP.

Figure 7.7 - RTK Pixhawk navigating UGV01 through test-track mission

The largest waypoint deviation was at A1-A2 NW, where the center of UGV01 passed

over the edge of the paver. The locations of the pavers are known by photogrammetry and are

therefore accurate to 14 centimeters, or 5.5 inches. The 6-inch deviation from the center of the

paver could be the result of the photogrammetry inaccuracy. Figure 7.8 and Figure 7.9 show

closeup views of UGV01’s position at each end of the test track. UGV01 had an occasional

tendency to veer right when moving after a complete stop or pivot turn. This behavior is likely

caused by the non-neutral timing of the motors causing the left motor to spin faster than the right

at low speeds. Although the PWM parameters were tuned to counteract this effect, it cannot be

entirely eliminated. Regardless, the Pixhawk is able to correct for the initial heading error shortly

after getting up to cruise speed.

74

Figure 7.8 - Position trace of UGV01 with RTK Pixhawk: west end of test track

Figure 7.9 - Position trace of UGV01 with RTK Pixhawk: east end of test track

After a successful performance demonstration of the RTK Pixhawk on the test track, a

mission was created to navigate UGV01 through several orchard rows. The

inline_pair_UGV01.py script was used to generate waypoints between the first five westmost

75
rows of orchard block A1. The mission avoids the large aisle between the third and fourth rows,

thereby creating three passes through the trees. Of all the rows at Rock Springs Orchard, block

A1 has the narrowest spacing between rows (about 8 feet). Narrower row spacing leaves less

room for UGV01 to deviate from the center. Testing within the most difficult circumstances

makes the results applicable to all other rows of the orchard. During this test there were many

branches laying on the ground. When UGV01 climbed over the branches, some deviation from

the centerline occurred. This is best seen at the southern end of the westmost row in Figure 7.10.

The black arrows in this figure show the centerline between the trees as well as the direction of

travel. Green lines that are seen beside the black centerline are deviations from the center.

Figure 7.10 - Position trace of UGV01 through orchard block A1

76
When navigating through orchard rows, the GNSS antenna on UGV01 has a more

obstructed view of the sky, as shown in Figure 7.11. Therefore, it is more challenging to “see”

satellites and produce a high-precision location. To ensure the positional accuracy of the ZED-

F9P did not falter when flanked by trees, the statistics recorded by u-center were reviewed.

During the orchard mission, an RTK fix (highest precision mode) was achieved for 92% of the

mission, an average of 32 satellites were in view, and the average precision was 1.6 centimeters.

Based on these promising results, it was concluded that the RTK module did not have an issue

producing high-precision solutions while flanked by trees. Furthermore, the system had

satisfactory performance and was ready to be ported onto the Cub Cadet RZT-S Zero.

Figure 7.11 - UGV01 navigating a narrow orchard row in block A1

7.04 Using the ZED-F9P to Establish a High-Accuracy GCP

The high precision of the ZED-F9P RTK board with an L1/L2 GNSS antenna makes it a

viable tool for establishing a GCP. Logging the data received from GNSS satellites over a long

time period allows for calculation of a millimeter-level static location. Nathan Seidle has

77
published helpful documentation on using the ZED-F9P to establish a GCP [27]. If Rock Springs

Orchard did not have pre-surveyed GCPs, the ZED-F9P could have been used to find their

precise locations. To demonstrate this ability, the ZED-F9P was used to establish a GCP at an

off-site residential location.

The GNSS antenna was first mounted at the location of the GCP (on top of the roof of the

residence). The grounding plate and antenna were adhered to the roof and their location was

marked with a white wax pencil as shown in Figure 7.12.

Figure 7.12 - GNSS antenna mounted on roof to determine GCP location

 The ZED-F9P board was then configured to collect raw data from the GNSS antenna. In

u-center, this is done by navigating to View, Messages View, UBX, CFG, and then MSG. The

02-15 RXM-RAWX message type was enabled for USB. According to Robot Operating System

(ROS) documentation, the u-blox RXM-RAWX message type contains pseudorange, Doppler,

carrier phase, phase lock and signal quality information for satellites [35]. Using the record

78
feature in u-center, the raw GNSS data was collected for 15.75 hours. Noting the plot in Figure

7.13 created by Suelynn Choy [36], GNSS precise point positioning error falls logarithmically as

data collection time increases. After 12 hours, the error in the position of the antenna is less than

10 millimeters.

Figure 7.13 - Decrease of position error with logarithmic increase of GNSS data collection
time [36]

The raw data file was then converted into a *.obs file using the latest version of

RTKCONV [37] and then compressed. The raw data was submitted to the Canadian

Government’s Precise Point Positioning (PPP) service [38]. First an account was created with the

service. Then ITRF was selected as the processing mode. Finally, the zipped *.obs file was

selected and submitted.

The Canadian PPP service processed the raw data and provided a report with the

estimated coordinates of the GNSS antenna. The latitude and longitude were provided with an

accuracy of +/- 0.003 meters. This is an order of magnitude more accurate than the locations of

79
the orchard GCPs. Therefore, it was concluded that the ZED-F9P is capable of establishing a

high-accuracy GCP.

For applications of this work where the ZED-F9P RTK system must be used to map

several GCPs and orchard rows, it is not feasible to log data for 15 hours at every location. After

establishing a base GCP with 3-millimeter accuracy, the rover RTK module can be used to

determine other GCP locations. The accuracy of the rover module is limited by its reported

precision, which was about 2 cm. Therefore, additional GCPs and landmarks can be determined

to an accuracy of 2 cm.

At the off-site residential location, drone imagery and photogrammetry were not

available. Instead, publicly available satellite imagery was used to create a calibrated map in u-

center. The satellite image was sourced from Google Earth Pro [39]. A high-resolution image

was exported from this program by selecting File, Save, and Save Image. Within the Save Image

view, all overlays were removed and resolution was set to maximum, as shown in Figure 7.14.

Figure 7.14 - Exporting a high-resolution satellite image from Google Earth Pro

80
 To calibrate the high-resolution satellite image, the locations of visible landmarks must

be known. Thus, GCPs must be established on landmarks that have been captured by the satellite

imagery available on Google Earth Pro. U-center offers a tool to create a calibrated map from

any image. The tool maps pixel coordinates to three known latitude and longitude coordinates

across the image. The tool is accessed by navigating to View, Map View, and then the folder

icon to open an image or calibrated map. If an image without a calibration file in the same

directory is selected, u-center will prompt the user to calibrate the map. This entails selecting

three points on the map and inputting the geographic coordinates for each. After completing the

calibration, the map can be used to find the geographic coordinates of any point on the map with

an estimated accuracy of 10 inches.

81
Chapter 8

Integrating ROS with the Pixhawk

8.01 Overview

This chapter describes the work done to integrate Robot Operating System (ROS) into the

Pixhawk ground control system. The motivation of the work is based on designs for future

autonomy systems at Rock Spring Orchard. With ROS, an automated mission-updating feature

and simple object avoidance routine were developed.

8.02 Motivation for ROS

Integrating the RTK system with the Pixhawk on UGV01 showed the Pixhawk can

successfully control a ground vehicle through Rock Spring Orchard with only satellite-based

localization. While one autonomous vehicle brings some utility to an orchard, a team of

autonomous vehicles could be used to achieve more robust tasks. An example of a more robust

task would be mitigating frost damage to trees. To accomplish this, one high-altitude unmanned

aerial vehicle (UAV) would use vision to map temperature across the entire orchard. A low-

altitude UAV would use vision to focus on one specific block of the orchard. A UGV with a

heater would be ready to mitigate frost in cold spots identified by the UAVs. With this topology,

the autonomous team must be able to communicate with each other and share senor data.

ROS is a Linux-based middleware with the message-passing capabilities needed to create

a system of autonomous vehicles. With ROS running on a ground control station for each

82
autonomous vehicle, a network of communication between the vehicles can be created, as shown

in Figure 8.1.

Figure 8.1 - ROS communication network for a team of autonomous orchard vehicles
Laptop image from T. Ishikawa [40]

UGV01 with its RTK-integrated Pixhawk demonstrates the ability of Pixhawk to guide a

ground vehicle through the orchard with satellite-based localization. Without ROS, one must use

Mission Planner on a Windows PC to communicate with the Pixhawk. This prevents the default

ground control system from being compatible with the multi-vehicle communication network.

The ground control station for UGV01 must be able to communicate with the autopilot system

through ROS.

8.03 Using ROS to Communicate with the Pixhawk

The ground control station must be a Linux PC to run ROS. Therefore, a laptop running

Ubuntu 20.04.2.0 (Linux-based distribution) was acquired for the ground station. Christopher

83
Hirsh—a Penn State Mechanical Engineering Department System Administrator—assisted in

building the Ubuntu laptop and installing the latest distribution of ROS. At the time of

installation, this distribution was Noetic Ninjemys. The wiki site for ROS provides excellent

documentation for tutorials and packages [41], including instructions for the installation of ROS

on an Ubuntu PC.

It is helpful to understand the concepts of the ROS computation structure before

describing the specific Pixhawk-ROS application. ROS Nodes are processes that perform

computation. An example of a ROS node is a process that produces a location solution from raw

GNSS data. ROS messages are the data structures that nodes use to communicate with each

other. Nodes send and receive messages by publishing and subscribing to ROS topics. Multiple

nodes can publish to a single ROS topic; similarly, multiple nodes can subscribe to a single topic.

With the publish/subscribe messaging system, the nodes are unaware of other nodes’ existence,

thereby separating information generation from information reception. ROS services are an

alternate communication method that follows a request/reply format. ROS services are

appropriate for distributed-computing communication (multiple ROS computers). ROS master is

required for nodes, messages, and services to work together. Essentially, ROS master allows the

components of the computation network to find each other and work together. ROS bags are

used for logging message data [42].

Pixhawk sends and receives messages from a ground control station with Micro Air

Vehicle (MAV) Communication Protocol, commonly called MAVLink. MAVLink is designed

for communication to drones from the ground station as well as communication among

components onboard a drone. Similar to ROS topics, MAVLink follows a publish/subscribe

messaging pattern for all messages, with the exception mission plan and parameter sub-protocols

84
[29]. Mission plans and parameters are downloaded/uploaded using point-to-point

communication. This sub-protocol supports re-request and retransmission of messages not

received. This is an important design feature for message transmission via radio telemetry

because connection deficiencies can cause message losses [43].

MAVLink must be used to communicate with the Pixhawk. Accordingly, Mission

Planner uses MAVLink protocol to send commands, parameters, mission plans, etc. to the

Pixhawk. For ROS to assume all functionality of Mission Planner while adding flexibility and

robustness to the ground control system, it must be able to send and receive messages using

MAVLink protocol. MAVLink message transmission was achieved in ROS by installing the

MAVROS package, authored by Vladimir Ermakov [44]. MAVROS has three nodes: main

communication node; ground control station (GCS) bridge node; and event launcher node. The

GCS bridge node uses User Datagram Protocol (UDP) to pass all messages received by

MAVROS to Mission Planner. Telemetry radios were used to establish the UDP bridge between

MAVROS on Linux and Mission Planner on Windows. The topology of this system is shown in

Figure 8.2.

Figure 8.2 – Topology of Pixhawk, ROS, and Mission Planner

85
8.04 Assigning Missions to UGV01 with MAVROS

 The team of interconnected autonomous orchard vehicles must be able to provide mission

updates to each other through ROS. For example, if a UAV needs the UGV to address an issue in

a specific orchard block, the mission of the UGV will be updated to navigate through that block.

To make UGV01 compatible with this team configuration, a mission-updating Python script was

developed for ROS. The name of this script is mission_update.py and can be found in Appendix

B.2. It is run on the Linux PC in the command window while ROS master and MAVROS are

running and the Pixhawk is successfully communicating with MAVROS.

 The script was designed to be a mission intervention routine; one that could be run while

UGV01 was actively completing a mission. Consequently, the script first stops UGV01 by

putting the Pixhawk in hold mode. Hold mode sends neutral PWM outputs (about 1500

microseconds) to the left and right motors, stopping the vehicle. Mode changes are done with

MAVROS by calling the “set_mode” service of the “sys_status” plugin.

 After stopping UGV01, the current waypoint list is cleared from the Pixhawk. The

“clear” service of the “waypoint” plugin is called to clear the list.

The inputs of mission_update.py are identical to those of inline_pair_UGV01.py: orchard

rows, waypoint spacing, and overshoot distance. In fact, the waypoint generation code written by

Dr. Sommer was integrated into mission_update.py so that the script could generate the new

mission that is downloaded to UGV01. With this design, if another autonomous vehicle is

connected to UGV01 with ROS, the vehicle can specify a row of the orchard and the

latitude/longitude waypoints will automatically be generated. The inline_pair_UGV01.py script

is designed to generate a tab-delimited *.waypoints file for Mission Planner to read. Since

Mission Planner is no longer required to communicate with the Pixhawk, this *.waypoints file is

86
no longer necessary. Instead, the mission_update.py script creates a waypoint list array that

stores each waypoint. The information for each waypoint is stored in an object. The

inline_pair_UGV01.py script iterates to write each waypoint’s information to the *.waypoints

file. The mission_update.py script iterates to append the waypoint list with each waypoint’s

information.

After the script finishes appending the waypoint list array with each waypoint object, the

mission is downloaded to the Pixhawk. The “waypoint” plugin “push” service is called to

download the waypoint list to the Pixhawk.

Before initiating the new mission, the Pixhawk is told to restart its waypoint sequence.

That is, the current waypoint must be reset to the first waypoint. The current waypoint is set

using the “set_current” service of the “waypoint” plugin.

The first waypoint of the waypoint list (of index zero) indicates the “home” location of

UGV01 and is not interpreted as a waypoint to achieve. When creating the waypoint list, the

mission_update.py script stores empty values for index zero. After downloading the new

waypoint list, the home location is set to the current location of UGV01. This is done with the

“set_home” service within the “command” plugin.

The last action performed by mission_update.py is the reactivation of auto mode. Auto

mode initiates the new mission downloaded to UGV01 and is set by calling the “set_mode”

service of the “sys_status” plugin.

87
8.05 Simple Object Avoidance with ROS and Pixhawk

ROS provides the framework for interpreting data from multiple sensor inputs to improve

localization. To apply this framework to the Pixhawk, a simple ultrasonic sensor was used to

feed range sensor distances to ROS. The added hardware consisted of an Arduino Uno with an

HC-SR04 ultrasonic sensor.

The Arduino had to be configured to interpret the signal from the sensor as well as

publish range values to a topic in ROS. The full code for the Arduino Uno is found in Appendix

C.1. The distance is calculated by dividing the time it takes to echo the ultrasonic pulse by the

speed of sound. The Arduino sketch creates a topic named “ultrasound” to which it publishes a

message of type “range_msg.” This message type is established within the standard library of

sensor messages in ROS. The node that handles the ultrasonic topic is “serial_node.” This node

must be initiated in ROS master for the range messages to be available.

A Python script was developed to subscribe to ultrasound topic and send commands to

the Pixhawk based on distance. This script was named backup.py and is found in Appendix B.3.

The script is designed to imitate an object-avoidance routine followed by ROS for a front-facing

ultrasonic sensor onboard UGV01. The script establishes a node for publishing and subscribing.

It creates a subscriber for the range messages on the ultrasound topic. It also creates a publisher

for the “OverrideRCIn” messages on the MAVROS “override” topic. OverrideRCIn messages

override input signals from the DX8 R/C controller connected to the Pixhawk. When the range

messages fall below 30 centimeters, the R/C signals are overridden to cause UGV01 to backup.

Channel 3 in ArduPilot controls throttle, thus a value of 1300 microseconds (200 less than

neutral output) is used to move the left and right tracks in reverse.

88
Chapter 9

Cub Cadet R/C Control

9.01 Overview

This chapter describes the electrical system for manual control of the Cub Cadet RZT-S

Zero and a custom microprocessor circuit to allow the RZT-S to be remotely operated by

standard radio control (RC) signals. This approach allows the RZT-S to be integrated with

Mission Planner and controlled from a remote base station. The authorship of this chapter, and

the work herein, is accredited to Dr. H.J. Sommer.

9.02 Manual Control System

The RZT-S has four main electrical subsystems as shown in Figure 9.1 and Figure 9.2

from the shop manual [45] - vehicle control module (VCM) and manual input sensors, control

panel, drive and deck motors, and batteries.

Figure 9.1 - RZT-S Zero electrical block diagram

89

Figure 9.2 - RZT-S Zero electrical schematic

The VCM is a central computer that controls everything on the mower and acts as a user

interface. It is housed in a plastic module on the steering column as shown in Figure 9.3. The

VCM is connected to the control panel by an 8-wire cable into a 12-pin connector (Molex

0334721206) on the contactor as shown in Figure 9.2. The VCM will be replaced by a custom

microprocessor circuit.

90

Figure 9.3 - RZT-S Zero Vehicle Control Module (VCM)

The control panel is mounted over the left rear wheel as shown in Figure 9.4 and consists

of a contactor assembly and four BAC1000 motor controllers from Accelerated Systems Inc.

(ASI). The contactor is mounted on the bottom of the panel and the BAC1000s are mounted on

the top. The contactor is a large relay similar to a starter solenoid that allows a low current 48

VDC 0.3 A coil signal from the VCM to energize the relay and provide high current capacity

between the battery pack and the four motor controllers. There is a 15 A fuse inside the

contactor to protect the coil. Logic signals from the VCM are passed directly through the control

panel to all four motor controllers using a 2-wire daisy chain RS-485 serial computer bus and a

LOGIC enable line.

91

Figure 9.4 - RZT-S Zero control panel

The RZT-S has four brushless electric motors to drive the rear wheels and mower blades

- Lhub for left rear wheel, Rhub for right rear wheel, Ldeck for left mower blade and Rdeck for

right mower blade. Hub motors are rated 48 VDC at 11A with 200 W providing 1500 rpm.

Deck motors are rated 48 VDC at 30 A with 1200 W providing 3000 rpm.

There are four 12 VDC sealed deep cycle lead acid batteries wired in series to provide 48

VDC power in an isolated fully floating system. This means that the electrical system is not

grounded to the chassis and is insulated from non-electrical components of the mower. The

battery subsystem includes a 150 A main fuse in-line between the battery positive cable and

contactor. There is also a 20 A charger fuse.

It should be noted that the Ldeck motor on the old RZT-S has a Hall sensor fault and is

not functional.

92
9.03 BAC1000 Motor Controllers

Each brushless motor is controlled by a BAC1000 controller [46]. Connections between

each motor and its BAC1000 follow standard labelling commonly used for brushless motors.

Power connections are Phases U/V/W. Signal connections include Hall A/B/C, 5 VDC power,

signal ground and a thermistor to measure motor temperature.

The VCM sends digital message packets simultaneously to all four BAC1000s using a

bidirectional two wire RS-485 serial bus at 115200 baud. Message packets conform to standard

Modbus protocol [47] and must include a cyclic redundancy check checksum. The two RS-485

bus wires (0 to 5 VDC) and a 48 VDC LOGIC enable wire are daisy chained to all BAC1000s

within the control panel.

A BAC1000 is controlled by writing/reading values to/from internal registers that

manage motor drive circuits and provide controller status. Each register has a unique register

address between 0 to 511. All registers hold 16-bit values. Writing or reading a register is called

a command. An object dictionary of BAC1000 commands and their corresponding register

addresses was provided by ASI [48] in XML format. Commands can write or read multiple

contiguous registers at the same time.

Message packets from the VCM must contain write or read commands for a specific

register in a specific motor controller. Each message starts with a one-byte hexadecimal (hex)

identifier (ID) for a specific motor, a one-byte hex value 0x10 for write or 0x03 for read, and two

bytes for the register address. Hex IDs for motors are Lhub 0x10, Rhub 0x13, Ldeck 0x16 and

Rdeck 0x17. These IDs are defined by hardwired jumpers inside 16 pin connectors on each

BAC1000.

93
Common write commands and their register addresses include write command timeout

threshold 32, write remote speed 490, write remote maximum motoring current 491, write

remote maximum braking current 492 and write remote state 493.

Common read commands and their register addresses include read command timeout

threshold 32, read faults 258, read motor speed 264, read battery voltage 265 and read remote

state 493.

The exact format for commands is defined by the Modbus protocol [47]. The VCM is

master and all four BAC1000 are slaves on the RS-485 bus. A read command uses Modbus

Section 3.3 "Request (Master to Slave)" format. Each valid request will receive a Modbus

Section 3.4 "Valid Response (Slave to Master)" reply. An invalid request will receive a Modbus

Section 3.5 "Error Response (Slave to Master)" reply. A write command uses Modbus Section

3.7 "Request (Master to Slave)" format. Similarly, valid requests will receive a Modbus Section

3.8 "Valid Response (Slave to Master)" and invalid requests will receive a Modbus Section 3.9

"Error Response (Slave to Master)".

Actual commands from the VCM to BAC100s for manual operation were reverse

engineered using an RS-485 to USB module coupled in parallel with the RS-485 bus at one of

the BAC1000 connectors. The RZT-S was lifted onto blocks with the rear wheels free and

manual driving was emulated while recording the RS-485 bus hex communication stream. The

hex stream was then decoded using the ASI object dictionary. Interestingly, the VCM only used

two commands for all motors - one to set four contiguous registers 490-493 and one to read

seventeen contiguous registers 256-272 as shown in Table 9.1 and Table 9.2.

94
Table 9.1 - VCM write registers for manual control

Register
Address

Command Valid Range for Signed 16b
Register

490 remote speed 0xF000 = -4096 = -100% speed

0x0000 = 0% speed

0x1000 = +4096 = +100% speed

491 remote maximum motoring current 0x0000 = 0% current

0x1000 = +4096 = +100% current

492 remote maximum braking current 0x0000 = 0% current

0x1000 = +4096 = +100% current

493 remote state 0x0001 = 1 = idle

0x0002 = 2 = run

95
Table 9.2 - VCM read registers for manual control with typical values

Register
Address

Command Typical Values for Signed 16b Register

256 software revision level 0x14BF = 5311 / 1000 = version 5.311

257 controller status 0x0003 = unknown meaning

258 faults 0x0000 = no faults

0x0020 = motor hall sensor fault

0x0100 = network communication timeout

259 controller temperature 0x0010 = 6 / 1 = 16 deg C

260 vehicle speed 0x0164 = 356 / 256 = 1.39 km/hr

261 motor temperature 0x000F = 15 / 1 = 15 deg C

262 motor current 0x0080 = 128 / 32 = 4 A

263 motor rpm 0x00E6 = 230 / 1 = 230 rpm

264 motor speed 0x0239 = 569 / 40.96 = 13.89 % speed

265 battery voltage 0x0636 = 1590 / 32 = 49.7 V

266 battery current 0xFFF5 = -11 / 32 = -0.34 A (probably incorrect)

267 battery state of charge 0x0064 = 100 / 1 = 100 %

268 battery power 0xFFF0 = -16 / 1 = -16 W (probably incorrect)

269 last fault 0x0000 = no faults

270 throttle voltage 0x21E9 = 8681 / 4096 = 2.12 V

271 brake 1 voltage 0x2C4A = 11338 / 4096 = 2.77V

272 brake 2 voltage 0x2164 = 8548 / 4096 = 2.07 V

96
Because hub motors are mounted facing in opposite directions, positive speed (0x0000 to

0x1000) for Rhub and negative speed (0x000 to 0xF000) for Lhub cause the vehicle to move

forward. Similarly, negative speed for Rhub and positive speed for Lhub cause the vehicle to

move in reverse. The VCM limited vehicle reverse speed to approximately 60% of maximum

forward speed with Rhub values 0x0000 to 0xF680 and Lhub values 0x000 to 0x0980.

BAC1000s have a failsafe watchdog timer in case RS-485 communication is lost. When

a BAC1000 is set to remote state = 2 = run, it will automatically shut down and indicate a fault if

another valid command is not received within a specific amount of time called the command

timeout threshold. The command timeout threshold must be set to zero using register 32 to

disable this timer and allow continuous motor operation.

If a motor fault occurs, the error can be identified using command read faults 258.

However, faults cannot be reset using Modbus commands. The LOGIC enable line must be

toggled to reset faults and restart the controller.

Lastly, the VCM inserted a one-byte rollover counter into the upper byte of the value for

register 493 remote state in Table 9.1 to help with diagnostics. The upper byte is ignored by

BAC1000s and only the lower byte is used either as 0x01 = 1 = idle or 0x02 = 2 = run.

9.04 Manual Power Activation Sequence

This activation sequence is provided on page 84 of the shop manual [45]. All pin

numbers and signal names refer to the 12-pin connector on the contactor with an 8-wire cable

shown in Figure 9.2.

97
The VCM board receives 48 VDC from BATTERY+ (pin 1) and ground from RETURN

(pin 6) of the contactor but VCM electronics are not powered until the KEY SWITCH is closed.

If manual sensors/switches are correctly activated (foot off throttle, brake applied,

charger disconnected, seat switch closed, PTO off) and the Vehicle Start/Stop button on the front

of the VCM is pressed, the VCM will begin activation of the contactor and motor controllers.

First, the VCM will provide 48 VDC back to PRE_CHARGE (pin 4) through a 100 Ω

resistor. The PRE_CHARGE terminal bypasses the contactor relay and provides 48 VDC (albeit

low current because of the 100 Ω resistor) directly to the motor power lines. This allows large

capacitors inside the BAC1000s to charge slowly and will prevent high inrush of current when

the contactor relay is closed. Note that BAC1000 internal capacitors may stay charged for two to

three minutes after power has been removed.

Second, the VCM provides 48 VDC back to CONTACTOR+ (pin 2) and ground to

CONTACTOR- (pin 3) across the contactor coil to activate the contactor relay.

Third, the VCM provides 48 VDC back to LOGIC (pin 5) which is passed to BAC1000s

to enable logic circuits.

Lastly, the VCM begins transmitting RS-485 serial bus data to 485A (pin 12) and 485B

(pin 11) which is daisy-chained to all four BAC100s. It should be noted that BAC1000s in

remote state = 2 = run will shut down and indicate a fault if they do not receive another valid

command within the command timeout threshold.

98
9.05 Cub Cadet Motor Shield

A custom microprocessor circuit called Cub Cadet motor shield (CCMS) was designed

using an Arduino Mega to replace the VCM and control motor speed using standard RC signals.

A schematic is shown in Figure 9.5 and the corresponding printed circuit board (PCB) is

shown in Figure 9.6. The CCMS provides optical isolation between the Mega and 48 VDC

signals in the control panel. It connects to the control panel using the same 12 pin connector as

the VCM. The PCB was designed as a shield that sits directly on top of the Mega.

Figure 9.5 - Cub Cadet motor shield schematic

99

Figure 9.6 - Cub Cadet motor shield printed circuit board

Major components in the CCMS include a PS2501-4 optoisiolator U1, four Omrom

G3VM-61A1 solid state relays (SSR) U3/U4/U5/U6, a Pololu 2801 RC switch, an RS-485

isolation module, an ATM fuse holder and a 12-pin terminal block for 16 AWG wire. Requisite

external connections are listed in Table 9.3.

100
Table 9.3 - External connections to Cub Cadet motor shield

External Connections Location

8 color coded wires from 12 pin connector on
contactor

8 pin terminal block at right of PCB

key switch 8 pin terminal block at right of PCB

digital voltmeter (DVM) 8 pin terminal block at right of PCB

1 A fuse to protect coil ATM fuse holder at upper right of PCB

Pololu 2801 RC switch daughter board in upper center of PCB

dead man RC signal to Pololu 2801 3 pin header at left of Pololu 2801

four RC signals for steering, throttle, Ldeck,
Rdeck

four 3 pin headers in lower center of PCB

dead man active LED indicator pin 13 header

SKID/_STRAIGHT switch (toggle SPST NO) pin A7 header

RESET switch (momentary SPST NO) pin RST

+12 VDC Mega power Mega power connector

 The PS2501-4, Omron SSRs and RS-485 isolators provide full optical isolation between

the Arduino Mega and the Cub Cadet control panel. Consequently, the Mega must have its own

independent power supply.

 The CCMS requires two independent RC systems for operation. Both RC systems must

provide their own power for their respective receivers (Rx). The primary RC system with at

least 4 channels will provide standard pulse width modulated (PWM) signals to control hub and

deck motors. Signals for steering ST, throttle TH, left deck LD and right deck RD are required.

101
 A second dead man RC system with at least one channel must be used for safety

operation. The Pololu 2801 RC switch shown in Figure 9.7 reads the dead man RC signal and

sets OUT based on pulse length. If there is no dead man RC input signal, OUT will be low and

the yellow LED at the bottom right of the 2801 will blink at 50% duty cycle with period of 1 sec.

If dead man RC pulses are less than 1.7 msec, OUT will be low and the LED be off with a brief

blink on once per second. If dead man RC pulses are longer than 1.7 msec, OUT will be high

and the LED will be on with a brief blink off once per second. The VCC-VRC jumper on the

bottom of the Pololu 2801 must be soldered closed to allow the dead man Rx to power the 2801.

The VCC pin from the 2801 must not be connected to the Mega +5 VDC pin.

Figure 9.7 - Pololu 2801 dead man RC safety system

9.06 Microprocessor Power Activation Sequence

The CCMS receives 48 VDC from the contactor on the red +48V and black GND wires

in the terminal block. However, BAC1000 electronics are not powered until an external key

switch is closed between the top two pins of the terminal block. Closing the key switch provides

power through the fuse to the DVM, the green PRE-CHARGE wire and Omron SSR U2.

102
Please note the description and warning about BAC1000 capacitor charging in Section

9.03 above. The DVM helps discharge BAC1000 capacitors.

A valid dead man RC signal with OUT set high will activate the dead man SSR U2 to

provide 48 VDC to the other SSRs U3/U4/U5.

After checking power, the Mega will measure PWM center values for RC signals

ST/TH/LD/RD and will not proceed unless valid signals are available. The Mega will then

check the output of SSR U5 to see if 48 VDC is provided by the dead man SSR U2. The Mega

will not proceed unless power is activated by the dead man safety circuit.

The Mega will then energize SSR U4 to connect 48 VDC to the white LOGIC wire which

is passed to BAC1000s. This allows the Mega to begin transmitting RS-485 serial bus data over

the 485A gray wire and the 485B yellow wire through the RS-485 isolator.

Lastly the Mega will energize SSR U3 to connect 48 VDC to the purple/white contactor

COIL+ wire. The purple COIL- wire is internally connected to the black GND wire.

Note that this power sequence with LOGIC before COIL is slightly different from the

manual power sequence. It allows the CCMS to interrogate BAC1000s via RS-485 before

applying power though the contactor relay.

9.07 User Power-on Sequence

The recommended user activation sequence is provided in Table 9.4. However sufficient

logic interlocks are provided to prevent major malfunctions if any components fail or are

activated out of sequence. Loss of the RC dead man signal will cause all RZT-S motors to stop.

103
Table 9.4 - User Power-On Sequence

User Interface Indicator

1) RC transmitter (Tx) for ST/TH/LD/RD

2) RC receiver (Rx) for ST/TH/LD/RD

3) Mega power

4) key switch DVM shows RZT-S battery voltage

5) RC transmitter (Tx) for dead man signal

6) RC receiver (Rx) for dead man signal Pololu 2801 LED

7) valid RC dead man signal dead man LED indicator

9.08 Microprocessor Logic Flow

The Mega may be reset at any time by pushing a momentary SPST NO switch connecting

the RST pin and Mega ground.

At startup, the Mega will measure PWM center values for RC signals ST/TH/LD/RD and

will not proceed unless valid signals are available.

The Mega will then check the output of SSR U5 to see if 48 VDC is provided by the dead

man SSR U2. The Mega will not proceed unless power is activated by the dead man safety

circuit. The Mega will indicate if the dead man signal is active by illuminating an external LED

using pin 13.

The Mega will then energize SSR U4 to connect 48 VDC to the white LOGIC wire to

begin transmitting over the RS-485 serial data bus. The Mega will interrogate all four

BAC1000s for faults, set command timeout threshold to zero for all four BAC1000s and set all

104
four BAC1000s to idle. If no motor faults are detected, the Mega will energize SSR U3 to

activate the coil.

Lastly, the Mega will check the logic level on pin A7 controlled by the

SKID/_STRAIGHT switch (toggle SPST NO) to decide how to control the hub motors as

described below.

The Mega then executes an infinite loop that reads four RC signals (ST, TH, LD and

RD), sends motor speed commands to all four BAC1000s and performs several failsafe checks

each time through the loop.

Standard RC PWM servo signals with pulses at 50 Hz must be used for ST, TH, LD and

RD. Center values for all four channels are measured at startup.

The hub motors can be controlled using skid steer mixing where ST controls vehicle

direction and TH controls vehicle forward/reverse speed. Alternately, the RC signals can be sent

straight through to the hub motors where ST controls Lhub directly and TH controls Rhub

directly.

Desired speeds for Lhub and Rhub are sent to respective BAC1000s. Note that negative

Lhub speed values cause the vehicle to move forward and vice versa. Ldeck and Rdeck are

operated at either 0 speed or 100% speed. All motors are operated at either 0 or 100% motoring

and braking current.

For skid steer mixing, ST is mapped at 1 ms pulse duration for full left and 2 ms for full

right. TH is mapped at 1 ms pulse duration for full reverse and 2ms for full forward.

For straight through motor control, ST is mapped at 1 ms pulse for Lhub full reverse and

2 ms for Lhub full forward. TH is mapped at 1 ms pulse for Rhub full reverse and 2 ms for Rhub

full forward.

105
Left deck LD and right deck RD are mapped below 1.7 ms for off and above 1.7 ms for

on.

Two skid steer algorithms were implemented to test for preferred operation. Both are

based on the simple skid steer lookup table for a left wheel/track shown in Table 9.5. The lookup

table for a right wheel/track is right/left symmetric. The first algorithm maps RC steering (-7 left

<= ST <= 7 right) and RC throttle (-7 reverse <= TH <= 7 forward) and then simply does a

lookup for left wheel/track output speed (-7 reverse < = left wheel/track < = 7 forward). The

lookup value is then scaled -4096 to 4096 to send to a BAC1000. The second algorithm maps

RC steering (-500 left <= ST <= 500 right) and RC throttle (-500 reverse <= TH <= 500 forward)

and uses three linear functions to emulate the lookup table and compute left wheel/track speed

output directly (-4000 reverse <= left wheel/track <= 4000 forward).

106
Table 9.5 - Skid steer lookup table for left wheel/track

 LEFT STEERING RIGHT

 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

R

E
V

E
R

S
E

T
H

R
O

T
T

L
E

F
O

R
W

A
R

D

7 0 1 2 3 4 5 6 7 7 7 7 7 7 7 7

6 -1 0 1 2 3 4 5 6 6 6 6 6 6 6 7

5 -2 -1 0 1 2 3 4 5 5 5 5 5 5 6 7

4 -3 -2 -1 0 1 2 3 4 4 4 4 4 5 6 7

3 -4 -3 -2 -1 0 1 2 3 3 3 3 4 5 6 7

2 -5 -4 -3 -2 -1 0 1 2 2 2 3 4 5 6 7

1 -6 -5 -4 -3 -2 -1 0 1 1 2 3 4 5 6 7

0 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-1 -7 -6 -5 -4 -3 -2 -1 -1 0 1 2 3 4 5 6

-2 -7 -6 -5 -4 -3 -2 -2 -2 -1 0 1 2 3 4 5

-3 -7 -6 -5 -4 -3 -3 -3 -3 -2 -1 0 1 2 3 4

-4 -7 -6 -5 -4 -4 -4 -4 -4 -3 -2 -1 0 1 2 3

-5 -7 -6 -5 -5 -5 -5 -5 -5 -4 -3 -2 -1 0 1 2

-6 -7 -6 -6 -6 -6 -6 -6 -6 -5 -4 -3 -2 -1 0 1

-7 -7 -7 -7 -7 -7 -7 -7 -7 -6 -5 -4 -3 -2 -1 0

Three primary subroutines were developed to write one BAC1000 register for setting

parameters, to write four contiguous registers for motor control and to read multiple contiguous

registers. The four contiguous registers for motor control are the same as VCM manual control

shown in Table 9.1 above. Individual registers for reading/writing parameters are listed in Table

9.6 below.

107
Table 9.6 - BAC1000 registers for CCMS operation with typical values

Register
Address

Command Typical Values for Signed 16b Register

32 command time out threshold

(read/write)

0x0000 = disable timer for continuous operation

0x0100 = 256 / 1 = 256 msec (default)

258 faults (read only) 0x0000 = no faults

0x0020 = motor hall sensor fault

0x0100 = network communication timeout

259 controller temperature (read only) 0x0010 = 6 / 1 = 16 deg C

260 vehicle speed (read only) 0x0164 = 356 / 256 = 1.39 km/hr

261 motor temperature (read only) 0x000F = 15 / 1 = 15 deg C

263 motor rpm (read only) 0x00E6 = 230 / 1 = 230 rpm

264 motor speed (read only) 0x0239 = 569 / 40.96 = 13.89 % speed

265 battery voltage (read only) 0x0636 = 1590 / 32 = 49.7 V

 For each cycle within the infinite loop, desired remote speed is written to each BAC1000

using register 490. Failsafe checks are then performed including motor faults using register 258,

valid RC signals (ST, TH, LD and RD), output of SSR U5 indicating valid dead man RC signal

and actual motor speed using register 264. Actual motor speed less than 50 percent of desired

remote speed is a simple test for motor overload (e.g. vehicle collision, manual brake applied,

deck motors clog). If any check fails, all motors shut down and the Mega will restart following

the logic flow described above.

 Future code within the infinite loop could be developed to provide motor acceleration or

deceleration for sudden changes in commanded speed. This could be implemented by ramping

108
speed over several cycles of the infinite loop or by using lower motoring current. Performance

could be enhanced by experimenting with both motoring and braking current. Future upgrades

could also check motor and controller temperatures to prevent overheating, vehicle speed in

kilometers per hour or miles per hour for display purposes and battery voltage to prevent battery

discharge problems.

9.09 Future Control Concepts

The CCMS described above provides remote operation of an RZT-S using RC signals.

Alternately a radio modem could be used to send/receive serial communications directly between

a base station and RZT-S without any RC.

One approach for the remote serial data could be to send/receive actual BAC1000

Modbus commands where the shield acts only as a pass-through device. A second approach for

the remote serial data would be to adopt/develop a standardized vehicle control language where

the shield interprets vehicle control commands into BAC1000 commands.

A radio modem would also allow the RZT-S to send local sensor information back to the

base station for enhanced collision avoidance path planning.

109
Chapter 10

Retrofitting the Cub Cadet RZT-S Zero

10.01 Overview

 This chapter describes the modifications made to the factory-built Cub Cadet RZT-S Zero

to adapt it for autonomous control. The steering system was altered so that mower’s speed and

heading could be controlled with the rear drive wheels. An autonomy platform was constructed

to mount the electronics and sensors.

10.02 Simplifying Control of the Cub Cadet

The Cub Cade RZT-S Zero is designed to be manually steered by an operator using a

steering wheel, as shown in Figure 10.1. Most zero-turn mowers are controlled by the operator

with two lever inputs, each one controlling the speed and direction of its respective drive wheel.

In its unmodified configuration, the Cub Cadet detects the steer angle input by the operator and

adjusts the speed differential of the drive wheels. While this Ackermann steering design makes

steering more intuitive for the operator, it complicates unmanned control of the vehicle. Since

speed and heading can be controlled by the speed and direction of the independent drive wheels,

a mechanical steering system is unnecessary. The Pixhawk system developed for UGV01 can be

ported to the Cub Cadet, but only if it is a differentially steered vehicle. The Cub Cadet was

altered so that it could be controlled entirely by the speed of its left and right wheels. Therefore,

it was altered so that it could be controlled by the 2-channel output from the Pixhawk.

110

Figure 10.1 - Unmodified Cub Cadet RZT-S Zero

 The front wheel axles are carried by yokes. The steering wheel on the unmodified Cub

Cadet rotates each yoke via a steering gear mounted to the base of the pivot shaft, shown in

Figure 10.2. Removing the steering gear from the steering system allowed it to spin freely.

However, the original yoke does not have a caster offset. A caster design offsets the wheel axle

behind the pivot shaft of the yoke. With the pivot shaft ahead of the wheel’s contact patch, the

heading of the wheel will follow the heading of the pivot shaft and therefore the heading of the

vehicle. Without a caster offset, the free-spinning yokes on the Cub Cadet RZT-S will not follow

the heading of the mower, as shown in Figure 10.2.

111

Figure 10.2 - Comparison of the Cub Cadet RZT-S and ZT1-42 wheel yokes

 Other Cub Cadet zero-turn mower models have free spinning caster yokes. The Cub

Cadet ZT1-42 is one of these models. Its yokes use the same axle bolt as the RZT-S. Therefore,

the wheel and tire from the RZT-S fit on the ZT1-42 caster yoke. Additionally, the dimensions of

the pivot shaft on the ZT1-42 yoke match those of the RZT-S yoke. Two ZT1-42 caster yokes

were purchased from Cub Cadet to replace the original RZT-S yokes.

The steering gear on the original yokes also acted as thrust bushings. Since the steering

gear was not needed on the caster yoke, a thrust bushing of the same thickness (10 millimeters)

was needed. Two thrust bushings were cut from a 10-millimeter-thick steel plate and installed on

the caster yokes, as shown in Figure 10.3.

112

Figure 10.3 - Thrust bushing installed on a caster yoke

Installing caster yokes on the Cub Cadet offset the wheel and tire farther from the pivot

shaft, as shown in Figure 10.4. As a result, the spin radius of the left-side tire caused interference

with the anti-scalping wheel on the mowing deck.

Figure 10.4 - Increased tire spin radius caused by the new caster yoke

To allow the left caster to spin freely, the deck wheel was removed and relocated outside

of the spin radius. Relocation of the deck wheel required fabrication of a deck mounting block.

113
The mounting block was first 3D printed to assess fit and then waterjet cut from a 3.5x12x2-inch

block of aluminum as shown in Figure 10.5.

Figure 10.5 - Fabrication of deck mounting block

The aluminum deck block was mounted to the mowing deck with 3-inch long, 6-

millimeter carriage bolts. Two holes were bored through the deck block and deck for the bolts.

Two additional holes were drilled and tapped in the side of the block for the attachment on a 12-

inch long by 1/16-inch-thick steel C channel bar. A hole was bored in the end of the steel bar to

mount the deck wheel.

114

Figure 10.6 – Relocated mowing deck wheel with custom-fabricated mount

Relocating the mower deck wheel eliminated interference with the left caster yoke, as

shown in Figure 10.7. With free-spinning front casters, the Cub Cadet could be controlled as a

differential steer vehicle.

Figure 10.7 - Relocated deck wheel outside sufficiently far from the caster yoke spin radius

10.03 Integrating the Autonomous Control System

The Cub Cadet was further modified to accommodate integration of autonomy hardware

components. The sensitive electronics and signal wires of the Pixhawk system had to be located

115
away from the interference caused by high-current wires and motors. The sensor of primary

concern is the magnetometer, which is affected by ferrous metal.

The Cub Cadet steering column and seat were removed. Neither of these features are

needed for autonomous control. Beneath the seat is the flat deck shown in Figure 10.8.

Figure 10.8 - Flat deck below seat used for mounting the autonomy platform

 In Figure 10.8, four existing threaded bolt holes are circled. Each hole is labeled with its

thread type and pitch. The unmodified Cub Cadet used these holes to mount plastics. Two ¼-20-

2-inch bolts and two M6-50-millimeter bolts were used to mount the autonomy platform. First,

two blocks of 2x4 inch board were mounted to the seat deck. Next, a 12x24 inch sheet of OSB

plywood was mounted to the wooden blocks, as shown in Figure 10.9. A 24x24x12 inch cage

was built from 1x1 inch aluminum tubing with press-fit corners. This cage was bolted to the

plywood affixed to the mower, as shown in Figure 10.9.

116

Figure 10.9 – Wooden base of the autonomy platform on the seat deck

 An additional sheet of 12x24 inch OSB plywood was mounted to the top of the cage. The

resultant autonomy platform shown in Figure 10.10 provides ample space for hardware. A

minimal amount of ferrous metal is present in the autonomy platform. Wood was selected as the

material of the mounting surface because it is easy to add and remove hardware during

prototyping. The autonomous orchard mower system can be expected to undergo several

iterations of design changes.

Figure 10.10 - Cub Cadet retrofitted with autonomy platform

117
Removing the seat from the Cub Cadet made it difficult to use the brake pedal. Although

the mechanical parking brake is not controlled by the autonomous system, it is an important

safety feature. An emergency parking brake lever was fabricated from a 1x1 inch aluminum bar.

The bar was shaped and bolted to the pedal bracket, as shown in Figure 10.11.

Figure 10.11 - Brake lever bolted to the existing pedal bracket

The entire Pixhawk system from UGV01 was removed and installed onto the top of the

autonomy platform. The carbon-rod compass pedestal was mounted at the front of the platform,

along the center line. The GNSS antenna was mounted at the aft, also along the centerline.

Constrained by the length of the compass signal wire, the electronics housing was mounted

between the antenna and compass, as shown in Figure 10.12. As on UGV01, an 11.7V LiPo

battery was used to power the system.

118

Figure 10.12 - Pixhawk system mounted on the Cub Cadet autonomy platform

The Pixhawk was booted and then connected to Mission Planner to ensure the autonomy

platform did not interfere with the magnetometer. The true heading of the Cub Cadet was known

to be about 36 degrees and the magnetometer read a heading of about 49 degrees. This test

verified that the magnetometer was functional, but it needed recalibration. Recalibration will be

done during field tests at Rock Springs Orchard.

The Cub Cadet Motor Shield (CCMS) and Arduino Mega described in Section 9.05 were

housed in a control box. The user interface of this control box is detailed in Table 9.4. The

CCMS control box takes in five R/C channels, as shown in Figure 10.13 and Figure 10.14.

119

Figure 10.13 - Signal flow of R/C CCMS system

Figure 10.14 - R/C receivers wired to the CCMS control box

The CCMS accepts five PWM input signals, four of which the Pixhawk system had to be

able to modulate. The fifth PWM channel is for the dead man. Similar to integrating the Pixhawk

into the R/C system UGV01, the AR8010T receiver is replaced by the Pixhawk, as shown in

Figure 10.15 and Figure 10.16.

120

Figure 10.15 - Signal flow of Pixhawk CCMS system in manual mode

Figure 10.16 - Signal flow of Pixhawk CCMS system in auto mode

The Pixhawk system taken from UGV01 had two PWM output signals: one for the left

motor and one for the right. Two additional output channels were configured in ArduPilot for the

left and right mower deck motors. Servo channels 4 and 5 were assigned to R/C channels 5 and

7, respectively. The Learn Cruise function was remapped to the left stick. The ArduPilot

parameter adjustments are detailed in Table 10.1.

121
Table 10.1 – ArduPilot parameter adjustments for Pixhawk CCMS system

Parameter Value Function

SERVO4_FUNCTION 55 Map R/C channel 5 (switch A) to servo 4

SERVO5_FUNCTION 57 Map R/C channel 7 (switch F) to servo 5

RC5_OPTION 0 Remove Learn Cruise function from channel 5 (switch A)

RC1_OPTION 50 Add Learn Cruise function to channel 1 (left stick)

 The Pixhawk was wired to the CCMS by connecting its PWM output channels to the

proper CCMS inputs. The wiring connections of the R/C and Pixhawk CCMS systems are

summarized in Table 10.2. The R/C configuration uses the CCMS in mixed-signal mode whereas

the Pixhawk uses the CCMS in unmixed (straight) mode. In mixed mode, CCMS input ST

controls steering and TH controls throttle. In straight mode, ST controls the left hub and TH the

right hub.

Table 10.2 - Wiring connections of the CCMS systems

CCMS Input AR8010T Output Pixhawk Output Function

ST AIL CH1 Steering/Left Hub

TH ELE CH3 Throttle/Right Hub

LD AUX1 CH4 Left Deck

RD AUX2 CH5 Right Deck

The Pixhawk was powered on and armed with the Cub Cadet drive wheels elevated off

the ground, as shown in Figure 10.17. In manual mode, the Pixhawk successfully controlled the

left and right hubs, as well as the right deck motor. As noted in Section 9.02, the left deck motor

122
on the old RZT-S has a Hall sensor fault and therefore could not be operated. Testing of auto

mode and tuning of performance is needed. This will be done at Rock Springs orchard in April

2021.

Figure 10.17 - Cub Cadet with Pixhawk system installed

123
Chapter 11

Future Work

The Cub Cadet with Pixhawk system will be field tested at Rock Springs Orchard in

April 2021. Field testing during the course of the project was difficult due to a large amount of

snowfall. Preliminary testing will be done on the test track. The same mission that was given to

UGV01 will be given to the Cub Cadet. Based on the ability of the Pixhawk to control the Cub

Cadet, parameters will be tuned to improve performance. The Cub Cadet will react slightly

differently to the outputs from the Pixhawk since it pivots about the center of the rear axle, as

opposed to UGV01 which pivots about its geometric center. After tuning performance, the Cub

Cadet will be given orchard row missions in blocks A2 and A3, where the orchard rows are

relatively wide. This will provide a higher tolerance of deviation to increase safety during

testing.

The presence of foliage on trees can impact signal strength. UGV01 signal strength

within orchard rows was assessed when the trees were bare. Satellite signal strength will be

reassessed when the trees bloom in April 2021.

The next step in developing the control system for the Cub Cadet is integrating an

onboard computer running ROS. The onboard computer will be a Raspberry Pi 3. Adding a

companion computer to the Pixhawk will increase the local computational power available on

the vehicle. ROS onboard allows for the use of more complex sensing tools, such as LiDAR and

computer vision.

An array of ultrasonic sensors will also be added to the Cub Cadet for proximity sensing.

The array will consist of 5 sensors mounted at the front of the vehicle: one facing forward, two at

15 degrees, and two at 30 degrees, as shown in Figure 11.1. This array will find the distance to

124
objects directly in front of the vehicle for safety and object avoidance. It will also find the

distance to the trees on either side of the vehicle. This information can be used to adjust the

position of the mower between the rows of trees, correcting for deviation from the center.

Figure 11.1 - Ultrasonic array design for the Cub Cadet

The future autonomous control system for the Cub Cadet will not use the Pixhawk

autopilot controller. Rather, the onboard computer running ROS will perform the waypoint

navigation tasks currently done by the Pixhawk. A package will be built for ROS to use satellite

and sensor information for localization within the orchard. Mission plans will be given to the

onboard ROS system via the ROS master ground control station.

The mission updating feature developed for ROS will be improved. In its current form,

the user must know where the ground vehicle is within the orchard to generate a new mission.

The new mission must guide the ground vehicle out of the row and create an obstacle-free path

to the start of the new mission. To further automate the mission update sequence, a ROS-enabled

computer could use its knowledge of the orchard (i.e. the locations of the tree rows) to generate

an obstacle-free path to the start of the new mission. With the aid of range-finding sensors, the

Cub Cadet will be better equipped to assist the path-finding algorithm. Specifically, it will be

able to find its way out of an orchard row and around any obstacles between the end of the row

and the start of the new mission’s first row.

125
A new Cub Cadet RZT-S mower will be modified in the same manner as the old Cub

Cadet described in Chapter 10. The new Cub Cadet does not have a Hall sensor fault on the left

deck motor. Therefore, it is better equipped to mow orchard rows once the autonomy system has

been tested and proved on the old Cub Cadet. A comparison of the old and new Cub Cadet

mowers is shown in Figure 11.2.

Figure 11.2 - Modified old Cub Cadet compared to the new Cub Cadet

126
Appendix A

Mission Planner Parameter Lists

The parameter files presented in this appendix have been generated from Mission

Planner. The 919 parameters listed are for the ArduPilot Rover 4.0.0 firmware.

A.1 Non-RTK Configuration

In this configuration, the basic Pixhawk setup is used. The OEM GPS puck is used for

localization. To convert the text below into a file that can be uploaded into Mission Planner, a

continuous list of the parameter names with parameter values should be made in a text editor.

This list of comma-separated parameter and value pairs should be saved with a *.param file

extension. For example, this list of parameters in a text document can be saved as

Basic_Pixhawk.param.

Index Parameter Value Index Parameter Value

1 ACRO_TURN_RATE 180 461 RC11_MIN 1000

2 AHRS_COMP_BETA 0.1 462 RC11_OPTION 0

3 AHRS_CUSTOM_PIT 0 463 RC11_REVERSED 0

4 AHRS_CUSTOM_ROLL 0 464 RC11_TRIM 1500

5 AHRS_CUSTOM_YAW 0 465 RC12_DZ 0

6 AHRS_EKF_TYPE 2 466 RC12_MAX 2000

7 AHRS_GPS_GAIN 1 467 RC12_MIN 1000

8 AHRS_GPS_MINSATS 6 468 RC12_OPTION 0

9 AHRS_GPS_USE 1 469 RC12_REVERSED 0

10 AHRS_ORIENTATION 0 470 RC12_TRIM 1500

11 AHRS_RP_P 0.2 471 RC13_DZ 0

12 AHRS_TRIM_X -0.01955 472 RC13_MAX 2000

13 AHRS_TRIM_Y 0.027536 473 RC13_MIN 1000

14 AHRS_TRIM_Z 0 474 RC13_OPTION 0

15 AHRS_WIND_MAX 0 475 RC13_REVERSED 0

16 AHRS_YAW_P 0.2 476 RC13_TRIM 1500

17 ARMING_ACCTHRESH 0.75 477 RC14_DZ 0

127
18 ARMING_CHECK 1 478 RC14_MAX 2000

19 ARMING_MIS_ITEMS 0 479 RC14_MIN 1000

20 ARMING_REQUIRE 1 480 RC14_OPTION 0

21 ARMING_RUDDER 2 481 RC14_REVERSED 0

22 ARSPD_TYPE 0 482 RC14_TRIM 1500

23 ATC_ACCEL_MAX 0.3 483 RC15_DZ 0

24 ATC_BAL_D 0.03 484 RC15_MAX 1900

25 ATC_BAL_FF 0 485 RC15_MIN 1100

26 ATC_BAL_FLTD 0 486 RC15_OPTION 0

27 ATC_BAL_FLTE 10 487 RC15_REVERSED 0

28 ATC_BAL_FLTT 0 488 RC15_TRIM 1500

29 ATC_BAL_I 1.5 489 RC16_DZ 0

30 ATC_BAL_IMAX 1 490 RC16_MAX 1900

31 ATC_BAL_P 1.8 491 RC16_MIN 1100

32 ATC_BAL_SPD_FF 1 492 RC16_OPTION 0

33 ATC_BRAKE 0 493 RC16_REVERSED 0

34 ATC_DECEL_MAX 0 494 RC16_TRIM 1500

35 ATC_SAIL_D 0 495 RC2_DZ 30

36 ATC_SAIL_FF 0 496 RC2_MAX 1898

37 ATC_SAIL_FLTD 0 497 RC2_MIN 1098

38 ATC_SAIL_FLTE 10 498 RC2_OPTION 0

39 ATC_SAIL_FLTT 0 499 RC2_REVERSED 0

40 ATC_SAIL_I 0.1 500 RC2_TRIM 1498

41 ATC_SAIL_IMAX 1 501 RC3_DZ 0

42 ATC_SAIL_P 1 502 RC3_MAX 1900

43 ATC_SPEED_D 0 503 RC3_MIN 1100

44 ATC_SPEED_FF 0 504 RC3_OPTION 0

45 ATC_SPEED_FLTD 0 505 RC3_REVERSED 0

46 ATC_SPEED_FLTE 10 506 RC3_TRIM 1500

47 ATC_SPEED_FLTT 0 507 RC4_DZ 30

48 ATC_SPEED_I 0.2 508 RC4_MAX 1902

49 ATC_SPEED_IMAX 1 509 RC4_MIN 1102

50 ATC_SPEED_P 0.2 510 RC4_OPTION 0

51 ATC_STOP_SPEED 0.1 511 RC4_REVERSED 1

52 ATC_STR_ACC_MAX 180 512 RC4_TRIM 1502

53 ATC_STR_ANG_P 2.5 513 RC5_DZ 0

54 ATC_STR_RAT_D 0 514 RC5_MAX 1901

55 ATC_STR_RAT_FF 0.2 515 RC5_MIN 1099

56 ATC_STR_RAT_FLTD 0 516 RC5_OPTION 50

57 ATC_STR_RAT_FLTE 10 517 RC5_REVERSED 0

58 ATC_STR_RAT_FLTT 0 518 RC5_TRIM 1500

59 ATC_STR_RAT_I 0.2 519 RC6_DZ 0

128
60 ATC_STR_RAT_IMAX 0.8 520 RC6_MAX 1901

61 ATC_STR_RAT_MAX 360 521 RC6_MIN 1099

62 ATC_STR_RAT_P 0.1 522 RC6_OPTION 0

63 AUTO_KICKSTART 0 523 RC6_REVERSED 0

64 AUTO_TRIGGER_PIN -1 524 RC6_TRIM 1500

65 AVOID_ANGLE_MAX 1000 525 RC7_DZ 0

66 AVOID_BEHAVE 1 526 RC7_MAX 1901

67 AVOID_DIST_MAX 5 527 RC7_MIN 1099

68 AVOID_ENABLE 3 528 RC7_OPTION 0

69 AVOID_MARGIN 2 529 RC7_REVERSED 0

70 BAL_PITCH_MAX 2 530 RC7_TRIM 1500

71 BAL_PITCH_TRIM 0 531 RC8_DZ 0

72 BATT_MONITOR 0 532 RC8_MAX 1901

73 BATT2_MONITOR 0 533 RC8_MIN 1099

74 BATT3_MONITOR 0 534 RC8_OPTION 41

75 BATT4_MONITOR 0 535 RC8_REVERSED 0

76 BATT5_MONITOR 0 536 RC8_TRIM 1500

77 BATT6_MONITOR 0 537 RC9_DZ 0

78 BATT7_MONITOR 0 538 RC9_MAX 2000

79 BATT8_MONITOR 0 539 RC9_MIN 1000

80 BATT9_MONITOR 0 540 RC9_OPTION 0

81 BCN_ALT 0 541 RC9_REVERSED 0

82 BCN_LATITUDE 0 542 RC9_TRIM 1500

83 BCN_LONGITUDE 0 543 RCMAP_PITCH 1

84 BCN_ORIENT_YAW 0 544 RCMAP_ROLL 2

85 BCN_TYPE 0 545 RCMAP_THROTTLE 3

86 BRD_BOOT_DELAY 0 546 RCMAP_YAW 4

87 BRD_IO_ENABLE 1 547 RELAY_DEFAULT 0

88 BRD_OPTIONS 1 548 RELAY_PIN -1

89 BRD_PWM_COUNT 8 549 RELAY_PIN2 -1

90 BRD_RTC_TYPES 1 550 RELAY_PIN3 -1

91 BRD_RTC_TZ_MIN 0 551 RELAY_PIN4 -1

92 BRD_SAFETY_MASK 0 552 RELAY_PIN5 -1

93 BRD_SAFETYENABLE 1 553 RELAY_PIN6 -1

94 BRD_SAFETYOPTION 7 554 RNGFND1_ADDR 0

95 BRD_SBUS_OUT 0 555 RNGFND1_FUNCTION 0

96 BRD_SD_SLOWDOWN 0 556 RNGFND1_GNDCLEAR 10

97 BRD_SER1_RTSCTS 0 557 RNGFND1_MAX_CM 700

98 BRD_SER2_RTSCTS 0 558 RNGFND1_MIN_CM 20

99 BRD_SERIAL_NUM 0 559 RNGFND1_OFFSET 0

100 BRD_TYPE 24 560 RNGFND1_ORIENT 0

101 BRD_VBUS_MIN 4.3 561 RNGFND1_PIN -1

129
102 BRD_VSERVO_MIN 0 562 RNGFND1_POS_X 0

103 BTN_ENABLE 0 563 RNGFND1_POS_Y 0

104 CAM_AUTO_ONLY 0 564 RNGFND1_POS_Z 0

105 CAM_DURATION 10 565 RNGFND1_PWRRNG 0

106 CAM_FEEDBACK_PIN -1 566 RNGFND1_RMETRIC 1

107 CAM_FEEDBACK_POL 1 567 RNGFND1_SCALING 3

108 CAM_MAX_ROLL 0 568 RNGFND1_STOP_PIN -1

109 CAM_MIN_INTERVAL 0 569 RNGFND1_TYPE 0

110 CAM_RELAY_ON 1 570 RNGFND2_ADDR 0

111 CAM_SERVO_OFF 1100 571 RNGFND2_FUNCTION 0

112 CAM_SERVO_ON 1300 572 RNGFND2_GNDCLEAR 10

113 CAM_TRIGG_DIST 0 573 RNGFND2_MAX_CM 700

114 CAM_TRIGG_TYPE 0 574 RNGFND2_MIN_CM 20

115 CAM_TYPE 0 575 RNGFND2_OFFSET 0

116 CAN_D1_PROTOCOL 1 576 RNGFND2_ORIENT 0

117 CAN_D2_PROTOCOL 1 577 RNGFND2_PIN -1

118 CAN_P1_DRIVER 0 578 RNGFND2_POS_X 0

119 CAN_P2_DRIVER 0 579 RNGFND2_POS_Y 0

120 CAN_SLCAN_CPORT 0 580 RNGFND2_POS_Z 0

121 CAN_SLCAN_SERNUM -1 581 RNGFND2_PWRRNG 0

122 CAN_SLCAN_TIMOUT 0 582 RNGFND2_RMETRIC 1

123 COMPASS_AUTO_ROT 2 583 RNGFND2_SCALING 3

124 COMPASS_AUTODEC 1 584 RNGFND2_STOP_PIN -1

125 COMPASS_CAL_FIT 32 585 RNGFND2_TYPE 0

126 COMPASS_DEC -0.2289 586 RNGFND3_ADDR 0

127 COMPASS_DEV_ID 658953 587 RNGFND3_FUNCTION 0

128 COMPASS_DEV_ID2 658945 588 RNGFND3_GNDCLEAR 10

129 COMPASS_DEV_ID3 0 589 RNGFND3_MAX_CM 700

130 COMPASS_DIA_X 0.963464 590 RNGFND3_MIN_CM 20

131 COMPASS_DIA_Y 0.958935 591 RNGFND3_OFFSET 0

132 COMPASS_DIA_Z 1.042703 592 RNGFND3_ORIENT 0

133 COMPASS_DIA2_X 1.004654 593 RNGFND3_PIN -1

134 COMPASS_DIA2_Y 1.04455 594 RNGFND3_POS_X 0

135 COMPASS_DIA2_Z 1.087546 595 RNGFND3_POS_Y 0

136 COMPASS_DIA3_X 0 596 RNGFND3_POS_Z 0

137 COMPASS_DIA3_Y 0 597 RNGFND3_PWRRNG 0

138 COMPASS_DIA3_Z 0 598 RNGFND3_RMETRIC 1

139 COMPASS_ENABLE 1 599 RNGFND3_SCALING 3

140 COMPASS_EXP_DID -1 600 RNGFND3_STOP_PIN -1

141 COMPASS_EXP_DID2 -1 601 RNGFND3_TYPE 0

142 COMPASS_EXP_DID3 -1 602 RNGFND4_ADDR 0

143 COMPASS_EXTERN2 0 603 RNGFND4_FUNCTION 0

130
144 COMPASS_EXTERN3 0 604 RNGFND4_GNDCLEAR 10

145 COMPASS_EXTERNAL 1 605 RNGFND4_MAX_CM 700

146 COMPASS_FLTR_RNG 0 606 RNGFND4_MIN_CM 20

147 COMPASS_LEARN 0 607 RNGFND4_OFFSET 0

148 COMPASS_MOT_X 0 608 RNGFND4_ORIENT 0

149 COMPASS_MOT_Y 0 609 RNGFND4_PIN -1

150 COMPASS_MOT_Z 0 610 RNGFND4_POS_X 0

151 COMPASS_MOT2_X 0 611 RNGFND4_POS_Y 0

152 COMPASS_MOT2_Y 0 612 RNGFND4_POS_Z 0

153 COMPASS_MOT2_Z 0 613 RNGFND4_PWRRNG 0

154 COMPASS_MOT3_X 0 614 RNGFND4_RMETRIC 1

155 COMPASS_MOT3_Y 0 615 RNGFND4_SCALING 3

156 COMPASS_MOT3_Z 0 616 RNGFND4_STOP_PIN -1

157 COMPASS_MOTCT 0 617 RNGFND4_TYPE 0

158 COMPASS_ODI_X 0.000969 618 RNGFND5_ADDR 0

159 COMPASS_ODI_Y -0.06673 619 RNGFND5_FUNCTION 0

160 COMPASS_ODI_Z 0.118935 620 RNGFND5_GNDCLEAR 10

161 COMPASS_ODI2_X -0.01676 621 RNGFND5_MAX_CM 700

162 COMPASS_ODI2_Y -0.09601 622 RNGFND5_MIN_CM 20

163 COMPASS_ODI2_Z 0.063797 623 RNGFND5_OFFSET 0

164 COMPASS_ODI3_X 0 624 RNGFND5_ORIENT 0

165 COMPASS_ODI3_Y 0 625 RNGFND5_PIN -1

166 COMPASS_ODI3_Z 0 626 RNGFND5_POS_X 0

167 COMPASS_OFFS_MAX 800 627 RNGFND5_POS_Y 0

168 COMPASS_OFS_X 5.793118 628 RNGFND5_POS_Z 0

169 COMPASS_OFS_Y 21.75474 629 RNGFND5_PWRRNG 0

170 COMPASS_OFS_Z -102.489 630 RNGFND5_RMETRIC 1

171 COMPASS_OFS2_X 28.66513 631 RNGFND5_SCALING 3

172 COMPASS_OFS2_Y 98.94672 632 RNGFND5_STOP_PIN -1

173 COMPASS_OFS2_Z -7.05574 633 RNGFND5_TYPE 0

174 COMPASS_OFS3_X 0 634 RNGFND6_ADDR 0

175 COMPASS_OFS3_Y 0 635 RNGFND6_FUNCTION 0

176 COMPASS_OFS3_Z 0 636 RNGFND6_GNDCLEAR 10

177 COMPASS_ORIENT 0 637 RNGFND6_MAX_CM 700

178 COMPASS_ORIENT2 0 638 RNGFND6_MIN_CM 20

179 COMPASS_ORIENT3 0 639 RNGFND6_OFFSET 0

180 COMPASS_PMOT_EN 0 640 RNGFND6_ORIENT 0

181 COMPASS_PRIMARY 0 641 RNGFND6_PIN -1

182 COMPASS_TYPEMASK 0 642 RNGFND6_POS_X 0

183 COMPASS_USE 1 643 RNGFND6_POS_Y 0

184 COMPASS_USE2 0 644 RNGFND6_POS_Z 0

185 COMPASS_USE3 0 645 RNGFND6_PWRRNG 0

131
186 CRASH_ANGLE 0 646 RNGFND6_RMETRIC 1

187 CRUISE_SPEED 1.111076 647 RNGFND6_SCALING 3

188 CRUISE_THROTTLE 100 648 RNGFND6_STOP_PIN -1

189 EK2_ABIAS_P_NSE 0.005 649 RNGFND6_TYPE 0

190 EK2_ACC_P_NSE 0.6 650 RNGFND7_ADDR 0

191 EK2_ALT_M_NSE 3 651 RNGFND7_FUNCTION 0

192 EK2_ALT_SOURCE 0 652 RNGFND7_GNDCLEAR 10

193 EK2_BCN_DELAY 50 653 RNGFND7_MAX_CM 700

194 EK2_BCN_I_GTE 500 654 RNGFND7_MIN_CM 20

195 EK2_BCN_M_NSE 1 655 RNGFND7_OFFSET 0

196 EK2_CHECK_SCALE 100 656 RNGFND7_ORIENT 0

197 EK2_EAS_I_GATE 400 657 RNGFND7_PIN -1

198 EK2_EAS_M_NSE 1.4 658 RNGFND7_POS_X 0

199 EK2_ENABLE 1 659 RNGFND7_POS_Y 0

200 EK2_EXTNAV_DELAY 10 660 RNGFND7_POS_Z 0

201 EK2_FLOW_DELAY 10 661 RNGFND7_PWRRNG 0

202 EK2_FLOW_I_GATE 300 662 RNGFND7_RMETRIC 1

203 EK2_FLOW_M_NSE 0.25 663 RNGFND7_SCALING 3

204 EK2_FLOW_USE 1 664 RNGFND7_STOP_PIN -1

205 EK2_GBIAS_P_NSE 0.0001 665 RNGFND7_TYPE 0

206 EK2_GLITCH_RAD 25 666 RNGFND8_ADDR 0

207 EK2_GPS_CHECK 31 667 RNGFND8_FUNCTION 0

208 EK2_GPS_TYPE 1 668 RNGFND8_GNDCLEAR 10

209 EK2_GSCL_P_NSE 0.0005 669 RNGFND8_MAX_CM 700

210 EK2_GYRO_P_NSE 0.03 670 RNGFND8_MIN_CM 20

211 EK2_HGT_DELAY 60 671 RNGFND8_OFFSET 0

212 EK2_HGT_I_GATE 500 672 RNGFND8_ORIENT 0

213 EK2_HRT_FILT 2 673 RNGFND8_PIN -1

214 EK2_IMU_MASK 3 674 RNGFND8_POS_X 0

215 EK2_LOG_MASK 1 675 RNGFND8_POS_Y 0

216 EK2_MAG_CAL 2 676 RNGFND8_POS_Z 0

217 EK2_MAG_EF_LIM 50 677 RNGFND8_PWRRNG 0

218 EK2_MAG_I_GATE 300 678 RNGFND8_RMETRIC 1

219 EK2_MAG_M_NSE 0.05 679 RNGFND8_SCALING 3

220 EK2_MAG_MASK 0 680 RNGFND8_STOP_PIN -1

221 EK2_MAGB_P_NSE 0.0001 681 RNGFND8_TYPE 0

222 EK2_MAGE_P_NSE 0.001 682 RNGFND9_ADDR 0

223 EK2_MAX_FLOW 2.5 683 RNGFND9_FUNCTION 0

224 EK2_NOAID_M_NSE 10 684 RNGFND9_GNDCLEAR 10

225 EK2_OGN_HGT_MASK 0 685 RNGFND9_MAX_CM 700

226 EK2_POS_I_GATE 500 686 RNGFND9_MIN_CM 20

227 EK2_POSNE_M_NSE 1 687 RNGFND9_OFFSET 0

132
228 EK2_RNG_I_GATE 500 688 RNGFND9_ORIENT 0

229 EK2_RNG_M_NSE 0.5 689 RNGFND9_PIN -1

230 EK2_RNG_USE_HGT -1 690 RNGFND9_POS_X 0

231 EK2_RNG_USE_SPD 2 691 RNGFND9_POS_Y 0

232 EK2_TAU_OUTPUT 25 692 RNGFND9_POS_Z 0

233 EK2_TERR_GRAD 0.1 693 RNGFND9_PWRRNG 0

234 EK2_VEL_I_GATE 500 694 RNGFND9_RMETRIC 1

235 EK2_VELD_M_NSE 0.7 695 RNGFND9_SCALING 3

236 EK2_VELNE_M_NSE 0.5 696 RNGFND9_STOP_PIN -1

237 EK2_WIND_P_NSE 0.1 697 RNGFND9_TYPE 0

238 EK2_WIND_PSCALE 0.5 698 RNGFNDA_ADDR 0

239 EK2_YAW_I_GATE 300 699 RNGFNDA_FUNCTION 0

240 EK2_YAW_M_NSE 0.5 700 RNGFNDA_GNDCLEAR 10

241 EK3_ENABLE 0 701 RNGFNDA_MAX_CM 700

242 FENCE_ACTION 1 702 RNGFNDA_MIN_CM 20

243 FENCE_ENABLE 0 703 RNGFNDA_OFFSET 0

244 FENCE_MARGIN 2 704 RNGFNDA_ORIENT 0

245 FENCE_RADIUS 300 705 RNGFNDA_PIN -1

246 FENCE_TOTAL 0 706 RNGFNDA_POS_X 0

247 FENCE_TYPE 6 707 RNGFNDA_POS_Y 0

248 FOLL_ENABLE 0 708 RNGFNDA_POS_Z 0

249 FORMAT_VERSION 16 709 RNGFNDA_PWRRNG 0

250 FRAME_CLASS 1 710 RNGFNDA_RMETRIC 1

251 FRAME_TYPE 0 711 RNGFNDA_SCALING 3

252 FS_ACTION 2 712 RNGFNDA_STOP_PIN -1

253 FS_CRASH_CHECK 0 713 RNGFNDA_TYPE 0

254 FS_EKF_ACTION 1 714 RPM_MAX 100000

255 FS_EKF_THRESH 0.8 715 RPM_MIN 10

256 FS_GCS_ENABLE 0 716 RPM_MIN_QUAL 0.5

257 FS_OPTIONS 0 717 RPM_PIN 54

258 FS_THR_ENABLE 1 718 RPM_SCALING 1

259 FS_THR_VALUE 910 719 RPM_TYPE 0

260 FS_TIMEOUT 1.5 720 RPM2_PIN -1

261 GCS_PID_MASK 0 721 RPM2_SCALING 1

262 GND_ABS_PRESS 97793.36 722 RPM2_TYPE 0

263 GND_ABS_PRESS2 0 723 RSSI_TYPE 0

264 GND_ABS_PRESS3 0 724 RST_SWITCH_CH 0

265 GND_ALT_OFFSET 0 725 RTL_SPEED 0

266 GND_EXT_BUS -1 726 SAIL_ENABLE 0

267 GND_FLTR_RNG 0 727 SCHED_DEBUG 0

268 GND_PRIMARY 0 728 SCHED_LOOP_RATE 50

269 GND_PROBE_EXT 0 729 SCR_ENABLE 0

133
270 GND_TEMP 0 730 SERIAL_PASS1 0

271 GPS_AUTO_CONFIG 1 731 SERIAL_PASS2 -1

272 GPS_AUTO_SWITCH 1 732 SERIAL_PASSTIMO 15

273 GPS_BLEND_MASK 5 733 SERIAL0_BAUD 115

274 GPS_BLEND_TC 10 734 SERIAL0_PROTOCOL 2

275 GPS_DELAY_MS 0 735 SERIAL1_BAUD 57

276 GPS_DELAY_MS2 0 736 SERIAL1_OPTIONS 0

277 GPS_GNSS_MODE 0 737 SERIAL1_PROTOCOL 1

278 GPS_GNSS_MODE2 0 738 SERIAL2_BAUD 57

279 GPS_INJECT_TO 127 739 SERIAL2_OPTIONS 0

280 GPS_MIN_DGPS 100 740 SERIAL2_PROTOCOL 1

281 GPS_MIN_ELEV -100 741 SERIAL3_BAUD 38

282 GPS_NAVFILTER 8 742 SERIAL3_OPTIONS 0

283 GPS_POS1_X 0.185 743 SERIAL3_PROTOCOL 5

284 GPS_POS1_Y 0 744 SERIAL4_BAUD 38

285 GPS_POS1_Z -0.175 745 SERIAL4_OPTIONS 0

286 GPS_POS2_X -0.125 746 SERIAL4_PROTOCOL 5

287 GPS_POS2_Y 0 747 SERIAL5_BAUD 57

288 GPS_POS2_Z -0.11 748 SERIAL5_OPTIONS 0

289 GPS_RATE_MS 200 749 SERIAL5_PROTOCOL -1

290 GPS_RATE_MS2 200 750 SERIAL6_BAUD 57

291 GPS_RAW_DATA 0 751 SERIAL6_OPTIONS 0

292 GPS_SAVE_CFG 2 752 SERIAL6_PROTOCOL -1

293 GPS_SBAS_MODE 2 753 SERIAL7_BAUD 115200

294 GPS_SBP_LOGMASK -256 754 SERIAL7_OPTIONS 0

295 GPS_TYPE 1 755 SERIAL7_PROTOCOL 2

296 GPS_TYPE2 0 756 SERVO_BLH_DEBUG 0

297 GRIP_ENABLE 0 757 SERVO_BLH_MASK 0

298 INITIAL_MODE 0 758 SERVO_BLH_OTYPE 0

299 INS_ACC_BODYFIX 2 759 SERVO_BLH_POLES 14

300 INS_ACC_ID 2621706 760 SERVO_BLH_PORT 0

301 INS_ACC2_ID 2688010 761 SERVO_BLH_REMASK 0

302 INS_ACC2OFFS_X 0.161591 762 SERVO_BLH_TEST 0

303 INS_ACC2OFFS_Y -0.03968 763 SERVO_BLH_TMOUT 0

304 INS_ACC2OFFS_Z 0.138354 764 SERVO_BLH_TRATE 10

305 INS_ACC2SCAL_X 0.991839 765 SERVO_RATE 50

306 INS_ACC2SCAL_Y 0.990431 766 SERVO_ROB_POSMAX 4095

307 INS_ACC2SCAL_Z 0.981222 767 SERVO_ROB_POSMIN 0

308 INS_ACC3_ID 0 768 SERVO_SBUS_RATE 50

309 INS_ACC3OFFS_X 0 769 SERVO_VOLZ_MASK 0

310 INS_ACC3OFFS_Y 0 770 SERVO1_FUNCTION 73

311 INS_ACC3OFFS_Z 0 771 SERVO1_MAX 1880

134
312 INS_ACC3SCAL_X 0 772 SERVO1_MIN 1100

313 INS_ACC3SCAL_Y 0 773 SERVO1_REVERSED 0

314 INS_ACC3SCAL_Z 0 774 SERVO1_TRIM 1500

315 INS_ACCEL_FILTER 10 775 SERVO10_FUNCTION 0

316 INS_ACCOFFS_X -0.08955 776 SERVO10_MAX 1900

317 INS_ACCOFFS_Y 0.172145 777 SERVO10_MIN 1100

318 INS_ACCOFFS_Z 0.064103 778 SERVO10_REVERSED 0

319 INS_ACCSCAL_X 0.997815 779 SERVO10_TRIM 1500

320 INS_ACCSCAL_Y 0.999581 780 SERVO11_FUNCTION 0

321 INS_ACCSCAL_Z 0.98419 781 SERVO11_MAX 1900

322 INS_ENABLE_MASK 127 782 SERVO11_MIN 1100

323 INS_FAST_SAMPLE 1 783 SERVO11_REVERSED 0

324 INS_GYR_CAL 1 784 SERVO11_TRIM 1500

325 INS_GYR_ID 2621706 785 SERVO12_FUNCTION 0

326 INS_GYR2_ID 2687754 786 SERVO12_MAX 1900

327 INS_GYR2OFFS_X -0.00299 787 SERVO12_MIN 1100

328 INS_GYR2OFFS_Y 0.003449 788 SERVO12_REVERSED 0

329 INS_GYR2OFFS_Z 0.001118 789 SERVO12_TRIM 1500

330 INS_GYR3_ID 0 790 SERVO13_FUNCTION 0

331 INS_GYR3OFFS_X 0 791 SERVO13_MAX 1900

332 INS_GYR3OFFS_Y 0 792 SERVO13_MIN 1100

333 INS_GYR3OFFS_Z 0 793 SERVO13_REVERSED 0

334 INS_GYRO_FILTER 4 794 SERVO13_TRIM 1500

335 INS_GYROFFS_X 0.025607 795 SERVO14_FUNCTION 0

336 INS_GYROFFS_Y -0.01907 796 SERVO14_MAX 1900

337 INS_GYROFFS_Z -0.00255 797 SERVO14_MIN 1100

338 INS_HNTCH_ENABLE 0 798 SERVO14_REVERSED 0

339 INS_LOG_BAT_CNT 1024 799 SERVO14_TRIM 1500

340 INS_LOG_BAT_LGCT 32 800 SERVO15_FUNCTION 0

341 INS_LOG_BAT_LGIN 20 801 SERVO15_MAX 1900

342 INS_LOG_BAT_MASK 0 802 SERVO15_MIN 1100

343 INS_LOG_BAT_OPT 0 803 SERVO15_REVERSED 0

344 INS_NOTCH_ENABLE 0 804 SERVO15_TRIM 1500

345 INS_POS1_X 0.04 805 SERVO16_FUNCTION 0

346 INS_POS1_Y 0.05 806 SERVO16_MAX 1900

347 INS_POS1_Z 0.045 807 SERVO16_MIN 1100

348 INS_POS2_X 0 808 SERVO16_REVERSED 0

349 INS_POS2_Y 0 809 SERVO16_TRIM 1500

350 INS_POS2_Z 0 810 SERVO2_FUNCTION 0

351 INS_POS3_X 0 811 SERVO2_MAX 1900

352 INS_POS3_Y 0 812 SERVO2_MIN 1100

353 INS_POS3_Z 0 813 SERVO2_REVERSED 0

135
354 INS_STILL_THRESH 0.1 814 SERVO2_TRIM 1500

355 INS_TRIM_OPTION 1 815 SERVO3_FUNCTION 74

356 INS_USE 1 816 SERVO3_MAX 1950

357 INS_USE2 1 817 SERVO3_MIN 1100

358 INS_USE3 1 818 SERVO3_REVERSED 0

359 LOG_BACKEND_TYPE 1 819 SERVO3_TRIM 1500

360 LOG_BITMASK 65535 820 SERVO4_FUNCTION 0

361 LOG_DISARMED 1 821 SERVO4_MAX 1900

362 LOG_FILE_BUFSIZE 50 822 SERVO4_MIN 1100

363 LOG_FILE_DSRMROT 0 823 SERVO4_REVERSED 0

364 LOG_FILE_TIMEOUT 5 824 SERVO4_TRIM 1500

365 LOG_MAV_BUFSIZE 8 825 SERVO5_FUNCTION 0

366 LOG_REPLAY 0 826 SERVO5_MAX 1900

367 LOIT_RADIUS 2 827 SERVO5_MIN 1100

368 LOIT_SPEED_GAIN 0.5 828 SERVO5_REVERSED 0

369 LOIT_TYPE 0 829 SERVO5_TRIM 1500

370 MIS_DONE_BEHAVE 0 830 SERVO6_FUNCTION 0

371 MIS_OPTIONS 0 831 SERVO6_MAX 1900

372 MIS_RESTART 0 832 SERVO6_MIN 1100

373 MIS_TOTAL 36 833 SERVO6_REVERSED 0

374 MNT_ANGMAX_PAN 4500 834 SERVO6_TRIM 1500

375 MNT_ANGMAX_ROL 4500 835 SERVO7_FUNCTION 0

376 MNT_ANGMAX_TIL 4500 836 SERVO7_MAX 1900

377 MNT_ANGMIN_PAN -4500 837 SERVO7_MIN 1100

378 MNT_ANGMIN_ROL -4500 838 SERVO7_REVERSED 0

379 MNT_ANGMIN_TIL -4500 839 SERVO7_TRIM 1500

380 MNT_DEFLT_MODE 3 840 SERVO8_FUNCTION 0

381 MNT_JSTICK_SPD 0 841 SERVO8_MAX 1900

382 MNT_LEAD_PTCH 0 842 SERVO8_MIN 1100

383 MNT_LEAD_RLL 0 843 SERVO8_REVERSED 0

384 MNT_NEUTRAL_X 0 844 SERVO8_TRIM 1500

385 MNT_NEUTRAL_Y 0 845 SERVO9_FUNCTION 0

386 MNT_NEUTRAL_Z 0 846 SERVO9_MAX 1900

387 MNT_RC_IN_PAN 0 847 SERVO9_MIN 1100

388 MNT_RC_IN_ROLL 0 848 SERVO9_REVERSED 0

389 MNT_RC_IN_TILT 0 849 SERVO9_TRIM 1500

390 MNT_RETRACT_X 0 850 SIMPLE_TYPE 0

391 MNT_RETRACT_Y 0 851 SPEED_MAX 0

392 MNT_RETRACT_Z 0 852 SPRAY_ENABLE 0

393 MNT_STAB_PAN 0 853 SR0_ADSB 0

394 MNT_STAB_ROLL 0 854 SR0_EXT_STAT 2

395 MNT_STAB_TILT 0 855 SR0_EXTRA1 4

136
396 MNT_TYPE 0 856 SR0_EXTRA2 4

397 MODE_CH 6 857 SR0_EXTRA3 2

398 MODE1 10 858 SR0_PARAMS 10

399 MODE2 4 859 SR0_POSITION 2

400 MODE3 5 860 SR0_RAW_CTRL 1

401 MODE4 0 861 SR0_RAW_SENS 2

402 MODE5 0 862 SR0_RC_CHAN 2

403 MODE6 3 863 SR1_ADSB 0

404 MOT_PWM_FREQ 16 864 SR1_EXT_STAT 2

405 MOT_PWM_TYPE 0 865 SR1_EXTRA1 4

406 MOT_SAFE_DISARM 0 866 SR1_EXTRA2 4

407 MOT_SLEWRATE 100 867 SR1_EXTRA3 2

408 MOT_SPD_SCA_BASE 1 868 SR1_PARAMS 10

409 MOT_THR_MAX 100 869 SR1_POSITION 2

410 MOT_THR_MIN 4 870 SR1_RAW_CTRL 1

411 MOT_THST_EXPO 0 871 SR1_RAW_SENS 2

412 MOT_VEC_THR_BASE 0 872 SR1_RC_CHAN 2

413 NAVL1_DAMPING 0.75 873 SR2_ADSB 0

414 NAVL1_PERIOD 11 874 SR2_EXT_STAT 1

415 NAVL1_XTRACK_I 0.02 875 SR2_EXTRA1 1

416 NTF_BUZZ_ENABLE 1 876 SR2_EXTRA2 1

417 NTF_BUZZ_ON_LVL 1 877 SR2_EXTRA3 1

418 NTF_BUZZ_PIN 0 878 SR2_PARAMS 10

419 NTF_BUZZ_VOLUME 100 879 SR2_POSITION 1

420 NTF_DISPLAY_TYPE 0 880 SR2_RAW_CTRL 1

421 NTF_LED_BRIGHT 3 881 SR2_RAW_SENS 1

422 NTF_LED_OVERRIDE 0 882 SR2_RC_CHAN 1

423 NTF_LED_TYPES 199 883 SR3_ADSB 0

424 NTF_OREO_THEME 0 884 SR3_EXT_STAT 2

425 OA_TYPE 0 885 SR3_EXTRA1 4

426 PILOT_STEER_TYPE 0 886 SR3_EXTRA2 4

427 PRX_IGN_ANG1 0 887 SR3_EXTRA3 2

428 PRX_IGN_ANG2 0 888 SR3_PARAMS 10

429 PRX_IGN_ANG3 0 889 SR3_POSITION 2

430 PRX_IGN_ANG4 0 890 SR3_RAW_CTRL 1

431 PRX_IGN_ANG5 0 891 SR3_RAW_SENS 2

432 PRX_IGN_ANG6 0 892 SR3_RC_CHAN 2

433 PRX_IGN_WID1 0 893 SRTL_ACCURACY 2

434 PRX_IGN_WID2 0 894 SRTL_POINTS 300

435 PRX_IGN_WID3 0 895 STAT_BOOTCNT 17

436 PRX_IGN_WID4 0 896 STAT_FLTTIME 2257

437 PRX_IGN_WID5 0 897 STAT_RESET 1.6E+08

137
438 PRX_IGN_WID6 0 898 STAT_RUNTIME 185820

439 PRX_ORIENT 0 899 STICK_MIXING 0

440 PRX_TYPE 0 900 SYSID_ENFORCE 0

441 PRX_YAW_CORR 0 901 SYSID_MYGCS 255

442 RALLY_INCL_HOME 1 902 SYSID_THISMAV 1

443 RALLY_LIMIT_KM 0.5 903 TELEM_DELAY 0

444 RALLY_TOTAL 0 904 TURN_MAX_G 0.6

445 RC_OPTIONS 0 905 TURN_RADIUS 0.1

446 RC_OVERRIDE_TIME 3 906 VISO_ORIENT 0

447 RC1_DZ 0 907 VISO_POS_X 0

448 RC1_MAX 1901 908 VISO_POS_Y 0

449 RC1_MIN 1099 909 VISO_POS_Z 0

450 RC1_OPTION 0 910 VISO_TYPE 0

451 RC1_REVERSED 0 911 WENC_TYPE 0

452 RC1_TRIM 1099 912 WNDVN_TYPE 0

453 RC10_DZ 0 913 WP_OVERSHOOT 2

454 RC10_MAX 2000 914 WP_PIVOT_ANGLE 60

455 RC10_MIN 1000 915 WP_PIVOT_RATE 90

456 RC10_OPTION 0 916 WP_RADIUS 2

457 RC10_REVERSED 0 917 WP_SPEED 1

458 RC10_TRIM 1500 918 WP_SPEED_MIN 0

459 RC11_DZ 0 919 WRC_ENABLE 0

460 RC11_MAX 2000

138
A.2 RTK GPS Configuration

In this configuration, RTK GPS is used with the Pixhawk. The procedure for saving this

parameter list into a format compatible with Mission Planner is described in Appendix A.1.

Index Parameter Value Index Parameter Value

1 ACRO_TURN_RATE 180 461 RC11_MIN 1000

2 AHRS_COMP_BETA 0.1 462 RC11_OPTION 0

3 AHRS_CUSTOM_PIT 0 463 RC11_REVERSED 0

4 AHRS_CUSTOM_ROLL 0 464 RC11_TRIM 1500

5 AHRS_CUSTOM_YAW 0 465 RC12_DZ 0

6 AHRS_EKF_TYPE 2 466 RC12_MAX 2000

7 AHRS_GPS_GAIN 1 467 RC12_MIN 1000

8 AHRS_GPS_MINSATS 6 468 RC12_OPTION 0

9 AHRS_GPS_USE 1 469 RC12_REVERSED 0

10 AHRS_ORIENTATION 0 470 RC12_TRIM 1500

11 AHRS_RP_P 0.2 471 RC13_DZ 0

12 AHRS_TRIM_X -0.01955 472 RC13_MAX 2000

13 AHRS_TRIM_Y 0.027536 473 RC13_MIN 1000

14 AHRS_TRIM_Z 0 474 RC13_OPTION 0

15 AHRS_WIND_MAX 0 475 RC13_REVERSED 0

16 AHRS_YAW_P 0.2 476 RC13_TRIM 1500

17 ARMING_ACCTHRESH 0.75 477 RC14_DZ 0

18 ARMING_CHECK 60926 478 RC14_MAX 2000

19 ARMING_MIS_ITEMS 0 479 RC14_MIN 1000

20 ARMING_REQUIRE 1 480 RC14_OPTION 0

21 ARMING_RUDDER 2 481 RC14_REVERSED 0

22 ARSPD_TYPE 0 482 RC14_TRIM 1500

23 ATC_ACCEL_MAX 0.3 483 RC15_DZ 0

24 ATC_BAL_D 0.03 484 RC15_MAX 1900

25 ATC_BAL_FF 0 485 RC15_MIN 1100

26 ATC_BAL_FLTD 0 486 RC15_OPTION 0

27 ATC_BAL_FLTE 10 487 RC15_REVERSED 0

28 ATC_BAL_FLTT 0 488 RC15_TRIM 1500

29 ATC_BAL_I 1.5 489 RC16_DZ 0

30 ATC_BAL_IMAX 1 490 RC16_MAX 1900

31 ATC_BAL_P 1.8 491 RC16_MIN 1100

32 ATC_BAL_SPD_FF 1 492 RC16_OPTION 0

33 ATC_BRAKE 0 493 RC16_REVERSED 0

34 ATC_DECEL_MAX 0 494 RC16_TRIM 1500

35 ATC_SAIL_D 0 495 RC2_DZ 30

139
36 ATC_SAIL_FF 0 496 RC2_MAX 1898

37 ATC_SAIL_FLTD 0 497 RC2_MIN 1098

38 ATC_SAIL_FLTE 10 498 RC2_OPTION 0

39 ATC_SAIL_FLTT 0 499 RC2_REVERSED 0

40 ATC_SAIL_I 0.1 500 RC2_TRIM 1498

41 ATC_SAIL_IMAX 1 501 RC3_DZ 0

42 ATC_SAIL_P 1 502 RC3_MAX 1900

43 ATC_SPEED_D 0 503 RC3_MIN 1100

44 ATC_SPEED_FF 0 504 RC3_OPTION 0

45 ATC_SPEED_FLTD 0 505 RC3_REVERSED 0

46 ATC_SPEED_FLTE 10 506 RC3_TRIM 1500

47 ATC_SPEED_FLTT 0 507 RC4_DZ 30

48 ATC_SPEED_I 0.2 508 RC4_MAX 1902

49 ATC_SPEED_IMAX 1 509 RC4_MIN 1102

50 ATC_SPEED_P 0.2 510 RC4_OPTION 0

51 ATC_STOP_SPEED 0.1 511 RC4_REVERSED 1

52 ATC_STR_ACC_MAX 180 512 RC4_TRIM 1502

53 ATC_STR_ANG_P 2.5 513 RC5_DZ 0

54 ATC_STR_RAT_D 0 514 RC5_MAX 1901

55 ATC_STR_RAT_FF 0.2 515 RC5_MIN 1099

56 ATC_STR_RAT_FLTD 0 516 RC5_OPTION 50

57 ATC_STR_RAT_FLTE 10 517 RC5_REVERSED 0

58 ATC_STR_RAT_FLTT 0 518 RC5_TRIM 1500

59 ATC_STR_RAT_I 0.2 519 RC6_DZ 0

60 ATC_STR_RAT_IMAX 0.8 520 RC6_MAX 1901

61 ATC_STR_RAT_MAX 360 521 RC6_MIN 1099

62 ATC_STR_RAT_P 0.1 522 RC6_OPTION 0

63 AUTO_KICKSTART 0 523 RC6_REVERSED 0

64 AUTO_TRIGGER_PIN -1 524 RC6_TRIM 1500

65 AVOID_ANGLE_MAX 1000 525 RC7_DZ 0

66 AVOID_BEHAVE 1 526 RC7_MAX 1901

67 AVOID_DIST_MAX 5 527 RC7_MIN 1099

68 AVOID_ENABLE 3 528 RC7_OPTION 0

69 AVOID_MARGIN 2 529 RC7_REVERSED 0

70 BAL_PITCH_MAX 2 530 RC7_TRIM 1500

71 BAL_PITCH_TRIM 0 531 RC8_DZ 0

72 BATT_MONITOR 0 532 RC8_MAX 1901

73 BATT2_MONITOR 0 533 RC8_MIN 1099

74 BATT3_MONITOR 0 534 RC8_OPTION 41

75 BATT4_MONITOR 0 535 RC8_REVERSED 0

76 BATT5_MONITOR 0 536 RC8_TRIM 1500

77 BATT6_MONITOR 0 537 RC9_DZ 0

140
78 BATT7_MONITOR 0 538 RC9_MAX 2000

79 BATT8_MONITOR 0 539 RC9_MIN 1000

80 BATT9_MONITOR 0 540 RC9_OPTION 0

81 BCN_ALT 0 541 RC9_REVERSED 0

82 BCN_LATITUDE 0 542 RC9_TRIM 1500

83 BCN_LONGITUDE 0 543 RCMAP_PITCH 1

84 BCN_ORIENT_YAW 0 544 RCMAP_ROLL 2

85 BCN_TYPE 0 545 RCMAP_THROTTLE 3

86 BRD_BOOT_DELAY 0 546 RCMAP_YAW 4

87 BRD_IO_ENABLE 1 547 RELAY_DEFAULT 0

88 BRD_OPTIONS 1 548 RELAY_PIN -1

89 BRD_PWM_COUNT 8 549 RELAY_PIN2 -1

90 BRD_RTC_TYPES 1 550 RELAY_PIN3 -1

91 BRD_RTC_TZ_MIN 0 551 RELAY_PIN4 -1

92 BRD_SAFETY_MASK 0 552 RELAY_PIN5 -1

93 BRD_SAFETYENABLE 1 553 RELAY_PIN6 -1

94 BRD_SAFETYOPTION 7 554 RNGFND1_ADDR 0

95 BRD_SBUS_OUT 0 555 RNGFND1_FUNCTION 0

96 BRD_SD_SLOWDOWN 0 556 RNGFND1_GNDCLEAR 10

97 BRD_SER1_RTSCTS 0 557 RNGFND1_MAX_CM 700

98 BRD_SER2_RTSCTS 0 558 RNGFND1_MIN_CM 20

99 BRD_SERIAL_NUM 0 559 RNGFND1_OFFSET 0

100 BRD_TYPE 24 560 RNGFND1_ORIENT 0

101 BRD_VBUS_MIN 4.3 561 RNGFND1_PIN -1

102 BRD_VSERVO_MIN 0 562 RNGFND1_POS_X 0

103 BTN_ENABLE 0 563 RNGFND1_POS_Y 0

104 CAM_AUTO_ONLY 0 564 RNGFND1_POS_Z 0

105 CAM_DURATION 10 565 RNGFND1_PWRRNG 0

106 CAM_FEEDBACK_PIN -1 566 RNGFND1_RMETRIC 1

107 CAM_FEEDBACK_POL 1 567 RNGFND1_SCALING 3

108 CAM_MAX_ROLL 0 568 RNGFND1_STOP_PIN -1

109 CAM_MIN_INTERVAL 0 569 RNGFND1_TYPE 0

110 CAM_RELAY_ON 1 570 RNGFND2_ADDR 0

111 CAM_SERVO_OFF 1100 571 RNGFND2_FUNCTION 0

112 CAM_SERVO_ON 1300 572 RNGFND2_GNDCLEAR 10

113 CAM_TRIGG_DIST 0 573 RNGFND2_MAX_CM 700

114 CAM_TRIGG_TYPE 0 574 RNGFND2_MIN_CM 20

115 CAM_TYPE 0 575 RNGFND2_OFFSET 0

116 CAN_D1_PROTOCOL 1 576 RNGFND2_ORIENT 0

117 CAN_D2_PROTOCOL 1 577 RNGFND2_PIN -1

118 CAN_P1_DRIVER 0 578 RNGFND2_POS_X 0

119 CAN_P2_DRIVER 0 579 RNGFND2_POS_Y 0

141
120 CAN_SLCAN_CPORT 0 580 RNGFND2_POS_Z 0

121 CAN_SLCAN_SERNUM -1 581 RNGFND2_PWRRNG 0

122 CAN_SLCAN_TIMOUT 0 582 RNGFND2_RMETRIC 1

123 COMPASS_AUTO_ROT 2 583 RNGFND2_SCALING 3

124 COMPASS_AUTODEC 1 584 RNGFND2_STOP_PIN -1

125 COMPASS_CAL_FIT 32 585 RNGFND2_TYPE 0

126 COMPASS_DEC -0.2289 586 RNGFND3_ADDR 0

127 COMPASS_DEV_ID 658953 587 RNGFND3_FUNCTION 0

128 COMPASS_DEV_ID2 658945 588 RNGFND3_GNDCLEAR 10

129 COMPASS_DEV_ID3 0 589 RNGFND3_MAX_CM 700

130 COMPASS_DIA_X 0.963464 590 RNGFND3_MIN_CM 20

131 COMPASS_DIA_Y 0.958935 591 RNGFND3_OFFSET 0

132 COMPASS_DIA_Z 1.042703 592 RNGFND3_ORIENT 0

133 COMPASS_DIA2_X 1.004654 593 RNGFND3_PIN -1

134 COMPASS_DIA2_Y 1.04455 594 RNGFND3_POS_X 0

135 COMPASS_DIA2_Z 1.087546 595 RNGFND3_POS_Y 0

136 COMPASS_DIA3_X 0 596 RNGFND3_POS_Z 0

137 COMPASS_DIA3_Y 0 597 RNGFND3_PWRRNG 0

138 COMPASS_DIA3_Z 0 598 RNGFND3_RMETRIC 1

139 COMPASS_ENABLE 1 599 RNGFND3_SCALING 3

140 COMPASS_EXP_DID -1 600 RNGFND3_STOP_PIN -1

141 COMPASS_EXP_DID2 -1 601 RNGFND3_TYPE 0

142 COMPASS_EXP_DID3 -1 602 RNGFND4_ADDR 0

143 COMPASS_EXTERN2 0 603 RNGFND4_FUNCTION 0

144 COMPASS_EXTERN3 0 604 RNGFND4_GNDCLEAR 10

145 COMPASS_EXTERNAL 1 605 RNGFND4_MAX_CM 700

146 COMPASS_FLTR_RNG 0 606 RNGFND4_MIN_CM 20

147 COMPASS_LEARN 0 607 RNGFND4_OFFSET 0

148 COMPASS_MOT_X 0 608 RNGFND4_ORIENT 0

149 COMPASS_MOT_Y 0 609 RNGFND4_PIN -1

150 COMPASS_MOT_Z 0 610 RNGFND4_POS_X 0

151 COMPASS_MOT2_X 0 611 RNGFND4_POS_Y 0

152 COMPASS_MOT2_Y 0 612 RNGFND4_POS_Z 0

153 COMPASS_MOT2_Z 0 613 RNGFND4_PWRRNG 0

154 COMPASS_MOT3_X 0 614 RNGFND4_RMETRIC 1

155 COMPASS_MOT3_Y 0 615 RNGFND4_SCALING 3

156 COMPASS_MOT3_Z 0 616 RNGFND4_STOP_PIN -1

157 COMPASS_MOTCT 0 617 RNGFND4_TYPE 0

158 COMPASS_ODI_X 0.000969 618 RNGFND5_ADDR 0

159 COMPASS_ODI_Y -0.06673 619 RNGFND5_FUNCTION 0

160 COMPASS_ODI_Z 0.118935 620 RNGFND5_GNDCLEAR 10

161 COMPASS_ODI2_X -0.01676 621 RNGFND5_MAX_CM 700

142
162 COMPASS_ODI2_Y -0.09601 622 RNGFND5_MIN_CM 20

163 COMPASS_ODI2_Z 0.063797 623 RNGFND5_OFFSET 0

164 COMPASS_ODI3_X 0 624 RNGFND5_ORIENT 0

165 COMPASS_ODI3_Y 0 625 RNGFND5_PIN -1

166 COMPASS_ODI3_Z 0 626 RNGFND5_POS_X 0

167 COMPASS_OFFS_MAX 800 627 RNGFND5_POS_Y 0

168 COMPASS_OFS_X 5.793118 628 RNGFND5_POS_Z 0

169 COMPASS_OFS_Y 21.75474 629 RNGFND5_PWRRNG 0

170 COMPASS_OFS_Z -102.489 630 RNGFND5_RMETRIC 1

171 COMPASS_OFS2_X 28.66513 631 RNGFND5_SCALING 3

172 COMPASS_OFS2_Y 98.94672 632 RNGFND5_STOP_PIN -1

173 COMPASS_OFS2_Z -7.05574 633 RNGFND5_TYPE 0

174 COMPASS_OFS3_X 0 634 RNGFND6_ADDR 0

175 COMPASS_OFS3_Y 0 635 RNGFND6_FUNCTION 0

176 COMPASS_OFS3_Z 0 636 RNGFND6_GNDCLEAR 10

177 COMPASS_ORIENT 0 637 RNGFND6_MAX_CM 700

178 COMPASS_ORIENT2 0 638 RNGFND6_MIN_CM 20

179 COMPASS_ORIENT3 0 639 RNGFND6_OFFSET 0

180 COMPASS_PMOT_EN 0 640 RNGFND6_ORIENT 0

181 COMPASS_PRIMARY 0 641 RNGFND6_PIN -1

182 COMPASS_TYPEMASK 0 642 RNGFND6_POS_X 0

183 COMPASS_USE 1 643 RNGFND6_POS_Y 0

184 COMPASS_USE2 0 644 RNGFND6_POS_Z 0

185 COMPASS_USE3 0 645 RNGFND6_PWRRNG 0

186 CRASH_ANGLE 0 646 RNGFND6_RMETRIC 1

187 CRUISE_SPEED 1.111076 647 RNGFND6_SCALING 3

188 CRUISE_THROTTLE 100 648 RNGFND6_STOP_PIN -1

189 EK2_ABIAS_P_NSE 0.005 649 RNGFND6_TYPE 0

190 EK2_ACC_P_NSE 0.6 650 RNGFND7_ADDR 0

191 EK2_ALT_M_NSE 3 651 RNGFND7_FUNCTION 0

192 EK2_ALT_SOURCE 0 652 RNGFND7_GNDCLEAR 10

193 EK2_BCN_DELAY 50 653 RNGFND7_MAX_CM 700

194 EK2_BCN_I_GTE 500 654 RNGFND7_MIN_CM 20

195 EK2_BCN_M_NSE 1 655 RNGFND7_OFFSET 0

196 EK2_CHECK_SCALE 100 656 RNGFND7_ORIENT 0

197 EK2_EAS_I_GATE 400 657 RNGFND7_PIN -1

198 EK2_EAS_M_NSE 1.4 658 RNGFND7_POS_X 0

199 EK2_ENABLE 1 659 RNGFND7_POS_Y 0

200 EK2_EXTNAV_DELAY 10 660 RNGFND7_POS_Z 0

201 EK2_FLOW_DELAY 10 661 RNGFND7_PWRRNG 0

202 EK2_FLOW_I_GATE 300 662 RNGFND7_RMETRIC 1

203 EK2_FLOW_M_NSE 0.25 663 RNGFND7_SCALING 3

143
204 EK2_FLOW_USE 1 664 RNGFND7_STOP_PIN -1

205 EK2_GBIAS_P_NSE 0.0001 665 RNGFND7_TYPE 0

206 EK2_GLITCH_RAD 25 666 RNGFND8_ADDR 0

207 EK2_GPS_CHECK 31 667 RNGFND8_FUNCTION 0

208 EK2_GPS_TYPE 1 668 RNGFND8_GNDCLEAR 10

209 EK2_GSCL_P_NSE 0.0005 669 RNGFND8_MAX_CM 700

210 EK2_GYRO_P_NSE 0.03 670 RNGFND8_MIN_CM 20

211 EK2_HGT_DELAY 60 671 RNGFND8_OFFSET 0

212 EK2_HGT_I_GATE 500 672 RNGFND8_ORIENT 0

213 EK2_HRT_FILT 2 673 RNGFND8_PIN -1

214 EK2_IMU_MASK 3 674 RNGFND8_POS_X 0

215 EK2_LOG_MASK 1 675 RNGFND8_POS_Y 0

216 EK2_MAG_CAL 2 676 RNGFND8_POS_Z 0

217 EK2_MAG_EF_LIM 50 677 RNGFND8_PWRRNG 0

218 EK2_MAG_I_GATE 300 678 RNGFND8_RMETRIC 1

219 EK2_MAG_M_NSE 0.05 679 RNGFND8_SCALING 3

220 EK2_MAG_MASK 0 680 RNGFND8_STOP_PIN -1

221 EK2_MAGB_P_NSE 0.0001 681 RNGFND8_TYPE 0

222 EK2_MAGE_P_NSE 0.001 682 RNGFND9_ADDR 0

223 EK2_MAX_FLOW 2.5 683 RNGFND9_FUNCTION 0

224 EK2_NOAID_M_NSE 10 684 RNGFND9_GNDCLEAR 10

225 EK2_OGN_HGT_MASK 0 685 RNGFND9_MAX_CM 700

226 EK2_POS_I_GATE 500 686 RNGFND9_MIN_CM 20

227 EK2_POSNE_M_NSE 0.1 687 RNGFND9_OFFSET 0

228 EK2_RNG_I_GATE 500 688 RNGFND9_ORIENT 0

229 EK2_RNG_M_NSE 0.5 689 RNGFND9_PIN -1

230 EK2_RNG_USE_HGT -1 690 RNGFND9_POS_X 0

231 EK2_RNG_USE_SPD 2 691 RNGFND9_POS_Y 0

232 EK2_TAU_OUTPUT 25 692 RNGFND9_POS_Z 0

233 EK2_TERR_GRAD 0.1 693 RNGFND9_PWRRNG 0

234 EK2_VEL_I_GATE 500 694 RNGFND9_RMETRIC 1

235 EK2_VELD_M_NSE 0.7 695 RNGFND9_SCALING 3

236 EK2_VELNE_M_NSE 0.1 696 RNGFND9_STOP_PIN -1

237 EK2_WIND_P_NSE 0.1 697 RNGFND9_TYPE 0

238 EK2_WIND_PSCALE 0.5 698 RNGFNDA_ADDR 0

239 EK2_YAW_I_GATE 300 699 RNGFNDA_FUNCTION 0

240 EK2_YAW_M_NSE 0.5 700 RNGFNDA_GNDCLEAR 10

241 EK3_ENABLE 0 701 RNGFNDA_MAX_CM 700

242 FENCE_ACTION 1 702 RNGFNDA_MIN_CM 20

243 FENCE_ENABLE 0 703 RNGFNDA_OFFSET 0

244 FENCE_MARGIN 2 704 RNGFNDA_ORIENT 0

245 FENCE_RADIUS 300 705 RNGFNDA_PIN -1

144
246 FENCE_TOTAL 0 706 RNGFNDA_POS_X 0

247 FENCE_TYPE 6 707 RNGFNDA_POS_Y 0

248 FOLL_ENABLE 0 708 RNGFNDA_POS_Z 0

249 FORMAT_VERSION 16 709 RNGFNDA_PWRRNG 0

250 FRAME_CLASS 1 710 RNGFNDA_RMETRIC 1

251 FRAME_TYPE 0 711 RNGFNDA_SCALING 3

252 FS_ACTION 2 712 RNGFNDA_STOP_PIN -1

253 FS_CRASH_CHECK 0 713 RNGFNDA_TYPE 0

254 FS_EKF_ACTION 1 714 RPM_MAX 100000

255 FS_EKF_THRESH 0.8 715 RPM_MIN 10

256 FS_GCS_ENABLE 0 716 RPM_MIN_QUAL 0.5

257 FS_OPTIONS 0 717 RPM_PIN 54

258 FS_THR_ENABLE 1 718 RPM_SCALING 1

259 FS_THR_VALUE 910 719 RPM_TYPE 0

260 FS_TIMEOUT 1.5 720 RPM2_PIN -1

261 GCS_PID_MASK 0 721 RPM2_SCALING 1

262 GND_ABS_PRESS 97793.36 722 RPM2_TYPE 0

263 GND_ABS_PRESS2 0 723 RSSI_TYPE 0

264 GND_ABS_PRESS3 0 724 RST_SWITCH_CH 0

265 GND_ALT_OFFSET 0 725 RTL_SPEED 0

266 GND_EXT_BUS -1 726 SAIL_ENABLE 0

267 GND_FLTR_RNG 0 727 SCHED_DEBUG 0

268 GND_PRIMARY 0 728 SCHED_LOOP_RATE 50

269 GND_PROBE_EXT 0 729 SCR_ENABLE 0

270 GND_TEMP 0 730 SERIAL_PASS1 0

271 GPS_AUTO_CONFIG 1 731 SERIAL_PASS2 -1

272 GPS_AUTO_SWITCH 3 732 SERIAL_PASSTIMO 15

273 GPS_BLEND_MASK 5 733 SERIAL0_BAUD 115

274 GPS_BLEND_TC 10 734 SERIAL0_PROTOCOL 2

275 GPS_DELAY_MS 0 735 SERIAL1_BAUD 57

276 GPS_DELAY_MS2 0 736 SERIAL1_OPTIONS 0

277 GPS_GNSS_MODE 0 737 SERIAL1_PROTOCOL 1

278 GPS_GNSS_MODE2 77 738 SERIAL2_BAUD 57

279 GPS_INJECT_TO 127 739 SERIAL2_OPTIONS 0

280 GPS_MIN_DGPS 100 740 SERIAL2_PROTOCOL 1

281 GPS_MIN_ELEV -100 741 SERIAL3_BAUD 38

282 GPS_NAVFILTER 8 742 SERIAL3_OPTIONS 0

283 GPS_POS1_X 0.185 743 SERIAL3_PROTOCOL 5

284 GPS_POS1_Y 0 744 SERIAL4_BAUD 115

285 GPS_POS1_Z -0.175 745 SERIAL4_OPTIONS 0

286 GPS_POS2_X -0.125 746 SERIAL4_PROTOCOL 5

287 GPS_POS2_Y 0 747 SERIAL5_BAUD 57

145
288 GPS_POS2_Z -0.11 748 SERIAL5_OPTIONS 0

289 GPS_RATE_MS 200 749 SERIAL5_PROTOCOL -1

290 GPS_RATE_MS2 200 750 SERIAL6_BAUD 57

291 GPS_RAW_DATA 0 751 SERIAL6_OPTIONS 0

292 GPS_SAVE_CFG 2 752 SERIAL6_PROTOCOL -1

293 GPS_SBAS_MODE 2 753 SERIAL7_BAUD 115200

294 GPS_SBP_LOGMASK -256 754 SERIAL7_OPTIONS 0

295 GPS_TYPE 1 755 SERIAL7_PROTOCOL 2

296 GPS_TYPE2 5 756 SERVO_BLH_DEBUG 0

297 GRIP_ENABLE 0 757 SERVO_BLH_MASK 0

298 INITIAL_MODE 0 758 SERVO_BLH_OTYPE 0

299 INS_ACC_BODYFIX 2 759 SERVO_BLH_POLES 14

300 INS_ACC_ID 2621706 760 SERVO_BLH_PORT 0

301 INS_ACC2_ID 2688010 761 SERVO_BLH_REMASK 0

302 INS_ACC2OFFS_X 0.161591 762 SERVO_BLH_TEST 0

303 INS_ACC2OFFS_Y -0.03968 763 SERVO_BLH_TMOUT 0

304 INS_ACC2OFFS_Z 0.138354 764 SERVO_BLH_TRATE 10

305 INS_ACC2SCAL_X 0.991839 765 SERVO_RATE 50

306 INS_ACC2SCAL_Y 0.990431 766 SERVO_ROB_POSMAX 4095

307 INS_ACC2SCAL_Z 0.981222 767 SERVO_ROB_POSMIN 0

308 INS_ACC3_ID 0 768 SERVO_SBUS_RATE 50

309 INS_ACC3OFFS_X 0 769 SERVO_VOLZ_MASK 0

310 INS_ACC3OFFS_Y 0 770 SERVO1_FUNCTION 73

311 INS_ACC3OFFS_Z 0 771 SERVO1_MAX 1880

312 INS_ACC3SCAL_X 0 772 SERVO1_MIN 1100

313 INS_ACC3SCAL_Y 0 773 SERVO1_REVERSED 0

314 INS_ACC3SCAL_Z 0 774 SERVO1_TRIM 1500

315 INS_ACCEL_FILTER 10 775 SERVO10_FUNCTION 0

316 INS_ACCOFFS_X -0.08955 776 SERVO10_MAX 1900

317 INS_ACCOFFS_Y 0.172145 777 SERVO10_MIN 1100

318 INS_ACCOFFS_Z 0.064103 778 SERVO10_REVERSED 0

319 INS_ACCSCAL_X 0.997815 779 SERVO10_TRIM 1500

320 INS_ACCSCAL_Y 0.999581 780 SERVO11_FUNCTION 0

321 INS_ACCSCAL_Z 0.98419 781 SERVO11_MAX 1900

322 INS_ENABLE_MASK 127 782 SERVO11_MIN 1100

323 INS_FAST_SAMPLE 1 783 SERVO11_REVERSED 0

324 INS_GYR_CAL 1 784 SERVO11_TRIM 1500

325 INS_GYR_ID 2621706 785 SERVO12_FUNCTION 0

326 INS_GYR2_ID 2687754 786 SERVO12_MAX 1900

327 INS_GYR2OFFS_X -0.00299 787 SERVO12_MIN 1100

328 INS_GYR2OFFS_Y 0.003449 788 SERVO12_REVERSED 0

329 INS_GYR2OFFS_Z 0.001118 789 SERVO12_TRIM 1500

146
330 INS_GYR3_ID 0 790 SERVO13_FUNCTION 0

331 INS_GYR3OFFS_X 0 791 SERVO13_MAX 1900

332 INS_GYR3OFFS_Y 0 792 SERVO13_MIN 1100

333 INS_GYR3OFFS_Z 0 793 SERVO13_REVERSED 0

334 INS_GYRO_FILTER 4 794 SERVO13_TRIM 1500

335 INS_GYROFFS_X 0.025607 795 SERVO14_FUNCTION 0

336 INS_GYROFFS_Y -0.01907 796 SERVO14_MAX 1900

337 INS_GYROFFS_Z -0.00255 797 SERVO14_MIN 1100

338 INS_HNTCH_ENABLE 0 798 SERVO14_REVERSED 0

339 INS_LOG_BAT_CNT 1024 799 SERVO14_TRIM 1500

340 INS_LOG_BAT_LGCT 32 800 SERVO15_FUNCTION 0

341 INS_LOG_BAT_LGIN 20 801 SERVO15_MAX 1900

342 INS_LOG_BAT_MASK 0 802 SERVO15_MIN 1100

343 INS_LOG_BAT_OPT 0 803 SERVO15_REVERSED 0

344 INS_NOTCH_ENABLE 0 804 SERVO15_TRIM 1500

345 INS_POS1_X 0.04 805 SERVO16_FUNCTION 0

346 INS_POS1_Y 0.05 806 SERVO16_MAX 1900

347 INS_POS1_Z 0.045 807 SERVO16_MIN 1100

348 INS_POS2_X 0 808 SERVO16_REVERSED 0

349 INS_POS2_Y 0 809 SERVO16_TRIM 1500

350 INS_POS2_Z 0 810 SERVO2_FUNCTION 0

351 INS_POS3_X 0 811 SERVO2_MAX 1900

352 INS_POS3_Y 0 812 SERVO2_MIN 1100

353 INS_POS3_Z 0 813 SERVO2_REVERSED 0

354 INS_STILL_THRESH 0.1 814 SERVO2_TRIM 1500

355 INS_TRIM_OPTION 1 815 SERVO3_FUNCTION 74

356 INS_USE 1 816 SERVO3_MAX 1950

357 INS_USE2 1 817 SERVO3_MIN 1100

358 INS_USE3 1 818 SERVO3_REVERSED 0

359 LOG_BACKEND_TYPE 1 819 SERVO3_TRIM 1500

360 LOG_BITMASK 65535 820 SERVO4_FUNCTION 0

361 LOG_DISARMED 1 821 SERVO4_MAX 1900

362 LOG_FILE_BUFSIZE 50 822 SERVO4_MIN 1100

363 LOG_FILE_DSRMROT 0 823 SERVO4_REVERSED 0

364 LOG_FILE_TIMEOUT 5 824 SERVO4_TRIM 1500

365 LOG_MAV_BUFSIZE 8 825 SERVO5_FUNCTION 0

366 LOG_REPLAY 0 826 SERVO5_MAX 1900

367 LOIT_RADIUS 2 827 SERVO5_MIN 1100

368 LOIT_SPEED_GAIN 0.5 828 SERVO5_REVERSED 0

369 LOIT_TYPE 0 829 SERVO5_TRIM 1500

370 MIS_DONE_BEHAVE 0 830 SERVO6_FUNCTION 0

371 MIS_OPTIONS 0 831 SERVO6_MAX 1900

147
372 MIS_RESTART 0 832 SERVO6_MIN 1100

373 MIS_TOTAL 36 833 SERVO6_REVERSED 0

374 MNT_ANGMAX_PAN 4500 834 SERVO6_TRIM 1500

375 MNT_ANGMAX_ROL 4500 835 SERVO7_FUNCTION 0

376 MNT_ANGMAX_TIL 4500 836 SERVO7_MAX 1900

377 MNT_ANGMIN_PAN -4500 837 SERVO7_MIN 1100

378 MNT_ANGMIN_ROL -4500 838 SERVO7_REVERSED 0

379 MNT_ANGMIN_TIL -4500 839 SERVO7_TRIM 1500

380 MNT_DEFLT_MODE 3 840 SERVO8_FUNCTION 0

381 MNT_JSTICK_SPD 0 841 SERVO8_MAX 1900

382 MNT_LEAD_PTCH 0 842 SERVO8_MIN 1100

383 MNT_LEAD_RLL 0 843 SERVO8_REVERSED 0

384 MNT_NEUTRAL_X 0 844 SERVO8_TRIM 1500

385 MNT_NEUTRAL_Y 0 845 SERVO9_FUNCTION 0

386 MNT_NEUTRAL_Z 0 846 SERVO9_MAX 1900

387 MNT_RC_IN_PAN 0 847 SERVO9_MIN 1100

388 MNT_RC_IN_ROLL 0 848 SERVO9_REVERSED 0

389 MNT_RC_IN_TILT 0 849 SERVO9_TRIM 1500

390 MNT_RETRACT_X 0 850 SIMPLE_TYPE 0

391 MNT_RETRACT_Y 0 851 SPEED_MAX 0

392 MNT_RETRACT_Z 0 852 SPRAY_ENABLE 0

393 MNT_STAB_PAN 0 853 SR0_ADSB 0

394 MNT_STAB_ROLL 0 854 SR0_EXT_STAT 2

395 MNT_STAB_TILT 0 855 SR0_EXTRA1 4

396 MNT_TYPE 0 856 SR0_EXTRA2 4

397 MODE_CH 6 857 SR0_EXTRA3 2

398 MODE1 10 858 SR0_PARAMS 10

399 MODE2 4 859 SR0_POSITION 2

400 MODE3 5 860 SR0_RAW_CTRL 1

401 MODE4 0 861 SR0_RAW_SENS 2

402 MODE5 0 862 SR0_RC_CHAN 2

403 MODE6 3 863 SR1_ADSB 0

404 MOT_PWM_FREQ 16 864 SR1_EXT_STAT 2

405 MOT_PWM_TYPE 0 865 SR1_EXTRA1 4

406 MOT_SAFE_DISARM 0 866 SR1_EXTRA2 4

407 MOT_SLEWRATE 100 867 SR1_EXTRA3 2

408 MOT_SPD_SCA_BASE 1 868 SR1_PARAMS 10

409 MOT_THR_MAX 100 869 SR1_POSITION 2

410 MOT_THR_MIN 4 870 SR1_RAW_CTRL 1

411 MOT_THST_EXPO 0 871 SR1_RAW_SENS 2

412 MOT_VEC_THR_BASE 0 872 SR1_RC_CHAN 2

413 NAVL1_DAMPING 0.75 873 SR2_ADSB 0

148
414 NAVL1_PERIOD 11 874 SR2_EXT_STAT 1

415 NAVL1_XTRACK_I 0.02 875 SR2_EXTRA1 1

416 NTF_BUZZ_ENABLE 1 876 SR2_EXTRA2 1

417 NTF_BUZZ_ON_LVL 1 877 SR2_EXTRA3 1

418 NTF_BUZZ_PIN 0 878 SR2_PARAMS 10

419 NTF_BUZZ_VOLUME 100 879 SR2_POSITION 1

420 NTF_DISPLAY_TYPE 0 880 SR2_RAW_CTRL 1

421 NTF_LED_BRIGHT 3 881 SR2_RAW_SENS 1

422 NTF_LED_OVERRIDE 0 882 SR2_RC_CHAN 1

423 NTF_LED_TYPES 199 883 SR3_ADSB 0

424 NTF_OREO_THEME 0 884 SR3_EXT_STAT 2

425 OA_TYPE 0 885 SR3_EXTRA1 4

426 PILOT_STEER_TYPE 0 886 SR3_EXTRA2 4

427 PRX_IGN_ANG1 0 887 SR3_EXTRA3 2

428 PRX_IGN_ANG2 0 888 SR3_PARAMS 10

429 PRX_IGN_ANG3 0 889 SR3_POSITION 2

430 PRX_IGN_ANG4 0 890 SR3_RAW_CTRL 1

431 PRX_IGN_ANG5 0 891 SR3_RAW_SENS 2

432 PRX_IGN_ANG6 0 892 SR3_RC_CHAN 2

433 PRX_IGN_WID1 0 893 SRTL_ACCURACY 2

434 PRX_IGN_WID2 0 894 SRTL_POINTS 300

435 PRX_IGN_WID3 0 895 STAT_BOOTCNT 17

436 PRX_IGN_WID4 0 896 STAT_FLTTIME 2257

437 PRX_IGN_WID5 0 897 STAT_RESET 160496500

438 PRX_IGN_WID6 0 898 STAT_RUNTIME 156158

439 PRX_ORIENT 0 899 STICK_MIXING 0

440 PRX_TYPE 0 900 SYSID_ENFORCE 0

441 PRX_YAW_CORR 0 901 SYSID_MYGCS 255

442 RALLY_INCL_HOME 1 902 SYSID_THISMAV 1

443 RALLY_LIMIT_KM 0.5 903 TELEM_DELAY 0

444 RALLY_TOTAL 0 904 TURN_MAX_G 0.6

445 RC_OPTIONS 0 905 TURN_RADIUS 0.1

446 RC_OVERRIDE_TIME 3 906 VISO_ORIENT 0

447 RC1_DZ 0 907 VISO_POS_X 0

448 RC1_MAX 1901 908 VISO_POS_Y 0

449 RC1_MIN 1099 909 VISO_POS_Z 0

450 RC1_OPTION 0 910 VISO_TYPE 0

451 RC1_REVERSED 0 911 WENC_TYPE 0

452 RC1_TRIM 1099 912 WNDVN_TYPE 0

453 RC10_DZ 0 913 WP_OVERSHOOT 0.03

454 RC10_MAX 2000 914 WP_PIVOT_ANGLE 60

455 RC10_MIN 1000 915 WP_PIVOT_RATE 90

149
456 RC10_OPTION 0 916 WP_RADIUS 0.03

457 RC10_REVERSED 0 917 WP_SPEED 1

458 RC10_TRIM 1500 918 WP_SPEED_MIN 0

459 RC11_DZ 0 919 WRC_ENABLE 0

460 RC11_MAX 2000

150
Appendix B

Python Code

B.1 inline_pair_UGV01.py

 This script generates a tab-delimited *.waypoints file compatible with Mission Planner.

Using the known locations of the orchard row end posts and the locations of the test track GCPs,

the script can generate waypoints for a mission in a given direction at a given spacing interval for

waypoints. Spacing options are 50% of a pass, 25% of a pass, or any fixed distance in feet. This

script was originally authored by Dr. H.J. Sommer and was later modified by Michael Pagan.

""" inline_pair_UGV01.py ‐ main for centerline between pair of rows """
__author__ = "HJSIII, 21.01.27" # Modified by Michael Pagan

import
from math import *
import numpy as np
import csv

local constants
d2r = pi / 180.0

1 deg lat = 364813 feet,
1 deg lon = cos(lat)*d2f_lat, MATLAB spherical Earth model
d2f_lat = 364813.0

mission parameters
overshoot = 15.0 #overshoot at begining/end of rows [ft]
spacing = 5.0 #in‐line spacing between waypoints (fixed) [ft]
h = 0 #AGL [ft]
spacing_option = '25%' #50% spacing = '50%',
 #25% spacing = '25%',
 #fixed = 'fixed'

open CSV file to write text
fn_csv = 'mission_plan.waypoints'
fid_csv = open(fn_csv, 'w')

151
write header with new line at end
header = 'QGC WPL 110\n'
fid_csv.write(header)
#write index 0 line (home position)
fid_csv.write('%5.0f\t' % (0)) # index
fid_csv.write('0\t3\t16\t0\t0\t0\t0\t0\t0\t0\t1\n')
 # current_wp, coord_frame, command, param1, param2, param3,
 # param4, lat, long, AGL, autocontinue

direction = 'FOR'
forward ‐ apple rows Nlat, NLon, Slat, Slon ‐ TEST Wlat Wlon Elat Elon
direction = 'REV' # reverse
select block row_a row_b direction
comment out either test track or apple rows

 #test track#
 #block row_a row_b direction#
#babd = ['TEST', '1', '1', 'FOR',
 #'TEST', '2', '2', 'REV',
 #'TEST', '1', '1', 'FOR',
 #'TEST', '2', '2', 'REV']

 ##apple rows#
 ##block row_a row_b direction##
babd = ['A3', 'AA', 'AB', 'FOR',
 'A3', 'AB', 'AC', 'REV',
 'A3', 'AC', 'AD', 'FOR',
 'A3', 'AD', 'BA', 'REV',
 'A3', 'BA', 'BB', 'FOR',
 'A3', 'BB', 'CA', 'REV',
 'A3', 'CA', 'CB', 'FOR']

size
n_babd = len(babd)
n_babd = int(n_babd / 4)

process one pass at a time
n_pass = 1
for i_babd in range(n_babd):

rip
 block = babd[i_babd*4] #block, row a, row b, direction
 row_a = babd[i_babd*4 + 1]
 row_b = babd[i_babd*4 + 2]
 direction = babd[i_babd*4 + 3]

read CSV file with lat‐lon for posts and find N‐S ends
CSV contains ‐ block row N_lat N_lon S_lat S_lon
 nlat_a = 0
 nlat_b = 0
 fn_posts = '200305 rows cut.csv'
 with open(fn_posts, newline='') as csvfile:
 reader = csv.reader(csvfile)

152
 for line in reader:
 if line[0] == block and line[1] == row_a:
 nlat_a = float(line[2])
 nlon_a = float(line[3])
 slat_a= float(line[4])
 slon_a = float(line[5])
 if line[0] == block and line[1] == row_b:
 nlat_b = float(line[2])
 nlon_b = float(line[3])
 slat_b = float(line[4])
 slon_b = float(line[5])

 if nlat_a == 0:
 print('\nWARNING ‐ Block', block, 'Row', row_a, 'not found\n')
 if nlat_b == 0:
 print('\nWARNING ‐ Block', block, 'Row', row_b, 'not found\n')

read CSV straight into numpy array like Matlab "load"
from numpy import genfromtxt
my_data = genfromtxt('my_file.csv', delimiter=',')

normally fly missions N to S for apple, W to E for TEST
 lat1 = (nlat_a + nlat_b) / 2
 lon1 = (nlon_a + nlon_b) / 2
 lat2 = (slat_a + slat_b) / 2
 lon2 = (slon_a + slon_b) / 2

reverse direction
 if direction == 'REV':
 lat1, lat2 = lat2, lat1
 lon1, lon2 = lon2, lon1

overall path ‐ x East, y North
 del_lat = lat2 ‐ lat1
 del_lon = lon2 ‐ lon1

 d2f_lon = cos(lat1*d2r) * d2f_lat
 del_x = del_lon * d2f_lon
 del_y = del_lat * d2f_lat

 distance = sqrt(del_x*del_x + del_y*del_y)
 theta = atan2(del_y, del_x)
 theta_deg = theta / d2r
 heading_path = fmod((90 ‐ theta_deg + 360), 360)

 # Spacing
 if spacing_option == 'fixed' and spacing > 0:
 xloc = np.arange(‐overshoot, #for fixed‐distance waypoint spacing
 ((distance+2*overshoot)%spacing+distance+overshoot), spacing)
 elif spacing_option == '25%':
 xloc = np.array([‐overshoot, # for 25% waypoint spacing
 (distance+2*overshoot)/4‐overshoot,2*(distance+2*overshoot)/4‐overshoot,
 3*(distance+2*overshoot)/4 ‐overshoot, distance+overshoot])
 else:

153
 xloc = np.array([‐overshoot, (distance+2*overshoot)/2‐overshoot,
 distance+overshoot]) #for 50% waypoint spacing

 yloc = np.full(xloc.size, 0)
 head_plan = np.full(xloc.size, heading_path)

rotate into global and convert to lat‐lon
 xyloc = np.vstack((xloc, yloc))
 Amat = np.array([(cos(theta), ‐sin(theta)) ,
 (sin(theta), cos(theta))])
 xyglo = Amat @ xyloc

 lat_plan = lat1 + xyglo[1]/d2f_lat
 lon_plan = lon1 + xyglo[0]/d2f_lon
 n = len(lat_plan)

flat AGL
 agl_plan = np.full(lat_plan.size, h)

save lat‐lon for each waypoint ‐ tab delimited
 n = len(lat_plan)
 for i in range(n):
 i_pass = n_pass + i
 fid_csv.write('%5.0f\t' % (i_pass)) # index
 fid_csv.write('0\t3\t16\t0\t0\t0\t0\t') # current_wp,
 # coord_frame, command, param1, param2, param3, param4
 fid_csv.write('%12.7f\t' % lat_plan[i]) # latitude
 fid_csv.write('%12.7f\t' % lon_plan[i]) # longitude
 fid_csv.write('%6.2f\t' % agl_plan[i]) # AGL
 fid_csv.write('1\n') # autocontinue and new line
 print(i_pass)

finished with current pass
 n_pass = n_pass + n

finished with all passes ‐ close file
fid_csv.close()

bottom ‐ inline_pair_UGV01

154
B.2 mission_update.py

This script uses MAVROS to update the mission on Pixhawk. This code was authored by

Michael Pagan and contains contributions from Dr. Sommer’s inline_pair_UGV01.py code.

__author__ = "MAP | HJSIII | 29 Jan 2021"

#Script intervenes during active mission to:
 #1)Generate new mission 2)Activate HOLD mode 3)Clear current mission
 #4)Download new mission 5)Reset home position 6)Reactivate AUTO mode
IMPORT LIBRARIES ##
import rospy #ROSS
import time #for sleeps
from math import * #for waypoint generation
import numpy as np #^
import csv # read file containing row coordinates
from std_msgs.msg import String #for sending MAVROS messages
from sensor_msgs.msg import NavSatFix #^
from mavros_msgs.msg import * #^
from mavros_msgs.srv import * #^

MISSION SETUP ##
#####LOCAL CONSTANTS#####
d2r = pi / 180.0 #degrees to radians
d2f_lat = 364813.0 #1 deg lat = 364813 feet, 1 deg lon = cos(lat)*d2f_lat
 #MATLAB spherical Earth model

#####MISSION PARAMETERS#####
overshoot = 15.0 #overshoot at begining/end of rows [ft]
spacing = 5.0 #fixed in‐line spacing between waypoints [ft]
h = 0 #AGL [ft]
spacing_option = '50%' # 50% spacing = '50%', 25% spacing = '25%'
 #fixed = 'fixed'

#reference '200305 rows cut.csv' to plan row passes
#‐ file must be in current directory
#direction = 'FOR' #forward ‐ apple rows Nlat, NLon, Slat, Slon
 #‐ TEST Wlat Wlon Elat Elon
direction = 'REV' #reverse

 #test track#
 #block row_a row_b direction#
babd = ['TEST', '1', '1', 'FOR',
 'TEST', '2', '2', 'REV',
 'TEST', '1', '1', 'FOR',
 'TEST', '2', '2', 'REV']

 #apple rows#

155
 #block row_a row_b direction#
babd = ['A1', 'B', 'C', 'FOR',
 'A1', 'C', 'D', 'REV',
 'A1', 'EE', 'F', 'FOR',
 'A1', 'F', 'FF', 'REV',
 'A1', 'FF', 'G', 'FOR',
 'A1', 'G', 'GG', 'REV']

n_babd = len(babd) #find length of mission array
n_babd = int(n_babd / 4)#divide by number of columns to find number of passes

CHANGE MODE ###
#####HOLD MODE#####
def activate_hold():
 try:
 HoldService = rospy.ServiceProxy('mavros/set_mode', SetMode)
 HoldService(base_mode=0, custom_mode = 'HOLD') #call MAVROS set_mode
 #service to set mode to HOLD
 if HoldService.call(base_mode=0, custom_mode = 'HOLD').mode_sent:
 print ("HOLD mode activated") #check that the mode_sent message
 #is 'true' and print verification
 else:
 print("unable to activate HOLD mode")
 except rospy.ServiceException as exc:
 print ("Failed to call SetMode service for HOLD: " + str(exc))
 #print error message if service call fails

#####AUTO MODE#####
def reactivate_auto():
 try:
 AutoService = rospy.ServiceProxy('mavros/set_mode', SetMode)
 AutoService(base_mode=0, custom_mode = 'AUTO') #call MAVROS set_mode
 #service to set mode to AUTO
 if AutoService.call(base_mode=0, custom_mode = 'AUTO').mode_sent:
 print ("AUTO mode reactivated") #check that the mode_sent message
 #is 'true' and print verification
 else:
 print ("unable to activate AUTO, keeping HOLD mode")
 except rospy.ServiceException as exc:
 print ("Failed to call SetMode service for AUTO: " + str(exc))
 #print error message if service call fails

RESET MISSION ###
#####CLEAR OLD WAYPOINTS#####
def clear_mission():
 try:
 ClearService = rospy.ServiceProxy('mavros/mission/clear', WaypointClear)
 ClearService() #call MAVROS clear service to clear waypoints
 if ClearService.call().success:
 print ("waypoint list cleared") #check that the success message
 #is 'true' and print verification
 else:
 print("unable to clear waypoint list")
 except rospy.ServiceException as exc:

156
 print ("Failed to call WaypointClear service: " + str(exc))
 #print error message if service call fails
 return False

#####RESET CURRENT WAYPOINT#####
def restart_wp_sequence():
 try:
 SequenceService = rospy.ServiceProxy('mavros/mission/set_current',
 WaypointSetCurrent)
 SequenceService(1) #call MAVROS set_current service to set
 #current waypoint to 1
 if (SequenceService.call(1).success):
 print ("waypoint sequence restarted") #check that the success
 #message is 'true' and print verification
 else:
 print("unable to restart waypoint sequence")
 except rospy.ServiceException as exc:
 print ("Failed to call WaypointSetCurrent service: " + str(exc))
 #print error message if service call fails

#####RESET HOME POSITION#####
def current_GPS_home():
 try:
 HomeService = rospy.ServiceProxy('/mavros/cmd/set_home', CommandHome)
 HomeService(current_gps = 1, yaw=0, latitude=0, longitude=0, altitude=0)
 #call MAVROS CommandHome service to set current location as home
 if (HomeService.call(current_gps = 1, yaw=0, latitude=0, longitude=0,
 altitude=0).success):
 print("home position set to current location")
 else:
 print("home position not set")
 except rospy.ServiceException as exc:
 print ("Failed to call CommandHome service: " + str(exc))
 #print error message if service call fails

CREATE MISSION ##
def create_waypoint():
 wl = [] #create waypoint list (wl)

 #####HOME POSITION PLACEHOLDER#####
 #waypoint of index = 0 is home location i.e. not part of the mission
 wp = Waypoint() #create object instance 'wp' of 'Waypoint'
 #class to store each waypoint's data
 wp.frame = 3
 wp.command = 16
 wp.is_current = False
 wp.autocontinue = True
 wp.param1 = 0
 wp.param2 = 0
 wp.param3 = 0
 wp.param4 = 0
 wp.x_lat = 0
 wp.y_long = 0
 wp.z_alt = 0

157
 wl.append(wp) #add home position placeholder to waypoint list (wl)

 #####GENERATE WAYPOINTS#####
 n_pass = 0
 for i_babd in range(n_babd): #loop to process one pass at a time
 #rip
 block = babd[i_babd*4]
 row_a = babd[i_babd*4 + 1]
 row_b = babd[i_babd*4 + 2]
 direction = babd[i_babd*4 + 3]

 #read CSV file with lat‐lon for posts and find N‐S ends
 #CSV contains ‐ block row N_lat N_lon S_lat S_lon
 nlat_a = 0
 nlat_b = 0
 fn_posts = '200305 rows cut.csv'
 with open(fn_posts, newline='') as csvfile:
 reader = csv.reader(csvfile)
 for line in reader:
 if line[0] == block and line[1] == row_a:
 nlat_a = float(line[2])
 nlon_a = float(line[3])
 slat_a= float(line[4])
 slon_a = float(line[5])
 if line[0] == block and line[1] == row_b:
 nlat_b = float(line[2])
 nlon_b = float(line[3])
 slat_b = float(line[4])
 slon_b = float(line[5])
 if nlat_a == 0:
 print('\nWARNING ‐ Block', block, 'Row', row_a, 'not found\n')
 if nlat_b == 0:
 print('\nWARNING ‐ Block', block, 'Row', row_b, 'not found\n')

 #normally fly missions N to S for apple, W to E for TEST
 lat1 = (nlat_a + nlat_b) / 2
 lon1 = (nlon_a + nlon_b) / 2
 lat2 = (slat_a + slat_b) / 2
 lon2 = (slon_a + slon_b) / 2

 #reverse direction
 if direction == 'REV':
 lat1, lat2 = lat2, lat1
 lon1, lon2 = lon2, lon1

 #overall path ‐ x East, y North
 del_lat = lat2 ‐ lat1
 del_lon = lon2 ‐ lon1

 d2f_lon = cos(lat1*d2r) * d2f_lat
 del_x = del_lon * d2f_lon
 del_y = del_lat * d2f_lat

 distance = sqrt(del_x*del_x + del_y*del_y)

158
 theta = atan2(del_y, del_x)
 theta_deg = theta / d2r
 heading_path = fmod((90 ‐ theta_deg + 360), 360)

 #plan path in local coordinates ‐ +xloc forward, +yloc left,
 #zero at first point of interest (POI)
 if spacing_option == 'fixed' and spacing > 0:
 xloc = np.arange(
 ‐overshoot,
 ((distance+2*overshoot)%spacing+distance+overshoot), spacing)
 #for fixed‐distance waypoint spacing
 elif spacing_option == '25%':
 xloc = np.array([‐overshoot, (distance+2*overshoot)/4‐overshoot,
 2*(distance+2*overshoot)/4‐overshoot,
 3*(distance+2*overshoot)/4 ‐overshoot,
 distance+overshoot]) # 25% waypoint spacing
 else:
 xloc = np.array([‐overshoot, (distance+2*overshoot)/2‐overshoot,
 distance+overshoot]) #for 50% waypoint spacing

 yloc = np.full(xloc.size, 0)
 head_plan = np.full(xloc.size, heading_path)

 #rotate into global and convert to lat‐lon
 xyloc = np.vstack((xloc, yloc))
 Amat = np.array([(cos(theta), ‐sin(theta)) ,
 (sin(theta), cos(theta))])
 xyglo = Amat @ xyloc

 lat_plan = lat1 + xyglo[1]/d2f_lat
 lon_plan = lon1 + xyglo[0]/d2f_lon

 #flat AGL
 agl_plan = np.full(lat_plan.size, h)

 #save lat‐lon for each waypoint in current pass
 n = len(lat_plan)
 for i in range(n):
 i_pass = n_pass + i
 wp = Waypoint() #reset the object 'wp' to store new waypoint data
 wp.frame = 3
 wp.command = 16
 wp.is_current = False
 wp.autocontinue = True
 wp.param1 = 0
 wp.param2 = 0
 wp.param3 = 0
 wp.param4 = 0
 wp.x_lat = lat_plan[i]
 wp.y_long = lon_plan[i]
 wp.z_alt = agl_plan[i]
 wl.append(wp) #add waypoint to waypoint list (wl)
 #finished with current pass
 n_pass = n_pass + n

159
 #finished with all passes
 print ("finished generating new waypoints")
 print("downloading new mission...")

 #####PUSH NEW WAYPOINT LIST TO PIXHAWK#####
 try:
 PushService = rospy.ServiceProxy('mavros/mission/push', WaypointPush,
 persistent=True)
 PushService(start_index=0, waypoints=wl) #call MAVROS service to
 #push new waypoint list
 if PushService.call(start_index=0, waypoints=wl).success:
 print ("new mission downloaded") #check that the success message is
 #'true' and print verification
 else:
 print("MISSION download ERROR. CHECK MAIN MAVROS TERMINAL.")

 except rospy.ServiceException as exc:
 print ("Failed to call WaypointPush service: " + str(exc))
 #print error message if service call fails

CALL FUNCTIONS ##
activate_hold() #switch to HOLD mode
clear_mission() #clear the waypoint list
create_waypoint() #delete old mission, download new mission
restart_wp_sequence() #assign first waypoint as current
current_GPS_home() #set HOME to current location
time.sleep(1) #allow all messages to be accepted by Pixhawk

ans = input("Reactivate AUTO mode to begin mission? (y/n): ")
if ans == 'y':
 reactivate_auto() #switch to AUTO mode, begin mission
else:
 print("HOLD mode maintained")

bottom – mission_update.py

160
B.3 backup.py

This script works in tandem with the Arduino script HCSR04.ino to achieve simple

object avoidance with ROS and the Pixhawk. The script creates a node to subscribe to the range

messages published by the Arduino. It checks the range and published R/C override messages if

an object is too close.

import rospy
from std_msgs.msg import String
from mavros_msgs.msg import OverrideRCIn
from sensor_msgs.msg import Range

def callback(msg):
 distance = msg.range #define distance as range component of Range message
 #on ultrasound topic
 msg = OverrideRCIn() #redefine msg as OverrideRCIn message published
 #to the override topic
 print(distance) #print the distance measured by the sensor
 if (distance < 30): #if a distance <30 cm is read, override RC
 msg.channels = (0, 1500, 1300, 0, 0, 0, 0, 0)
 #ch2 in ArduPilot rover is steering, ch3 is throttle
 else:
 msg.channels = (0, 0, 0, 0, 0, 0, 0, 0) #don't override RC if >30cm
 pub.publish(msg) #publish OverrideRCIn message
 rospy.loginfo(msg) #print message to screen

rospy.init_node('ultrasonic_value') #initiate node for publisher/subscriber

sub = rospy.Subscriber('/ultrasound', Range, callback) #subscribe to the
 #"ultrasound" topic created by Arduino. The message
 #type of this topic is "Range"
pub = rospy.Publisher('mavros/rc/override', OverrideRCIn, queue_size = 10)
 #publish to the "override" topic with message type
 #"OverrideRCIn" while limiting the queue of messages
 #not yet received by the subcriber to 10

rospy.spin() #keep nodes running until they have been shutdown

bottom ‐ backup.py

161
Appendix C

Arduino Code

C.1 HCSR04

This script is used to publish range messages from an Arduino HCSR04 ultrasonic

sensor. It calculates the range based on delay in ultrasonic pulse and publishes the range to a self-

established topic. This script works in tandem with the backup.py script.

/*
 * Michael Pagan
 * 2.5.2021
 * Sketch to report distance values from ultrasonic sensor
*/

#include <ros.h>
#include <ros/time.h>
#include <sensor_msgs/Range.h>

ros::NodeHandle nh;
sensor_msgs::Range range_msg;
ros::Publisher pub_range("ultrasound", &range_msg); //name of topic that messages
are published to

char frameid[] = "ultrasound";

//define pins
const int trigPin = 5;
const int echoPin = 6;

//define variable types
long pulseLength;
int dist; //quantize distances to integers
int distLast; //used to filter out unreasonable distances

void setup()
{
 pinMode(trigPin, OUTPUT); //set digital trigpin as an output
 pinMode(echoPin, INPUT); //set digital echopin as an input

 nh.initNode();
 nh.advertise(pub_range);

 range_msg.radiation_type = sensor_msgs::Range::ULTRASOUND;
 range_msg.header.frame_id = frameid;
 range_msg.field_of_view = 0.1; // fake

162
 range_msg.min_range = 0.0; // cm
 range_msg.max_range = 400; // cm

 digitalWrite(trigPin, LOW);
 //Serial.begin(57600); %
}

void loop(){
 //output ultrasonic burst @ 40000Hz for 10 microsends
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 pulseLength = pulseIn(echoPin, HIGH); //times the duration of HIGH pulse received
 dist = pulseLength * 0.034 / 2; //calculate distance based on speed of sound =
0.034 cm/microsec

 if (400 > dist) {
 range_msg.range = dist;
 range_msg.header.stamp = nh.now();
 pub_range.publish(&range_msg);
 distLast = dist;
 //Serial.println(dist);
 }
 else if ((400 < dist) || (dist‐distLast > 100)) {
 range_msg.range = distLast;
 range_msg.header.stamp = nh.now();
 pub_range.publish(&range_msg);
 //Serial.print(distLast);
 }
 nh.spinOnce();
}

//end HCSR04.ino

163
BIBLIOGRAPHY

[1] “Other Global Navigation Satellite Systems (GNSS),” GPS.gov [Online]. Available:

https://www.gps.gov/systems/gnss/. [Accessed: 04-Jan-2021].

[2] US Air Force, 2017, “GPS Accuracy,” GPS.gov [Online]. Available:

https://www.gps.gov/systems/gps/performance/accuracy/. [Accessed: 04-Jan-2021].

[3] Sickle, J. Van, 2020, “Two Types of Observables,” GEOG 862 GPS GNSS Geospatial

Prof. [Online]. Available: https://www.e-education.psu.edu/geog862/node/1752.

[Accessed: 04-Jan-2021].

[4] Sickle, J. Van, 2020, “The One-Percent Rule of Thumb,” GEOG 862 GPS GNSS

Geospatial Prof. [Online]. Available: https://www.e-

education.psu.edu/geog862/node/1760. [Accessed: 04-Jan-2021].

[5] Sickle, J. Van, 2020, “Real-Time Kinematic and Differential GPS,” GEOG 862 GPS

GNSS Geospatial Prof. [Online]. Available: https://www.e-

education.psu.edu/geog862/node/1828. [Accessed: 04-Jan-2021].

[6] Gan-Mor, S., Clark, R. L., and Upchurch, B. L., 2007, “Implement Lateral Position

Accuracy under RTK-GPS Tractor Guidance,” Comput. Electron. Agric., 59(1–2), pp. 31–

38.

[7] Grisetti, G., Kummerle, R., Stachniss, C., and Burgard, W., 2010, “A Tutorial on Graph-

Based SLAM,” IEEE Intell. Transp. Syst. Mag., 2(4), pp. 31–43.

[8] NOAA, 2020, “What Is LIDAR?,” Natl. Ocean Serv. Website [Online]. Available:

https://oceanservice.noaa.gov/facts/lidar.html. [Accessed: 13-Apr-2020].

[9] Davies, E. R., 2004, “The Nature of Vision,” Machine Vision: Theory, Algorithms,

164
Practicalities, Elsevier, pp. 2–10.

[10] Rawashdeh, N. A., and Jasim, H. T., 2013, “Mult-Sensor Input Path Planning for an

Autonomous Ground Vehicle,” 2013 9th International Symposium on Mechatronics and

Its Applications, ISMA 2013.

[11] Anand, K., and R., G., 2019, “An Autonomous UAV for Pesticide Spraying,” Int. J. Trend

Sci. Res. Dev., Volume-3(Issue-3), pp. 986–990.

[12] Bochtis, D. D., Vougioukas, S. G., and Griepentrog, H. W., 2009, “A Mission Planner for

an Autonomous Tractor,” Trans. ASABE, 52(5), pp. 1429–1440.

[13] Bochtis, D., Griepentrog, H. W., Vougioukas, S., Busato, P., Berruto, R., and Zhou, K.,

2015, “Route Planning for Orchard Operations,” Comput. Electron. Agric., 113, pp. 51–

60.

[14] Gomez-Gil, J., Ruiz-Gonzalez, R., Alonso-Garcia, S., and Gomez-Gil, F. J., 2013, “A

Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning

of Tractors,” Sensors (Switzerland), 13(11), pp. 15307–15323.

[15] Moorehead, S. S. J., Wellington, C. K. C., Gilmore, B. J., and Vallespi, C., 2012,

“Automating Orchards: A System of Autonomous Tractors for Orchard Maintenance,”

Proc. IEEE Int. Conf. Intell. Robot. Syst. Work. Agric. Robot., (January), p. 632.

[16] Barawid, O. C., Mizushima, A., Ishii, K., and Noguchi, N., 2007, “Development of an

Autonomous Navigation System Using a Two-Dimensional Laser Scanner in an Orchard

Application,” Biosyst. Eng., 96(2), pp. 139–149.

[17] Hamner, B., Singh, S., and Bergerman, M., 2010, “Improving Orchard Efficiency with

Autonomous Utility Vehicles,” American Society of Agricultural and Biological

Engineers Annual International Meeting 2010, ASABE 2010, pp. 4670–4685.

165
[18] Bayar, G., Bergerman, M., Koku, A. B., and Konukseven, E. I., 2015, “Localization and

Control of an Autonomous Orchard Vehicle,” Comput. Electron. Agric., 115, pp. 118–

128.

[19] Radcliffe, J., Cox, J., and Bulanon, D. M., 2018, “Machine Vision for Orchard

Navigation,” Comput. Ind., 98, pp. 165–171.

[20] 2008, “R/C and Robotics Software for Linux/PXA255/PXA270” [Online]. Available:

http://www.pabr.org/pxarc/doc/pxarc.en.html. [Accessed: 21-Jan-2021].

[21] ArduPilot Dev Team, 2020, “Rover Home” [Online]. Available:

https://ardupilot.org/rover/. [Accessed: 28-Aug-2020].

[22] Flores, J., Solovey, G., and Gil, S., 2003, “Flow of Sand and a Variable Mass Atwood

Machine,” Am. J. Phys., 71(7), pp. 715–720.

[23] U-blox, 2018, “ZED-F9P Datasheet” [Online]. Available:

https://cdn.sparkfun.com/assets/8/3/2/b/8/ZED-F9P_Data_Sheet.pdf. [Accessed: 05-Nov-

2020].

[24] Nathan Seidle, 2018, “GPS-RTK2 Hookup Guide,” SparkFun [Online]. Available:

https://learn.sparkfun.com/tutorials/gps-rtk2-hookup-guide. [Accessed: 05-Nov-2020].

[25] Nathan Seidle, 2017, “GPS-RTK Hookup Guide,” SparkFun [Online]. Available:

https://learn.sparkfun.com/tutorials/gps-rtk-hookup-guide. [Accessed: 05-Nov-2020].

[26] Nathan Seidle, 2020, “Setting up a Rover Base RTK System,” SparkFun [Online].

Available: https://learn.sparkfun.com/tutorials/setting-up-a-rover-base-rtk-system.

[Accessed: 05-Nov-2020].

[27] Nathan Seidle, 2020, “How to Build a DIY GNSS Reference Station,” SparkFun [Online].

Available: https://learn.sparkfun.com/tutorials/how-to-build-a-diy-gnss-reference-station.

166
[Accessed: 05-Nov-2020].

[28] FieldBee, 2020, “FieldBee RTK GPS System” [Online]. Available:

https://www.fieldbee.com/product/rtk-gps-system/. [Accessed: 24-Feb-2021].

[29] MAVLINK, 2021, “MAVLink Developer Guide” [Online]. Available:

https://mavlink.io/en/. [Accessed: 05-Jan-2021].

[30] RFDesign, 2013, “RFD900 Radio Modem Data Sheet” [Online]. Available:

https://files.rfdesign.com.au/Files/documents/RFD900 DataSheet.pdf. [Accessed: 12-Nov-

2020].

[31] U-blox, 2021, “U-Center” [Online]. Available: https://www.u-blox.com/en/product/u-

center. [Accessed: 05-Nov-2020].

[32] Support, 2017, “RTCM 3 Message List,” SNIP [Online]. Available: https://www.use-

snip.com/kb/knowledge-base/rtcm-3-message-

list/?gclid=CjwKCAiA4rGCBhAQEiwAelVti6WGjcnnOVNSCkZl5XIZvH3vah5-

5S0koG9qIuKe343g3JOsZdqOUxoC1DsQAvD_BwE. [Accessed: 10-Oct-2021].

[33] Inc., S. T., 2007, “NMEA Reference Manual” [Online]. Available:

https://www.sparkfun.com/datasheets/GPS/NMEA Reference Manual-Rev2.1-Dec07.pdf.

[Accessed: 05-Nov-2020].

[34] MathWorks, 2020, “EarthRadius” [Online]. Available:

https://www.mathworks.com/help/map/ref/earthradius.html. [Accessed: 11-May-2020].

[35] ROS, 2021, “RxmRAWX Message” [Online]. Available:

http://docs.ros.org/en/kinetic/api/ublox_msgs/html/msg/RxmRAWX.html.

[36] Choy, S., 2018, “GNSS Precise Point Positioning” [Online]. Available:

https://www.unoosa.org/documents/pdf/icg/2018/ait-gnss/16_PPP.pdf.

167
[37] Rtkexplorer, 2021, “RTKLIB Code: Windows Executables” [Online]. Available:

http://rtkexplorer.com/downloads/rtklib-code/.

[38] Canada, G. of, 2021, “Precise Point Positioning” [Online]. Available:

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en. [Accessed: 24-Dec-

2021].

[39] Google, 2020, “Download Google Earth Pro for PC or Mac” [Online]. Available:

https://www.google.com/earth/download/gep/agree.html?hl=en-GB. [Accessed: 28-Dec-

2021].

[40] Takeshi, I., “Laptop Computer Isolated on a White Background with a Blank Screen”

[Online]. Available: https://www.vecteezy.com/vector-art/376614-laptop-computer-

isolated-on-a-white-background-with-a-blank-screen. [Accessed: 18-Jan-2021].

[41] ROS, 2021, “Ubuntu Installation of ROS Noetic” [Online]. Available:

http://wiki.ros.org/noetic/Installation/Ubuntu. [Accessed: 05-Nov-2021].

[42] ROS, 2021, “ROS Concepts” [Online]. Available: http://wiki.ros.org/ROS/Concepts.

[Accessed: 05-Nov-2021].

[43] MAVLINK, 2020, “Mission Protocol” [Online]. Available:

https://mavlink.io/en/services/mission.html. [Accessed: 05-Jan-2021].

[44] Ermakov, V., 2021, “MAVROS” [Online]. Available: http://wiki.ros.org/mavros.

[Accessed: 05-Jan-2021].

[45] Cadet, C., 2012, “Cub Cadet RZT-S Zero Professional Shop Manual” [Online]. Available:

https://www.manualslib.com/manual/1065738/Cub-Cadet-Rzt-S-Zero.html. [Accessed:

26-Feb-2016].

[46] Inc., A. S., “BAC1000 Product Brochure” [Online]. Available:

168
https://www.tecknowledgey.com/amfilerating/file/download/file_id/569/. [Accessed: 26-

Feb-2016].

[47] Kunze, M., and Accelerated Systems Inc., 2018, “ASI Modbus Protocol,” (Personal Email

Communication w/ H.J. Sommer).

[48] Kunze, M., and Accelerated Systems Inc., 2018, “ASI Object Dictionary,” (Personal

Email Communication w/ H.J. Sommer).

ACADEMIC VITA OF MICHAEL PAGAN

EDUCATION
The Pennsylvania State University, Schreyer Honors College • Class of 2021 University Park, PA
College of Engineering • Bachelor of Science, Mechanical Engineering
College of Engineering • Minor, Engineering Leadership Development

TECHNICAL EXPERIENCE
Mechatronics Engineering Intern Jun 2020-Aug 2020
JLG Industries Hagerstown Maryland

 Independently managed a complex trade study project and successfully delivered results
 Utilized MATLAB to model and analyze steering cylinder forces throughout a static steer
 Acquired fluency with hydraulic schematics and technical drawings through critical review
 Culminated technical findings into Decision Analysis and Resolution to produce design solutions

Undergraduate Thesis Author Sept 2019-Apr 2021
Penn State Department of Mechanical Engineering State College, PA

 Developing autonomous all-electric zero-turn mower for an apple orchard
R&D Engineering Intern Feb 2019-Dec 2020
Penn State Applied Research Lab State College, PA

 Analyzed and repaired inoperable electronic lab equipment
 Collected, collated, and reported data on furnace temperature profiles
 Worked extensively with electric controllers and vacuum systems for furnaces
 Designed and built high temperature wet oxidation system
 Applied fundamental automation skills to furnace systems via PID control

LEADERSHIP EXPERIENCE
President May 2020-May 2021
Penn State Men’s Club Volleyball University Park, PA

 Leads the 28-player club by heading all administrative relations and coaching
 Commits 10+ hours per week for club duties
 Supervises club team members and other executive officers
 Served as Vice President for the preceding year coordinating travel and assisting the President

INTERNATIONAL EXPERIENCE
Engineering Design Student May 2018-June 2018
Tecnun Universidad de Navarra San Sebastián, Spain

 Studied identification and resolution of global/cross cultural engineering problems
 Led design team that aimed to improve urban cycling in San Sebastián, Spain

ACTIVITIES AND HONORS SKILLS
The President Sparks Award (4.0 GPA) Jan 2019 Tech: SolidWorks, Creo, MATLAB,
Louis A. Harding Memorial Scholarship (4.0 GPA) Jan 2019 EES, Linux, RTK GPS, Python, Arduino,
The President’s Freshman Award (4.0 GPA) Jan 2018 ROS
Penn State Dean’s List Dec 2017-present Engineering: Electrical troubleshooting;
Penn State Men’s Club Volleyball Team Aug 2017-present Mechatronics; Data collection and analysis;
 Schematic fluency; Hands-on fabrication

	Pagan_HonorsThesis_Draft6.pdf
	Pagan_HonorsThesis_Draft6_AckRev.pdf
	Pagan_HonorsThesis_Draft6

