THE PENNSYLVANIA STATE UNIVERSITY
SCHREYER HONORS COLLEGE

DEPARTMENT OF MECHANICAL ENGINEERING

A COST-EFFECTIVE AUTONOMOUS ZERO-TURN MOWER FOR ORCHARDS

MICHAEL A. PAGAN
SPRING 2021

A thesis
submitted in partial fulfillment
of the requirements
for a baccalaureate degree
in Mechanical Engineering
with honors in Mechanical Engineering

Reviewed and approved* by the following:

H.J. Sommer III
Professor of Mechanical Engineering
Thesis Supervisor

Bo Cheng
Assistant Professor of Mechanical Engineering

Honors Advisor

* Electronic approvals are on file.

ABSTRACT

Orchard maintenance activities can be time-consuming and potentially hazardous for
humans. Therefore, it is beneficial to automate orchard tasks to remove humans from undesirable
or harmful jobs. One key orchard maintenance activity is mowing between rows of trees. To
automate this task, the mower must know where it is at all times, to a relatively high degree of
accuracy. Achieving cost-effective, high-accuracy localization can be difficult, however.

In this project, a differentially steered unmanned ground vehicle (UGV) named UGVO01
was used to develop a mission-based autonomy system. UGVO01 was used as a proof-of-concept
platform before implementing the system onto a Cub Cadet RZT-S zero-turn mower.

The latest high-precision satellite localization and waypoint automation technologies
were tested on UGVO01. A Pixhawk autopilot controller was used to achieve mission-based
autonomy. High precision satellite localization was achieved through a Real Time Kinetic (RTK)
positioning system established at the testing grounds. The system was built with affordable RTK
boards, thereby demonstrating the ability of modern technology to provide a viable, cost-
effective solution for autonomy. Robot Operating System (ROS) was integrated into the ground
control system of UGV01 to enhance its flexibility and functionality. ROS was used to create an
automated mission-updating routine for UGVO01. A simple object-avoidance routine was created
to demonstrate the sensor-integration possibilities of ROS.

The Cub Cadet zero-turn mower was modified to be compatible with the Pixhawk system
developed for UGVO01. A custom RS485 interface interpreted the outputs from the Pixhawk

system to successfully control the drive wheels and mowing deck on the Cub Cadet.

TABLE OF CONTENTS

LIST OF FIGURES ..ottt sttt et e enseennas il
LIST OF TABLESottt et st eaeas v
ACKNOWLEDGEMENTS ...ttt ettt ne s A%
Chapter 1 MOtIVALIONccuiiiiieieieeiieeie et esiee et et eete e st e ebeeseaeessaeseaeesseessseensaesnseesseanns 1
Chapter 2 Literature REVIEWccceevuiiiiiiiiiiiiiiiicieeieeeese ettt 2
2.00 OVEIVIEW.....eeiiiiuiiiiiieeiteeite ettt ettt ettt et e bttt e sat e st e s bt e eabeesbeesateenaeeeas 2
2.01 Satellite-Based Localizationcceevieeiiieiiiiiiienieeiiesie e 2
2.02 Sensing-Based Localization...........cccceeeieeriiiiniiieeniie e 4
2.03 Unmanned Ground Vehicle Path Planning Using Multiple Sensor Inputs...5
2.04 Precision Agriculture with Autonomous UAVS.........ccceeevieviieniienieenieeneens 6
2.05 Autonomous Agriculture Vehicle Guidance with GPS and Path Planning..7
2.05 Autonomous Orchard Navigation without GPScccooviiiiiiiiiiniees 10
2.06 A Cost Effect Autonomous Zero-Turn Mower for Orchards........................ 13
Chapter 3 Remote Control of a Differential Steer UGVccccvvvviiiiiiiiiniiciiee, 15
3.00 OVETVIEW.....ouiieiieeiiieiiie ettt ettt et s ettt e st e et e st e e bt e sate e bt e ssseeseesnseenseaans 15
3.01 Differential Steer UGVcccoooiiiiiiiiiiiiiiiieeeeeeeeeee e 15
3.02 Remote Control Configurationccoceevueeuereenienieneenenieneeseseesee e 17
Chapter 4 UGVO01 Pixhawk 4 INtegration..........cccceccveerieeeiieneenieeniieereeieesveenee e enne 22
4,00 OVEIVIBW.....ceieiiuiieiiieeieeeiteetee st et e s tte e bt e stteebeesseeeseeaseesateesseaenbeesseesnseenaeeans 22
4.01 Hardware Configurationcccueevueerieerrienieeiieeneeereeseesveesseesseessnesneens 22
4.02 Software Configurationcoceeverierieneriieneeneeeeeee e 26
Chapter 5 Testing UGVO01 with PIXhaWkcccoeveiiiiiiiiiiiiciicicceeee e 33
5.00 OVETVIEW.....cuiiiiieiiieite ettt ettt ettt et ettt e st et e e sate e bt e sabe e beesmbeenbeeeas 33
5.01 Creating a Test Track at Rock Springs Orchard.............cccooevveviieniieiiiennnnnne. 33
5.02 UGVO01 Ground-Marking DevViICeceeureeriieeiiieeiieeeiie e 38
5.03 Evaluating UGVO01 Performance on Test Track...........ccccceevvieviienieniiennnnns 41
Chapter 6 Establishing an RTK System with Pixhawkccccccovviiiiiiiiniiiiiene, 46
0.00 OVEIVIEW.....eeiiiiiiiiietiete sttt ettt ettt et ettt et sae ettt e bt et sase bt ebeeaeen 46
6.01 Hardware Configurationcccccueeeriieeiiieeiieeeieeeeieeeeieeeeireeereeeesveeesneees 46

6.02 COSt CONSIACTALION. ...ttt eeeeeeenennnne 53

i

6.02 Configuring Two Telemetry Radio Pairsccceveriiniiiiniiniencnicneee, 54
6.03 Software Configuration of ZED-FOP RTK Boardscccccecvvveriieinieennneen. 58
6.04 Configuring Pixhawk to Integrate the RTK System.........cccccecevienininnenne. 65
Chapter 7 Performance Evaluation of the RTK Systemccccccoevvvviieiiiniiieniennnne, 67
70T OVETVIEW. ..ottt ettt ettt ettt et e st e et e st eebeesabe e bt e ssseeseesnseenneanns 67
7.02 Assessing the Precision and Accuracy of the RTK Systemccoeuee. 67
7.03 Testing UGVO01 with RTK-Integrated Pixhawkccccoceeviniinininnnnne. 71
7.04 Using the ZED-F9P to Establish a High-Accuracy GCPccccccuvenneeee. 76
Chapter 8 Integrating ROS with the Pixhawk........c..occooiiiiiiiniinics 81
BL0T OVEIVIEW ...ttt ettt ettt sttt e 81
8.02 Motivation for ROSooiiiiie e e 81
8.03 Using ROS to Communicate with the Pixhawkccccooevvvviiiciiiniinnnnne. 82
8.04 Assigning Missions to UGV01 with MAVROS..........coceiiiiiniininiccee 85
8.05 Simple Object Avoidance with ROS and Pixhawkccccovvvviieniennnnnen. 87
Chapter 9 Cub Cadet R/C Controlcoeeuiriiniiiienienieieeeeeecseeieeeeee e 88
0.0 OVETVIEW....coiiiiniieiiieite ettt ettt ettt ettt et et beesateebee e 88
9.02 Manual Control SYSTEMcc.eeviriiririirieeiteneeeee st 88
9.03 BAC1000 Motor CONtrollerscoverueeieriienieeiesienieeie et 92
9.04 Manual Power Activation SEQUENCE.........cc.eeuerierieriirienieeieeieereerenie e 96
9.05 Cub Cadet Motor Shieldcooeiiiiiiiiiiieeeeeeeee e 98
9.06 Microprocessor Power Activation SEqUENCE..........coveevereerieeseereenreeieneennes 101
9.07 User POWEr-0n SEQUENCE......cccuviieiiiieiiieeiieeeiteeeiee et sieee e e 102
9.08 Microprocessor Logic FIOW.......cccuoiiiiiiiiiiiiiiiieeeeeeeee e 103
9.09 Future Control CONCEPLS......cccvteriieeiieiieeieeiteeiteeteesiveeeeesreenbeeseeeeseesaee e 108
Chapter 10 Retrofitting the Cub Cadet RZT-S Zero........cceeevveeeiieieiieeeieeeieeeeeene 109
LO.0T OVEIVIEW ...ttt sttt ettt ettt ettt eae e 109
10.02 Simplifying Control of the Cub Cadet..........ccoeevveeeiiiiniieciieeeeeeeeeee 109
10.03 Integrating the Autonomous Control Systemccceecueeviieriiieneeniieenieenne 114
Chapter 11 FUture WOrKccoeieiiiieiicceeee ettt e e e e eaee e 123
Appendix A Mission Planner Parameter Lists..........ccccevieriininieniininieniencciceee, 126
A.1 Non-RTK Configuration...........cceeeeieeeiieeniiieeeiieeciee e eeiee e s 126
A.2 RTK GPS Configuration..........cccceecuieiieeiieniieiieeiiesie et eeeeens 138

Appendix B Python Codeooocuiiiiiiiieiiiecie ettt 150

il

B.1 inline pair UGVOL.PY.ccc.ooiiiiiiiniiieiieteeeese ettt 150
B.2 MiSSION. UPAALE.PY.c.vviiriieiiieiiieiieeiie et eeite et e seteeteeseeereesereeseessaeesseessseensaens 154
B3 DaCKUD. DY ettt ettt et 160
Appendix C Arduino Codeoccvieiiieiiiiiieiieieeeeete ettt et sese s 161
C.LHGCSROA ...ttt ettt e e st e e e seenseenseeneennas 161

BIBLIOGRAPHY ..ottt 163

v

LIST OF FIGURES

Figure 2.1 - Comparison of carrier-phase (left) and code-phase (right)
calculations by @ GPS 1eceiVer [3].....cccueiiiiiiiiiieie e 4

Figure 2.2 — Example of a UGV with multiple sensor inputs [10].........ccceeeriercenene 6
Figure 2.3 — Orchard mowing efficiency is improved with mission planning [13].....8
Figure 2.4 - Test rig to record the lateral deviation of an implement [6] 9

Figure 2.5 — Laser-based autonomous orchard vehicle (left) navigating rows

while mapping tree locations (right) [17] ...c.cccveviieiiiinieeiieieeeeee e 12
Figure 2.6 - Unmodified Cub Cadet RZT-S Zero......ccccecevveveriieniiniiiiniccnieneeees 13
Figure 3.1 - UGVO01 left side showing track designccccceevieeiiiiniieiiienieeiieees 16
Figure 3.2 - UGVO0I top showing motors and aft switch.........cccccoceeviriinininiinnnn. 17
Figure 3.3 - Wiring configuration for R/C system in UGVO1cccccceviiiiiiiencennen. 18
Figure 3.4 - Signal flow for R/C system in UGVO1cc.ccceniiiiniiniiniiiiniceneee. 19
Figure 3.5 — Conversion between PPM signal and 3 PWM channels [20].................. 20
Figure 4.1 - UGVO01 with basic Pixhawk system installed.............ccccooceniiiinincnnn. 23
Figure 4.2 - Signal flow comparison for UGVO01 with Pixhawkcccceoiniininnnie. 23
Figure 4.3 - Pixhawk hardware cOnnections............cceecueerieeiiienieniiienie e 24

Figure 4.4 - Power management board connection to the Sabertooth

MOLOT CONTTOLIET ..ttt et e 25
Figure 5.1 - Rock Springs Orchard............cccooviiiiiiiiieiiieiececieceeee e 34
Figure 5.2 — 6 Ground Control Points (GCPs) at Rock Springs Orchard.................... 35
Figure 5.3 — Recessing a stone paver to establish a test track GCP..............c.ccccvenee. 36
Figure 5.4 - Completed test track in aisle A1-A2 composed of 4 GCPs...................... 37
Figure 5.5 - Funnel dispenser for marking compound hopper...........ccccoeevvevvieniiennnnne 39

Figure 5.6 - L bracket for marking device mounted to the aft of UGVOL1 40

Figure 5.7 - Testing functionality of UGV01 with ground marking device................. 41
Figure 5.8 - First test track mission displayed in Mission Planner...............c.ccceene.n. 42
FIgure 5.9 - AT-A2 SWi..o ettt 43
FIGUIE 5.10 = AT-AZ ettt ettt e et e et e e e aae e sssaeeenseeesnneeenns 43
Figure 5.11 - AT-A2 NE ..ot s 44
Figure 5.12 - Trace of UGVO01 path from A1-A2 to A1-A2 NE during run 2............. 44
Figure 6.1 - Hardware configuration of the RTK base stationcccceceevvueeniennnn. 47
Figure 6.2 - RTK base module assembled with critical componentsc......... 49
Figure 6.3 - Hardware configuration of RTK rover module with the Pixhawk........... 50
Figure 6.4 — Rover RTK hardware within protective housing on UGVO01 51
Figure 6.5 - Updated design of UGVO01 with Pixhawk and RTK system.................... 52
Figure 6.6 - UGVO01 aft deck with GNSS antenna grounding planec.ccc......... 53
Figure 6.7 - SiK radio configuration tool within Mission Planner............ccccoceeenie. 55
Figure 6.8 - RFD900 radio modem pin layout [30]......ccccocveeviienieniiiinieeieenieeieeens 57
Figure 6.9 - u-center configuration window for base RTCM messages........c...cc.c..... 59
Figure 6.10 - Base RTK module port configuration in u-center..............cceeveeveenennn. 60
Figure 6.11 - RTK rover module UART1 configuration settings in u-center 62

Figure 6.12 - U-center configuration of NMEA messages on the rover
RTK MOAUIE ...ttt e 63

Figure 6.13 - U-center configuration of the rover RTK module
NAVIZALION fTEQUEIICY ...eutiiiiiiiieiieeteete ettt ettt ettt ettt et e s eee 64

Figure 7.1 - RTK rover (left) and base station (right) equipment
dUTING ACCUTACY tESTINEeuviiiuiieiieetieiie ettt ettt ettt et site et et esnteeaee e 68

Figure 7.2 - Example of GNRMC NMEA SENtencCe.........cccervereerruereenieerienienieeeennnes 69

Figure 7.3 - Standard deviation and error of the rover RTK module at each GCP70

vi

Figure 7.4 - Base and rover GNSS antennas sharing A1 South GCP during testing... 70
Figure 7.5 - Test track mission created for performance evaluations.............c.ccc.o...... 72
Figure 7.6 - Non-RTK Pixhawk navigating UGVO01 through test-track mission........ 73
Figure 7.7 - RTK Pixhawk navigating UGVO01 through test-track mission 73
Figure 7.8 - Position trace of UGV01 with RTK Pixhawk: west end of test track...... 74

Figure 7.9 - Position trace of UGV01 with RTK Pixhawk: east end of test track....... 74

Figure 7.10 - Position trace of UGVO01 through orchard block A1 ... 75
Figure 7.11 - UGVO01 navigating a narrow orchard row in block Al...........cccceeenie. 76
Figure 7.12 - GNSS antenna mounted on roof to determine GCP location................. 77

Figure 7.13 - Decrease of position error with logarithmic increase of GNSS
data collection time [36]c.ueeeiieeiiieeiee e e e e 78

Figure 7.14 - Exporting a high-resolution satellite image from Google Earth Pro......79

Figure 8.1 - ROS communication network for a team of autonomous

Orchard VEhICIESouiiiiiiiiiicc e 82
Figure 8.2 — Topology of Pixhawk, ROS, and Mission Planner.............c.ccccccvcvencnnen. 84
Figure 9.1 - RZT-S Zero electrical block diagramcccceeeiieriieiienieenieenieeien. 88
Figure 9.2 - RZT-S Zero electrical SChematiccoceeverieniiniiniinieicnienicnienceees 89
Figure 9.3 - RZT-S Zero Vehicle Control Module (VCM)cccceeviirieeniienieeiiens 90
Figure 9.4 - RZT-S Zero control panelccccooeviiiiniiniininiinicccicecceecsce 91
Figure 9.5 - Cub Cadet motor shield schematic............cccocveeviienieeiiiinieeieee e, 98
Figure 9.6 - Cub Cadet motor shield printed circuit board..........cccccoceeveeiiniinennennee. 99
Figure 9.7 - Pololu 2801 dead man RC safety system...........cccecveviienieeiieneeeciienenns 101
Figure 10.1 - Unmodified Cub Cadet RZT-S Zero........coceevueriineininiinieicnicneeeees 110
Figure 10.2 - Comparison of the Cub Cadet RZT-S and ZT1-42 wheel yokes........... 111

Figure 10.3 - Thrust bushing installed on a caster yokecccccccvvevvivieniieeniieenieeenns 112

Vil

Figure 10.4 - Increased tire spin radius caused by the new caster yoke...................... 112
Figure 10.5 - Fabrication of deck mounting blockc.ccoeeieviieiiiniiieiieniecieeens 113
Figure 10.6 — Relocated mowing deck wheel with custom-fabricated mount............. 114

Figure 10.7 - Relocated deck wheel outside sufficiently far from the

caster YOKE SPIN radIUS.......eeiuiiiiiiiiieiieee ettt e 114
Figure 10.8 - Flat deck below seat used for mounting the autonomy platform........... 115
Figure 10.9 — Wooden base of the autonomy platform on the seat deck..................... 116
Figure 10.10 - Cub Cadet retrofitted with autonomy platform............cccceevvervirennnnns 116
Figure 10.11 - Brake lever bolted to the existing pedal bracketccoceeiiein. 117

Figure 10.12 - Pixhawk system mounted on the Cub Cadet autonomy platform........ 118

Figure 10.13 - Signal flow of R/C CCMS SyStemcccuervereriieniineniinieienienceens 119
Figure 10.14 - R/C receivers wired to the CCMS control boxXccceevvverieeiiiennenns 119
Figure 10.15 - Signal flow of Pixhawk CCMS system in manual mode..................... 120
Figure 10.16 - Signal flow of Pixhawk CCMS system in auto mode............ccceeueneev. 120
Figure 10.17 - Cub Cadet with Pixhawk system installed...........c.ccccceeviniininiinnnnns 122
Figure 11.1 - Ultrasonic array design for the Cub Cadet...........ccceevvvievieriienienieenen, 124

Figure 11.2 - Modified old Cub Cadet compared to the new Cub Cadet 125

viil

LIST OF TABLES

Table 3.1 - Spektrum DX8 channel configuration for R/C UGVOIccceoveeennen. 18
Table 3.2 - Dip switch positions on Sabertooth for R/C configuration........................ 21
Table 4.1 - Dip switch positions on Sabertooth for Pixhawk configuration................ 25
Table 4.2 - Spektrum DX8 channel assignments for Pixhawk UGV01

CONMTTZUIATION ...utieeiiie ettt ettt e st e e st e e et eeenbeeessbeeesnseesnaseesnnseeennnes 27
Table 4.3 - ArduPilot parameters for DX8 input compatibility...........ccceceeviiriiennne 28
Table 4.4 - Parameters for auxiliary functions on DXS8..........cccccoeviiiiieiiiniiienieen, 29
Table 4.5 - ArduPilot parameters for sensor orientation..............cecceeveveeveereeesieeneenne. 30
Table 4.6 - ArduPilot parameters for exclusive use of the external compass.............. 31
Table 4.7 - ArduPilot parameters for tuning motor PWM outputs...........cccceeeiieneenne 32
Table 5.1 - Deviation of UGVO01 during test track miSSionsc.ccccveeeveerverieenneenns 42
Table 6.1 - RTK base Wiring CONNECLIONSeecveereerriieriieeiieniieeiiesiie e see e 48
Table 6.2 - RTK rover Wiring CONNECHIONSccueerueerieerieereeniieereenireeseesnesnseesneens 50
Table 6.3 — Cost sheet of Pixhawk RTK GPS systemc..ccccoeveeviiiiniiininniinicneens 54
Table 6.4 - RSSI of Holybro corrections radio throughout the orchard 56
Table 6.5 - Comparison of Holybro and RFD900 radio signal strengths 57
Table 6.6 - RTCM message types sent from the RTK base module...............ccceeneen. 59

Table 6.7 - NMEA message types sent from UART]1 of the rover RTK module........ 62

Table 6.8 - ArduPilot parameters required for ZED-FOP RTK module integration.... 66

Table 9.1 - VCM write registers for manual controlccccoceeiiniiiiniininncnicnene 94
Table 9.2 - VCM read registers for manual control with typical values...................... 95
Table 9.3 - External connections to Cub Cadet motor shieldccccoecveeniiniiencns 100

Table 9.4 - User POWEr-On SEQUENCE.......cc.eeeiuieriieeiieeiieeiieeieeiee e eieeereesinesaeesieeens 103

1X

Table 9.5 - Skid steer lookup table for left wheel/track...........cccooeriiniiiininnnnnns 106
Table 9.6 - BAC1000 registers for CCMS operation with typical values.................... 107
Table 10.1 — ArduPilot parameter adjustments for Pixhawk CCMS system............... 121

Table 10.2 - Wiring connections of the CCMS Systems..........cccceevvvervieriienieecieenneennn. 121

xi

ACKNOWLEDGEMENTS

My completion of this thesis was made possible by the unending enthusiasm, mentorship,
and brilliance of Dr. H.J. Sommer. Through this fun and challenging project, Dr. Sommer helped
me find my passion for autonomous ground vehicles. I cannot thank him enough for his
contributions to this project and support of my development as a researcher and engineer.

I am very grateful of Randall Bock and all of his help with retrofitting the Cub Cadet
RZT-S Zero for autonomous operation. Randall was always eager to lend a hand and his advice
was critical in several design decisions.

My work with ROS would not have been possible without the help of Chris Hirsh. Chris
went out of his way to do a timely rebuild of the Linux PC, allowing for important project
progress over winter break.

As always, I would like to thank my parents and family. My successes are undoubtedly

rooted in their love for me and their encouragement of excellence.

Chapter 1

Motivation

Machinery operations in orchards such as mowing the rows between trees, spraying, etc.
are low-skill, time-consuming, and hazardous. Autonomous machinery is able to remove humans
from these tedious and dangerous tasks, while completing them with greater efficiency.
Consequently, there is a great deal of benefit to be realized from integrating autonomy into
orchard operations.

While the agriculture industry has much to gain from the adoption of autonomous
machinery, high-precision autonomous guidance systems in agriculture have come at a high
price tag for many years, making them unavailable to smaller-scale orchard farmers. Advances in
technology have allowed for low-cost, high-precision GPS systems to become available to
consumers. The emergence of this technology provides an opportunity to make mission-based
autonomy more widely available to orchard farmers.

This project aims to build an autonomous guidance system for an all-electric Cub Cadet
zero-turn mower using an affordable high-precision GPS system. The performance of this system
will gauge the feasibility of retrofitting a factory-built mower for autonomous operation with
current technology. If some degree of success is achieved, further development and research may

lead to widespread adoption of autonomous orchard machinery in the near future.

Chapter 2

Literature Review

2.00 Overview

This chapter reviews published research relevant to the development of an autonomous
orchard mower. It also provides key details on concepts related to the project work. Research has
been completed that demonstrates the efficiency increases that autonomy brings to agricultural
applications. Agricultural autonomy has been tested with and without the use of GPS. The

benefits and drawbacks of each approach are discussed.

2.01 Satellite-Based Localization

Before reviewing research related to agricultural autonomy, it is worth explaining the
technology that allows autonomous vehicles to know where they are in space (i.e. localization).
Perhaps most relevant to outdoor autonomous ground vehicles is satellite-based localization. The
Global Positioning System (GPS) is a satellite localization service owned and operated by the
United States Government. Although GPS is the oldest and most widely used satellite system, it
is just one of four that make up the Global Navigation Satellite Systems (GNSS). The others
include BeidDou (China), Galileo (European Union), and GLONASS (Russia) [1]. Using any
one of the systems alone, however, results in precision and accuracy shortcomings.

A satellite receiver finds its position on Earth by calculating its distance from at least
three satellites. This distance is calculated by multiplying the time it takes for signals from each

satellite to arrive at the antenna by the speed of the signal (the speed of light). Every GNSS

satellite transmits signals in at least two frequency bands, L1 and L2, the latter being higher in
frequency. Almost all civilian devices use only the L1 band, whereas military and robust
commercial devices use both L1 and L2 bands. These dual-frequency GPS antennas are able to
correct for atmospheric distortions and improve accuracy. In a similar way, receiving signals
from more satellites improves positional accuracy. The best way to accomplish this is to use a
GNSS antenna capable of harnessing all four satellite systems [2]. On the frequencies of the L1
and L2 bands, satellites communicate pseudo-random codes. When a receiver uses these codes to
find its distance from the satellites, it performs code-phase calculations. Since the pulse width of
the codes is relatively long, in other words the frequency is low, the position estimate is, at best,
within 10 ft. Carrier-phase calculations use the unmodulated L1 and L2 waves to find the
distance to a satellite [3]. Since the L1 and L2 frequencies are much higher than those of the
codes, positional accuracy can be as good as a few millimeters [4]. In general, dual-band, carrier-
phase, GNSS devices are limited to large-scale, high-capital applications due to the historically
high cost and physical size of the positioning systems [2].

To further improve the accuracy of satellite positioning, local corrections can be made to
account for errors in satellite signals. Local corrections are categorized into Differential GPS
(DGPS) and Real Time Kinematic (RTK) GPS. Both correction techniques recognize the
variance of satellite errors and aim to correct them in real time. This is done by receiving satellite
data at a base station with a precisely known location. The calculated location is compared with
the known location and position correction signals are sent over radio transmitters. Rovers of
unknown location can then receive these signals to correct their satellite data and achieve a more
accurate position solution. The difference between DGPS and RTK GPS is routed in the method

of position calculation: DGPS uses code-phase calculations whereas RTK GPS uses carrier-

phase calculations, as shown in Figure 2.1. Expectedly, DGPS is less accurate (+/- 1m) and
slower, but its radio transmissions have less data and can be utilized far away from the base
station (100-200 km). RTK GPS provides a dynamic accuracy of a few centimeters. Its radio
transmissions are fast and precise but require a large amount of data. Additionally, the rover is
constrained to a smaller operating radius from base station (10-20 km) [5]. Following the trend

of accuracy and cost, RTK GPS is historically one of the most expensive satellite localization

systems [6].

4 GPS Satellite
"1% [\'
.; [‘\‘ + 1| +1 +1 +| +| +1 +1 +1-
~ % N (__?;.' - . - A el - . -
M”V\A% oy ,E}-
P Satellite
v%u\% C/A Code +1 +1:+1 +1 7i Shift
me Shi,
P " 1 R I UEIENY Iy
‘('urro/ulmn—
Receiver
Replica o1 b el] ol el])
I IR TR e B e B B ey
Yo (1 +1 +1 <1 1 +1 41 +1 -1 +1)= +040
a
—t
GPS Receiver l

Figure 2.1 - Comparison of carrier-phase (left) and code-phase (right) calculations by a
GPS receiver [3]

2.02 Sensing-Based Localization

Other sensing instruments are common on autonomous vehicles to increase safety and
vehicle awareness. When GPS is unreliable or unavailable, sensory data can be used for both
localization and mapping. Simultaneous Localization and Mapping (SLAM) uses sensor input to
map the surrounding environment, learn the map, and identify its position within the map [7].
Laser ranging with a Light Detection and Ranging (LiDAR) module is commonly used as the

sensor input for SLAM. LiDAR emits lasers pulses that reflect off surrounding surfaces. Upon

receiving the reflected light, the distance to those surfaces is measured. A singular, stationary
beam pointed along an axis will produce a 1D scan, a singular laser sweeping along a plane will
produce a 2D scan, and several lasers distributed along the vertical axis sweeping across a
horizontal plane will produce a 3D scan [8]. Ultrasonic sensors can also be used for ranging, but
they perform worse than laser ranging. Ultrasonic sensors emit high-frequency sound waves that
reflect off surrounding surfaces and return to the sensor. Vision-based methods for sensing the
environment are also available. Machine vision processes the images taken by a camera, relying

heavily on computing to process the images and identify objects in its surroundings [9].

2.03 Unmanned Ground Vehicle Path Planning Using Multiple Sensor Inputs

An unmanned ground vehicle (UGV) is a ground vehicle that operates without an
onboard, human operator. UGVs can operate autonomously or by remote control. Autonomous
UGVs take sensor input, decide on the safe path forward, and activate the motors accordingly. In
one study by Rawashdeh and Jasim [10], the UGV shown in Figure 2.2 was able to safely
navigate a clearly delineated grass path with unexpected obstacles by using multiple sensor
inputs. The sensors used to detect the lines and obstacles were machine vision, a digital compass,
a GPS receiver, and LIDAR. The input data from each of these sensors was fused into a cost
matrix to determine the lowest cost path. Detected obstacles were assigned positive cost values
and desired headings were assigned negative cost values. The lowest cost path was the safest
route to follow [10]. Multiple sensor inputs can be utilized to improve the performance of

autonomous vehicles.

Figure 2.2 — Example of a UGV with multiple sensor inputs [10]

2.04 Precision Agriculture with Autonomous UAVs

The promise of augmenting agricultural efficiency with autonomous vehicles can be seen
in the use of unmanned aerial vehicles (UAVs) for field spraying operations. Similar to a UGV,
an unmanned aerial vehicle can be controlled remotely or autonomously. The methods by which
unmanned aerial vehicles are automated can be applied to ground vehicles. Unmanned aerial
vehicles, however, have an additional spatial parameter of concern—altitude—that can be
ignored for UGV autonomy. In one study, a 3-quadcopter crop-spraying simulation was carried
out using two different mission assignment programs. A “mission plan” refers to the path plan
mapped before an autonomous flight. Missions consist of many waypoints, which are latitude-
longitude-altitude locations to be reached in sequence. By pre-calculating an optimal mission
plan, the spraying time was significantly reduced, regardless of the number of quadcopters or

size of field [11]. From this simulation study, it is evident that mission planning for autonomous

vehicles allows for performance optimization and consequent overall efficiency increases in

agriculture.

2.05 Autonomous Agriculture Vehicle Guidance with GPS and Path Planning

Mission planning for autonomous agriculture vehicles requires the use of GPS during
operation. In order to follow the pre-mapped route, the vehicle must be able to locate itself in
space. To study the effect of a mission planner on the efficiency of an autonomous tractor,
Bochtis, Vougioukas, and Griepentrog developed a mission planner to generate an optimal path
for mowing or spraying operations in a field [12]. When an autonomous tractor with RTK GPS
utilized the path developed by the mission planner, the researchers found that non-working time
during one or multiple-field operations was significantly reduced. The high-level mission planner
is effective in achieving maximum efficiency by determining the optimal path.

In a subsequent study, Bochtis, Vougioukas, and Griepentrog applied their mission
planning methods to orchards [13]. Orchards provide a unique and optimal opportunity for
mission planning due to the unchanging position of tree rows. A planned route for an
autonomous orchard machine is long-lasting as the desired path will be consistent year to year. In
the study, optimal path plans for single and multi-row mowing and spraying operations were
generated for an autonomous tractor with RTK GPS. The optimal operation plans allowed the
autonomous machine to reduce non-working time by up to 32.4% and non-working distance by
up to 40.2%, when compared to the working time and distance of conventional, non-optimized

orchard machine operation, as depicted in Figure 2.3 [13].

- -

. -
"
y
- :
— I !
() : ()
L) = L)
QE

(b)

f’l-cq_

-
~

- i

-

Figure 2.3 — Orchard mowing efficiency is improved with mission planning [13]

To effectively utilize the efficiency provided by a mission planner, autonomous tractors
must be able to accurately follow the path. Precision and accuracy are the two error types
concerning GPS quality [14]. Precision is the repeatability of positioning; i.e. how close a
position measurement is to the previous position measurements. Accuracy is how close the
measured position is to the actual position on a map. For tractor guidance systems that require a
human operator on-board, precision is of primary importance because the tractor simply follows
relatively short, straight, adjacent paths. Low-cost GPS systems can only provide 10-meter
accuracy but their precision is less than a meter. The precision is far more acceptable than the
accuracy, but quantization error can cause precision deviations greater than 0.1 meter. A study
was done to improve precision of low-cost GPS receivers with a Kalman filter [14]. The Kalman
filter is a mathematical algorithm that, after taking input data, generates an estimate based on
prediction and observation models. Employing the Kalman filter on a low-cost GPS receiver

decreased quantization error by 43% and standard deviation of heading angle by 75%. Overall,

the use of a Kalman filter with low-cost GPS increases localization precision and smooths
vehicle trajectory.

GPS precision error in autonomous agricultural machines must also be considered for the
implements of the machines. An implement is a piece of equipment attached to the rear hitch of
the tractor. An implement is used to perform operations such as plowing, mowing, baling hay,
etc. An autonomous tractor will not have a perfectly smooth trajectory and, consequently, lateral
implement deviations will occur. In one study, the deviations of an implement on an RTK GPS

autonomous tractor were recorded as shown in Figure 2.4 [6].

Figure 2.4 - Test rig to record the lateral deviation of an implement [6]

Three implement positions were tested: at the rear axle, 180 centimeters from the rear
axle, and 360 centimeters from the rear axle. The largest root-mean-square extreme lateral
deviations occurred at 7.2 kilometers per hour (highest tested tractor speed) with an implement
mounted 360 centimeters from the rear axle. This root-mean-square deviation was 5.2

centimeters. Slower tractor speeds and closer mounted implements had lower root-mean-square

10
extreme deviations. The use of longer implements on GPS-guided autonomous tractors sacrifices

localization accuracy and therefore efficiency.

Mission planning and RTK GPS have been used in an orchard-mowing autonomous
tractor system. John Deere researchers conducted a field test of autonomous tractors over several
months using LiDAR and cameras for obstacle avoidance and RTK GPS for localization [15]. A
supervisor gave mowing tasks to the tractors in a citrus orchard and addressed difficulties when
the tractors were unsure of how to safely proceed. The tractors increased orchard maintenance
productivity by 30%. Time operating at full speed was chosen as the indicator of productivity. In
manually operated tractors completing the same mowing tasks, maximum speed range is held for
less than 5% of the total working time. The autonomous tractors in the study operated in the
maximum speed range for 65% of the time. Optimal path planning also positively impacted
productivity and efficiency. Based on the number of acres covered in a day (a direct result of
higher average speed) the autonomous tractors were 30% more productive than manually driven

ones.

2.05 Autonomous Orchard Navigation without GPS

Autonomous vehicles that rely on traditional GPS will run into issues with positional
accuracy. Instead of augmenting GPS data with other sensor inputs, researchers have attempted
GPS-free methods of autonomously navigating orchards. A 2D laser scanner has been used to
successfully guide an unmanned tractor through a row of trees [16]. The test was performed
specifically to determine feasibility within orchards, identifying the difficulties of GPS usage

under large tree canopies. The 2D laser identified tree trunks such that the surrounding tree rows

11
could be mapped. Using the 2D laser scanner (with calibration and noise removal) as the sole

sensing instrument, the unmanned tractor could navigate the tree row in real time with a lateral
and angular heading mean error of 0.11 meters and 0.36 degrees, respectively. Although the
autonomous tractor was successful, a significant limitation must be noted: for the tractor to be
successful, its speed had to be 0.36 meters per second (< 1 mile per hour). For real-world orchard
applications, this speed would be highly inefficient, making adaptation of the technology
unrealistic [16].

In a more real-world application, a GPS-free, all-electric utility vehicle was operated
autonomously in an orchard as shown in Figure 2.5. Laser range sensors were used to detect and
model the rows of trees. The vehicle was able to autonomously navigate eight, 3-meter-wide
orchard rows. The machine would turn at the end of a row, find the next row with its laser range
sensors, and proceed into that row. It should be noted that this vehicle could only pass down the
middle of the row. Canopy and trunk size influenced performance: large canopies obstructed
foresight into the next row and small trunks made row-identification difficult [17]. In a study
done to improve the performance of an autonomous orchard vehicle operating without GPS,
wheel and steering encoders were added. The data from the wheel and steering encoders fed a

path-tracking controller which helped improve the smoothness of turning [18].

‘
:1.'
%
3
q
&

>

RN

Figure 2.5 — Laser-based autonomous orchard vehicle (left) navigating rows while mapping
tree locations (right) [17]

Machine vision has been tested as an alternate method of vehicle localization for
autonomous UGVs operating without GPS. Radcliffe, Cox, and Bulanon used a multispectral
camera and processing computer to detect tree canopies with the sky as the background [19].
Most machine vision applications in orchards aim to detect trunks and canopies, looking forward
with the ground in view. In the sky-based detection study, an autonomous UGV differentiated
the tree canopies from the sky and centered itself between the canopies. Using only this machine
vision technique as its only means of localization, the UGV was able to navigate down the
middle of an orchard row with a root-mean-square center deviation of 2.13 centimeters. There
are two main limitations to this method of localization in orchards. The first is that the size of
tree canopies affects center deviation. The other is that the sky-based imaging becomes useless at
the end of an orchard row. When the canopies are no longer visible, the UGV has no usable

sensor input.

13
2.06 A Cost Effect Autonomous Zero-Turn Mower for Orchards

The focus of this research was to design, build, and evaluate a cost-effective autonomous
zero-turn mower for orchards. A zero-turn mower does not operate like a conventional tractor,
i.e. Ackerman steering (turning the front wheels). Rather, the rear drive wheels are independently
controlled by the operator (differential steering) and the front wheels are free-spinning casters.
An all-electric Cub Cadet RZT-S Zero mower (shown in Figure 2.6) was modified to operate as

an autonomous differential-steer UGV.

Figure 2.6 - Unmodified Cub Cadet RZT-S Zero

One objective was to determine if current technology allows a cost-effective autonomous
control system to be successful on the retrofitted machine. Several previous agricultural
autonomy studies have been done without cost as a focus, namely those utilizing expensive RTK
GPS [6,12,13,15]. Studies that sought to eliminate the cost of precise GPS-based localization
were unable to utilize the efficiency benefits provided by mission planning. Additionally,

environmental factors (canopy, trunk size, etc.) were detrimental to the performance machines

14
without GPS localization [16—19]. To capitalize on the proven efficiency of mission planning,

this design includes necessary satellite-based localization. Fortunately, recent technological
advancements have allowed low-cost RTK systems to become available in the satellite
positioning market. Due to their novelty, these systems have not yet been adopted for agricultural
use. This presents an opportunity to capitalize on low-cost, high precision localization in order to
achieve cost-effective autonomy in an orchard. In pursuing the highest precision possible, it
should be noted that the relatively small footprint of a zero-turn mower with the deck mounted
under the chassis reduces the magnitude of accuracy deviations during operation, increasing
tolerance for GPS error [6]. Improved safety and performance can be achieved through
additional sensing equipment (LiDAR, ultrasonic sensors), but this will also increase cost [10].
By utilizing a low-cost, high-precision RTK GPS system and supplementary sensors, an efficient

low-cost autonomous orchard mower was designed.

15
Chapter 3

Remote Control of a Differential Steer UGV

3.00 Overview

This chapter describes the remote-control differential steer ground vehicle built as a
scaled test prototype. For testing and proof of concept of automation technology, it is more
feasible to utilize a scaled machine. The Cub Cadet RZT-S is a differential steer vehicle, thus the
control system designed for the scaled ground vehicle can be ported to the Cub Cadet after

development and testing.

3.01 Differential Steer UGV

Project work began with a custom, battery-powered differential-steering UGV named
UGVOLI. Plastic tank tracks run along the length of UGV01, each guided by a front and rear
sprocket. Suspension for each track is provided by a spring coupling a pair of road wheels as

shown in Figure 3.1.

16

Figure 3.1 - UGV01 left side showing track design

Each track is driven by an 18V Dewalt DW960 right angle drill motor (shown in Figure
3.2) controlled by a Sabertooth 2x60 motor controller (not shown in Figure 3.2). This controller
accepts PWM, PPM, and serial signals, operating the motors at 6-30 V with a 60 A maximum
current output. UGVO01 is powered by a 12V 9Ah gel cell battery. A heavy-duty switch mounted

on the aft of the vehicle connects the battery to the motor controller.

17

Figure 3.2 - UGV01 top showing motors and aft switch

3.02 Remote Control Configuration

In order to remotely control UGVO01, a Spektrum R/C system was configured with the
Sabertooth motor controller. This system uses a Spektrum DX8 G2 Transmitter, Spektrum
ARS8O010T Receiver, and SPM9645 DSMX Remote Receiver. The simplest transmitter input
method for controlling a differential steering vehicle is two sticks that spring back to the center,
such that the resting outputs are neutral signals. The right stick on the Spektrum DX8 springs to
center and, by default, up/down controls channel 3 and left/right controls channel 2. Since
Spektrum R/C components are designed for aircraft, common channels are labeled by the aircraft
component they usually control. For example, channel 2 (AIL) is for the aileron, and channel 3
(ELE) is the elevator as shown in Table 3.1. Channel assignment can be customized on the DXS.

More detail is provided in Section 4.02.

18

Table 3.1 - Spektrum DXS8 channel configuration for R/C UGV01

DX8 Channel

1 (THR)
2 (AIL)
3 (ELE)
4 (RUD)
5 (GER)
6 (AUX1)
7 (AUX2)

8 (AUX3)

Assignment UGV01 Function
Throttle (left stick up/down) N/A
Aileron (right stick right/left) Steering
Elevator (right stick up/down) Throttle

Rudder (left stick right/left) N/A
Switch A N/A

Switch D N/A

Right Knob N/A

Right Knob N/A

Signals are sent from the DX8 transmitter, captured by the DSMX remote receiver,

relayed to the AR8010T receiver, and sent to the respective channel pinouts as Pulse Width

Modulated (PWM) signal. Channel 2 (AIL) and channel 3 (ELE) of the receiver are connected to

the S2 and S1 terminals of the Sabertooth, respectively, as shown in Figure 3.3.

+

12V Battery

+
Right Motor

Left Motor

Figure 3.3 - Wiring configuration for R/C system in UGV(01

19
For UGVO01 to move forward in a straight line, the left motor must rotate clockwise and

right motor counterclockwise. Both motors are identical, so applying a positive voltage to a
positive lead will cause clockwise rotation. With mixing enabled on the Sabertooth, a forward
throttle command sends positive voltage to M1A and M2A. To achieve counterclockwise
rotation of the left motor, its positive lead must be wired to M2A and negative lead to M2B.
When working with R/C signals, an important distinction must be made between Pulse
Position Modulation (PPM) and PWM. In the UGVO01 R/C configuration, both signal types are

present, as shown in Figure 3.4.

PWM Signal

)¢ Radio Signal RDeSnl;/(l))ti PPM Signal AR8010T Sabertooth
Transmitter Receiver PWM Signal Controller

Receiver

Figure 3.4 - Signal flow for R/C system in UGV01

The radio signal containing commands for eight channels is picked up by the DSMX
Remote Receiver. The information for all eight channels is sent as PPM signal on a single wire to
the AR8010T. The purpose of PPM is to transmit multiple PWM signals on one wire, as shown
in Figure 3.5. This is done by spacing short pulses such that the distance between the two leading
edges is the width of one PWM pulse. Therefore, to communicate eight unique PWM signals,
nine PPM pulses are needed. In general, the PPM frame is 20 milliseconds long and the
maximum width for a PWM pulse is 2 milliseconds, or 2000 microseconds. Since the PPM
frame is 20 milliseconds, the refresh rate for each PWM channel is 50 Hz and maximum duty
cycle for each channel is 10%. At any given time, only one PWM channel is at a high voltage to

prevent overloading the power source.

20

TPAUSE (0.5 ms)
RO
PPM H|||| ||HHH HHH ||
' ’4_,,: 1 w— e
i TMIN.TMAX (1.2 ms) >TSYNC (12 ms)

PWM CHANNEL #1 ‘ 1 ‘

PWM CHANNEL #2

PWM CHANNEL #3

Figure 3.5 — Conversion between PPM signal and 3 PWM channels [20]

To move UGVO0I1 correctly, the Sabertooth must be configured to properly control the left
and right motor speeds. The Sabertooth is set to Mode 2, as shown in Table 3.2, to accept the
PWM R/C signals from the AR8010T receiver. Mixing is enabled so that the S1 signal (up/down
on right stick) controls forward/reverse motion and S2 (left/right on right stick) controls turning.
If mixing was disabled, up/down would control the right motor, and left/right would control the
left motor. Motor response is set to exponential to reduce the effects of UGVO01’s rapid turning

rate.

Table 3.2 - Dip switch positions on Sabertooth for R/C configuration

Switch Position Function

1 Down Accept PWM R/C signal

2 Up Accept PWM R/C signal

3 Up Motors are powered by a non-Lithium battery

4 Up Mix S1 and S2 signals: ELE controls throttle and AIL controls steering
5 Down Exponential throttle response

6 Up 0-5V signal input range

22
Chapter 4

UGV01 Pixhawk 4 Integration

4.00 Overview

This chapter describes the integration of the Pixhawk 4 Autopilot into the remote-control
system for UGVO1. A detailed description of the hardware and software configurations is

provided.

4.01 Hardware Configuration

Autonomous operation of UGVO0I required that it to know approximately where it is in
space, where it is going, and how it will get there. For UGVO01 to have this intelligence, it needed
to be retrofitted with an onboard autopilot system. The Pixhawk 4 Autopilot was selected for
UGVOLI due to its stability, flexibility, and robustness. The Pixhawk 4 Autopilot board consists
of a powerful Flight Monitoring Unit (FMU), two accelerometers, two gyro sensors, a barometer,
and a magnetometer (compass). The Pixhawk 4 Autopilot also has an external module containing
a GPS/GLONASS L1 antenna and integrated magnetometer. The brain of the Pixhawk 4 comes
from its software: ArduPilot. When given a mission, ArduPilot takes in sensor data, assesses
current location and trajectory, calculates desired trajectory, and sends out the appropriate R/C
signal to motors to move toward each waypoint.

The Pixhawk needed to be integrated into the control system of UGVO01 such that the
Pixhawk ultimately controlled the PWM signal being sent to the left and right motors, as shown

in Figure 4.2. While control of UGVO01 via the DX8 transmitter would still be possible in manual

23
mode, Pixhawk needed to be a “gate keeper” for all signals being sent to the motors. With this

configuration, autonomous operation (auto mode) would not require any preceding R/C signal.

#Pixhawk

Figure 4.1 - UGV01 with basic Pixhawk system installed

DSMX PWM Signal
R/C DX8 Radio Signal Remote PPM Signal ARS8010T Sabertooth
fll Transmitter Receiver Receiver PWM Signal [EEVLWIES

DS PWM Signal
Manual DX8 Radio Signal PPM Signal . Sabertooth
. Remote Pixhawk 4 .
Vol ITransmitter Receiver PWM Signal [EEVWIES

PWM Signal

Auto . Sabertooth
Mode Pixhawk 4 PWM Signal Controller

Figure 4.2 - Signal flow comparison for UGV01 with Pixhawk

24
To achieve the desired signal flow shown in Figure 4.2, the Pixhawk hardware

components need to be properly wired into the existing UGV01 R/C system. The GPS module,
DSMX receiver, LiPo battery, telemetry radio, and power management board (PMB) are
connected to the ports shown in Figure 4.3. UGVO01 with the Pixhawk hardware installed is

shown in Figure 4.1.

POWER 1 GPSMODULE DSM/SBUS RC

/O PWM OUT Pixhawk 4

Figure 4.3 - Pixhawk hardware connections

When ArduPilot is configured for a differential-steering rover, the PWM signal for the
left and right tracks are sent on separate channels (more detail on the software configuration of
Pixhawk is provided in Section 4.02). If commanded to throttle forward, Channels 1 and 3 carry
a PWM signal width greater than neutral 1500 microseconds. The Sabertooth interprets this and
outputs a positive voltage of proportional magnitude on M1A and M2B, as shown in Figure 4.4.
For the left motor to spin clockwise, M2B must be wired to the positive lead. For the right motor

to spin counterclockwise, M1A must be wired to the negative lead.

25

+
Right Motor

12V Battery

+
Left Motor

Figure 4.4 - Power management board connection to the Sabertooth motor controller

Since the Pixhawk sends PWM to the right and left tracks on separate channels (3 and 1,
respectively), the dip switches on the Sabertooth must be changed to accommodate this control
scheme as shown in Table 4.1. The Sabertooth no longer needs to mix signals because this is
done by ArduPilot in the Pixhawk.

Table 4.1 - Dip switch positions on Sabertooth for Pixhawk configuration

Switch Position Function

1 Down Accept PWM R/C signal

2 Up Accept PWM R/C signal

3 Up Motors are powered by a non-Lithium battery

4 Down No mixing: S1 controls right motor and S2 controls left motor
5 Down Exponential throttle response

6 Up 0-5V signal input range

26
4.02 Software Configuration

The first step in configuring the Pixhawk software is installing a ground control station
(GCS) software on a Windows PC. Mission Planner was selected as the GCS for UGVO01 due to
its extensive support and compatibility of the ArduPilot software. Through Mission Planner, the
latest firmware for Rover (i.e. the firmware designed for ground vehicles) was loaded onto the
Pixhawk board. The firmware used throughout this project was Rover V4.0.0. The GCS is
designed to wirelessly communicate with Pixhawk during operation. To achieve a wireless
connection, a telemetry radio pair is needed. For UGVO01, a Holybro 500mW telemetry radio pair
was used. Out of the box, one radio was connected to the Pixhawk (as shown in Figure 4.3) and
the other to the GCS computer. The GCS and Pixhawk use MAVLink (Micro Air Vehicle Link)
serial protocol to communicate over the radio connection. More detail on serial communication
and MAVLink can be found in Sections 6.01 and 8.03, respectively.

Within the ArduPilot firmware, there are many parameters that allow the autopilot system
to be tuned for optimal performance. Mission Planner provides a user-friendly interface for
configuring these parameters. The full parameter list can be found within Mission Planner under
the “CONFIG” tab. ArduPilot online documentation provides helpful guides for configuring
parameters to get the Rover firmware running optimally [21]. The Complete Parameter List
section of the documentation is a very helpful reference tool. There is, however, some lack of
clarity in the ArduPilot documentation that caused confusion and unexpected behavior when
configuring UGVO1.

The R/C inputs required troubleshooting for the DX8 to work properly with the Pixhawk.
Before adjusting the ArduPilot Parameters, the DX8 controller had to be configured for its signal

output to be compatible with the Pixhawk. The Pixhawk does not interpret the DX8 signal

27
correctly with default channel assignments. The “Rx Port Assignments” on the DX8 must be

changed to accommodate the Pixhawk such that channel 3 (ELE) is received as throttle, and
channel 2 (AIL) is received as roll (steering). To access these settings on the DXS8, the following
menu items must be selected, beginning on the Function List menu: 1) System Setup, and 2)
Channel Assign. Selecting Channel Assign brings the user to the Rx Port Assignments menu
where the assignments can be customized to those prescribed in Table 4.2. Selecting NEXT
brings the user to the Channel Input Config menu. Here, channels 5-8 can be assigned a specific
tactile input. The inputs for channels 1-4 are unchangeable because they are automatically

assigned by the DX8 processor.

Table 4.2 - Spektrum DXS8 channel assignments for Pixhawk UGV01 configuration

DX8 Channel Rx Port Assignment User Input UGV01 Function

1 (THR) Elevator Left Stick (U/D) N/A

2 (AIL) Throttle Right Stick (L/R) Steering

3 (ELE) Aileron Right Stick (U/D) Throttle

4 (RUD) Rudder Left Stick (R/L) N/A

5 (GER) Gear Switch A Learn Cruise
6 (AUX1) Aux 1 Switch D Mode Selector
7 (AUX2) Aux 2 Switch F N/A
8 (AUX3) Aux 3 Switch G Arm/Disarm

The Pixhawk parameters that control the interpretation of R/C signal from the DX8 are

shown in Table 4.3. The full list of parameters relevant to this chapter are found in Appendix

28
A.1. The values shown for these parameters allow the DX8 and Pixhawk to work well together.

The full list of parameters relevant to this chapter are found in Appendix A.1.

Intuitively, the channel assignments are not logical. One would expect the channel
assignments on the DX8 in Table 4.2 to line up with the parameters in Table 4.3 (channel 2
would be aileron and channel 3 would be throttle). After testing several channel configuration
combinations, it is known that the configurations in Tables 4.2 and 4.3 provide the best DX8 and
Pixhawk compatibility. For manual of control of UGVO01 with the Pixhawk to be identical to the
R/C configuration, PILOT STEER TYPE must be set to 0. ArduPilot recommends a value of 2
for skid-steering input rovers, but the DX8 is not the conventional skid-steer controller.
SERVOI1 FUNCTION and SERVO3 FUNCTION are the parameters that define the steer type

of UGVO01 as skid-steer. PILOT_STEER_TYPE only defines the R/C input method for manual

control.
Table 4.3 - ArduPilot parameters for DX8 input compatibility
Parameter Value Function

RCMAP_PITCH 1 Map pitch to channel 1

RCMAP_ROLL 2 Map roll to channel 2
RCMAP_THROTTLE 3 Map throttle to channel 3

RCMAP_YAW 4 Map yaw to channel 4
PILOT_STEER TYPE 0 Default single-joystick R/C input
SERVO1_FUNCTION 73 Servo 1 controls the left track
SERVO3_FUNCTION 74 Servo 3 controls the right track

29
Additional functionality was given to the DX8 transmitter via auxiliary function

parameters in ArduPilot. The channel assignments detailed in Table 4.2 show that channels 5-8
were mapped to three-position switches. Switch D (channel 6) was mapped to the mode selector
function. On a three-position switch, there are three PWM outputs: 1100 microseconds, 1500
microseconds, and 1900 microseconds. ArduPilot supports the assignment of six modes to six
PWM ranges on the mode selector channel. Thus, the low (MODETI), mid (MODE4), and high
(MODE®6) ranges were assigned as auto, manual, and hold modes on the three-position switch.
Switch A (channel 5) was assigned the “Learn Cruise” function, which teaches the Pixhawk the

speed it should reach when in auto mode. Switch G (channel 8) was assigned the arm/disarm

function.
Table 4.4 - Parameters for auxiliary functions on DX8
Parameter Value Function
MODE_CH 6 Map mode selector to channel 6

MODE1 10 Auto mode assigned to low PWM
MODE4 0 Manual mode assigned to neutral PWM
MODEG6 4 Hold mode assigned to high PWM

RCS5_OPTION 50 Map Learn Cruise function to channel 5

RC8_OPTION 41 Map arm/disarm function to channel 8

After configuring the DX8 and Pixhawk for basic compatibility and functionality, the
system was tuned to achieve optimal performance. First, the positions of sensors on the body of
UGVO0I were given to ArduPilot. The default position of the GPS and accelerometer/gyroscope

is the centroid of the vehicle. Stacking all sensors at the centroid of UGV01 was not possible due

30
to geometric constraints and sensor interference. Thus, the offsets were adjusted via the

parameters in Table 4.5.

Table 4.5 - ArduPilot parameters for sensor orientation

Parameter Value (meters) Function
INS_POS1_X, 0.04 X offset for accelerometer/gyro
INS_POS1Y, 0.05 Y offset for accelerometer/gyro
INS POS1_7Z, 0.045 Z offset for accelerometer/gyro
GPS_POS1_X, 0.185 X offset for GPS/compass
GPS_POS1 Y 0 Y offset for GPS/compass
GPS_POS1_Z -0.175 Z oftset for GPS/compass

ArduPilot requires a one-time calibration of the accelerometer and compass before the
motors can be armed. The accelerometer calibration correlated accelerometer readings to
different body orientations of UGVO01. The compass calibration allowed the Pixhawk to
compensate for ferrous metal in the frame of UGVO01. As previously noted, there is an external
compass in the Pixhawk GPS module and an internal compass on the Pixhawk 4 board. Since the
internal compass was surrounded by metal and nearby UGVO01’s drive motors, its readings were

unreliable. Therefore, the external compass was made primary and internal compass disabled via

the parameters in Table 4.6.

31
Table 4.6 - ArduPilot parameters for exclusive use of the external compass

Parameter Value Function
COMPASS _PRIMARY 0 Make first compass primary
COMPASS_USE 1 Enable first (external) compass
COMPASS _USE2 0 Disable second (internal) compass

The ability of the Pixhawk to move UGVO01 predictably and accurately to achieve
velocity setpoints was crucial. For example, it is best if UGV01 moves in a straight line when
commanded to do so. If it veers slightly left or right, the Pixhawk must detect and correct the
error, resulting in a non-linear path.

The right-angle drill motors on UGVO01 are timed such that a higher speed is achieved in
the clockwise direction. As a result of this non-neutral timing, equal and opposite voltages
applied to a motor will not produce equal and opposite angular velocities. Since the left and right
motors on UGVO01 are identical, one must spin clockwise and the other counterclockwise to
move both tracks forward. This design causes UGVO01 to naturally veer right when equal and
opposite voltages are applied to the left and right motors. To counteract the non-neutral timing,
and thus the rightward veering, the PWM outputs to the left and right motors were tuned. To
equilibrate the forward speeds of the tracks, the left motor had to be slowed by reducing its
maximum PWM output from 2000 microseconds to 1880 microseconds. The neutral PWM
outputs were kept at 1500 microseconds and the minimum throttle was set to 4% to avoid
problems with the dead zone and unequal static and Coulomb friction. The PWM tuning values

in Table 4.7 are in microseconds.

Table 4.7 - ArduPilot parameters for tuning motor PWM outputs

Parameter
SERVO1_MAX
SERVO1_MIN
SERVO1_TRIM
SERVO3 MAX
SERVO3 MIN
SERVO3_TRIM

MOT_THR_MIN

Value

1880

1100

1500

1950

1100

1500

4

Function
Maximum PWM output for left motor
Minimum PWM output for left motor
Neutral PWM output for left motor
Maximum PWM output for right motor
Minimum PWM output for right motor
Neutral PWM output for right motor

Minimum throttle % applied by Pixhawk

32

33
Chapter 5
Testing UGV01 with Pixhawk

5.00 Overview

This chapter includes the testing methods and results for the autonomous control of
UGVO01 by the Pixhawk. The testing facility is also described. A path-marking device was

created to track the path of UGVO01 throughout its missions.

5.01 Creating a Test Track at Rock Springs Orchard

The designated test facility for the autonomous orchard mower was the Russell E. Larson
Agricultural Research Center at Rock Springs. The apple orchard within this research center was
named Rock Springs Orchard. Rock Springs Orchard has six blocks of trees, labeled on the map

in Figure 5.1.

34

Figure 5.1 - Rock Springs Orchard

A ground control point, or GCP, is a physical landmark with a known latitude, longitude,
elevation, and degree of accuracy. Across Rock Springs Orchard, there exist six GCPs with a
latitude, longitude, and elevation precision of three centimeters. The locations of the six GCPs
were found by Dr. Sean Brennan’s Intelligent Vehicles and Systems Group within Penn State’s
Department of Mechanical Engineering. The Intelligent Vehicles and Systems Group utilized
their mapping van equipped with DGPS to find precision coordinates. Each GCP was named
based on its location relative to nearby orchard blocks, as shown in Figure 5.2. For example, Al
S is the GCP South of block A1. All GCPs at Rock Springs Orchard are marked with 11.7 in x

11.7 in stone pavers recessed into the sod.

35

Figure 5.2 — 6 Ground Control Points (GCPs) at Rock Springs Orchard

In order to test the accuracy and precision of the Pixhawk on UGVO01, consecutive GCPs
were needed as waypoints. Additionally, the paths between the waypoints had to be obstacle-
free. As shown in Figure 5.2, no straight-line paths between existing GCPs were obstacle-free.
Therefore, new secondary GCPs were needed to form an obstacle-free test track for UGVO01. The
aisle between blocks A1l and A2 was selected as the testing grounds due to its large width.

The test track was designed to mimic 2 rows of apple trees, the width between the rows
being of primary concern. While the width of the orchard rows varied, the approximate average

width was found to be 10 ft. Most rows were over 200 ft long, but it was not necessary to make

36
the test track full-length. A shorter track length was desirable for repeated tests because each test

would discharge less energy from UGVO01’s battery. The test track had to be positioned
sufficiently far from the west end of the A1-A2 aisle to prevent interference from large pine
trees. Not only would these trees act as ground obstacles, but satellite reception near the trees
would be diminished.

The trees at Rock Springs Orchard grow on trellises, which are structural posts and wires
that run along the length of a row. At the ends of some rows, the trellises had support posts and
wires extending beyond the last tree. To incorporate this obstacle into the test track, UGVO01
would have to overshoot each GCP by 15 feet, mimicking the avoidance of trellis brace posts.
Based on these parameters, four additional stone pavers were recessed to create two mock tree
rows, as shown in Figure 5.3. The rows are 10 feet apart, 130 feet long, and the west end of the

test track is 30 feet from the large pine trees, as shown in Figure 5.4.

Figure 5.3 — Recessing a stone paver to establish a test track GCP

§a

£y

) ®r

% : : ;
(i 5 e
Al1l-A2 NW Al1l-A2 GCP Al-A2 NW

Al1-A2 NW
Al-A2 NW

-

Figure 5.4 - Completed test track in aisle A1-A2 composed of 4 GCPs

To establish each test track paver as a new GCP for Rock Springs Orchard, the
coordinates of each paver had to be found to an acceptable degree of accuracy. This was
accomplished with photogrammetry using an orthomosaic of Rock Springs Orchard. A UAV
outfitted with a high-resolution camera swept across the entire orchard capturing images at a
fixed altitude. These images were processed and stitched together to create an undistorted,
uniformly-scaled, high-resolution image of orchard. Figure 5.1 and Figure 5.2 are orthomosaics
created from drone imagery. Since an orthomosaic of Rock Springs Orchard includes the six
original GCPs, the map can be further processed to create a map that is latitudinally and
longitudinally calibrated. More information on calibrated map creation is found in Section 7.04.
Photogrammetry was then performed with the calibrated map to digitally find the locations of the
four test-track secondary GCPs. The accuracy of the secondary locations is estimated to be 14
centimeters. The GCPs were named based on their location within aisle A1-A2. For example,
A1-A2 NW is the GCP at the north-west corner of the test track. The GCPs are labeled in Figure

54.

38
5.02 UGV01 Ground-Marking Device

One challenge of testing UGV01 with a basic Pixhawk configuration was quantifying its
performance. A basic evaluation of performance entails comparing UGV01’s true location with
its desired location, namely at waypoints. UGVO01 will act based on its perceived location, but
the inaccuracies of its GPS/GLONASS L1 antenna cause perceived location to deviate from the
true location. The difficulty in comparing true location and desired location is recording the true
location of UGVO0I throughout a mission. The devised solution was a ground-marking device
that traced the center of UGVO01 throughout the mission.

The ground markings had to be clearly distinguishable but temporary so consecutive tests
could be performed in the same location. In order to protect the health of Rock Springs Orchard,
the marking compound also had to be non-toxic. The first marking compound tested was white
sand, due to its reliable and smooth flow rate. The test revealed that pure white sand does not
create a distinguishable ground mark. Rather, the sand falls past the grass, hiding any sand
deposited to the area. To improve the distinction of the marking compound, all-purpose flour was
mixed with sand. With this mixture, sand acted as a steady flow solvent with flour as a distinct
marker. The amount of flour in the mixture had to be limited due to its tendency to clump and
block flow at the aperture. The ideal sand-to-flour mixture ratio was found to be 3:1.

After determining the ideal marking compound, a dispensing device had to be added onto
UGVOLI. The device used a hopper to hold the marking compound, a funneling shape that leads
to an aperture, and a mounting bracket. The size of the aperture had to be chosen to achieve the
correct flow rate. Based on research from the University of Buenos Aires in Argentina, it is

known that the flow rate of sand through an aperture is constant and depends only on the area of

39
the orifice [22]. The flow rate had to be high enough to mark the ground clearly, but low enough

to be efficient with the use of the supply in the hopper.

A test was performed to find the baseline flow rate of the marking compound. The
bottom of an empty 2-liter soda bottle was removed and a 0.5-inch diameter aperture was bored
into the lid. Five hundred (500) milliliters of the marking compound were added to the bottle and
then flowed onto the ground as the bottle was horizontally translated over grass at a speed similar
to that of UGVO0I. Five hundred (500) milliliters of the mixture were able to create a line ~100
feet long. While dispensing the compound, the relatively small aperture in the flat lid caused
some instances of flow stoppage. To eliminate this problem, a funneled aperture replaced the
bored cap as shown in Figure 5.5. The threaded cap from the bottle was glued into a funnel with

a 3/8-inch diameter spout. The hole in the cap was enlarged to prevent flow blockage.

Figure 5.5 - Funnel dispenser for marking compound hopper

To fasten the hopper to UGVO01, a 6x3x1/8-inch steel plate was bent into an L bracket
and bolted to the aft of UGVO0I as shown in Figure 5.6. A 5/16-inch hole was bored into the
bracket to snuggly fit the stainless-steel funnel. The hole was offset far enough from the body to

accommodate the size of the hopper.

40

Figure 5.6 - L bracket for marking device mounted to the aft of UGV01

Before field testing the ground-marking device on UGVO01, the flow rate of the device
was determined. Five hundred (500) milliliters of the compound flowed through the funnel for
about 60 seconds, thus the flow rate is 8.33 milliliters per second. Knowing the cruise speed of
UGVO01 is about 3.8 feet per second and the length of the test track is 130 feet, it takes UGVO01
about 34 seconds to complete one pass on the test track. Therefore, approximately 283 milliliters
of marking compound are needed for every pass on the test track. To verify the functionality of
the ground-marking device mounted to UGVO01, marking compound was added to the hopper and
UGVO01 was driven manually in a grassy area. The path of UGVO01 was clearly marked by the

device, as shown in Figure 5.7, and the markings were easily cleared from the grass.

41

Figure 5.7 - Testing functionality of UGV01 with ground marking device

5.03 Evaluating UGV01 Performance on Test Track

After equipping UGVO01 with the ground-marking device, it was brought to the test track
at Rock Springs Orchard to evaluate its autonomous performance. In Mission Planner, a mission
was devised so that UGV01 would pass over three secondary GCPs in the following order: Al-
A2 SW, A1-A2, A1-A2 NE. The last waypoint of the mission was set arbitrarily so that UGVO01
would be in motion over the three secondary GCPs. In other words, the secondary GCPs were
made dynamic waypoints. Mission visualization provided by Mission Planner is shown in Figure
5.8. It displays all waypoints, including a “Home Position” waypoint. This waypoint is not used

by an UGVO0I during missions. Home position is further discussed in section 8.04.

42

— End

A1-A2 NE —.9.*°

N

S S /,"/ ~
Qo ” A1-A2 '-'_
Al-A2 SW 5

|9
}..4 N

Home

Figure 5.8 - First test track mission displayed in Mission Planner

The mission was uploaded to the Pixhawk and ground-marking compound was filled into
the hopper on UGVO01. The vehicle was set several feet behind A1-A2 SW with its heading
pointed toward the GCP. The Pixhawk was switched into auto mode and UGVO01 completed the
mission. The procedure was then repeated to document the performance of UGVO01 during two
independent missions. The Pixhawk was imprecise (inconsistent performance) but achieved a
decent level of accuracy (lower deviation) during the second run.

Table 5.1 - Deviation of UGV01 during test track missions

Run 1 Deviation [in] Run 2 Deviation [in] Average Deviation [in]
Al1-A2 SW 65 10 37.5
Al1-A2 49 1 25
Al1-A2 NE 59 7 33

Figure 5.9 through Figure 5.11 show the ability of the ground-marking device to quantify
the performance of UGV01 during an autonomous mission. Figure 5.9 and Figure 5.10 have

white arrows overlaying the ground marking to increase clarity. After the first run, the trace of

43
UGVO01 at each GCP was documented and then the line was swept away. Figure 5.12 shows a

longer trace made by the ground-marking device, revealing the non-linear path UGV01 took

between the two waypoints.

Figure 5.10 - A1-A2

44

Figure 5.12 - Trace of UGV01 path from A1-A2 to A1-A2 NE during run 2

The performance of UGVO01 with the basic Pixhawk L1 GPS/GLONASS antenna was not
precise enough for navigation through an orchard. The largest deviation of UGV01—65 inches
or 5.41 feet—makes this system incompatible with orchard row navigation. The average width of
an orchard row is about 10 feet and the narrowest rows can be about § feet wide. The cutting

width of the Cub Cad RZT-S Zero is about 42 inches. This leaves 39 inches between tree trunks

45
and either side of the mowing deck. Protruding branches make row width narrower, thus in

practice the allowable deviation is less than 10 inches. For the Pixhawk system to be capable of
safely navigating between tree rows at Rock Springs Orchard, the precision and accuracy of its

satellite localization system had to be improved.

46
Chapter 6
Establishing an RTK System with Pixhawk

6.00 Overview

This chapter describes the methods used to establish and integrate RTK GNSS into the
Pixhawk on UGVO01. The objective of integrating RTK GNSS was to increase the precision and
accuracy of the location information provided to Pixhawk, consequently minimizing UGVO01’s

deviations from the mission path.

6.01 Hardware Configuration

To provide the Pixhawk with high-precision positioning data, an RTK-capable receiver
must be connected to the Pixhawk and correction signals must be supplied to the receiver. The u-
blox ZED-F9P L1/L2 receiver on the SparkFun GPS-RTK-SMA board was selected as the RTK
receiver. In some geographic locations, corrections signals are publicly-available from real-time
networks. To utilize the correction signals, a real-time station must be within 10 kilometers of
the RTK receiver. Since closest real-time station to Rock Springs Orchard is approximately 77
kilometers away, a dedicated real-time corrections source had to be established. Fortunately, the
ZED-F9P module can be configured as either a base (i.e. real-time station) or rover.

Two SparkFun ZED-F9P boards were acquired to establish the RTK system. Each board
also required a u-blox L1/L2 GNSS antenna to receive signals from GPS, GLONASS, Galileo
and BeiDou satellites. The base communicates with the rover via a telemetry radio pair. As noted
in Chapter 2, dual-band GNSS receivers provide a higher level of precision than GPS or single-

band GNSS receivers. The ZED-F9P RTK modules are capable of one-centimeter horizontal

47
precision [23]. Nathan Seidle from SparkFun has published some helpful documentation for

configuring the ZED-F9P boards [24-27].

The base hardware consists of the ZED-F9P board, L1/L2 GNSS antenna, and telemetry
radio. The female SMA connector on the GNSS antenna simply connects to its male counterpart
on the RTK board. Correction data sent from the base follows the common messaging protocol
set for communication between base stations and rovers. This protocol was established by the
Radio Technical Commission for Maritime Services, hence the corrections signals are referred to
as RTCM. RTCM is sent from the ZED-FI9P board via the RTCM pins, shown in Figure 6.1.
These pins are connected to the “correction UART” chip, labeled UART2. A UART, or
Universal Asynchronous Receiver Transmitter, is a device that allows for simultaneous sending
and receiving of serial data. Serial communication is the transmission of data over a single
channel, one bit at a time. Two critical pins on a UART interface are Tx and Rx. Data is

transmitted out of a UART device from Tx pin and received into the Rx pin.

BASE

Telemetry Radio

Sending RTCM
Correction Data
5V
x>
Rx €
GND

+5V

GNSS Antenna

Figure 6.1 - Hardware configuration of the RTK base station

To wirelessly transmit the serial data leaving the UART2 port, a telemetry radio is wired

to the 5V power source, ground, Tx2, and Rx2 pins, as shown in Figure 6.1. Logically, the

48
sending Tx pin of the telemetry radio is connected to the receiving Rx pin of the RTK board, and

vice versa. It should be noted that the orange line connecting the radio Tx pin and RTCM Rx2
pin is not transmitting any data. Corrections signals are only sent out from the board, not

received. Table 6.1 summarizes the wiring connections made to the RTK base module.

Table 6.1 - RTK base wiring connections

Board Pinout External Pinout Function
TX2 Radio Rx Send RTCM
RX2 Radio Rx None
GND Radio GND Radio ground
5v Radio 5V Radio power
USB-C port 5V USB source Board power
SMA connector GNSS antenna Receive satellite data

The board is powered by a 12 V lead-acid battery with a 5V voltage converter via the
USB-C port. The board is housed within a waterproof electronics box and mounted to the top of

a tripod. Protruding from the box are the telemetry radio antenna, power lead, and GNSS antenna

SMA cable, as shown in Figure 6.2.

49

RadiolAntennal

<~ Electronics
Housing

AN
£\ 0> USB Cable
SMA Cable

R

5V Converter

v
i

GNSS Antenna
Figure 6.2 - RTK base module assembled with critical components
The rover RTK hardware configuration is similar to the base and is shown in Figure 6.3.
UART? is wired to a telemetry radio in an identical fashion. In the case of the rover, however,
the green line connecting the RTCM Tx2 pin to the radio Rx pin is not transmitting data. RTCM
data is only received by the board. The rover RTK board supplies high-accuracy location data to
the Pixhawk via the UART1 Tx pin. The standard messaging protocol used for the satellite
location data is defined by the National Marine Electronics Association (NMEA). The rover
RTK board uses NMEA messages to communicate location data to the Pixhawk. The Serial4
port on the Pixhawk was used to receive these NMEA messages. Justification for the use of this
port is found in Section 6.04. The Serial4 port accepts a six wire JST-GH type cable. Note that

all Pixhawk ports accept JST-GH type cables. The Pixhawk supplies 5V power to the rover RTK

50
board via the Serial4 port. The wiring connections made for the RTK rover module are

summarized in Table 6.2.

ROVER

Telemetry Radio
Receiving RTCM
Correction Data

GPS 2 Rx Pin (Serial 4)
GNSS Antenna receiving NMEA

Figure 6.3 - Hardware configuration of RTK rover module with the Pixhawk

Table 6.2 - RTK rover wiring connections

Board Pinout External Pinout Function
TX2 Radio Rx None
RX2 Radio Rx Receive RTCM
GND Radio GND Radio ground
5v Radio 5V Radio power
5v Pixhawk Serial4 5V Board power
RX/MOSI Pixhawk Serial4 Tx None
TX/MISO Pixhawk Serial4 Rx Send NMEA
GND Pixhawk Serial4 GND Board ground
SMA connector GNSS antenna Receive satellite data

51
To accommodate the new RTK system hardware on UGVO01, a water-proof electronics

box was installed on the vehicle. Exiting the box is the Pixhawk telemetry radio antenna, RTCM
radio antenna, DSMX satellite receiver wires, motor signal wires, PMB power leads, GNSS
antenna SMA cable, and USB-C cable. The USB-C cable is used for connecting a PC to the RTK
board for troubleshooting and data-logging. The hardware components contained within the

UGVO01 electronics box are shown in Figure 6.4.

ixhawk
Bottom)

USB-C;‘-i Cable —_-

L 3

DSMX Wires
Figure 6.4 — Rover RTK hardware within protective housing on UGV 01
Demanding high-accuracy autonomous performance from the Pixhawk necessitated an
improvement of the UGVO0I prototype. Namely, the compass needed a ferrous-free mount away

from electronics. A pedestal with a carbon rod was used to mount the compass. Also, the

52
electronics needed a sturdier more protective housing. As shown in Figure 6.5, the arrangement

of hardware within the vehicle was redesigned and a wooden deck was installed on the aft.

i Compass
GNSS Antenna LiPo Battery p

- ."“-AQ_A-XS~——~ —» L

12V Battery

Figure 6.5 - Updated design of UGV01 with Pixhawk and RTK system

This deck protected the motors, Sabertooth motor controller, battery, and wire terminals.
The deck also provided a surface to mount the GNSS antenna. The GNSS antenna used in the
RTK system requires a 4-inch diameter ground plane (a circular steel plate) for optimal
performance. The grounding plane is mounted to the deck and the antenna magnetically adheres

to this grounding plane as shown in Figure 6.6.

53

Steel grourjding plane

3 i

l @ i
N\ ¥

S g i

Figure 6.6 - UGV01 aft deck with GNSS antenna grounding plane

6.02 Cost Consideration

Integrating the RTK system with the Pixhawk is necessary to achieve acceptable
accuracy. However, it is also critical to keep cost in mind. The cost of commercial RTK GPS
systems is traditionally a barrier to entry when it comes to precision farming. One modern
agriculture guidance system, FieldBee, offers a complete RTK L1 GPS system for $1,850 [28].
Even at this high price tag, the GNSS antennas within the rover and base modules only receive
one frequency band (L1 or L2). Therefore, the ZED-FOP RTK system receives more satellite
signals than the FieldBee, making its location solutions more consistent and reliable. The cost of
the ZED-F9P RTK base and rover system is broken down in Table 6.3.

The total cost of the system is approximately $850, which is $1000 less than the FieldBee
commercial RTK system. The specifications of the ZED-F9P RTK board is indicative of the
cost-effectiveness of current satellite localization technology. The higher price tag of consumer

products will fall as low-cost, high precision localization technology becomes more widely

54
available. With affordable high-precision satellite localization technology, cost-effective

mission-based autonomy can be achieved for orchard vehicles.

Table 6.3 — Cost sheet of Pixhawk RTK GPS system

Component Quantity Unit Cost
Sparkfun RTK Board 2 $219.95
Long Range Radio Modem 2 $109.50
Long Range Antenna 2 $6.05
Electronics Box 2 $8.50
12 V Battery 1 $24.50
5V Converter 1 $9.86
L1/L2 GNSS Antenna 2 $64.95
Total Cost $852.25

6.02 Configuring Two Telemetry Radio Pairs

The RTK GPS system requires a radio connection from the base to the rover for
transmission of RTCM corrections. This adds a second pair of telemetry radios to the Pixhawk
system, as shown in Figure 6.4: one radio pair for Pixhawk to Mission Planner communication
and one pair for RTCM. With factory default configurations, two independent telemetry radio
connections cannot be made without causing major inference and miscommunication of
information. To reconfigure the radios, SiK Radio configuration software was used. SiK radios
are characterized by their lightweight firmware and hardware [29]. Within Mission Planner

under Setup, then Optional Hardware, a SiK radio configuration tool can be found. To establish

55
two independent radio connections, the Net IDs set on each pair of radios must be unique. For

the Pixhawk to Mission Planner radio pair, a Net ID of 5 was set. For the RTCM radio pair, a
Net ID of 105 was set. While all other settings can be left to their default values, it is important
to ensure the baud rate for each radio pair is identical. The baud rate is the speed of the serial
connection in bits per second. For either serial device to correctly interpret serial data, it must
know what speed at which the bits are sent. The baud rate for all four radios was left at 57600
bits per second. An example of the Mission Planner SiK radio configuration tool is shown in
Figure 6.7.

Version RFD SK200n HM-TRP FREQ_915 DEVICE_ID Version RFD SiK 2.0.on HM-TRP DEVICE_ID
HM_TRP _HM_TRP

L/R RSSI: 193/196 L/R noise: 55/28 pkts: 1057
RSSI txe=0 ne=0 stx=0 srx=0 ecc=0/0 temp=-276 dco=0

Format Min Freq Format 6 Min Freq

Baud ig Max Freq Baud 7600 i Max Freq

Air Speed B #of Channels Air Speed B # of Channels

Net D jg Duty Cycle Net ID B Duty Cycle

Tx Power 2 B LBT Rssi Tx Power By LBT Rssi

ECC AlEE ECC RTSCTS

Maviink Max Window (ms) 131 Maviink l Max Window (ms) 131
OpResend W AES Encryption i OpResend W AES Encryption [l
GPI_1IRCIN [l AES Key GPI_1RCIN [l AES Key

GPi_1RcouT M Setings for Standard Mavlink GPI1_1RIcouT

Demngs Tor Low Latency
Set PPM Fail Safe

Figure 6.7 - SiK radio configuration tool within Mission Planner

An important consideration for the RTCM telemetry radio pair is signal strength
throughout the orchard. The performance of UGV01 depends on the accuracy of the rover RTK
location solution, which relies upon the RTCM corrections. If signal is poor, performance will
falter. The first set of radios used for corrections were Holybro 915-megahertz 100-milliwatt
radios. This Holybro radio can be seen clearly in Figure 6.1 and Figure 6.3.

To evaluate signal strength throughout the orchard, the SiK radio software was used to
capture the local received signal strength indicator (RSSI) by the rover radio. Shown in Figure

6.7, the configuration tool provides the local and remote RSSI’s proceeding “L/R RSSIL.” The

56
maximum RSSI for the SiK radios was found to be 220. With the RTK base corrections radio set

at the A1 South GCP, the RSSI of the rover radio at all GCPs was documented. Percentage RSSI
is calculated by dividing the RSSI by the maximum RSSI of 220.

As shown in Table 6.4, the maximum signal strength reported by the rover corrections
radio was 32%. In light of the poor signal strength achieved by the Holybro radios, the
corrections radios were upgraded to a pair of RFD900 915-megahertz radios. When supplied
with 5V, the RFD900 has a power output of 790 milliwatts, compared to the 100-milliwatt
output of the Holybro radio. The RFD900 corrections radio is pictured in Figure 6.4. To properly
wire the RFD900 radio to the RTK boards, the RFD900 datasheet was referenced. Figure 6.8
shows the pinouts of the RFD900.

Table 6.4 - RSSI of Holybro corrections radio throughout the orchard

Rover Location Rover RSSIT Rover % RSSI
Al-A2 65 30%
A2-A3 53 24%
A3 N 41 19%
CWN 71 32%
DS 45 20%

57
(o]

(
J

l‘l?o:lv > ©° o .° o .
660000006
H0000000

Figure 6.8 - RFD900 radio modem pin layout [30]

e
(o)
[

Using the SiK radio software, the RFD900 radio settings were configured to match the
settings of the Holybro RTCM pair: NETID and baud rate set to 105 and 57600, respectively.
The same procedure was repeated to test the signal strength throughout the orchard and is
summarized in Table 6.5. Percentage RSSI was improved by at least 25% at each location, with
the lowest signal strength being 56% at the D South GCP.

Table 6.5 - Comparison of Holybro and RFD900 radio signal strengths

Holybro Radio Base RFD 900 Radio Base

oY/ Rover RSSI | Rover % RSSI | Rover RSSI | Rover % RSSI % Gained

Al1-A2 65 30% 143 65% 35%
A2-A3 53 24% 131 60% 35%
A3N 41 19% 129 59% 40%
CWN 71 32% 126 57% 25%

DS 45 20% 124 56% 36%

58
6.03 Software Configuration of ZED-FI9P RTK Boards

After wiring the ZED-F9P boards as a base and rover pair, software settings must be
adjusted to assign each board its role as either a base or rover. To configure the software on each
board, the USB-C port is used to connect to a windows PC running u-blox u-center, the
manufacturer’s configuration and evaluation software. The documentation published by Nathan
Seidle from SparkFun is helpful for configuring ZED-F9P boards through u-center [26,27]. U-
center can be downloaded from the u-blox website [31].

First, the firmware for both RTK modules was updated by downloading the latest ZED-
F9P firmware (version 1.13) from u-blox. Within u-center, the Firmware Update utility is found
under Tools.

The base module was configured as a fixed-base reference station. To achieve this
function, the board was given the location of its GNSS antenna and the UART?2 port was set to
send out RTCM messages. To configure the message settings within u-center, one must select
View, then Messages View, UBX, CFG, and finally MSG. After selecting the desired message
type, transmission port, and transmission frequency, one must use Send to apply the setting to the
connected board. Figure 6.9 shows an example of RTCM message configuration, highlighting
the relevant fields. USB was selected as an additional RTCM transmission port for
troubleshooting purposes. The number fields to the right of the checkbox are the periods of the
message cycle for RTCM. For example, a value of 1 is one message every second and a value of

5 is one message every five seconds.

B Messages - UBX - CFG (Config) - MSG (Messages) o[-]
: ' ™ | UBX-CFG (Config) - MSG (Messages) 25

Message |FSOSRTCM331005

12C [~ On

UART1 I~ On

UART2 [On [1

use @A [

SPI [On

v

< >

@ | X | 5Z5end ¥pon |5¥ | ¢B 45 (5 | R [

Figure 6.9 - u-center configuration window for base RTCM messages

Several RTCM message types must be sent out from the base RTK module. Each
message type contains specific information. The message types sent from the base RTK module
are summarized in Table 6.6. Message contents of the RTCM messages were sourced from an
article on the SNIP knowledge base [32].

Table 6.6 - RTCM message types sent from the RTK base module

RTCM3.3 Message Type Period [s] Message Contents

1005 1 Location of stationary antenna, quarter phase
alignment details

1074 1 Type 4 Multiple Signal Message (MSM) for
GPS (USA)

1084 1 Type 3 MSM4 for GLONASS (Russia)

1094 1 Type 4 MSM for Galileo (Europe)

1124 1 Type 4 MSM for BeiDou (China)

1230 5 GLONASS L1, L2 Code-Phase Biases

60
For proper radio transmission of the RTCM messages sent out of the UART2 Tx, the

baud rate of the UART2 port must match the baud rate of the telemetry radio. The long-distance
corrections radios’ baud rate was set to 57600 bits per second, a sufficient speed for RTCM. The
protocol and baud rate for each port on the ZED-F9P board can be set in u-center. To access the
settings one must select View, Messages View, UBX, CFG, and then PRT. The only port that
must be configured for the base module is UART2. The configuration settings for this port on the
RTK base station are shown in Figure 6.10. Note that the port only sends RTCM messages, so

the receiving protocol is irrelevant.

B Messages - UBX - CFG (Config) - PRT (Ports) E=mEcR
ESFG (Gyros onfig A _ A
= UBX - CFG (Config) - PRT (Ports) 1s
eeltick
Target [2-uarT2 ~|
Protocol in |5 -RTCM3 lJ
Protocol out |5 -RTCM3 2
Baudste .
itor
Databits [=l
Stopbits |1 j
Parity INone Z|
BitOder [LSB Fist ~
PRT (Ports)
PWR (Power [~ Extended TX timeout (>=Fw7.00)
RATE (Rates TX-Ready Feature (>=Fw7.00)
AR Db Bt v [~ Enable
< > = .
@ | X | 2send a¥Poll | ¥ | A €F | [|

Figure 6.10 - Base RTK module port configuration in u-center

The base module is configured as a fixed-base station, meaning the location of its GNSS
antenna would remain the same each time the board is powered on. To set the known location of
the GNSS antenna for the RTK base station, one must select View, Messages View, UBX, CFG,

and then TMODES3. The location of the RTK base station at Rock Springs Orchard is the A1l

61
South GCP. Therefore, the known latitude, longitude, altitude, and accuracy (3 centimeters) of

A1 South was entered into the TMODE 3 configuration fields.

Although the Rock Spring Orchard GCPs were surveyed by Penn State’s Intelligent
Vehicles and Systems Group, the ZED-F9P board can be used to establish a high-accuracy GCP.
This procedure is described in Section 7.04.

For the configuration settings to remain on the board after reboot, one must save them to
the battery-backed RAM and flash devices on the board. This can be done under View, Messages
View, UBX, CFG, and again CFG. Saving a copy of the configuration settings to the PC is also
helpful. This is done by selecting Tools, Receiver Configuration, the file destination, and then
Transfer GNSS -> File.

The rover RTK module was configured to receive RTCM corrections through UART2
and output high-accuracy NMEA messages through UART1. The UART2 port (PRT) settings
for the rover are identical to the base: RTCM3 in and out (noting that RTCM messages are only
received by the board), baud rate 57600 bits per second.

While the UART] settings are not relevant for the base module, this port is used on the
rover module to send NMEA to the Pixhawk on the rover. For UART1, the output protocol was
set to NMEA. The baud rate was set to 115200 bits per second, to accommodate the large
number of messages and high message frequency. Figure 6.11 shows the UART1 settings for the

rover module.

62

essages - UBX - (Config) - (Ports) =
[» IV UBX - CFG (Config) - PRT (P =C"
NMEA ® | UBX-CFG (Config)- PRT (Ports) 6s
UBX
1 apwra Target |1 -UART1 L]
B A PS Aiding Protocol in Inone L]
- . Protocolout |1 - NMEA =
Baudrate 115200 2
Databits IB L]
e Stopbits [1 =
Parity INone L]
Bit Order |LSE First =l
ES g v
< > =
& | X | #E)send A¥poll [5¥ | g8 € |3 |

Figure 6.11 - RTK rover module UART1 configuration settings in u-center

The rover module was configured to send several NMEA message types. This
configuration was done in u-center within the MSG settings. Table 6.7 summarizes the NMEA
messages selected for UART1. The message contents of each message type were sourced from
SiRF Technology’s NMEA Reference Manual [33].

Table 6.7 - NMEA message types sent from UART1 of the rover RTK module

NMEA Message Type Message Contents

GxGGA GPS fixed data

GxGLL Geographic position (latitude/longitude)
GxGSA GNSS DOP and active satellites

GxGSV GNSS satellites in view

GxRMC Recommended minimum specific GNSS data
GxVTG Course Over Ground and Ground Speed

63

Figure 6.12 shows an example of the rover module MSG configuration. The default port

selection for NMEA output was left as all ports. The USB port is useful for troubleshooting and

data logging.
B Messages - UBX - CFG (Config) - MSG (Messages) E]
PWR (Power, ~ 3
T (s UBX - CFG (Config) - MSG (Messages) 455
RINV (Remote Inventory
RST (Reset) [YESSL R FO-00 NMEA GrGGA v

TMODE (Time M
TMODE2 (Time Mode
TMODE3 (Time Mode 3)
TP (Ti €)

USB (Univers.
VALDEL (Del

VALSET (Set Con
ESF (External Sensor Fusion
HNR (High Navigation Rate
INF (Information

LOG

gger)

ON (Monitor)
NAV (Navigation)
RXM (Receiver Manager

Configuration Item Val
VALGET (Get Configuration Item Value:

ion ltem Values

Itiple GNSS Assistance)

B | X | E)Send 3¥pPoll | ¥ | g8 €

v

b

12C v on |1
UARTT v On |1
UART2 ¥ On |1

use Won [1
SPI M on [
I

Figure 6.12 - U-center configuration of NMEA messages on the rover RTK module

The number fields to the right of the checkbox are not the periods of the NMEA

messages, as it was with RTCM. Rather, the frequency of the NMEA messages is set in the

RATE configuration menu, as shown in Figure 6.13. The measurement period for UTC

(Coordinated Universal Time), GPS, GLO (GLONASS), BDS (Beidou), and GAL(Galileo) was

set to 200 milliseconds. The navigation frequency must be increased to 5 Hz to make the NMEA

output from the ZED-F9P compatible with the Pixhawk. The lowest position update rate allowed

by Pixhawk is 5 Hz.

P Messages - UBX - CFG (Config) - RATE (Rates)

0

Al

ODO (Odometer/Low-Speed C A

ower Management

PWR (Power)
RATE (Rates

RINV (Remote Inventory

TMODE2 (Time Mode 2

TMODE3 (Time Mode 3

TP (Timepulse v
< >

UBX - CFG (Config) - RATE (Rates)

Time Source 1 - GPS time v
Measurement Period 200 [ms]
Measurement Frequency 5.00 [Hz)

Navigation Rate 1 leye]
Navigation Frequency 5.00 [Hz]

@ | X | #Send F¥Poll |3¥ | g8 €5

l

€

Figure 6.13 - U-center configuration of the rover RTK module navigation frequency

To fully harness the centimeter-level precision provided by the ZED-FIP, the latitude and

longitude coordinates within the NMEA sentences must have a sufficient number of decimal
places. The latitude and longitude within NMEA are formatted as degrees and minutes. By

default, there are five decimal places (dd.mmmmm) thus the resolution is limited to 0.00001

minutes, or 1.855 centimeters at the equator. The ZED-F9P can be put into high-precision mode,

increasing the number of decimal places to seven (dd.mmmmmmm). The resolution in high-

precision mode is 0.01855 centimeters [24]. To enable high-precision mode one must navigate to

View, Messages View, UBX, CFG, and then NMEA. The “High precision mode” and “Consider

mode” flags must then be activated. The same procedure for saving the configuration settings of

the base module must be followed for the rover module.

65
6.04 Configuring Pixhawk to Integrate the RTK System

After configuring the RTK base module and wiring it to the Pixhawk, ArduPilot needed
reconfiguration to utilize the new source of location data. ArduPilot has the ability to incorporate
two GPS devices, and therefore the ability to take in two streams of location data. By default,
ArduPilot on the Pixhawk 4 wants the second GPS device to be wired to the Serial4 port. Since
the RTK rover module was wired to Serial4, all ArduPilot parameters referring to the second
GPS apply to the RTK module input.

The parameter changes required to integrate the RTK module are summarized in Table
6.8. The full list of parameters relevant to this chapter are found in Appendix A.2. The Serial4
port must first be assigned as a GPS input (by default, this is the case). The baud rate of Serial4
must match the 115200 bits per second output baud rate of the ZED-F9P rover module.
ArduPilot must also know that the messaging protocol of the Serial4 port is NMEA. Knowing
the quality of location data provided by the ZED-FOP is far better than that of the Pixhawk GPS
module, the data stream from the GPS module can be ignored. This is done through the GPS auto
switch parameter by opting to exclusively use the second GPS. Since the ZED-FIP is receiving
satellite signals from four GNSS systems, these systems are bit-masked in ArduPilot. The ZED-
F9P rover module was configured to update its position solution at 5 Hz, the minimum update
rate allowable by Pixhawk. The update interval for the second GPS is set to 5 Hz. Given the
superior 3-centimeter accuracy of the RTK system, the navigational tolerances for waypoints are
constrained to 3 centimeters. The Extended Kalman Filter parameters in Table 6.8 set the GPS
mode to 2D (since UGVO01 will remain on the ground), increase the weight of the position

provided by the RTK module, and set the lower accuracy limit of the RTK module to the value

66
defined in the ZED-F9P datasheet [23]. Opting to ignore the input of the Pixhawk GPS module

caused issues with the “GPS Configuration” arming check, so this check is disabled.

Table 6.8 - ArduPilot parameters required for ZED-F9P RTK module integration

Parameter Value [units] Function

SERIAL4 PROTOCOL 5 Assign Serial4 port as a GPS input

SERIAL4 BAUD 115200 [bps] Set Serial4 baud rate to 115200 to match the RTK
module’s UART1 baud rate

GPS_TYPE2 5 Define that the messaging protocol of the RTK
module is NMEA

GPS_AUTO _SWITCH 3 Exclusively use the RTK module for localization

GPS_GNSS _MODE2 77 Use GPS, GLO, BDS, and GAL satellite systems
through the RTK module

GPS_RATE _MS2 200 [ms] Set update interval for RTK module to 200 ms (5
Hz)

WP_OVERSHOOT 0.03 [m] Constrain waypoint tolerance to the accuracy of
the RTK module

WP_RADIUS 0.03 [m] Constrain waypoint tolerance to the accuracy of
the RTK module

EK2 _GPS_TYPE 1 Define GPS control mode as 2D velocity and
position

EK2 POSNE_ M_NSE 0.1 [m] Set GPS horizontal position noise to 10 cm to
increase the weight of the RTK module
measurements in position solutions

EK2 VELNE M _NSE 0.05 [m/s] Input lower limit of RTK module velocity
accuracy

ARMING CHECK 60926 Disable the “GPS Configuration” arming check

67
Chapter 7

Performance Evaluation of the RTK System

7.01 Overview

This chapter presents the methods used to test the precision and accuracy of the ZED-F9P
base-rover pair at Rock Springs Orchard. In light of the improved precision achieved by the RTK
system, a method of establishing a high-accuracy GCP an any geographic location is described.
The performance of UGVO01 with the RTK system at Rock Spring Orchard is presented and

compared to the performance of the non-RTK configuration.

7.02 Assessing the Precision and Accuracy of the RTK System

The first tests of the RTK system were done with the RTK rover module removed from
UGVOLI. The lightweight board with attached radio and GNSS antenna were easy to transport to
and about Rock Springs Orchard when detached from the vehicle. Powering on the base module
and connecting the USB port to a PC running u-center, it was verified that RTCM messages were
being sent out. Powering on the rover module and connecting it to a PC, it was verified that the
board had an RTK fix and high-precision NMEA messages were being sent out.

To evaluate the static precision and accuracy of the rover module, the RTK system was
brought to Rock Springs Orchard. The RTK base station was set up at the A1 South GCP as
shown in Figure 7.1. The GNSS antenna of the base station was placed at the center of the GCP
paver via visual estimation. The rover RTK module, corrections radio, and GNSS antenna were

brought to all six orchard GCPs. At each GCP the GNSS antenna was placed at the center of the

68
paver via visual estimation and the RTK board was connected to a laptop running u-center. It

should be noted that a Holybro radio was used on the rover module for these tests. However,
there were no interruptions in the stream of corrections signals from the base, so the use of the

lower-power radio did not affect accuracy or precision.

RTK ase Station

Figure 7.1 - RTK rover (left) and base station (right) equipment during accuracy testing

The recording function within u-center was used to log the messages sent out from the
RTK module. The rover RTK module was configured to send location data to the Pixhawk in
NMEA protocol. These NMEA messages were recorded to evaluate the accuracy and precision
of the RTK module. Messages were recorded for about a minute at each GCP.

The raw NMEA sentences logged from the rover RTK module had to be processed to
extract the latitude and longitude coordinates of each position solution. Among the NMEA
sentence types output by the rover module at each update interval, position coordinates were
extracted from the GNRMC sentences, as shown in Table 6.7. This was done by importing all
logged NMEA sentences into a Microsoft Excel sheet, targeting GNRM sentences, and
extracting all unique latitude and longitude coordinates. As shown in Figure 7.2, the latitude and
longitude within a GNRMC sentence are in degrees and minutes (ddmm.mmmmmmm) and

hemisphere is designated by cardinal direction. For ease of analysis, this format was converted to

69
degrees latitude and longitude with hemisphere designation by sign (negative for south and west,

positive for north and east). There are 60 minutes within one degree. For example:

ddmm.mmmmmmm, W = [dd+(mm.mmmmmmm/60)] * (- 1)

Latitude

|
$GNRMC,161229.487,A,4042.2475354,N,7077.3416556,,0.13,309.62,120598, ,*10

Figure 7.2 - Example of GNRMC NMEA sentence

After obtaining data sets of latitude and longitude coordinates at each GCP, statistical
analysis was performed to obtain the standard deviation, mean latitude, and mean longitude. By
comparing the mean coordinates to the known GCP coordinates, the average error was found. In
an effort to produce more spatially meaningful results, the latitude and longitude statistics were

converted into distance using the following equation:

latl + lat?2

d [ft] = 364813 |(lat2 — lat1)? + (cos(-

2
) (lon2 — lonl))

This conversion is based on the spherical Earth model provided by MathWorks (mean
radius of 6371000 meters) [34]. This equation assumes 364,813 feet per degree of latitude and
[364,813*cos(mean latitude)] feet per degree of longitude. Figure 7.3 shows the statistics for
each GCP. The standard deviation of the rover RTK module was no more than 0.15 inches at any
GCP. Therefore, the rover RTK module was found to be very precise. The average error at each
GCP was no more than 4 inches. In Section 5.03, the allowable deviation from center was

estimated to be 21 inches. Therefore, the accuracy of the RTK system is acceptable.

70

Standard Deviation of Rover Location Average Error of Rover Location

1.00 4.00

0.90 350

0.80

3.00
= 0.70
c
S 0.60 2.50
s E
S =
2050 5 2.00
° fiv}
© 0.40
S 1.50
©
& 030
1.00

0.20

o B B B | | ..

0.00 . 0.00

AlSouth CWNorth DSouth Al-A2 A2-A3 A3 North AlSouth CW North DSouth A1-A2 A2-A3 A3 North
Rover Location Rover Location

Figure 7.3 - Standard deviation and error of the rover RTK module at each GCP

One experimental factor to consider in the determination of accuracy is the visually
estimated placement of the base and rover GNSS antennas. Misplacement of either would cause
an uncontrolled experiment. This is seen in the error for the rover at A1 South. Since the base
station antenna must be at the center of the GCP paver, the rover antenna could not be placed at
the center, as shown in Figure 7.4. This misplacement is reflected in the 3.8-inch error for the

rover RTK module at A1 South.

Figure 7.4 - Base and rover GNSS antennas sharing A1 South GCP during testing

71
7.03 Testing UGV01 with RTK-Integrated Pixhawk

After independently testing the RTK rover module, it was reconnected to the Pixhawk.
UGVO01 with the RTK-integrated Pixhawk was brought to Rock Spring Orchard to evaluate its
autonomous performance.

To make the creation of Rock Spring Orchard missions more efficient, a Python script
was written by Dr. H. J. Sommer. This script is named inline _pair UGVO0I1.py and is found in
Appendix B.1. The script references a spreadsheet that contains the latitude and longitude of
every support post. The support posts are at the ends of each orchard row. Since the orchard rows
are straight the location, length, and orientation of each row is known. A user can input specific
rows and the script will generate waypoints between these rows. The list of waypoints is saved as
a tab-delimited *.waypoints file that is uploaded into Mission Planner. A user can also specify
the spacing of these waypoints as well as the overshoot past the ends of the rows. Overshoot is
necessary to navigate past the wires bracing the support posts. The reference spreadsheet also
contains the locations of the test track secondary GCPs. Therefore, the script can be used to
create test track missions.

The inline_pair UGVO01.py script was utilized to generate a test track mission for
performance evaluation. UGVO0I was to complete two loops around the rectangular test track,
driving over the GCPs, overshooting them by 15 feet, and pivoting 90 degrees at the end of a
pass. An intermediate waypoint was created at the halfway point of each long pass. This mission

visualized in Mission Planner is shown in Figure 7.5.

72

Figure 7.5 - Test track mission created for performance evaluations

To get a baseline performance of the non-RTK Pixhawk on UGVO01, the ArduPilot
parameters were reverted to the non-RTK configuration. The performance of UGVO01 was
evaluated by logging the location output from the ZED-F9P onboard the vehicle as it navigated
the mission. This was done by connecting a long USB cable to the module and following
UGVO01 with a laptop running u-center. The recording function in u-center was used to log
position data. Using the calibrated map feature on u-center, a precise and dimensionally
consistent trace of UGV01 was plotted. For more information on the calibrated map feature, see
section 7.04.

The position trace of UGVO01 controlled by the non-RTK Pixhawk is shown in Figure 7.6.
In this figure, the red circles mark the positions of the GCPs. The overlaid image of UGV01
shows the navigation direction of UGV01 and is not to scale. UGV01 missed some waypoints by

several feet and the paths between waypoints were largely non-linear.

Figure 7.6 - Non-RTK Pixhawk navigating UGV01 through test-track mission

The position trace of UGVO01 with the RTK Pixhawk is shown in Figure 7.7. The RTK
system greatly improved the performance of the Pixhawk. Paths between waypoints were

straight with little deviation. The center of UGV01 came within inches of the center of each

GCP.

Figure 7.7 - RTK Pixhawk navigating UGV01 through test-track mission

The largest waypoint deviation was at A1-A2 NW, where the center of UGVO01 passed
over the edge of the paver. The locations of the pavers are known by photogrammetry and are
therefore accurate to 14 centimeters, or 5.5 inches. The 6-inch deviation from the center of the
paver could be the result of the photogrammetry inaccuracy. Figure 7.8 and Figure 7.9 show
closeup views of UGVO01’s position at each end of the test track. UGVO01 had an occasional
tendency to veer right when moving after a complete stop or pivot turn. This behavior is likely
caused by the non-neutral timing of the motors causing the left motor to spin faster than the right
at low speeds. Although the PWM parameters were tuned to counteract this effect, it cannot be
entirely eliminated. Regardless, the Pixhawk is able to correct for the initial heading error shortly

after getting up to cruise speed.

A1-A2 NW

*

o

A1-A2 SW

A1-A2 NE «

2

e

.’.

A1-A2 SE

Figure 7.9 - Position trace of UGV01 with RTK Pixhawk: east end of test track

After a successful performance demonstration of the RTK Pixhawk on the test track, a
mission was created to navigate UGVO0I through several orchard rows. The

inline_pair UGVO01.py script was used to generate waypoints between the first five westmost

74

75
rows of orchard block A1l. The mission avoids the large aisle between the third and fourth rows,

thereby creating three passes through the trees. Of all the rows at Rock Springs Orchard, block
Al has the narrowest spacing between rows (about 8 feet). Narrower row spacing leaves less
room for UGVO01 to deviate from the center. Testing within the most difficult circumstances
makes the results applicable to all other rows of the orchard. During this test there were many
branches laying on the ground. When UGVO01 climbed over the branches, some deviation from
the centerline occurred. This is best seen at the southern end of the westmost row in Figure 7.10.

The black arrows in this figure show the centerline between the trees as well as the direction of

travel. Green lines that are seen beside the black centerline are deviations from the center.

Figure 7.10 - Position trace of UGV01 through orchard block A1l

76
When navigating through orchard rows, the GNSS antenna on UGV01 has a more

obstructed view of the sky, as shown in Figure 7.11. Therefore, it is more challenging to “see”
satellites and produce a high-precision location. To ensure the positional accuracy of the ZED-
F9P did not falter when flanked by trees, the statistics recorded by u-center were reviewed.
During the orchard mission, an RTK fix (highest precision mode) was achieved for 92% of the
mission, an average of 32 satellites were in view, and the average precision was 1.6 centimeters.
Based on these promising results, it was concluded that the RTK module did not have an issue
producing high-precision solutions while flanked by trees. Furthermore, the system had

satisfactory performance and was ready to be ported onto the Cub Cadet RZT-S Zero.

Figure 7.11 - UGV01 navigating a narrow orchard row in block A1l

7.04 Using the ZED-F9P to Establish a High-Accuracy GCP

The high precision of the ZED-F9P RTK board with an L1/L2 GNSS antenna makes it a
viable tool for establishing a GCP. Logging the data received from GNSS satellites over a long

time period allows for calculation of a millimeter-level static location. Nathan Seidle has

77
published helpful documentation on using the ZED-F9P to establish a GCP [27]. If Rock Springs

Orchard did not have pre-surveyed GCPs, the ZED-F9P could have been used to find their
precise locations. To demonstrate this ability, the ZED-F9P was used to establish a GCP at an
off-site residential location.

The GNSS antenna was first mounted at the location of the GCP (on top of the roof of the
residence). The grounding plate and antenna were adhered to the roof and their location was

marked with a white wax pencil as shown in Figure 7.12.

Figure 7.12 - GNSS antenna mounted on roof to determine GCP location

The ZED-F9P board was then configured to collect raw data from the GNSS antenna. In
u-center, this is done by navigating to View, Messages View, UBX, CFG, and then MSG. The
02-15 RXM-RAWX message type was enabled for USB. According to Robot Operating System
(ROS) documentation, the u-blox RXM-RAWX message type contains pseudorange, Doppler,

carrier phase, phase lock and signal quality information for satellites [35]. Using the record

78
feature in u-center, the raw GNSS data was collected for 15.75 hours. Noting the plot in Figure

7.13 created by Suelynn Choy [36], GNSS precise point positioning error falls logarithmically as
data collection time increases. After 12 hours, the error in the position of the antenna is less than

10 millimeters.

1000
~. 24 hr rms (mm) | Horizontal | Vertical
N Float 6.2 109
- Fixed 56 1708
-~
e 100
E
5
@
s
= 10) =
3 = Float Horizontal S
0. == Fixed Horizontal
- Float Vertical
== Fixed Vertical
1
150s300s600s 0.250.5hr 1hr 3hr 6hr 12hr 24 hr
Time

Figure 7.13 - Decrease of position error with logarithmic increase of GNSS data collection
time [36]

The raw data file was then converted into a *.obs file using the latest version of
RTKCONYV [37] and then compressed. The raw data was submitted to the Canadian
Government’s Precise Point Positioning (PPP) service [38]. First an account was created with the
service. Then ITRF was selected as the processing mode. Finally, the zipped *.obs file was
selected and submitted.

The Canadian PPP service processed the raw data and provided a report with the
estimated coordinates of the GNSS antenna. The latitude and longitude were provided with an

accuracy of +/- 0.003 meters. This is an order of magnitude more accurate than the locations of

79
the orchard GCPs. Therefore, it was concluded that the ZED-F9P is capable of establishing a

high-accuracy GCP.

For applications of this work where the ZED-F9P RTK system must be used to map
several GCPs and orchard rows, it is not feasible to log data for 15 hours at every location. After
establishing a base GCP with 3-millimeter accuracy, the rover RTK module can be used to
determine other GCP locations. The accuracy of the rover module is limited by its reported
precision, which was about 2 cm. Therefore, additional GCPs and landmarks can be determined
to an accuracy of 2 cm.

At the off-site residential location, drone imagery and photogrammetry were not
available. Instead, publicly available satellite imagery was used to create a calibrated map in u-
center. The satellite image was sourced from Google Earth Pro [39]. A high-resolution image
was exported from this program by selecting File, Save, and Save Image. Within the Save Image

view, all overlays were removed and resolution was set to maximum, as shown in Figure 7.14.

< Google Earth Pro

File Edit View Tools Add Help

¥ Search 0O fleessoe @& @ 1 xaBl=e
Map Options Resolution: Maximum (4800x2623) v| = Save Image... X

Elements

Get Directions History Title and Description
Legend

Scale

Compass

HTML Area

Scaling: | 1%

Styling
! !
o Load...

Map Configuration

Savi

Figure 7.14 - Exporting a high-resolution satellite image from Google Earth Pro

80
To calibrate the high-resolution satellite image, the locations of visible landmarks must

be known. Thus, GCPs must be established on landmarks that have been captured by the satellite
imagery available on Google Earth Pro. U-center offers a tool to create a calibrated map from
any image. The tool maps pixel coordinates to three known latitude and longitude coordinates
across the image. The tool is accessed by navigating to View, Map View, and then the folder
icon to open an image or calibrated map. If an image without a calibration file in the same
directory is selected, u-center will prompt the user to calibrate the map. This entails selecting
three points on the map and inputting the geographic coordinates for each. After completing the
calibration, the map can be used to find the geographic coordinates of any point on the map with

an estimated accuracy of 10 inches.

81
Chapter 8

Integrating ROS with the Pixhawk

8.01 Overview

This chapter describes the work done to integrate Robot Operating System (ROS) into the
Pixhawk ground control system. The motivation of the work is based on designs for future
autonomy systems at Rock Spring Orchard. With ROS, an automated mission-updating feature

and simple object avoidance routine were developed.

8.02 Motivation for ROS

Integrating the RTK system with the Pixhawk on UGV01 showed the Pixhawk can
successfully control a ground vehicle through Rock Spring Orchard with only satellite-based
localization. While one autonomous vehicle brings some utility to an orchard, a team of
autonomous vehicles could be used to achieve more robust tasks. An example of a more robust
task would be mitigating frost damage to trees. To accomplish this, one high-altitude unmanned
aerial vehicle (UAV) would use vision to map temperature across the entire orchard. A low-
altitude UAV would use vision to focus on one specific block of the orchard. A UGV with a
heater would be ready to mitigate frost in cold spots identified by the UAVs. With this topology,
the autonomous team must be able to communicate with each other and share senor data.

ROS is a Linux-based middleware with the message-passing capabilities needed to create

a system of autonomous vehicles. With ROS running on a ground control station for each

82

autonomous vehicle, a network of communication between the vehicles can be created, as shown

in Figure 8.1.

$3:ROS
Master
l— $ —I
::ROS ::ROS ::ROS
Station 1 Station 2 Station 3
I $
""M‘" High Altitude UAV
Low Altitude UAV
Scout UGV

Figure 8.1 - ROS communication network for a team of autonomous orchard vehicles

Laptop image from T. Ishikawa [40]

UGVO01 with its RTK-integrated Pixhawk demonstrates the ability of Pixhawk to guide a

ground vehicle through the orchard with satellite-based localization. Without ROS, one must use

Mission Planner on a Windows PC to communicate with the Pixhawk. This prevents the default

ground control system from being compatible with the multi-vehicle communication network.

The ground control station for UGV01 must be able to communicate with the autopilot system

through ROS.

8.03 Using ROS to Communicate with the Pixhawk

The ground control station must be a Linux PC to run ROS. Therefore, a laptop running

Ubuntu 20.04.2.0 (Linux-based distribution) was acquired for the ground station. Christopher

83
Hirsh—a Penn State Mechanical Engineering Department System Administrator—assisted in

building the Ubuntu laptop and installing the latest distribution of ROS. At the time of
installation, this distribution was Noetic Ninjemys. The wiki site for ROS provides excellent
documentation for tutorials and packages [41], including instructions for the installation of ROS
on an Ubuntu PC.

It is helpful to understand the concepts of the ROS computation structure before
describing the specific Pixhawk-ROS application. ROS Nodes are processes that perform
computation. An example of a ROS node is a process that produces a location solution from raw
GNSS data. ROS messages are the data structures that nodes use to communicate with each
other. Nodes send and receive messages by publishing and subscribing to ROS topics. Multiple
nodes can publish to a single ROS topic; similarly, multiple nodes can subscribe to a single topic.
With the publish/subscribe messaging system, the nodes are unaware of other nodes’ existence,
thereby separating information generation from information reception. ROS services are an
alternate communication method that follows a request/reply format. ROS services are
appropriate for distributed-computing communication (multiple ROS computers). ROS master is
required for nodes, messages, and services to work together. Essentially, ROS master allows the
components of the computation network to find each other and work together. ROS bags are
used for logging message data [42].

Pixhawk sends and receives messages from a ground control station with Micro Air
Vehicle (MAV) Communication Protocol, commonly called MAVLink. MAVLink is designed
for communication to drones from the ground station as well as communication among
components onboard a drone. Similar to ROS topics, MAVLink follows a publish/subscribe

messaging pattern for all messages, with the exception mission plan and parameter sub-protocols

84
[29]. Mission plans and parameters are downloaded/uploaded using point-to-point

communication. This sub-protocol supports re-request and retransmission of messages not
received. This is an important design feature for message transmission via radio telemetry
because connection deficiencies can cause message losses [43].

MAVLink must be used to communicate with the Pixhawk. Accordingly, Mission
Planner uses MAVLink protocol to send commands, parameters, mission plans, etc. to the
Pixhawk. For ROS to assume all functionality of Mission Planner while adding flexibility and
robustness to the ground control system, it must be able to send and receive messages using
MAVLink protocol. MAVLink message transmission was achieved in ROS by installing the
MAVROS package, authored by Vladimir Ermakov [44]. MAVROS has three nodes: main
communication node; ground control station (GCS) bridge node; and event launcher node. The
GCS bridge node uses User Datagram Protocol (UDP) to pass all messages received by
MAVROS to Mission Planner. Telemetry radios were used to establish the UDP bridge between

MAVROS on Linux and Mission Planner on Windows. The topology of this system is shown in

Figure 8.2.

l <Zubunty

> UDP bridge
+—p—> iROS <

VLi
[MAVLink Control message flow Vehicle HUD
messages

 AEEEE—— e N

Figure 8.2 — Topology of Pixhawk, ROS, and Mission Planner

85
8.04 Assigning Missions to UGV01 with MAVROS

The team of interconnected autonomous orchard vehicles must be able to provide mission
updates to each other through ROS. For example, if a UAV needs the UGV to address an issue in
a specific orchard block, the mission of the UGV will be updated to navigate through that block.
To make UGVO0I compatible with this team configuration, a mission-updating Python script was
developed for ROS. The name of this script is mission_update.py and can be found in Appendix
B.2. It is run on the Linux PC in the command window while ROS master and MAVROS are
running and the Pixhawk is successfully communicating with MAVROS.

The script was designed to be a mission intervention routine; one that could be run while
UGVO0I was actively completing a mission. Consequently, the script first stops UGVOI by
putting the Pixhawk in hold mode. Hold mode sends neutral PWM outputs (about 1500
microseconds) to the left and right motors, stopping the vehicle. Mode changes are done with
MAVROS by calling the “set_mode” service of the “sys_status” plugin.

After stopping UGVO01, the current waypoint list is cleared from the Pixhawk. The
“clear” service of the “waypoint” plugin is called to clear the list.

The inputs of mission_update.py are identical to those of inline_pair UGVO01.py: orchard
rows, waypoint spacing, and overshoot distance. In fact, the waypoint generation code written by
Dr. Sommer was integrated into mission_update.py so that the script could generate the new
mission that is downloaded to UGVO01. With this design, if another autonomous vehicle is
connected to UGVO01 with ROS, the vehicle can specify a row of the orchard and the
latitude/longitude waypoints will automatically be generated. The inline pair UGVO01.py script
is designed to generate a tab-delimited *.waypoints file for Mission Planner to read. Since

Mission Planner is no longer required to communicate with the Pixhawk, this *.waypoints file is

86
no longer necessary. Instead, the mission_update.py script creates a waypoint list array that

stores each waypoint. The information for each waypoint is stored in an object. The
inline_pair UGVO01.py script iterates to write each waypoint’s information to the *.waypoints
file. The mission_update.py script iterates to append the waypoint list with each waypoint’s
information.

After the script finishes appending the waypoint list array with each waypoint object, the
mission is downloaded to the Pixhawk. The “waypoint” plugin “push” service is called to
download the waypoint list to the Pixhawk.

Before initiating the new mission, the Pixhawk is told to restart its waypoint sequence.
That is, the current waypoint must be reset to the first waypoint. The current waypoint is set
using the “set_current” service of the “waypoint” plugin.

The first waypoint of the waypoint list (of index zero) indicates the “home” location of
UGVO0I and is not interpreted as a waypoint to achieve. When creating the waypoint list, the
mission_update.py script stores empty values for index zero. After downloading the new
waypoint list, the home location is set to the current location of UGVO01. This is done with the
“set_home” service within the “command” plugin.

The last action performed by mission_update.py is the reactivation of auto mode. Auto
mode initiates the new mission downloaded to UGVO01 and is set by calling the “set mode”

service of the “sys_status” plugin.

87
8.05 Simple Object Avoidance with ROS and Pixhawk

ROS provides the framework for interpreting data from multiple sensor inputs to improve
localization. To apply this framework to the Pixhawk, a simple ultrasonic sensor was used to
feed range sensor distances to ROS. The added hardware consisted of an Arduino Uno with an
HC-SR04 ultrasonic sensor.

The Arduino had to be configured to interpret the signal from the sensor as well as
publish range values to a topic in ROS. The full code for the Arduino Uno is found in Appendix
C.1. The distance is calculated by dividing the time it takes to echo the ultrasonic pulse by the
speed of sound. The Arduino sketch creates a topic named “ultrasound” to which it publishes a
message of type “range _msg.” This message type is established within the standard library of
sensor messages in ROS. The node that handles the ultrasonic topic is “serial node.” This node
must be initiated in ROS master for the range messages to be available.

A Python script was developed to subscribe to ultrasound topic and send commands to
the Pixhawk based on distance. This script was named backup.py and is found in Appendix B.3.
The script is designed to imitate an object-avoidance routine followed by ROS for a front-facing
ultrasonic sensor onboard UGVO01. The script establishes a node for publishing and subscribing.
It creates a subscriber for the range messages on the ultrasound topic. It also creates a publisher
for the “OverrideRCIn” messages on the MAVROS “override” topic. OverrideRCIn messages
override input signals from the DX8 R/C controller connected to the Pixhawk. When the range
messages fall below 30 centimeters, the R/C signals are overridden to cause UGVO01 to backup.
Channel 3 in ArduPilot controls throttle, thus a value of 1300 microseconds (200 less than

neutral output) is used to move the left and right tracks in reverse.

88
Chapter 9

Cub Cadet R/C Control

9.01 Overview

This chapter describes the electrical system for manual control of the Cub Cadet RZT-S
Zero and a custom microprocessor circuit to allow the RZT-S to be remotely operated by
standard radio control (RC) signals. This approach allows the RZT-S to be integrated with
Mission Planner and controlled from a remote base station. The authorship of this chapter, and

the work herein, is accredited to Dr. H.J. Sommer.

9.02 Manual Control System

The RZT-S has four main electrical subsystems as shown in Figure 9.1 and Figure 9.2
from the shop manual [45] - vehicle control module (VCM) and manual input sensors, control

panel, drive and deck motors, and batteries.

Brake Switch

Seat Switch

Vehicle Control
Module

Charge Door
Switch

Key Switch

Control Panel PTO

Contactor + Switch

Fuses
Batteries =5 Controllers LED
Headlights

I Fused

Charge
Plug

Deck Motors

Drive Motors

Figure 9.1 - RZT-S Zero electrical block diagram

&9

[a)
Control Panel I8
=3
b b} 2
[a]
Controller S
Controller Controller Controller g
3 iy
<
Main Fuse
P
w 2
<
b)
— —
!\ \\ H
. ~ I°
x F @ -)b
= o &2 @
o = E =]
e 2
o= -1
i 2
st
.
AR ERE $
El]
m = o=
i EHE R ! |
=2 =X1372127 |8
o2 2 +d
E w|x (I & & 3 z
o|o i
o) i B S Elz|<|E !
SRR F EEE EHEE 7
winftn 3 1k =
mm|m §§ o alv =
FTO '
d<|s|3 5 K
w =] 725-04175
SEAT SW 4
725-05472 s I IE » =]
W
CHARGH - g
BRAKE T
SWLTCH SWITCH | [THROTTLE B 5
725- 04039 SENSORS < p
725-05458 STEERING T_ a + (—
SENSOR [o) =
725-05449 SWITCH
725-05349)

Figure 9.2 - RZT-S Zero electrical schematic

The VCM is a central computer that controls everything on the mower and acts as a user

interface. It is housed in a plastic module on the steering column as shown in Figure 9.3. The

VCM is connected to the control panel by an 8-wire cable into a 12-pin connector (Molex

0334721206) on the contactor as shown in Figure 9.2. The VCM will be replaced by a custom

microprocessor circuit.

90

Figure 9.3 - RZT-S Zero Vehicle Control Module (VCM)

The control panel is mounted over the left rear wheel as shown in Figure 9.4 and consists
of a contactor assembly and four BAC1000 motor controllers from Accelerated Systems Inc.
(ASI). The contactor is mounted on the bottom of the panel and the BAC1000s are mounted on
the top. The contactor is a large relay similar to a starter solenoid that allows a low current 48
VDC 0.3 A coil signal from the VCM to energize the relay and provide high current capacity
between the battery pack and the four motor controllers. There is a 15 A fuse inside the
contactor to protect the coil. Logic signals from the VCM are passed directly through the control
panel to all four motor controllers using a 2-wire daisy chain RS-485 serial computer bus and a

LOGIC enable line.

91

Figure 9.4 - RZT-S Zero control panel

The RZT-S has four brushless electric motors to drive the rear wheels and mower blades
- Lhub for left rear wheel, Rhub for right rear wheel, Ldeck for left mower blade and Rdeck for
right mower blade. Hub motors are rated 48 VDC at 11A with 200 W providing 1500 rpm.
Deck motors are rated 48 VDC at 30 A with 1200 W providing 3000 rpm.

There are four 12 VDC sealed deep cycle lead acid batteries wired in series to provide 48
VDC power in an isolated fully floating system. This means that the electrical system is not
grounded to the chassis and is insulated from non-electrical components of the mower. The
battery subsystem includes a 150 A main fuse in-line between the battery positive cable and
contactor. There is also a 20 A charger fuse.

It should be noted that the Ldeck motor on the old RZT-S has a Hall sensor fault and is

not functional.

92
9.03 BAC1000 Motor Controllers

Each brushless motor is controlled by a BAC1000 controller [46]. Connections between
each motor and its BAC1000 follow standard labelling commonly used for brushless motors.
Power connections are Phases U/V/W. Signal connections include Hall A/B/C, 5 VDC power,
signal ground and a thermistor to measure motor temperature.

The VCM sends digital message packets simultaneously to all four BAC1000s using a
bidirectional two wire RS-485 serial bus at 115200 baud. Message packets conform to standard
Modbus protocol [47] and must include a cyclic redundancy check checksum. The two RS-485
bus wires (0 to 5 VDC) and a 48 VDC LOGIC enable wire are daisy chained to all BAC1000s
within the control panel.

A BACI1000 is controlled by writing/reading values to/from internal registers that
manage motor drive circuits and provide controller status. Each register has a unique register
address between 0 to 511. All registers hold 16-bit values. Writing or reading a register is called
a command. An object dictionary of BAC1000 commands and their corresponding register
addresses was provided by ASI [48] in XML format. Commands can write or read multiple
contiguous registers at the same time.

Message packets from the VCM must contain write or read commands for a specific
register in a specific motor controller. Each message starts with a one-byte hexadecimal (hex)
identifier (ID) for a specific motor, a one-byte hex value 0x10 for write or 0x03 for read, and two
bytes for the register address. Hex IDs for motors are Lhub 0x10, Rhub 0x13, Ldeck 0x16 and
Rdeck 0x17. These IDs are defined by hardwired jumpers inside 16 pin connectors on each

BAC1000.

93
Common write commands and their register addresses include write command timeout

threshold 32, write remote speed 490, write remote maximum motoring current 491, write
remote maximum braking current 492 and write remote state 493.

Common read commands and their register addresses include read command timeout
threshold 32, read faults 258, read motor speed 264, read battery voltage 265 and read remote
state 493.

The exact format for commands is defined by the Modbus protocol [47]. The VCM is
master and all four BAC1000 are slaves on the RS-485 bus. A read command uses Modbus
Section 3.3 "Request (Master to Slave)" format. Each valid request will receive a Modbus
Section 3.4 "Valid Response (Slave to Master)" reply. An invalid request will receive a Modbus
Section 3.5 "Error Response (Slave to Master)" reply. A write command uses Modbus Section
3.7 "Request (Master to Slave)" format. Similarly, valid requests will receive a Modbus Section
3.8 "Valid Response (Slave to Master)" and invalid requests will receive a Modbus Section 3.9
"Error Response (Slave to Master)".

Actual commands from the VCM to BAC100s for manual operation were reverse
engineered using an RS-485 to USB module coupled in parallel with the RS-485 bus at one of
the BAC1000 connectors. The RZT-S was lifted onto blocks with the rear wheels free and
manual driving was emulated while recording the RS-485 bus hex communication stream. The
hex stream was then decoded using the ASI object dictionary. Interestingly, the VCM only used
two commands for all motors - one to set four contiguous registers 490-493 and one to read

seventeen contiguous registers 256-272 as shown in Table 9.1 and Table 9.2.

94
Table 9.1 - VCM write registers for manual control

Register Command Valid Range for Signed 16b

Address Register
490 remote speed 0xF000 = -4096 = -100% speed

0x0000 = 0% speed

0x1000 = +4096 = +100% speed

491 remote maximum motoring current 0x0000 = 0% current

0x1000 = +4096 = +100% current

492 remote maximum braking current 0x0000 = 0% current

0x1000 = +4096 = +100% current

493 remote state 0x0001 =1 =idle

0x0002 =2 =run

95
Table 9.2 - VCM read registers for manual control with typical values

Register Command

Typical Values for Signed 16b Register

Address

256 software revision level 0x14BF = 5311/ 1000 = version 5.311
257 controller status 0x0003 = unknown meaning
258 faults 0x0000 = no faults

0x0020 = motor hall sensor fault

0x0100 = network communication timeout
259 controller temperature 0x0010=6/1=16 deg C
260 vehicle speed 0x0164 =356 /256 = 1.39 km/hr
261 motor temperature 0x000F =15/1=15deg C
262 motor current 0x0080=128/32=4 A
263 motor rpm 0x00E6 =230/ 1 =230 rpm
264 motor speed 0x0239 =569 / 40.96 = 13.89 % speed
265 battery voltage 0x0636 =1590/32=49.7V
266 battery current OxFFF5 =-11/32=-0.34 A (probably incorrect)
267 battery state of charge 0x0064 =100/ 1 =100 %
268 battery power OxFFFO0=-16/1=-16 W (probably incorrect)
269 last fault 0x0000 = no faults
270 throttle voltage 0x21E9 = 8681 /4096 =2.12 V
271 brake 1 voltage 0x2C4A = 11338 /4096 =2.77V
272 brake 2 voltage 0x2164 = 8548 / 4096 =2.07 V

96
Because hub motors are mounted facing in opposite directions, positive speed (0x0000 to

0x1000) for Rhub and negative speed (0x000 to 0xF000) for Lhub cause the vehicle to move
forward. Similarly, negative speed for Rhub and positive speed for Lhub cause the vehicle to
move in reverse. The VCM limited vehicle reverse speed to approximately 60% of maximum
forward speed with Rhub values 0x0000 to OxF680 and Lhub values 0x000 to 0x0980.

BAC1000s have a failsafe watchdog timer in case RS-485 communication is lost. When
a BACI1000 is set to remote state = 2 = run, it will automatically shut down and indicate a fault if
another valid command is not received within a specific amount of time called the command
timeout threshold. The command timeout threshold must be set to zero using register 32 to
disable this timer and allow continuous motor operation.

If a motor fault occurs, the error can be identified using command read faults 258.
However, faults cannot be reset using Modbus commands. The LOGIC enable line must be
toggled to reset faults and restart the controller.

Lastly, the VCM inserted a one-byte rollover counter into the upper byte of the value for
register 493 remote state in Table 9.1 to help with diagnostics. The upper byte is ignored by

BAC1000s and only the lower byte is used either as 0x01 = 1 = idle or 0x02 = 2 = run.

9.04 Manual Power Activation Sequence

This activation sequence is provided on page 84 of the shop manual [45]. All pin
numbers and signal names refer to the 12-pin connector on the contactor with an 8-wire cable

shown in Figure 9.2.

97
The VCM board receives 48 VDC from BATTERY+ (pin 1) and ground from RETURN

(pin 6) of the contactor but VCM electronics are not powered until the KEY SWITCH is closed.
If manual sensors/switches are correctly activated (foot off throttle, brake applied,
charger disconnected, seat switch closed, PTO off) and the Vehicle Start/Stop button on the front

of the VCM is pressed, the VCM will begin activation of the contactor and motor controllers.
First, the VCM will provide 48 VDC back to PRE_ CHARGE (pin 4) through a 100 Q
resistor. The PRE_CHARGE terminal bypasses the contactor relay and provides 48 VDC (albeit
low current because of the 100 Q resistor) directly to the motor power lines. This allows large
capacitors inside the BAC1000s to charge slowly and will prevent high inrush of current when

the contactor relay is closed. Note that BAC1000 internal capacitors may stay charged for two to

three minutes after power has been removed.

Second, the VCM provides 48 VDC back to CONTACTOR+ (pin 2) and ground to
CONTACTOR- (pin 3) across the contactor coil to activate the contactor relay.

Third, the VCM provides 48 VDC back to LOGIC (pin 5) which is passed to BAC1000s
to enable logic circuits.

Lastly, the VCM begins transmitting RS-485 serial bus data to 485A (pin 12) and 485B
(pin 11) which is daisy-chained to all four BAC100s. It should be noted that BAC1000s in
remote state = 2 = run will shut down and indicate a fault if they do not receive another valid

command within the command timeout threshold.

98
9.05 Cub Cadet Motor Shield

A custom microprocessor circuit called Cub Cadet motor shield (CCMS) was designed
using an Arduino Mega to replace the VCM and control motor speed using standard RC signals.

A schematic is shown in Figure 9.5 and the corresponding printed circuit board (PCB) is
shown in Figure 9.6. The CCMS provides optical isolation between the Mega and 48 VDC
signals in the control panel. It connects to the control panel using the same 12 pin connector as

the VCM. The PCB was designed as a shield that sits directly on top of the Mega.

Pololu 2981 MOC R

KEY-SL &

rEE_—d o
oy

) RS
Fololuw 8881 OUT =1
- }E@

TuM-RFED N

.
=it L
[Felolu 2861 D — For 2 Gdgu FED
- : - : : all & COIL+ FUR-LHT
.
gl @]
qgi- PRE.CHERCE RN |
....... R ~donic T -]
o -
------- e @oew - |
o3
-------- T B dese v - - |
------- : E@ N A
........ Ll Lo
ey
L= o
........ - e S

1
. CRAE . . :
FSdgS 1S0LATOR
e SR N = e
: fGi— EmmE—ec c ow
. . .) . o -
[Mege o

=
T Quk’CND tedt Roivt T T T 7 T 7

__PSU Mech Engr

- -Cub Cadet motor shield -

CoThas

D Eetf Ppage or mame
| 21.60.55 | P29 ;i j

Figure 9.5 - Cub Cadet motor shield schematic

| ourt

| vea
B GND
DEAD MAN RG

ohe

W

ST THLD RD
- g CUB
_shield
218225

Figure 9.6 - Cub Cadet motor shield printed circuit board

Major components in the CCMS include a PS2501-4 optoisiolator U1, four Omrom
G3VM-61A1 solid state relays (SSR) U3/U4/U5/U6, a Pololu 2801 RC switch, an RS-485
isolation module, an ATM fuse holder and a 12-pin terminal block for 16 AWG wire. Requisite

external connections are listed in Table 9.3.

100

Table 9.3 - External connections to Cub Cadet motor shield

External Connections Location

8 color coded wires from 12 pin connector on
contactor

8 pin terminal block at right of PCB

key switch

8 pin terminal block at right of PCB

digital voltmeter (DVM)

8 pin terminal block at right of PCB

1 A fuse to protect coil

ATM fuse holder at upper right of PCB

Pololu 2801 RC switch

daughter board in upper center of PCB

dead man RC signal to Pololu 2801

3 pin header at left of Pololu 2801

four RC signals for steering, throttle, Ldeck,
Rdeck

four 3 pin headers in lower center of PCB

dead man active LED indicator

pin 13 header

SKID/_STRAIGHT switch (toggle SPST NO)

pin A7 header

RESET switch (momentary SPST NO)

pin RST

+12 VDC Mega power

Mega power connector

The PS2501-4, Omron SSRs and RS-485 isolators provide full optical isolation between

the Arduino Mega and the Cub Cadet control panel. Consequently, the Mega must have its own

independent power supply.

The CCMS requires two independent RC systems for operation. Both RC systems must

provide their own power for their respective receivers (Rx). The primary RC system with at

least 4 channels will provide standard pulse width modulated (PWM) signals to control hub and

deck motors. Signals for steering ST, throttle TH, left deck LD and right deck RD are required.

101
A second dead man RC system with at least one channel must be used for safety

operation. The Pololu 2801 RC switch shown in Figure 9.7 reads the dead man RC signal and
sets OUT based on pulse length. If there is no dead man RC input signal, OUT will be low and
the yellow LED at the bottom right of the 2801 will blink at 50% duty cycle with period of 1 sec.
If dead man RC pulses are less than 1.7 msec, OUT will be low and the LED be off with a brief
blink on once per second. If dead man RC pulses are longer than 1.7 msec, OUT will be high
and the LED will be on with a brief blink off once per second. The VCC-VRC jumper on the
bottom of the Pololu 2801 must be soldered closed to allow the dead man Rx to power the 2801.

The VCC pin from the 2801 must not be connected to the Mega +5 VDC pin.

RC
receiver

microcontroller

GNDT—

logic
power supply
(2.5-5.5V)

Figure 9.7 - Pololu 2801 dead man RC safety system

9.06 Microprocessor Power Activation Sequence

The CCMS receives 48 VDC from the contactor on the red +48V and black GND wires
in the terminal block. However, BAC1000 electronics are not powered until an external key
switch is closed between the top two pins of the terminal block. Closing the key switch provides

power through the fuse to the DVM, the green PRE-CHARGE wire and Omron SSR U2.

102
Please note the description and warning about BAC1000 capacitor charging in Section

9.03 above. The DVM helps discharge BAC1000 capacitors.

A valid dead man RC signal with OUT set high will activate the dead man SSR U2 to
provide 48 VDC to the other SSRs U3/U4/US.

After checking power, the Mega will measure PWM center values for RC signals
ST/TH/LD/RD and will not proceed unless valid signals are available. The Mega will then
check the output of SSR U5 to see if 48 VDC is provided by the dead man SSR U2. The Mega
will not proceed unless power is activated by the dead man safety circuit.

The Mega will then energize SSR U4 to connect 48 VDC to the white LOGIC wire which
is passed to BAC1000s. This allows the Mega to begin transmitting RS-485 serial bus data over
the 485A gray wire and the 485B yellow wire through the RS-485 isolator.

Lastly the Mega will energize SSR U3 to connect 48 VDC to the purple/white contactor
COIL+ wire. The purple COIL- wire is internally connected to the black GND wire.

Note that this power sequence with LOGIC before COIL is slightly different from the
manual power sequence. It allows the CCMS to interrogate BAC1000s via RS-485 before

applying power though the contactor relay.

9.07 User Power-on Sequence

The recommended user activation sequence is provided in Table 9.4. However sufficient
logic interlocks are provided to prevent major malfunctions if any components fail or are

activated out of sequence. Loss of the RC dead man signal will cause all RZT-S motors to stop.

103
Table 9.4 - User Power-On Sequence

User Interface Indicator

1) RC transmitter (Tx) for ST/TH/LD/RD

2) RC receiver (Rx) for ST/TH/LD/RD

3) Mega power

4) key switch DVM shows RZT-S battery voltage

5) RC transmitter (Tx) for dead man signal

6) RC receiver (Rx) for dead man signal Pololu 2801 LED

7) valid RC dead man signal dead man LED indicator

9.08 Microprocessor Logic Flow

The Mega may be reset at any time by pushing a momentary SPST NO switch connecting
the RST pin and Mega ground.

At startup, the Mega will measure PWM center values for RC signals ST/TH/LD/RD and
will not proceed unless valid signals are available.

The Mega will then check the output of SSR U5 to see if 48 VDC is provided by the dead
man SSR U2. The Mega will not proceed unless power is activated by the dead man safety
circuit. The Mega will indicate if the dead man signal is active by illuminating an external LED
using pin 13.

The Mega will then energize SSR U4 to connect 48 VDC to the white LOGIC wire to
begin transmitting over the RS-485 serial data bus. The Mega will interrogate all four

BAC1000s for faults, set command timeout threshold to zero for all four BAC1000s and set all

104
four BAC1000s to idle. If no motor faults are detected, the Mega will energize SSR U3 to

activate the coil.

Lastly, the Mega will check the logic level on pin A7 controlled by the
SKID/ STRAIGHT switch (toggle SPST NO) to decide how to control the hub motors as
described below.

The Mega then executes an infinite loop that reads four RC signals (ST, TH, LD and
RD), sends motor speed commands to all four BAC1000s and performs several failsafe checks
each time through the loop.

Standard RC PWM servo signals with pulses at 50 Hz must be used for ST, TH, LD and
RD. Center values for all four channels are measured at startup.

The hub motors can be controlled using skid steer mixing where ST controls vehicle
direction and TH controls vehicle forward/reverse speed. Alternately, the RC signals can be sent
straight through to the hub motors where ST controls Lhub directly and TH controls Rhub
directly.

Desired speeds for Lhub and Rhub are sent to respective BAC1000s. Note that negative
Lhub speed values cause the vehicle to move forward and vice versa. Ldeck and Rdeck are
operated at either O speed or 100% speed. All motors are operated at either 0 or 100% motoring
and braking current.

For skid steer mixing, ST is mapped at 1 ms pulse duration for full left and 2 ms for full
right. TH is mapped at 1 ms pulse duration for full reverse and 2ms for full forward.

For straight through motor control, ST is mapped at 1 ms pulse for Lhub full reverse and
2 ms for Lhub full forward. TH is mapped at 1 ms pulse for Rhub full reverse and 2 ms for Rhub

full forward.

105
Left deck LD and right deck RD are mapped below 1.7 ms for off and above 1.7 ms for

on.

Two skid steer algorithms were implemented to test for preferred operation. Both are
based on the simple skid steer lookup table for a left wheel/track shown in Table 9.5. The lookup
table for a right wheel/track is right/left symmetric. The first algorithm maps RC steering (-7 left
<= ST <= 7 right) and RC throttle (-7 reverse <= TH <= 7 forward) and then simply does a
lookup for left wheel/track output speed (-7 reverse < = left wheel/track <=7 forward). The
lookup value is then scaled -4096 to 4096 to send to a BAC1000. The second algorithm maps
RC steering (-500 left <= ST <= 500 right) and RC throttle (-500 reverse <= TH <= 500 forward)
and uses three linear functions to emulate the lookup table and compute left wheel/track speed

output directly (-4000 reverse <= left wheel/track <= 4000 forward).

106

Table 9.5 - SKid steer lookup table for left wheel/track

Three primary subroutines were developed to write one BAC1000 register for setting
parameters, to write four contiguous registers for motor control and to read multiple contiguous
registers. The four contiguous registers for motor control are the same as VCM manual control

shown in Table 9.1 above. Individual registers for reading/writing parameters are listed in Table

9.6 below.

107

Table 9.6 - BAC1000 registers for CCMS operation with typical values

Register Command Typical Values for Signed 16b Register

Address

32 command time out threshold 0x0000 = disable timer for continuous operation
(read/write) 0x0100 =256/ 1 =256 msec (default)

258 faults (read only) 0x0000 = no faults

0x0020 = motor hall sensor fault

0x0100 = network communication timeout

259 controller temperature (read only) | 0x0010=6/1=16 deg C

260 vehicle speed (read only) 0x0164 =356 /256 = 1.39 km/hr

261 motor temperature (read only) 0x000F =15/1=15deg C

263 motor rpm (read only) 0x00E6 =230/ 1 =230 rpm

264 motor speed (read only) 0x0239 =569 / 40.96 = 13.89 % speed
265 battery voltage (read only) 0x0636=1590/32=49.7V

For each cycle within the infinite loop, desired remote speed is written to each BAC1000
using register 490. Failsafe checks are then performed including motor faults using register 258,
valid RC signals (ST, TH, LD and RD), output of SSR U5 indicating valid dead man RC signal
and actual motor speed using register 264. Actual motor speed less than 50 percent of desired
remote speed is a simple test for motor overload (e.g. vehicle collision, manual brake applied,
deck motors clog). If any check fails, all motors shut down and the Mega will restart following
the logic flow described above.

Future code within the infinite loop could be developed to provide motor acceleration or

deceleration for sudden changes in commanded speed. This could be implemented by ramping

108
speed over several cycles of the infinite loop or by using lower motoring current. Performance

could be enhanced by experimenting with both motoring and braking current. Future upgrades
could also check motor and controller temperatures to prevent overheating, vehicle speed in
kilometers per hour or miles per hour for display purposes and battery voltage to prevent battery

discharge problems.

9.09 Future Control Concepts

The CCMS described above provides remote operation of an RZT-S using RC signals.
Alternately a radio modem could be used to send/receive serial communications directly between
a base station and RZT-S without any RC.

One approach for the remote serial data could be to send/receive actual BAC1000
Modbus commands where the shield acts only as a pass-through device. A second approach for
the remote serial data would be to adopt/develop a standardized vehicle control language where
the shield interprets vehicle control commands into BAC1000 commands.

A radio modem would also allow the RZT-S to send local sensor information back to the

base station for enhanced collision avoidance path planning.

109
Chapter 10

Retrofitting the Cub Cadet RZT-S Zero

10.01 Overview

This chapter describes the modifications made to the factory-built Cub Cadet RZT-S Zero
to adapt it for autonomous control. The steering system was altered so that mower’s speed and
heading could be controlled with the rear drive wheels. An autonomy platform was constructed

to mount the electronics and sensors.

10.02 Simplifying Control of the Cub Cadet

The Cub Cade RZT-S Zero is designed to be manually steered by an operator using a
steering wheel, as shown in Figure 10.1. Most zero-turn mowers are controlled by the operator
with two lever inputs, each one controlling the speed and direction of its respective drive wheel.
In its unmodified configuration, the Cub Cadet detects the steer angle input by the operator and
adjusts the speed differential of the drive wheels. While this Ackermann steering design makes
steering more intuitive for the operator, it complicates unmanned control of the vehicle. Since
speed and heading can be controlled by the speed and direction of the independent drive wheels,
a mechanical steering system is unnecessary. The Pixhawk system developed for UGVO01 can be
ported to the Cub Cadet, but only if it is a differentially steered vehicle. The Cub Cadet was
altered so that it could be controlled entirely by the speed of its left and right wheels. Therefore,

it was altered so that it could be controlled by the 2-channel output from the Pixhawk.

110

Figure 10.1 - Unmodified Cub Cadet RZT-S Zero

The front wheel axles are carried by yokes. The steering wheel on the unmodified Cub
Cadet rotates each yoke via a steering gear mounted to the base of the pivot shaft, shown in
Figure 10.2. Removing the steering gear from the steering system allowed it to spin freely.
However, the original yoke does not have a caster offset. A caster design offsets the wheel axle
behind the pivot shaft of the yoke. With the pivot shaft ahead of the wheel’s contact patch, the
heading of the wheel will follow the heading of the pivot shaft and therefore the heading of the
vehicle. Without a caster offset, the free-spinning yokes on the Cub Cadet RZT-S will not follow

the heading of the mower, as shown in Figure 10.2.

111

RZT-S Yokedll ZT11-42 Yoke _

Figure 10.2 - Comparison of the Cub Cadet RZT-S and ZT1-42 wheel yokes

Other Cub Cadet zero-turn mower models have free spinning caster yokes. The Cub
Cadet ZT1-42 is one of these models. Its yokes use the same axle bolt as the RZT-S. Therefore,
the wheel and tire from the RZT-S fit on the ZT1-42 caster yoke. Additionally, the dimensions of
the pivot shaft on the ZT1-42 yoke match those of the RZT-S yoke. Two ZT1-42 caster yokes
were purchased from Cub Cadet to replace the original RZT-S yokes.

The steering gear on the original yokes also acted as thrust bushings. Since the steering
gear was not needed on the caster yoke, a thrust bushing of the same thickness (10 millimeters)
was needed. Two thrust bushings were cut from a 10-millimeter-thick steel plate and installed on

the caster yokes, as shown in Figure 10.3.

112

Figure 10.3 - Thrust bushing installed on a caster yoke

Installing caster yokes on the Cub Cadet offset the wheel and tire farther from the pivot
shaft, as shown in Figure 10.4. As a result, the spin radius of the left-side tire caused interference

with the anti-scalping wheel on the mowing deck.

Figure 10.4 - Increased tire spin radius caused by the new caster yoke

To allow the left caster to spin freely, the deck wheel was removed and relocated outside

of the spin radius. Relocation of the deck wheel required fabrication of a deck mounting block.

113
The mounting block was first 3D printed to assess fit and then waterjet cut from a 3.5x12x2-inch

block of aluminum as shown in Figure 10.5.

Figure 10.5 - Fabrication of deck mounting block

The aluminum deck block was mounted to the mowing deck with 3-inch long, 6-
millimeter carriage bolts. Two holes were bored through the deck block and deck for the bolts.
Two additional holes were drilled and tapped in the side of the block for the attachment on a 12-
inch long by 1/16-inch-thick steel C channel bar. A hole was bored in the end of the steel bar to

mount the deck wheel.

114

Figure 10.6 — Relocated mowing deck wheel with custom-fabricated mount

Relocating the mower deck wheel eliminated interference with the left caster yoke, as
shown in Figure 10.7. With free-spinning front casters, the Cub Cadet could be controlled as a

differential steer vehicle.

Figure 10.7 - Relocated deck wheel outside sufficiently far from the caster yoke spin radius

10.03 Integrating the Autonomous Control System

The Cub Cadet was further modified to accommodate integration of autonomy hardware

components. The sensitive electronics and signal wires of the Pixhawk system had to be located

115
away from the interference caused by high-current wires and motors. The sensor of primary

concern is the magnetometer, which is affected by ferrous metal.
The Cub Cadet steering column and seat were removed. Neither of these features are

needed for autonomous control. Beneath the seat is the flat deck shown in Figure 10.8.

Figure 10.8 - Flat deck below seat used for mounting the autonomy platform

In Figure 10.8, four existing threaded bolt holes are circled. Each hole is labeled with its
thread type and pitch. The unmodified Cub Cadet used these holes to mount plastics. Two Y4-20-
2-inch bolts and two M6-50-millimeter bolts were used to mount the autonomy platform. First,
two blocks of 2x4 inch board were mounted to the seat deck. Next, a 12x24 inch sheet of OSB
plywood was mounted to the wooden blocks, as shown in Figure 10.9. A 24x24x12 inch cage
was built from 1x1 inch aluminum tubing with press-fit corners. This cage was bolted to the

plywood affixed to the mower, as shown in Figure 10.9.

116

Figure 10.9 — Wooden base of the autonomy platform on the seat deck

An additional sheet of 12x24 inch OSB plywood was mounted to the top of the cage. The
resultant autonomy platform shown in Figure 10.10 provides ample space for hardware. A
minimal amount of ferrous metal is present in the autonomy platform. Wood was selected as the
material of the mounting surface because it is easy to add and remove hardware during
prototyping. The autonomous orchard mower system can be expected to undergo several

iterations of design changes.

Figure 10.10 - Cub Cadet retrofitted with autonomy platform

117
Removing the seat from the Cub Cadet made it difficult to use the brake pedal. Although

the mechanical parking brake is not controlled by the autonomous system, it is an important
safety feature. An emergency parking brake lever was fabricated from a 1x1 inch aluminum bar.

The bar was shaped and bolted to the pedal bracket, as shown in Figure 10.11.

Figure 10.11 - Brake lever bolted to the existing pedal bracket

The entire Pixhawk system from UGVO01 was removed and installed onto the top of the
autonomy platform. The carbon-rod compass pedestal was mounted at the front of the platform,
along the center line. The GNSS antenna was mounted at the aft, also along the centerline.
Constrained by the length of the compass signal wire, the electronics housing was mounted
between the antenna and compass, as shown in Figure 10.12. As on UGVO01, an 11.7V LiPo

battery was used to power the system.

118

- .—:_
Electronics - Compass
Housing
ey
v

Figure 10.12 - Pixhawk system mounted on the Cub Cadet autonomy platform

The Pixhawk was booted and then connected to Mission Planner to ensure the autonomy
platform did not interfere with the magnetometer. The true heading of the Cub Cadet was known
to be about 36 degrees and the magnetometer read a heading of about 49 degrees. This test
verified that the magnetometer was functional, but it needed recalibration. Recalibration will be
done during field tests at Rock Springs Orchard.

The Cub Cadet Motor Shield (CCMS) and Arduino Mega described in Section 9.05 were
housed in a control box. The user interface of this control box is detailed in Table 9.4. The

CCMS control box takes in five R/C channels, as shown in Figure 10.13 and Figure 10.14.

119

PWM Signal

Left Motor

PPM Signal ARS8010T Cub Cadet
RE WIS Left Deck

DX8 Radio Signal DSMX

Transmitter Receiver Receiver Motor Shield

LT Bu il Bl Radio Signal Deadman PWM Signal
Transmitter Receiver

Figure 10.13 - Signal flow of R/C CCMS system

Figure 10.14 - R/C receivers wired to the CCMS control box

The CCMS accepts five PWM input signals, four of which the Pixhawk system had to be
able to modulate. The fifth PWM channel is for the dead man. Similar to integrating the Pixhawk
into the R/C system UGVO01, the AR8010T receiver is replaced by the Pixhawk, as shown in

Figure 10.15 and Figure 10.16.

120

PWM Signal
DSMX Pichawk 4 i Left Motor
DX8 Radio Signal PPM Signal ixhawi 2 i ight Meto Cub Cadet

Transmitter Remf) te Mammal Motor Shield
Receiver

LGBkl Radio Signal Deadman PWM Signal
Transmitter Receiver

Figure 10.15 - Signal flow of Pixhawk CCMS system in manual mode

PWM Signal
Left Motor
Pixhawk 4 in Right Motor Cub Cadet
Auto Mode - - Motor Shield

JOEEI Bt Ml Radio Signal Deadman PWM Signal
Transmitter Receiver

Figure 10.16 - Signal flow of Pixhawk CCMS system in auto mode

The Pixhawk system taken from UGVO0I1 had two PWM output signals: one for the left
motor and one for the right. Two additional output channels were configured in ArduPilot for the
left and right mower deck motors. Servo channels 4 and 5 were assigned to R/C channels 5 and
7, respectively. The Learn Cruise function was remapped to the left stick. The ArduPilot

parameter adjustments are detailed in Table 10.1.

121
Table 10.1 — ArduPilot parameter adjustments for Pixhawk CCMS system

Parameter Value Function

SERVO4 FUNCTION 55 Map R/C channel 5 (switch A) to servo 4
SERVO5 FUNCTION 57 Map R/C channel 7 (switch F) to servo 5
RC5_OPTION 0 Remove Learn Cruise function from channel 5 (switch A)

RC1_OPTION 50 Add Learn Cruise function to channel 1 (left stick)

The Pixhawk was wired to the CCMS by connecting its PWM output channels to the
proper CCMS inputs. The wiring connections of the R/C and Pixhawk CCMS systems are
summarized in Table 10.2. The R/C configuration uses the CCMS in mixed-signal mode whereas
the Pixhawk uses the CCMS in unmixed (straight) mode. In mixed mode, CCMS input ST
controls steering and TH controls throttle. In straight mode, ST controls the left hub and TH the

right hub.

Table 10.2 - Wiring connections of the CCMS systems

CCMS Input ARS8010T Output Pixhawk Output Function

ST AIL CH1 Steering/Left Hub
TH ELE CH3 Throttle/Right Hub
LD AUXI1 CH4 Left Deck

RD AUX?2 CHS Right Deck

The Pixhawk was powered on and armed with the Cub Cadet drive wheels elevated off
the ground, as shown in Figure 10.17. In manual mode, the Pixhawk successfully controlled the

left and right hubs, as well as the right deck motor. As noted in Section 9.02, the left deck motor

122
on the old RZT-S has a Hall sensor fault and therefore could not be operated. Testing of auto

mode and tuning of performance is needed. This will be done at Rock Springs orchard in April

2021.

b

S Plxhawk

Figure 10.17 - Cub Cadet with Pixhawk system installed

123
Chapter 11

Future Work

The Cub Cadet with Pixhawk system will be field tested at Rock Springs Orchard in
April 2021. Field testing during the course of the project was difficult due to a large amount of
snowfall. Preliminary testing will be done on the test track. The same mission that was given to
UGVO01 will be given to the Cub Cadet. Based on the ability of the Pixhawk to control the Cub
Cadet, parameters will be tuned to improve performance. The Cub Cadet will react slightly
differently to the outputs from the Pixhawk since it pivots about the center of the rear axle, as
opposed to UGVO01 which pivots about its geometric center. After tuning performance, the Cub
Cadet will be given orchard row missions in blocks A2 and A3, where the orchard rows are
relatively wide. This will provide a higher tolerance of deviation to increase safety during
testing.

The presence of foliage on trees can impact signal strength. UGVO0I signal strength
within orchard rows was assessed when the trees were bare. Satellite signal strength will be
reassessed when the trees bloom in April 2021.

The next step in developing the control system for the Cub Cadet is integrating an
onboard computer running ROS. The onboard computer will be a Raspberry Pi 3. Adding a
companion computer to the Pixhawk will increase the local computational power available on
the vehicle. ROS onboard allows for the use of more complex sensing tools, such as LiDAR and
computer vision.

An array of ultrasonic sensors will also be added to the Cub Cadet for proximity sensing.
The array will consist of 5 sensors mounted at the front of the vehicle: one facing forward, two at

15 degrees, and two at 30 degrees, as shown in Figure 11.1. This array will find the distance to

124
objects directly in front of the vehicle for safety and object avoidance. It will also find the

distance to the trees on either side of the vehicle. This information can be used to adjust the

position of the mower between the rows of trees, correcting for deviation from the center.

-15° 0° 15°
-30° 30°

P v m wm §

Figure 11.1 - Ultrasonic array design for the Cub Cadet

The future autonomous control system for the Cub Cadet will not use the Pixhawk
autopilot controller. Rather, the onboard computer running ROS will perform the waypoint
navigation tasks currently done by the Pixhawk. A package will be built for ROS to use satellite
and sensor information for localization within the orchard. Mission plans will be given to the
onboard ROS system via the ROS master ground control station.

The mission updating feature developed for ROS will be improved. In its current form,
the user must know where the ground vehicle is within the orchard to generate a new mission.
The new mission must guide the ground vehicle out of the row and create an obstacle-free path
to the start of the new mission. To further automate the mission update sequence, a ROS-enabled
computer could use its knowledge of the orchard (i.e. the locations of the tree rows) to generate
an obstacle-free path to the start of the new mission. With the aid of range-finding sensors, the
Cub Cadet will be better equipped to assist the path-finding algorithm. Specifically, it will be
able to find its way out of an orchard row and around any obstacles between the end of the row

and the start of the new mission’s first row.

125
A new Cub Cadet RZT-S mower will be modified in the same manner as the old Cub

Cadet described in Chapter 10. The new Cub Cadet does not have a Hall sensor fault on the left
deck motor. Therefore, it is better equipped to mow orchard rows once the autonomy system has
been tested and proved on the old Cub Cadet. A comparison of the old and new Cub Cadet

mowers is shown in Figure 11.2.

Figure 11.2 - Modified old Cub Cadet compared to the new Cub Cadet

Appendix A

Mission Planner Parameter Lists

The parameter files presented in this appendix have been generated from Mission

Planner. The 919 parameters listed are for the ArduPilot Rover 4.0.0 firmware.

A.1 Non-RTK Configuration

In this configuration, the basic Pixhawk setup is used. The OEM GPS puck is used for
localization. To convert the text below into a file that can be uploaded into Mission Planner, a
continuous list of the parameter names with parameter values should be made in a text editor.
This list of comma-separated parameter and value pairs should be saved with a *.param file
extension. For example, this list of parameters in a text document can be saved as

Basic_Pixhawk.param.

Index Parameter Value Index Parameter Value

1 | ACRO_TURN RATE 180 461 | RC11_MIN 1000
2 | AHRS_COMP_BETA 0.1 462 | RC11_OPTION 0
3 | AHRS_CUSTOM_PIT 0 463 | RC11_REVERSED 0
4 | AHRS_CUSTOM ROLL 0 464 | RC11_TRIM 1500
5 | AHRS_CUSTOM_YAW 0 465 | RC12 DZ 0
6 | AHRS EKF _TYPE 2 466 | RC12 MAX 2000
7 | AHRS_GPS_GAIN 1 467 | RC12 MIN 1000
8 | AHRS_GPS_MINSATS 6 468 | RC12_OPTION 0
9 | AHRS_GPS_USE 1 469 | RC12_ REVERSED 0

10 | AHRS_ORIENTATION 0 470 | RCI12_TRIM 1500

11 | AHRS RP_P 0.2 471 | RCI3_DZ 0

12 | AHRS_TRIM X -0.01955 472 | RCI3_MAX 2000

13 | AHRS_TRIM_Y 0.027536 473 | RCI3_MIN 1000

14 | AHRS_TRIM Z 0 474 | RC13_OPTION 0

15 | AHRS_WIND MAX 0 475 | RC13_REVERSED 0

16 | AHRS_YAW P 0.2 476 | RCI3_TRIM 1500

17 | ARMING_ACCTHRESH 0.75 477 | RC14 DZ 0

126

18 | ARMING_CHECK 1 478 | RC14 MAX 2000
19 | ARMING_MIS_ITEMS 0 479 | RC14 MIN 1000
20 | ARMING REQUIRE 1 480 | RC14_OPTION 0
21 | ARMING_RUDDER 2 481 | RC14_ REVERSED 0
22 | ARSPD TYPE 0 482 | RC14_TRIM 1500
23 | ATC_ACCEL_MAX 03 483 | RC15 DZ 0
24 | ATC BAL D 0.03 484 | RC15 MAX 1900
25 | ATC BAL_FF 0 485 | RC15_MIN 1100
26 | ATC BAL FLTD 0 486 | RC15_OPTION 0
27 | ATC BAL FLTE 10 487 | RC15_REVERSED 0
28 | ATC BAL FLTT 0 488 | RCI5_TRIM 1500
29 | ATC BAL I 1.5 489 | RC16 DZ 0
30 | ATC BAL IMAX 1 490 | RC16 MAX 1900
31 | ATC BAL P 1.8 491 | RC16_MIN 1100
32 | ATC BAL_SPD_FF 1 492 | RC16_OPTION 0
33 | ATC_BRAKE 0 493 | RC16_REVERSED 0
34 | ATC DECEL_MAX 0 494 | RC16_TRIM 1500
35 | ATC_SAIL D 0 495 | RC2 DZ 30
36 | ATC_SAIL FF 0 496 | RC2 MAX 1898
37 | ATC_SAIL_FLTD 0 497 | RC2 MIN 1098
38 | ATC SAIL FLTE 10 498 | RC2_OPTION 0
39 | ATC_SAIL FLTT 0 499 | RC2 REVERSED 0
40 | ATC SAIL I 0.1 500 | RC2_TRIM 1498
41 | ATC SAIL_IMAX 1 501 | RC3_DZ 0
42 | ATC SAIL P 1 502 | RC3_MAX 1900
43 | ATC SPEED D 0 503 | RC3_MIN 1100
44 | ATC SPEED _FF 0 504 | RC3_OPTION 0
45 | ATC_SPEED FLTD 0 505 | RC3_REVERSED 0
46 | ATC_SPEED FLTE 10 506 | RC3_TRIM 1500
47 | ATC_SPEED FLTT 0 507 | RC4 DZ 30
48 | ATC SPEED I 0.2 508 | RC4 MAX 1902
49 | ATC_SPEED_IMAX 1 509 | RC4 MIN 1102
50 | ATC_SPEED P 0.2 510 | RC4 OPTION 0
51 | ATC_STOP_SPEED 0.1 511 | RC4 REVERSED 1
52 | ATC_STR_ACC_MAX 180 512 | RC4_TRIM 1502
53 | ATC_STR_ANG P 25 513 | RC5 DZ 0
54 | ATC_STR RAT D 0 514 | RC5 MAX 1901
55 | ATC_STR RAT FF 0.2 515 | RC5_MIN 1099
56 | ATC_STR_RAT FLTD 0 516 | RC5_OPTION 50
57 | ATC_STR_RAT FLTE 10 517 | RC5_REVERSED 0
58 | ATC_STR_RAT FLTT 0 518 | RC5 TRIM 1500
59 | ATC_STR RAT I 02 519 | RC6 DZ 0

127

60 | ATC_STR_RAT IMAX 0.8 520 | RC6 MAX 1901
61 | ATC_STR RAT MAX 360 521 | RC6_MIN 1099
62 | ATC_STR_RAT P 0.1 522 | RC6_OPTION 0
63 | AUTO_KICKSTART 0 523 | RC6_REVERSED 0
64 | AUTO_TRIGGER PIN -1 524 | RC6_TRIM 1500
65 | AVOID_ANGLE MAX 1000 525 | RC7 DZ 0
66 | AVOID BEHAVE 1 526 | RC7_MAX 1901
67 | AVOID DIST MAX 5 527 | RC7 MIN 1099
68 | AVOID_ENABLE 3 528 | RC7_OPTION 0
69 | AVOID_MARGIN 2 529 | RC7 REVERSED 0
70 | BAL PITCH MAX 2 530 | RC7_TRIM 1500
71 | BAL_PITCH_TRIM 0 531 | RC8_DZ 0
72 | BATT MONITOR 0 532 | RC8_MAX 1901
73 | BATT2_MONITOR 0 533 | RC8_MIN 1099
74 | BATT3_MONITOR 0 534 | RC8_OPTION 41
75 | BATT4_MONITOR 0 535 | RC8_REVERSED 0
76 | BATTS_MONITOR 0 536 | RC8_TRIM 1500
77 | BATT6_MONITOR 0 537 | RC9 DZ 0
78 | BATT7 MONITOR 0 538 | RC9 MAX 2000
79 | BATTS_MONITOR 0 539 | RC9 MIN 1000
80 | BATT9 MONITOR 0 540 | RC9 OPTION 0
81 | BCN_ALT 0 541 | RC9 REVERSED 0
82 | BCN_LATITUDE 0 542 | RC9_TRIM 1500
83 | BCN_LONGITUDE 0 543 | RCMAP_PITCH 1
84 | BCN_ORIENT YAW 0 544 | RCMAP_ROLL 2
85 | BCN_TYPE 0 545 | RCMAP_THROTTLE 3
86 | BRD BOOT DELAY 0 546 | RCMAP_YAW 4
87 | BRD_I0_ENABLE 1 547 | RELAY DEFAULT 0
88 | BRD_OPTIONS 1 548 | RELAY PIN -1
89 | BRD PWM_COUNT 8 549 | RELAY PIN2 1
90 | BRD RTC TYPES 1 550 | RELAY PIN3 1
91 | BRD_RTC TZ MIN 0 551 | RELAY PIN4 1
92 | BRD_SAFETY MASK 0 552 | RELAY PIN5 i
93 | BRD_SAFETYENABLE 1 553 | RELAY PING6 i
94 | BRD_SAFETYOPTION 7 554 | RNGFNDI_ADDR 0
95 | BRD_SBUS_OUT 0 555 | RNGFNDI_FUNCTION 0
96 | BRD_SD_SLOWDOWN 0 556 | RNGFNDI_GNDCLEAR 10
97 | BRD_SER1_RTSCTS 0 557 | RNGFNDI_MAX_CM 700
98 | BRD_SER2_RTSCTS 0 558 | RNGFNDI_MIN_CM 20
99 | BRD_SERIAL_NUM 0 559 | RNGFNDI_OFFSET 0
100 | BRD_TYPE 24 560 | RNGFNDI_ORIENT 0
101 | BRD_VBUS_MIN 43 561 | RNGFNDI_PIN -1

128

102 [BRD_VSERVO MIN 0 562 | RNGFNDI_POS X 0
103 | BTN_ENABLE 0 563 | RNGFNDI_POS_Y 0
104 | CAM_AUTO_ONLY 0 564 | RNGFND1_POS Z 0
105 | CAM_DURATION 10 565 | RNGFNDI_PWRRNG 0
106 | CAM_FEEDBACK_PIN -1 566 | RNGFNDI_RMETRIC 1
107 | CAM_FEEDBACK _POL 1 567 | RNGFNDI_SCALING 3
108 | CAM_MAX ROLL 0 568 | RNGFNDI_STOP_PIN -1
109 | CAM_MIN_INTERVAL 0 569 | RNGFNDI_TYPE 0
110 | CAM_RELAY ON 1 570 | RNGFND2 _ADDR 0
111 | CAM_SERVO_OFF 1100 571 | RNGFND2 FUNCTION 0
112 | CAM_SERVO ON 1300 572 | RNGFND2_GNDCLEAR 10
113 | CAM_TRIGG DIST 0 573 | RNGFND2 MAX_CM 700
114 | CAM_TRIGG_TYPE 0 574 | RNGFND2 MIN_CM 20
115 | CAM TYPE 0 575 | RNGFND2_OFFSET 0
116 | CAN_DI_PROTOCOL 1 576 | RNGFND2_ORIENT 0
117 | CAN_D2 PROTOCOL 1 577 | RNGFND2_PIN -1
118 | CAN_P1_DRIVER 0 578 | RNGFND2 _POS X 0
119 | CAN_P2 DRIVER 0 579 | RNGFND2 POS_Y 0
120 | CAN SLCAN CPORT 0 580 | RNGFND2 POS Z 0
121 | CAN_SLCAN_SERNUM -1 581 | RNGFND2 PWRRNG 0
122 | CAN_SLCAN_TIMOUT 0 582 | RNGFND2 RMETRIC 1
123 | COMPASS AUTO ROT 2 583 | RNGFND2 SCALING 3
124 | COMPASS AUTODEC 1 584 | RNGFND2 _STOP_PIN -1
125 | COMPASS_CAL FIT 32 585 | RNGFND2 _TYPE 0
126 | COMPASS DEC -0.2289 586 | RNGFND3_ADDR 0
127 | COMPASS DEV_ID 658953 587 | RNGFND3_FUNCTION 0
128 | COMPASS DEV_ID2 658945 588 | RNGFND3_GNDCLEAR 10
129 | COMPASS DEV_ID3 0 589 | RNGFND3_MAX CM 700
130 | COMPASS DIA X 0.963464 590 | RNGFND3_MIN_CM 20
131 | COMPASS DIA Y 0.958935 591 | RNGFND3_OFFSET 0
132 | COMPASS DIA Z 1.042703 592 | RNGFND3_ORIENT 0
133 | COMPASS DIA2 X 1.004654 593 | RNGFND3_PIN -1
134 | COMPASS DIA2 Y 1.04455 594 | RNGFND3 POS X 0
135 | COMPASS DIA2 Z 1.087546 595 | RNGFND3 POS_Y 0
136 | COMPASS DIA3 X 0 596 | RNGFND3 POS Z 0
137 | COMPASS DIA3 Y 0 597 | RNGFND3 PWRRNG 0
138 | COMPASS DIA3 Z 0 598 | RNGFND3_RMETRIC 1
139 | COMPASS ENABLE 1 599 | RNGFND3_SCALING 3
140 | COMPASS_EXP_DID -1 600 | RNGFND3_STOP_PIN -1
141 | COMPASS_EXP_DID2 -1 601 | RNGFND3_TYPE 0
142 | COMPASS_EXP_DID3 -1 602 | RNGFND4_ADDR 0
143 | COMPASS_EXTERN2 0 603 | RNGFND4 FUNCTION 0

129

144 | COMPASS_EXTERN3 0 604 | RNGFND4_GNDCLEAR 10
145 | COMPASS_EXTERNAL 1 605 | RNGFND4 MAX_CM 700
146 | COMPASS_FLTR_RNG 0 606 | RNGFND4 MIN_CM 20
147 | COMPASS_LEARN 0 607 | RNGFND4_OFFSET 0
148 | COMPASS_MOT X 0 608 | RNGFND4_ORIENT 0
149 | COMPASS_MOT Y 0 609 | RNGFND4 PIN B
150 | COMPASS_MOT Z 0 610 | RNGFND4 POS_X 0
151 | COMPASS_MOT2 X 0 611 | RNGFND4_POS_Y 0
152 | COMPASS_MOT2_Y 0 612 | RNGFND4 _POS_Z 0
153 | COMPASS_MOT2 Z 0 613 | RNGFND4 PWRRNG 0
154 | COMPASS_MOT3_X 0 614 | RNGFND4 RMETRIC 1
155 | COMPASS_MOT3_Y 0 615 | RNGFND4_SCALING 3
156 | COMPASS_MOT3 Z 0 616 | RNGFND4_STOP_PIN -1
157 | COMPASS_MOTCT 0 617 | RNGFND4_TYPE 0
158 | COMPASS ODI X 0.000969 618 | RNGFND5_ADDR 0
159 | COMPASS ODI Y -0.06673 619 | RNGFND5_FUNCTION 0
160 | COMPASS ODI Z 0.118935 620 | RNGFND5_GNDCLEAR 10
161 | COMPASS_ODI2_X 0.01676 621 | RNGFND5 MAX CM 700
162 | COMPASS_ODI2_Y -0.09601 622 | RNGFND5 MIN_CM 20
163 | COMPASS ODI2 Z 0.063797 623 | RNGFND5_OFFSET 0
164 | COMPASS_ODI3_X 0 624 | RNGFND5_ORIENT 0
165 | COMPASS_ODI3_Y 0 625 | RNGFND5_PIN -l
166 | COMPASS_ODI3_Z 0 626 | RNGFND5_POS_X 0
167 | COMPASS_OFFS_MAX 800 627 | RNGFND5_POS_Y 0
168 | COMPASS_OFS_X 5.793118 628 | RNGFND5_POS_Z 0
169 | COMPASS_OFS_Y 21.75474 629 | RNGFND5 PWRRNG 0
170 | COMPASS _OFS Z -102.489 630 | RNGFND5_RMETRIC 1
171 | COMPASS OFS2 X 28.66513 631 | RNGFND5_SCALING 3
172 | COMPASS OFS2 Y 98.94672 632 | RNGFND5_STOP_PIN -1
173 | COMPASS_OFS2 Z -7.05574 633 | RNGFND5_TYPE 0
174 | COMPASS_OFS3 X 0 634 | RNGFND6_ADDR 0
175 | COMPASS_OFS3 Y 0 635 | RNGFND6_FUNCTION 0
176 | COMPASS_OFS3 Z 0 636 | RNGFND6_GNDCLEAR 10
177 | COMPASS_ORIENT 0 637 | RNGFND6_MAX_CM 700
178 | COMPASS_ORIENT2 0 638 | RNGFND6_MIN_CM 20
179 | COMPASS_ORIENT3 0 639 | RNGFND6_OFFSET 0
180 | COMPASS_PMOT EN 0 640 | RNGFND6_ORIENT 0
181 | COMPASS_PRIMARY 0 641 | RNGFND6_PIN -1
182 | COMPASS_TYPEMASK 0 642 | RNGFND6_POS_X 0
183 | COMPASS USE 1 643 | RNGFND6_POS_Y 0
184 | COMPASS_USE2 0 644 | RNGFND6_POS _Z 0
185 | COMPASS_USE3 0 645 | RNGFND6_PWRRNG 0

130

186 | CRASH_ANGLE 0 646 | RNGFND6_RMETRIC 1
187 | CRUISE_SPEED 1.111076 647 | RNGFND6_SCALING 3
188 | CRUISE THROTTLE 100 648 | RNGFND6_STOP_PIN -1
189 | EK2 ABIAS P NSE 0.005 649 | RNGFND6_TYPE 0
190 | EK2 ACC_P NSE 0.6 650 | RNGFND7_ADDR 0
191 | EK2 ALT M NSE 3 651 | RNGFND7 _FUNCTION 0
192 | EK2_ALT SOURCE 0 652 | RNGFND7_GNDCLEAR 10
193 | EK2 BCN_DELAY 50 653 | RNGFND7 MAX_CM 700
194 | EK2 BCN 1 GTE 500 654 | RNGFND7 MIN_CM 20
195 | EK2 BCN_M NSE 1 655 | RNGFND7_OFFSET 0
196 | EK2 CHECK_SCALE 100 656 | RNGFND7_ORIENT 0
197 | EK2_EAS I GATE 400 657 | RNGFND7_PIN -1
198 | EK2_EAS M NSE 1.4 658 | RNGFND7_POS_X 0
199 | EK2 ENABLE 1 659 | RNGFND7 POS_Y 0
200 | EK2 EXTNAV_DELAY 10 660 | RNGFND7 POS Z 0
201 | EK2 FLOW _DELAY 10 661 | RNGFND7 PWRRNG 0
202 | EK2_ FLOW_I GATE 300 662 | RNGFND7 RMETRIC 1
203 | EK2 FLOW M _NSE 025 663 | RNGFND7_SCALING 3
204 | EK2 FLOW_USE 1 664 | RNGFND7_STOP_PIN il
205 | EK2 GBIAS P _NSE 0.0001 665 | RNGFND7_TYPE 0
206 | EK2_GLITCH RAD 25 666 | RNGFND8_ADDR 0
207 | EK2_GPS_CHECK 31 667 | RNGFND8_FUNCTION 0
208 | EK2_GPS_TYPE 1 668 | RNGFND8_GNDCLEAR 10
209 | EK2_GSCL P _NSE 0.0005 669 | RNGFND8_MAX_CM 700
210 | EK2 GYRO_P_NSE 0.03 670 | RNGFND8_MIN_CM 20
211 | EK2 HGT DELAY 60 671 | RNGFND8_OFFSET 0
212 | EK2_HGT I GATE 500 672 | RNGFND8_ORIENT 0
213 | EK2_HRT FILT 2 673 | RNGFND8_PIN -l
214 | EK2_IMU_MASK 3 674 | RNGFND8_POS X 0
215 | EK2_ LOG_MASK 1 675 | RNGFND8_POS_Y 0
216 | EK2 MAG_CAL 2 676 | RNGFND8_POS _Z 0
217 | EK2 MAG_EF_LIM 50 677 | RNGFND8_PWRRNG 0
218 | EK2 MAG I GATE 300 678 | RNGFND8_RMETRIC 1
219 | EK2 MAG M _NSE 0.05 679 | RNGFND8_SCALING 3
220 | EK2 MAG_MASK 0 680 | RNGFND8_STOP_PIN i
221 | EK2 MAGB_P_NSE 0.0001 681 | RNGFNDS_TYPE 0
222 | EK2 MAGE P_NSE 0.001 682 | RNGFND9_ADDR 0
223 | EK2 MAX_FLOW 25 683 | RNGFND9_FUNCTION 0
224 | EK2_ NOAID M _NSE 10 684 | RNGFND9_GNDCLEAR 10
225 | EK2_ OGN_HGT MASK 0 685 | RNGFND9 MAX CM 700
226 | EK2 POS I GATE 500 686 | RNGFND9 MIN_CM 20
227 | EK2 POSNE_M NSE 1 687 | RNGFND9 OFFSET 0

131

228 | EK2 RNG_I GATE 500 688 | RNGFND9_ORIENT 0
229 | EK2 RNG_M _NSE 0.5 689 | RNGFND9 _PIN -1
230 | EK2 RNG USE_HGT -1 690 | RNGFND9 POS X 0
231 | EK2_ RNG_USE_SPD 2 691 | RNGFND9_POS_Y 0
232 | EK2_TAU OUTPUT 25 692 | RNGFND9_POS Z 0
233 | EK2_ TERR_GRAD 0.1 693 | RNGFND9 PWRRNG 0
234 | EK2_VEL I GATE 500 694 | RNGFND9_RMETRIC 1
235 | EK2_VELD M _NSE 0.7 695 | RNGFND9_SCALING 3
236 | EK2_ VELNE_M NSE 0.5 696 | RNGFND9_STOP_PIN i
237 | EK2_ WIND_P_NSE 0.1 697 | RNGFND9_TYPE 0
238 | EK2_ WIND_PSCALE 0.5 698 | RNGFNDA_ADDR 0
239 | EK2_YAW I GATE 300 699 | RNGFNDA_FUNCTION 0
240 | EK2 YAW M NSE 0.5 700 | RNGFNDA_GNDCLEAR 10
241 | EK3_ENABLE 0 701 | RNGFNDA MAX_CM 700
242 | FENCE_ACTION 1 702 | RNGFNDA_MIN_CM 20
243 | FENCE_ENABLE 0 703 | RNGFNDA_OFFSET 0
244 | FENCE_MARGIN 2 704 | RNGFNDA_ORIENT 0
245 | FENCE_RADIUS 300 705 | RNGFNDA PIN -1
246 | FENCE TOTAL 0 706 | RNGFNDA _POS X 0
247 | FENCE_TYPE 6 707 | RNGFNDA _POS Y 0
248 | FOLL_ENABLE 0 708 | RNGFNDA _POS Z 0
249 | FORMAT VERSION 16 709 | RNGFNDA_PWRRNG 0
250 | FRAME_CLASS 1 710 | RNGFNDA_RMETRIC 1
251 | FRAME_TYPE 0 711 | RNGFNDA_SCALING 3
252 | FS_ACTION 2 712 | RNGFNDA_STOP_PIN -1
253 | FS_CRASH_CHECK 0 713 | RNGFNDA_TYPE 0
254 | FS_EKF_ACTION 1 714 | RPM_MAX 100000
255 | FS_EKF_THRESH 0.8 715 | RPM_MIN 10
256 | FS_GCS_ENABLE 0 716 | RPM_MIN_QUAL 05
257 | FS_OPTIONS 0 717 | RPM_PIN 54
258 | FS_THR_ENABLE 1 718 | RPM_SCALING 1
259 | FS_THR_VALUE 910 719 | RPM_TYPE 0
260 | FS_TIMEOUT 15 720 | RPM2_PIN i
261 | GCS_PID_MASK 0 721 | RPM2_SCALING 1
262 | GND_ABS_PRESS 9779336 722 | RPM2_TYPE 0
263 | GND_ABS_PRESS2 0 723 | RSSI_TYPE 0
264 | GND_ABS_PRESS3 0 724 | RST_SWITCH_CH 0
265 | GND_ALT OFFSET 0 725 | RTL_SPEED 0
266 | GND_EXT BUS -1 726 | SAIL_ENABLE 0
267 | GND_FLTR_RNG 0 727 | SCHED DEBUG 0
268 | GND_PRIMARY 0 728 | SCHED LOOP RATE 50
269 | GND_PROBE_EXT 0 729 | SCR_ENABLE 0

132

270 | GND_TEMP 0 730 | SERIAL_PASSI 0
271 | GPS_AUTO_CONFIG 1 731 | SERIAL_PASS2 -1
272 | GPS_AUTO_SWITCH 1 732 | SERIAL_PASSTIMO 15
273 | GPS_BLEND_MASK 5 733 | SERIALO_BAUD 115
274 | GPS_BLEND_TC 10 734 | SERIALO_PROTOCOL 2
275 | GPS_DELAY MS 0 735 | SERIALI_BAUD 57
276 | GPS_DELAY MS2 0 736 | SERIALI_OPTIONS 0
277 | GPS_GNSS_MODE 0 737 | SERIALI_PROTOCOL 1
278 | GPS_GNSS_MODE2 0 738 | SERIAL2 BAUD 57
279 | GPS_INJECT_TO 127 739 | SERIAL2_OPTIONS 0
280 | GPS_MIN_DGPS 100 740 | SERIAL2_ PROTOCOL 1
281 | GPS_MIN_ELEV -100 741 | SERIAL3_BAUD 38
282 | GPS_NAVFILTER 3 742 | SERIAL3_OPTIONS 0
283 | GPS_POSI X 0.185 743 | SERIAL3_PROTOCOL 5
284 | GPS_POSI_Y 0 744 | SERIAL4 BAUD 38
285 | GPS POSI1 Z 20.175 745 | SERIAL4_OPTIONS 0
286 | GPS_POS2 X 0.125 746 | SERIAL4 PROTOCOL 5
287 | GPS_POS2 Y 0 747 | SERIAL5S BAUD 57
288 | GPS POS2 Z 0.11 748 | SERIALS OPTIONS 0
289 | GPS_RATE MS 200 749 | SERIAL5 PROTOCOL 1
290 | GPS_RATE_MS2 200 750 | SERIAL6_BAUD 57
291 | GPS_RAW _DATA 0 751 | SERIALG6_OPTIONS 0
292 | GPS_SAVE _CFG 2 752 | SERIAL6_PROTOCOL -l
293 | GPS_SBAS_MODE 2 753 | SERIAL7 BAUD 115200
294 | GPS_SBP_LOGMASK 256 754 | SERIAL7_OPTIONS 0
295 | GPS_TYPE 1 755 | SERIAL7 PROTOCOL 2
296 | GPS_TYPE2 0 756 | SERVO_BLH DEBUG 0
297 | GRIP_ENABLE 0 757 | SERVO_BLH_MASK 0
298 | INITIAL MODE 0 758 | SERVO_BLH_OTYPE 0
299 | INS_ACC_BODYFIX 2 759 | SERVO_BLH_POLES 14
300 | INS_ACC ID 2621706 760 | SERVO_BLH _PORT 0
301 | INS_ACC2 ID 2688010 761 | SERVO_BLH _REMASK 0
302 | INS_ACC20FFS_X 0.161591 762 | SERVO_BLH_TEST 0
303 | INS_ACC20FFS_Y -0.03968 763 | SERVO_BLH TMOUT 0
304 | INS_ACC20FFS_Z 0.138354 764 | SERVO_BLH TRATE 10
305 | INS_ACC2SCAL X 0.991839 765 | SERVO_RATE 50
306 | INS_ACC2SCAL Y 0.990431 766 | SERVO_ROB_POSMAX 4095
307 | INS_ACC2SCAL Z 0.981222 767 | SERVO_ROB_POSMIN 0
308 | INS_ACC3_ID 0 768 | SERVO_SBUS RATE 50
309 | INS_ACC30FFS X 0 769 | SERVO_VOLZ MASK 0
310 | INS_ACC3OFFS_Y 0 770 | SERVO1_FUNCTION 73
311 | INS_ACC3OFFS _Z 0 771 | SERVO1 MAX 1880

133

312 | INS_ACC3SCAL X 0 772 | SERVO1_MIN 1100
313 | INS_ACC3SCAL_Y 0 773 | SERVOl_REVERSED 0
314 | INS_ACC3SCAL Z 0 774 | SERVO1_TRIM 1500
315 | INS_ACCEL _FILTER 10 775 | SERVO10_FUNCTION 0
316 | INS_ACCOFFS X -0.08955 776 | SERVO10 MAX 1900
317 | INS_ACCOFFS_Y 0.172145 777 | SERVO10_MIN 1100
318 | INS_ACCOFFS Z 0.064103 778 | SERVO10_REVERSED 0
319 | INS_ACCSCAL X 0.997815 779 | SERVO10_TRIM 1500
320 | INS_ACCSCAL Y 0.999581 780 | SERVO11_FUNCTION 0
321 | INS_ACCSCAL Z 0.98419 781 | SERVO11_MAX 1900
322 | INS_ENABLE_MASK 127 782 | SERVO11_MIN 1100
323 | INS_FAST SAMPLE 1 783 | SERVO11_REVERSED 0
324 | INS_GYR CAL 1 784 | SERVO11_TRIM 1500
325 | INS_GYR_ID 2621706 785 | SERVO12_FUNCTION 0
326 | INS_GYR2_ID 2687754 786 | SERVO12 MAX 1900
327 | INS_GYR20FFS X -0.00299 787 | SERVO12 MIN 1100
328 | INS_GYR20FFS Y 0.003449 788 | SERVO12_REVERSED 0
329 | INS_GYR20FFS Z 0.001118 789 | SERVO12 TRIM 1500
330 | INS_GYR3_ID 0 790 | SERVO13_FUNCTION 0
331 | INS_GYR3OFFS_X 0 791 | SERVO13_MAX 1900
332 | INS_GYR3OFFS_Y 0 792 | SERVO13_MIN 1100
333 | INS_GYR3OFFS_Z 0 793 | SERVO13_REVERSED 0
334 | INS_GYRO_FILTER 4 794 | SERVOI13_TRIM 1500
335 | INS_GYROFFS_X 0.025607 795 | SERVO14_FUNCTION 0
336 | INS_GYROFFS_Y -0.01907 796 | SERVO14 MAX 1900
337 | INS_GYROFFS Z -0.00255 797 | SERVO14_MIN 1100
338 | INS_HNTCH_ENABLE 0 798 | SERVO14 REVERSED 0
339 | INS_ LOG BAT CNT 1024 799 | SERVO14_TRIM 1500
340 | INS_LOG BAT LGCT 32 800 | SERVO15 FUNCTION 0
341 | INS_LOG BAT LGIN 20 801 | SERVO15 MAX 1900
342 | INS_LOG _BAT MASK 0 802 | SERVO15 MIN 1100
343 | INS_LOG_BAT OPT 0 803 | SERVO15 REVERSED 0
344 | INS_NOTCH_ENABLE 0 804 | SERVOI15_TRIM 1500
345 | INS_POSI_X 0.04 805 | SERVO16_FUNCTION 0
346 | INS _POSI_Y 0.05 806 | SERVO16_MAX 1900
347 | INS_POSI Z 0.045 807 | SERVO16_MIN 1100
348 | INS_POS2 X 0 808 | SERVO16_REVERSED 0
349 | INS_POS2 Y 0 809 | SERVO16_TRIM 1500
350 | INS_POS2 Z 0 810 | SERVO2 FUNCTION 0
351 | INS POS3 X 0 811 | SERVO2 MAX 1900
352 | INS POS3 Y 0 812 | SERVO2 MIN 1100
353 | INS_POS3 Z 0 813 | SERVO2 REVERSED 0

134

354 | INS_STILL THRESH 0.1 814 | SERVO2_TRIM 1500
355 | INS_TRIM_OPTION 1 815 | SERVO3_FUNCTION 74
356 | INS_USE 1 816 | SERVO3 MAX 1950
357 | INS_USE2 1 817 | SERVO3_MIN 1100
358 | INS_USE3 1 818 | SERVO3_REVERSED 0
359 | LOG_BACKEND TYPE 1 819 | SERVO3_TRIM 1500
360 | LOG BITMASK 65535 820 | SERVO4 FUNCTION 0
361 | LOG_DISARMED 1 821 | SERVO4 MAX 1900
362 | LOG_FILE BUFSIZE 50 822 | SERVO4 MIN 1100
363 | LOG_FILE DSRMROT 0 823 | SERVO4 REVERSED 0
364 | LOG_FILE TIMEOUT 5 824 | SERVO4 TRIM 1500
365 | LOG_MAV_BUFSIZE 8 825 | SERVO5_FUNCTION 0
366 | LOG_REPLAY 0 826 | SERVO5 MAX 1900
367 | LOIT RADIUS 2 827 | SERVO5_MIN 1100
368 | LOIT SPEED_GAIN 0.5 828 | SERVO5 REVERSED 0
369 | LOIT TYPE 0 829 | SERVO5 TRIM 1500
370 | MIS_ DONE_BEHAVE 0 830 | SERVO6_FUNCTION 0
371 | MIS_OPTIONS 0 831 | SERVO6 MAX 1900
372 | MIS_RESTART 0 832 | SERVO6_MIN 1100
373 | MIS_TOTAL 36 833 | SERVO6_REVERSED 0
374 | MNT_ANGMAX PAN 4500 834 | SERVO6_TRIM 1500
375 | MNT_ANGMAX ROL 4500 835 | SERVO7 FUNCTION 0
376 | MNT_ANGMAX _TIL 4500 836 | SERVO7 MAX 1900
377 | MNT_ANGMIN_PAN -4500 837 | SERVO7_MIN 1100
378 | MNT_ANGMIN ROL -4500 838 | SERVO7 REVERSED 0
379 | MNT_ANGMIN_TIL -4500 839 | SERVO7_TRIM 1500
380 | MNT DEFLT MODE 3 840 | SERVO8 FUNCTION 0
381 | MNT_JSTICK_SPD 0 841 | SERVO8 MAX 1900
382 | MNT LEAD PTCH 0 842 | SERVOS_MIN 1100
383 | MNT LEAD RLL 0 843 | SERVOS_REVERSED 0
384 | MNT NEUTRAL X 0 844 | SERVOS_TRIM 1500
385 | MNT NEUTRAL Y 0 845 | SERVO9 FUNCTION 0
386 | MNT NEUTRAL Z 0 846 | SERVO9 MAX 1900
387 | MNT RC_IN_PAN 0 847 | SERVO9 MIN 1100
388 | MNT RC_IN_ROLL 0 848 | SERVO9 REVERSED 0
389 | MNT RC_IN_TILT 0 849 | SERVO9_TRIM 1500
390 | MNT RETRACT X 0 850 | SIMPLE_TYPE 0
391 | MNT RETRACT Y 0 851 | SPEED _MAX 0
392 | MNT RETRACT Z 0 852 | SPRAY ENABLE 0
393 | MNT STAB_PAN 0 853 | SRO_ADSB 0
394 | MNT STAB_ROLL 0 854 | SRO_EXT STAT 2
395 | MNT_STAB_TILT 0 855 | SRO_EXTRAI 4

135

396 | MNT_TYPE 0 856 | SRO_EXTRA2 4
397 | MODE_CH 6 857 | SRO_EXTRA3 2
398 | MODEI 10 858 | SRO_PARAMS 10
399 | MODE2 4 859 | SRO_POSITION 2
400 | MODE3 5 860 | SRO RAW _CTRL 1
401 | MODE4 0 861 | SRO_RAW_SENS 2
402 | MODES 0 862 | SRO_RC_CHAN 2
403 | MODEG6 3 863 | SR1_ADSB 0
404 | MOT PWM _FREQ 16 864 | SRI_EXT STAT 2
405 | MOT PWM _TYPE 0 865 | SRI_EXTRALI 4
406 | MOT SAFE DISARM 0 866 | SRI_EXTRA2 4
407 | MOT _SLEWRATE 100 867 | SRI_EXTRA3 2
408 | MOT_SPD SCA BASE 1 868 | SRI_PARAMS 10
409 | MOT _THR_MAX 100 869 | SRI_POSITION 2
410 | MOT_THR_MIN 4 870 | SRI_ RAW_CTRL 1
411 | MOT_THST_EXPO 0 871 | SRI_RAW_SENS 2
412 | MOT_VEC_THR_BASE 0 872 | SRI_RC_CHAN 2
413 | NAVL1_DAMPING 0.75 873 | SR2_ADSB 0
414 | NAVL1_PERIOD 11 874 | SR2_EXT STAT 1
415 | NAVL1_XTRACK I 0.02 875 | SR2_EXTRALI 1
416 | NTF_BUZZ ENABLE 1 876 | SR2_ EXTRA2 1
417 | NTF_BUZZ ON_LVL 1 877 | SR2_EXTRA3 1
418 | NTF_BUZZ PIN 0 878 | SR2 PARAMS 10
419 | NTF_BUZZ VOLUME 100 879 | SR2_POSITION 1
420 | NTF_DISPLAY TYPE 0 880 | SR2 RAW_CTRL 1
421 | NTF_LED BRIGHT 3 881 | SR2 RAW_SENS 1
422 | NTF_LED OVERRIDE 0 882 | SR2_ RC_CHAN 1
423 | NTF_LED_TYPES 199 883 | SR3_ADSB 0
424 | NTF_OREO_THEME 0 884 | SR3_EXT STAT 2
425 | OA_TYPE 0 885 | SR3_EXTRALI 4
426 | PILOT STEER TYPE 0 886 | SR3_EXTRA2 4
427 | PRX_IGN_ANGI 0 887 | SR3_EXTRA3 2
428 | PRX_IGN_ANG2 0 888 | SR3_PARAMS 10
429 | PRX_IGN_ANG3 0 889 | SR3_POSITION 2
430 | PRX_IGN_ANG4 0 890 | SR3 RAW_CTRL 1
431 | PRX_IGN_ANG5 0 891 | SR3_RAW_SENS 2
432 | PRX_IGN_ANG6 0 892 | SR3_RC_CHAN 2
433 | PRX_IGN_WIDI 0 893 | SRTL_ACCURACY 2
434 | PRX_IGN_WID2 0 894 | SRTL POINTS 300
435 | PRX_IGN_WID3 0 895 | STAT BOOTCNT 17
436 | PRX_IGN_WID4 0 896 | STAT FLTTIME 2257
437 | PRX_IGN_WID5 0 897 | STAT RESET 1.6E+08

136

137

138
A.2 RTK GPS Configuration

In this configuration, RTK GPS is used with the Pixhawk. The procedure for saving this

parameter list into a format compatible with Mission Planner is described in Appendix A.1.

Index Parameter Value Index Parameter Value

1 | ACRO_TURN_RATE 180 461 | RC11_MIN 1000

2 | AHRS_COMP_BETA 0.1 462 | RC11_OPTION 0

3 | AHRS_CUSTOM_PIT 0 463 | RC11_REVERSED 0

4 | AHRS_CUSTOM_ROLL 0 464 | RC11_TRIM 1500

5 | AHRS_CUSTOM_YAW 0 465 | RC12 DZ 0

6 | AHRS_EKF TYPE 2 466 | RC12 MAX 2000

7 | AHRS_GPS_GAIN 1 467 | RC12_MIN 1000

8 | AHRS_GPS_MINSATS 6 468 | RC12_OPTION 0

9 | AHRS_GPS_USE 1 469 | RC12 REVERSED 0
10 | AHRS ORIENTATION 0 470 | RC12_TRIM 1500
11 | AHRS RP P 0.2 471 | RC13_DZ 0
12 | AHRS TRIM X -0.01955 472 | RC13_MAX 2000
13 | AHRS_TRIM_Y 0.027536 473 | RC13_MIN 1000
14 | AHRS_TRIM_Z 0 474 | RC13_OPTION 0
15 | AHRS_WIND_MAX 0 475 | RC13_REVERSED 0
16 | AHRS_YAW_P 0.2 476 | RC13_TRIM 1500
17 | ARMING_ACCTHRESH 0.75 477 | RC14 DZ 0
18 | ARMING_CHECK 60926 478 | RC14 MAX 2000
19 | ARMING MIS_ITEMS 0 479 | RC14 MIN 1000
20 | ARMING REQUIRE 1 480 | RC14_OPTION 0
21 | ARMING RUDDER 2 481 | RC14 REVERSED 0
22 | ARSPD TYPE 0 482 | RC14 TRIM 1500
23 | ATC_ACCEL_MAX 0.3 483 | RC15_DZ 0
24 | ATC BAL D 0.03 484 | RC15 MAX 1900
25 | ATC_BAL_FF 0 485 | RC15_MIN 1100
26 | ATC_BAL_FLTD 0 486 | RC15_OPTION 0
27 | ATC_BAL_FLTE 10 487 | RC15_REVERSED 0
28 | ATC_BAL _FLTT 0 488 | RC15_TRIM 1500
29 | ATC_BAL I 1.5 489 | RC16_DZ 0
30 | ATC_BAL_IMAX 1 490 | RC16_MAX 1900
31 | ATC_ BAL P 1.8 491 | RC16_MIN 1100
32 | ATC_BAL SPD_FF 1 492 | RC16_OPTION 0
33 | ATC_BRAKE 0 493 | RC16_REVERSED 0
34 | ATC_DECEL MAX 0 494 | RC16_TRIM 1500
35 | ATC SAIL D 0 495 | RC2_DZ 30

36 | ATC_SAIL _FF 0 496 | RC2 MAX 1898
37 | ATC_SAIL FLTD 0 497 | RC2_ MIN 1098
38 | ATC_SAIL_FLTE 10 498 | RC2_OPTION 0
39 | ATC_SAIL_FLTT 0 499 | RC2_ REVERSED 0
40 | ATC SAIL I 0.1 500 | RC2_TRIM 1498
41 | ATC SAIL_IMAX 1 501 | RC3 DZ 0
42 | ATC SAIL P 1 502 | RC3_ MAX 1900
43 | ATC_SPEED D 0 503 | RC3_MIN 1100
44 | ATC_SPEED_FF 0 504 | RC3_OPTION 0
45 | ATC_SPEED_FLTD 0 505 | RC3_REVERSED 0
46 | ATC_SPEED _FLTE 10 506 | RC3_TRIM 1500
47 | ATC_SPEED_FLTT 0 507 | RC4 DZ 30
48 | ATC_SPEED I 0.2 508 | RC4 MAX 1902
49 | ATC_SPEED_IMAX 1 509 | RC4 MIN 1102
50 | ATC_SPEED P 0.2 510 | RC4 OPTION 0
51 | ATC_STOP_SPEED 0.1 511 | RC4 REVERSED 1
52 | ATC_STR_ACC_MAX 180 512 | RC4_TRIM 1502
53 | ATC_STR_ANG P 25 513 | RC5 DZ 0
54 | ATC_STR RAT D 0 514 | RC5_ MAX 1901
55 | ATC_STR RAT FF 02 515 | RC5 MIN 1099
56 | ATC_STR_RAT FLTD 0 516 | RC5_OPTION 50
57 | ATC_STR RAT FLTE 10 517 | RC5_REVERSED 0
58 | ATC_STR RAT FLTT 0 518 | RC5_TRIM 1500
59 | ATC_STR RAT I 0.2 519 | RC6_DZ 0
60 | ATC_STR RAT IMAX 0.3 520 | RC6_MAX 1901
61 | ATC_STR_RAT MAX 360 521 | RC6_MIN 1099
62 | ATC_STR_RAT P 0.1 522 | RC6_OPTION 0
63 | AUTO_KICKSTART 0 523 | RC6_REVERSED 0
64 | AUTO_TRIGGER PIN -1 524 | RC6_TRIM 1500
65 | AVOID_ANGLE MAX 1000 525 | RC7 DZ 0
66 | AVOID BEHAVE 1 526 | RC7_MAX 1901
67 | AVOID DIST MAX 5 527 | RC7_MIN 1099
68 | AVOID_ENABLE 3 528 | RC7_OPTION 0
69 | AVOID_MARGIN 2 529 | RC7_REVERSED 0
70 | BAL PITCH MAX 2 530 | RC7_TRIM 1500
71 | BAL_PITCH_TRIM 0 531 | RC8_DZ 0
72 | BATT _MONITOR 0 532 | RC8_MAX 1901
73 | BATT2_MONITOR 0 533 | RC8_MIN 1099
74 | BATT3_MONITOR 0 534 | RC8_OPTION 41
75 | BATT4_MONITOR 0 535 | RC8_REVERSED 0
76 | BATTS_MONITOR 0 536 | RC8_TRIM 1500
77 | BATT6_MONITOR 0 537 | RCY DZ 0

139

78 [BATT7_MONITOR 0 538 [RC9 MAX 2000
79 | BATT8_MONITOR 0 539 [RC9 MIN 1000
80 | BATT9 MONITOR 0 540 | RC9 OPTION 0
81 | BCN_ALT 0 541 | RC9 REVERSED 0
82 | BCN_LATITUDE 0 542 | RC9_TRIM 1500
83 | BCN_LONGITUDE 0 543 | RCMAP_PITCH 1
84 | BCN_ORIENT YAW 0 544 | RCMAP_ROLL 2
85 | BCN_TYPE 0 545 | RCMAP_THROTTLE 3
86 | BRD BOOT DELAY 0 546 | RCMAP_YAW 4
87 | BRD 10 ENABLE 1 547 | RELAY DEFAULT 0
88 | BRD_OPTIONS 1 548 | RELAY PIN -1
89 | BRD PWM_COUNT 8 549 | RELAY PIN2 -1
90 | BRD_RTC TYPES 1 550 | RELAY PIN3 -1
91 | BRD_RTC_TZ MIN 0 551 | RELAY PIN4 -1
92 | BRD_SAFETY MASK 0 552 | RELAY PIN5S -1
93 | BRD_SAFETYENABLE 1 553 | RELAY PING -1
94 | BRD_SAFETYOPTION 7 554 | RNGFNDI_ADDR 0
95 | BRD SBUS_OUT 0 555 | RNGFNDI_FUNCTION 0
96 | BRD_SD SLOWDOWN 0 556 | RNGFNDI_GNDCLEAR 10
97 | BRD_SERI_RTSCTS 0 557 | RNGFNDI_MAX_CM 700
98 | BRD_SER2 RTSCTS 0 558 | RNGFND1_MIN_CM 20
99 | BRD_SERIAL NUM 0 559 | RNGFND1_OFFSET 0
100 | BRD TYPE 24 560 | RNGFND1_ORIENT 0
101 | BRD VBUS MIN 43 561 | RNGFNDI_PIN -1
102 | BRD_VSERVO MIN 0 562 | RNGFNDI_POS X 0
103 | BTN_ENABLE 0 563 | RNGFNDI_POS_Y 0
104 | CAM_AUTO_ONLY 0 564 | RNGFND1_POS Z 0
105 | CAM_DURATION 10 565 | RNGFNDI_PWRRNG 0
106 | CAM_FEEDBACK_PIN -1 566 | RNGFNDI_RMETRIC 1
107 | CAM_FEEDBACK_POL 1 567 | RNGFNDI_SCALING 3
108 | CAM_MAX ROLL 0 568 | RNGFNDI_STOP_PIN -1
109 | CAM_MIN_INTERVAL 0 569 | RNGFNDI_TYPE 0
110 | CAM_RELAY ON 1 570 | RNGFND2 _ADDR 0
111 | CAM_SERVO_OFF 1100 571 | RNGFND2 FUNCTION 0
112 | CAM_SERVO ON 1300 572 | RNGFND2_GNDCLEAR 10
113 | CAM_TRIGG DIST 0 573 | RNGFND2 MAX_CM 700
114 | CAM_TRIGG_TYPE 0 574 | RNGFND2 MIN_CM 20
115 | CAM TYPE 0 575 | RNGFND2_OFFSET 0
116 | CAN_DI_PROTOCOL 1 576 | RNGFND2_ORIENT 0
117 | CAN_D2 PROTOCOL 1 577 | RNGFND2_PIN -1
118 | CAN_P1_DRIVER 0 578 | RNGFND2 _POS X 0
119 | CAN_P2 DRIVER 0 579 | RNGFND2 POS_Y 0

140

120 | CAN_SLCAN_CPORT 0 580 | RNGFND2_POS_Z 0
121 | CAN_SLCAN_SERNUM -1 581 | RNGFND2_PWRRNG 0
122 | CAN_SLCAN_TIMOUT 0 582 | RNGFND2_RMETRIC 1
123 | COMPASS_AUTO_ROT 2 583 | RNGFND2_SCALING 3
124 | COMPASS_AUTODEC 1 584 | RNGFND2_STOP_PIN 1
125 | COMPASS_CAL_FIT 32 585 | RNGFND2_TYPE 0
126 | COMPASS DEC -0.2289 586 | RNGFND3_ADDR 0
127 | COMPASS DEV_ID 658953 587 | RNGFND3_FUNCTION 0
128 | COMPASS_DEV_ID2 658945 588 | RNGFND3_GNDCLEAR 10
129 | COMPASS_DEV_ID3 0 589 | RNGFND3_MAX_CM 700
130 | COMPASS DIA X 0.963464 590 | RNGFND3_MIN_CM 20
131 | COMPASS DIA_ Y 0.958935 591 | RNGFND3_OFFSET 0
132 | COMPASS DIA Z 1.042703 592 | RNGFND3_ORIENT 0
133 | COMPASS_DIA2 X 1.004654 593 | RNGFND3_PIN -1
134 | COMPASS DIA2_ Y 1.04455 594 | RNGFND3_POS_X 0
135 | COMPASS _DIA2 Z 1.087546 595 | RNGFND3_POS Y 0
136 | COMPASS DIA3 X 0 596 | RNGFND3 _POS Z 0
137 | COMPASS DIA3 Y 0 597 | RNGFND3_PWRRNG 0
138 | COMPASS DIA3 Z 0 598 | RNGFND3_RMETRIC 1
139 | COMPASS_ENABLE 1 599 | RNGFND3_SCALING 3
140 | COMPASS_EXP_DID -l 600 | RNGFND3_STOP_PIN -l
141 | COMPASS_EXP_DID2 -l 601 | RNGFND3_TYPE 0
142 | COMPASS_EXP_DID3 -l 602 | RNGFND4_ADDR 0
143 | COMPASS_EXTERN2 0 603 | RNGFND4_FUNCTION 0
144 | COMPASS_EXTERN3 0 604 | RNGFND4_GNDCLEAR 10
145 | COMPASS_EXTERNAL 1 605 | RNGFND4 MAX_CM 700
146 | COMPASS_FLTR_RNG 0 606 | RNGFND4 MIN_CM 20
147 | COMPASS_LEARN 0 607 | RNGFND4_OFFSET 0
148 | COMPASS_MOT X 0 608 | RNGFND4_ORIENT 0
149 | COMPASS_MOT Y 0 609 | RNGFND4 PIN B
150 | COMPASS_MOT Z 0 610 | RNGFND4 POS_X 0
151 | COMPASS_MOT2 X 0 611 | RNGFND4_POS_Y 0
152 | COMPASS_MOT2 Y 0 612 | RNGFND4 _POS_Z 0
153 | COMPASS_MOT2 Z 0 613 | RNGFND4 PWRRNG 0
154 | COMPASS_MOT3_X 0 614 | RNGFND4 RMETRIC 1
155 | COMPASS_MOT3_Y 0 615 | RNGFND4_SCALING 3
156 | COMPASS_MOT3 Z 0 616 | RNGFND4_STOP_PIN -1
157 | COMPASS_MOTCT 0 617 | RNGFND4_TYPE 0
158 | COMPASS ODI X 0.000969 618 | RNGFND5_ADDR 0
159 | COMPASS ODI Y -0.06673 619 | RNGFND5_FUNCTION 0
160 | COMPASS ODI Z 0.118935 620 | RNGFND5_GNDCLEAR 10
161 | COMPASS_ODI2 X 0.01676 621 | RNGFND5 MAX CM 700

141

162 | COMPASS_ODI2_Y -0.09601 622 | RNGFND5 MIN_CM 20
163 | COMPASS_ODI2 Z 0.063797 623 | RNGFND5_OFFSET 0
164 | COMPASS ODI3 X 0 624 | RNGFND5_ORIENT 0
165 | COMPASS ODI3_Y 0 625 | RNGFND5_PIN -1
166 | COMPASS ODI3 Z 0 626 | RNGFND5 POS X 0
167 | COMPASS_OFFS_MAX 800 627 | RNGFND5 POS Y 0
168 | COMPASS_OFS X 5793118 628 | RNGFND5 POS Z 0
169 | COMPASS_OFS_Y 21.75474 629 | RNGFND5 PWRRNG 0
170 | COMPASS_OFS _Z -102.489 630 | RNGFND5_RMETRIC 1
171 | COMPASS_OFS2 X 28.66513 631 | RNGFND5_SCALING 3
172 | COMPASS_OFS2_Y 98.94672 632 | RNGFND5_STOP_PIN i
173 | COMPASS_OFS2 Z -7.05574 633 | RNGFND5_TYPE 0
174 | COMPASS_OFS3_X 0 634 | RNGFND6_ADDR 0
175 | COMPASS_OFS3_Y 0 635 | RNGFND6_FUNCTION 0
176 | COMPASS OFS3 Z 0 636 | RNGFND6_GNDCLEAR 10
177 | COMPASS ORIENT 0 637 | RNGFND6 MAX_CM 700
178 | COMPASS_ORIENT2 0 638 | RNGFND6_MIN_CM 20
179 | COMPASS_ORIENT3 0 639 | RNGFND6_OFFSET 0
180 | COMPASS PMOT EN 0 640 | RNGFND6_ORIENT 0
181 | COMPASS_PRIMARY 0 641 | RNGFND6_PIN il
182 | COMPASS_TYPEMASK 0 642 | RNGFND6_POS_X 0
183 | COMPASS_USE 1 643 | RNGFND6_POS_Y 0
184 | COMPASS_USE2 0 644 | RNGFND6_POS _Z 0
185 | COMPASS_USE3 0 645 | RNGFND6_PWRRNG 0
186 | CRASH_ANGLE 0 646 | RNGFND6_RMETRIC 1
187 | CRUISE_SPEED 1.111076 647 | RNGFND6_SCALING 3
188 | CRUISE_THROTTLE 100 648 | RNGFND6_STOP_PIN -1
189 | EK2_ABIAS P _NSE 0.005 649 | RNGFND6_TYPE 0
190 | EK2 ACC_P NSE 0.6 650 | RNGFND7_ADDR 0
191 | EK2 ALT M _NSE 3 651 | RNGFND7 FUNCTION 0
192 | EK2_ALT SOURCE 0 652 | RNGFND7_GNDCLEAR 10
193 | EK2 BCN_DELAY 50 653 | RNGFND7 MAX_CM 700
194 | EK2 BCN I GTE 500 654 | RNGFND7 MIN_CM 20
195 | EK2 BCN_M NSE 1 655 | RNGFND7_OFFSET 0
196 | EK2 CHECK_SCALE 100 656 | RNGFND7_ORIENT 0
197 | EK2_EAS I GATE 400 657 | RNGFND7_PIN -1
198 | EK2_EAS M NSE 1.4 658 | RNGFND7_POS_X 0
199 | EK2 ENABLE 1 659 | RNGFND7 POS_Y 0
200 | EK2_ EXTNAV_DELAY 10 660 | RNGFND7 POS Z 0
201 | EK2 FLOW _DELAY 10 661 | RNGFND7 PWRRNG 0
202 | EK2_ FLOW_I GATE 300 662 | RNGFND7 RMETRIC 1
203 | EK2 FLOW M _NSE 025 663 | RNGFND7_SCALING 3

142

204 | EK2 FLOW_USE 1 664 | RNGFND7_STOP_PIN -1
205 | EK2_GBIAS_P_NSE 0.0001 665 | RNGFND7 TYPE 0
206 | EK2_GLITCH RAD 25 666 | RNGFNDS_ADDR 0
207 | EK2_GPS_CHECK 31 667 | RNGFND8_FUNCTION 0
208 | EK2_GPS_TYPE 1 668 | RNGFND8_GNDCLEAR 10
209 | EK2 GSCL P _NSE 0.0005 669 | RNGFND8 MAX CM 700
210 | EK2 GYRO P_NSE 0.03 670 | RNGFND8_MIN CM 20
211 | EK2 HGT DELAY 60 671 | RNGFND8_OFFSET 0
212 | EK2_HGT I GATE 500 672 | RNGFND8_ORIENT 0
213 | EK2_HRT FILT 2 673 | RNGFND8_PIN i
214 | EK2_ IMU MASK 3 674 | RNGFND8_POS_X 0
215 | EK2_ LOG_MASK 1 675 | RNGFNDS8_POS_Y 0
216 | EK2 MAG_CAL 2 676 | RNGFND8_POS _Z 0
217 | EK2 MAG_EF_LIM 50 677 | RNGFND8_PWRRNG 0
218 | EK2 MAG I GATE 300 678 | RNGFND8_RMETRIC 1
219 | EK2 MAG_M_NSE 0.05 679 | RNGFNDS8_SCALING 3
220 | EK2 MAG_MASK 0 680 | RNGFNDS_STOP_PIN -1
221 | EK2 MAGB_P_NSE 0.0001 681 | RNGFNDS_TYPE 0
222 | EK2 MAGE_P_NSE 0.001 682 | RNGFND9 ADDR 0
223 | EK2 MAX_FLOW 25 683 | RNGFND9 FUNCTION 0
224 | EK2 NOAID M _NSE 10 684 | RNGFND9 GNDCLEAR 10
225 | EK2_ OGN_HGT MASK 0 685 | RNGFND9 MAX_CM 700
226 | EK2_POS I GATE 500 686 | RNGFND9 MIN_CM 20
227 | EK2_ POSNE_M_NSE 0.1 687 | RNGFND9 _OFFSET 0
228 | EK2 RNG_I GATE 500 688 | RNGFND9_ORIENT 0
229 | EK2 RNG_M _NSE 0.5 689 | RNGFND9 _PIN -1
230 | EK2 RNG USE_HGT -1 690 | RNGFND9 POS X 0
231 | EK2_ RNG_USE_SPD 2 691 | RNGFND9_POS_Y 0
232 | EK2_TAU OUTPUT 25 692 | RNGFND9_POS Z 0
233 | EK2_ TERR_GRAD 0.1 693 | RNGFND9 PWRRNG 0
234 | EK2_VEL I GATE 500 694 | RNGFND9_RMETRIC 1
235 | EK2_ VELD M _NSE 0.7 695 | RNGFND9_SCALING 3
236 | EK2_VELNE_M NSE 0.1 696 | RNGFND9_STOP_PIN i
237 | EK2_ WIND_P_NSE 0.1 697 | RNGFND9_TYPE 0
238 | EK2 WIND_PSCALE 0.5 698 | RNGFNDA_ADDR 0
239 | EK2_YAW I GATE 300 699 | RNGFNDA_FUNCTION 0
240 | EK2 YAW M NSE 0.5 700 | RNGFNDA_GNDCLEAR 10
241 | EK3_ENABLE 0 701 | RNGFNDA MAX_CM 700
242 | FENCE_ACTION 1 702 | RNGFNDA_MIN_CM 20
243 | FENCE_ENABLE 0 703 | RNGFNDA_OFFSET 0
244 | FENCE_MARGIN 2 704 | RNGFNDA_ORIENT 0
245 | FENCE_RADIUS 300 705 | RNGFNDA PIN -1

143

246 | FENCE TOTAL 0 706 | RNGFNDA_POS_X 0
247 | FENCE_TYPE 6 707 | RNGFNDA_POS_Y 0
248 | FOLL_ENABLE 0 708 | RNGFNDA _POS Z 0
249 | FORMAT VERSION 16 709 | RNGFNDA_PWRRNG 0
250 | FRAME_CLASS 1 710 | RNGFNDA_RMETRIC 1
251 | FRAME_TYPE 0 711 | RNGFNDA_SCALING 3
252 | FS_ACTION 2 712 | RNGFNDA_STOP_PIN -1
253 | FS_CRASH CHECK 0 713 | RNGFNDA_TYPE 0
254 | FS_EKF_ACTION 1 714 | RPM_MAX 100000
255 | FS_EKF_THRESH 0.8 715 | RPM_MIN 10
256 | FS_GCS_ENABLE 0 716 | RPM_MIN_QUAL 0.5
257 | FS_OPTIONS 0 717 | RPM_PIN 54
258 | FS_THR_ENABLE 1 718 | RPM_SCALING 1
259 | FS_THR_VALUE 910 719 | RPM_TYPE 0
260 | FS_TIMEOUT 1.5 720 | RPM2_PIN -1
261 | GCS_PID_MASK 0 721 | RPM2_SCALING 1
262 | GND_ABS _PRESS 97793.36 722 | RPM2_TYPE 0
263 | GND_ABS_PRESS2 0 723 | RSSI_TYPE 0
264 | GND_ABS_PRESS3 0 724 | RST _SWITCH CH 0
265 | GND_ALT OFFSET 0 725 | RTL_SPEED 0
266 | GND_EXT BUS i 726 | SAIL_ENABLE 0
267 | GND_FLTR _RNG 0 727 | SCHED_DEBUG 0
268 | GND_PRIMARY 0 728 | SCHED LOOP RATE 50
269 | GND_PROBE_EXT 0 729 | SCR_ENABLE 0
270 | GND_TEMP 0 730 | SERIAL _PASSI 0
271 | GPS_AUTO_CONFIG 1 731 | SERIAL PASS2 -1
272 | GPS_AUTO_SWITCH 3 732 | SERIAL PASSTIMO 15
273 | GPS_BLEND MASK 5 733 | SERIALO_BAUD 115
274 | GPS_BLEND_TC 10 734 | SERIALO_PROTOCOL 2
275 | GPS_DELAY MS 0 735 | SERIALI_BAUD 57
276 | GPS_DELAY_MS2 0 736 | SERIALI_OPTIONS 0
277 | GPS_GNSS_MODE 0 737 | SERIAL1_PROTOCOL 1
278 | GPS_GNSS_MODE2 77 738 | SERIAL2 BAUD 57
279 | GPS_INJECT TO 127 739 | SERIAL2 OPTIONS 0
280 | GPS_MIN_DGPS 100 740 | SERIAL2 PROTOCOL 1
281 | GPS_MIN_ELEV -100 741 | SERIAL3 BAUD 38
282 | GPS_NAVFILTER 8 742 | SERIAL3_OPTIONS 0
283 | GPS_POSI X 0.185 743 | SERIAL3_PROTOCOL 5
284 | GPS_POSI Y 0 744 | SERIAL4 BAUD 115
285 | GPS POSI Z -0.175 745 | SERIAL4 OPTIONS 0
286 | GPS POS2 X 0.125 746 | SERIAL4 PROTOCOL 5
287 | GPS POS2 Y 0 747 | SERIAL5_BAUD 57

144

288 | GPS_POS2_Z 0.11 748 | SERIAL5_OPTIONS 0
289 | GPS_RATE_MS 200 749 | SERIAL5 PROTOCOL -1
290 | GPS_RATE_MS2 200 750 | SERIAL6 BAUD 57
291 | GPS_RAW_DATA 0 751 | SERIAL6_OPTIONS 0
292 | GPS_SAVE_CFG 2 752 | SERIAL6_PROTOCOL -1
293 | GPS_SBAS_MODE 2 753 | SERIAL7 BAUD 115200
294 | GPS_SBP_LOGMASK 256 754 | SERIAL7 OPTIONS 0
295 | GPS_TYPE 1 755 | SERIAL7 PROTOCOL 2
296 | GPS_TYPE2 5 756 | SERVO_BLH DEBUG 0
297 | GRIP_ENABLE 0 757 | SERVO_BLH _MASK 0
298 | INITIAL_MODE 0 758 | SERVO_BLH OTYPE 0
299 | INS_ACC_BODYFIX 2 759 | SERVO_BLH_POLES 14
300 | INS_ACC_ID 2621706 760 | SERVO_BLH_PORT 0
301 | INS_ACC2_ID 2638010 761 | SERVO_BLH REMASK 0
302 | INS_ACC20FFS X 0.161591 762 | SERVO_BLH_TEST 0
303 | INS_ACC20FFS_Y -0.03968 763 | SERVO_BLH TMOUT 0
304 | INS_ACC20FFS Z 0.138354 764 | SERVO_BLH TRATE 10
305 | INS_ACC2SCAL X 0.991839 765 | SERVO_RATE 50
306 | INS_ACC2SCAL Y 0.990431 766 | SERVO_ROB_POSMAX 4095
307 | INS_ACC2SCAL Z 0.981222 767 | SERVO_ROB_POSMIN 0
308 | INS_ACC3_ID 0 768 | SERVO_SBUS_RATE 50
309 | INS_ACC3OFFS_X 0 769 | SERVO_VOLZ MASK 0
310 | INS_ACC3OFFS_Y 0 770 | SERVO1_FUNCTION 73
311 | INS_ACC3OFFS_Z 0 771 | SERVOl_MAX 1880
312 | INS_ACC3SCAL X 0 772 | SERVOl_MIN 1100
313 | INS_ACC3SCAL_Y 0 773 | SERVOl_REVERSED 0
314 | INS_ACC3SCAL Z 0 774 | SERVO1_TRIM 1500
315 | INS_ACCEL _FILTER 10 775 | SERVO10_FUNCTION 0
316 | INS_ACCOFFS X -0.08955 776 | SERVO10 MAX 1900
317 | INS_ACCOFFS_Y 0.172145 777 | SERVO10_MIN 1100
318 | INS_ACCOFFS Z 0.064103 778 | SERVO10_REVERSED 0
319 | INS_ACCSCAL X 0.997815 779 | SERVO10_TRIM 1500
320 | INS_ACCSCAL Y 0.999581 780 | SERVO11_FUNCTION 0
321 | INS_ACCSCAL Z 0.98419 781 | SERVO11_MAX 1900
322 | INS_ENABLE_MASK 127 782 | SERVO11_MIN 1100
323 | INS_FAST SAMPLE 1 783 | SERVO11_REVERSED 0
324 | INS_GYR _CAL 1 784 | SERVO11_TRIM 1500
325 | INS_GYR_ID 2621706 785 | SERVO12_FUNCTION 0
326 | INS_GYR2_ID 2687754 786 | SERVO12 MAX 1900
327 | INS_GYR20FFS X -0.00299 787 | SERVO12 MIN 1100
328 | INS_GYR20FFS Y 0.003449 788 | SERVO12_REVERSED 0
329 | INS_GYR20FFS Z 0.001118 789 | SERVO12 TRIM 1500

145

330 | INS_GYR3_ID 0 790 | SERVO13_FUNCTION 0
331 | INS_GYR3OFFS_X 0 791 | SERVO13_MAX 1900
332 | INS_GYR3OFFS Y 0 792 | SERVO13 MIN 1100
333 | INS_GYR3OFFS _Z 0 793 | SERVO13_REVERSED 0
334 | INS_GYRO FILTER 4 794 | SERVO13_TRIM 1500
335 | INS_GYROFFS X 0.025607 795 | SERVO14 FUNCTION 0
336 | INS_ GYROFFS_Y -0.01907 796 | SERVO14 MAX 1900
337 | INS_GYROFFS Z -0.00255 797 | SERVO14 MIN 1100
338 | INS_HNTCH_ENABLE 0 798 | SERVO14 REVERSED 0
339 | INS_LOG _BAT CNT 1024 799 | SERVO14_TRIM 1500
340 | INS_LOG_BAT LGCT 32 800 | SERVO15_FUNCTION 0
341 | INS_LOG_BAT LGIN 20 801 | SERVO15 MAX 1900
342 | INS_LOG_BAT MASK 0 802 | SERVO15 MIN 1100
343 | INS_LOG_BAT OPT 0 803 | SERVO15 REVERSED 0
344 | INS_NOTCH_ENABLE 0 804 | SERVO15_TRIM 1500
345 | INS POSI X 0.04 805 | SERVO16_FUNCTION 0
346 | INS POSI Y 0.05 806 | SERVO16 MAX 1900
347 | INS_POSI Z 0.045 807 | SERVO16_MIN 1100
348 | INS POS2 X 0 808 | SERVO16_REVERSED 0
349 | INS POS2 Y 0 809 | SERVO16_TRIM 1500
350 | INS_POS2 Z 0 810 | SERVO2_FUNCTION 0
351 | INS_POS3 X 0 811 | SERVO2 MAX 1900
352 | INS_POS3_Y 0 812 | SERVO2 MIN 1100
353 | INS_POS3 Z 0 813 | SERVO2_REVERSED 0
354 | INS_STILL THRESH 0.1 814 | SERVO2_TRIM 1500
355 | INS_TRIM_OPTION 1 815 | SERVO3_FUNCTION 74
356 | INS_USE 1 816 | SERVO3 MAX 1950
357 | INS_USE2 1 817 | SERVO3_MIN 1100
358 | INS_USE3 1 818 | SERVO3_REVERSED 0
359 | LOG_BACKEND TYPE 1 819 | SERVO3_TRIM 1500
360 | LOG_BITMASK 65535 820 | SERVO4 FUNCTION 0
361 | LOG_DISARMED 1 821 | SERVO4 MAX 1900
362 | LOG_FILE BUFSIZE 50 822 | SERVO4 MIN 1100
363 | LOG_FILE DSRMROT 0 823 | SERVO4 REVERSED 0
364 | LOG_FILE TIMEOUT 5 824 | SERVO4_TRIM 1500
365 | LOG_MAV_BUFSIZE 3 825 | SERVO5_FUNCTION 0
366 | LOG_REPLAY 0 826 | SERVO5_MAX 1900
367 | LOIT_RADIUS 2 827 | SERVO5_MIN 1100
368 | LOIT_SPEED GAIN 0.5 828 | SERVO5_REVERSED 0
369 | LOIT TYPE 0 829 | SERVO5_TRIM 1500
370 | MIS_DONE_BEHAVE 0 830 | SERVO6_FUNCTION 0
371 | MIS_OPTIONS 0 831 | SERVO6_MAX 1900

146

372 | MIS_RESTART 0 832 | SERVO6_MIN 1100
373 | MIS_TOTAL 36 833 | SERVO6_REVERSED 0
374 | MNT_ANGMAX_PAN 4500 834 | SERVO6_TRIM 1500
375 | MNT ANGMAX ROL 4500 835 | SERVO7 FUNCTION 0
376 | MNT_ANGMAX TIL 4500 836 | SERVO7 MAX 1900
377 | MNT_ANGMIN_PAN -4500 837 | SERVO7 MIN 1100
378 | MNT ANGMIN _ROL -4500 838 | SERVO7 REVERSED 0
379 | MNT ANGMIN_TIL -4500 839 | SERVO7_TRIM 1500
380 | MNT _DEFLT MODE 3 840 | SERVOS_FUNCTION 0
381 | MNT_JSTICK_SPD 0 841 | SERVOS MAX 1900
382 | MNT_LEAD_PTCH 0 842 | SERVO8_MIN 1100
383 | MNT LEAD RLL 0 843 | SERVOS_REVERSED 0
384 | MNT NEUTRAL X 0 844 | SERVOS_TRIM 1500
385 | MNT NEUTRAL Y 0 845 | SERVO9_FUNCTION 0
386 | MNT NEUTRAL Z 0 846 | SERVO9 MAX 1900
387 | MNT_RC_IN_PAN 0 847 | SERVO9 MIN 1100
388 | MNT RC_IN ROLL 0 848 | SERVO9 REVERSED 0
389 | MNT RC_IN_TILT 0 849 | SERVO9_TRIM 1500
390 | MNT RETRACT X 0 850 | SIMPLE_TYPE 0
391 | MNT RETRACT Y 0 851 | SPEED MAX 0
392 | MNT RETRACT Z 0 852 | SPRAY ENABLE 0
393 | MNT _STAB _PAN 0 853 | SRO_ADSB 0
394 | MNT STAB ROLL 0 854 | SRO_EXT STAT 2
395 | MNT_STAB_TILT 0 855 | SRO_EXTRAI 4
396 | MNT TYPE 0 856 | SRO_EXTRA2 4
397 | MODE_CH 6 857 | SRO_EXTRA3 2
398 | MODEI 10 858 | SRO_PARAMS 10
399 | MODE2 4 859 | SRO_POSITION 2
400 | MODE3 5 860 | SRO RAW_CTRL 1
401 | MODE4 0 861 | SRO_RAW_SENS 2
402 | MODES 0 862 | SRO_RC_CHAN 2
403 | MODEG6 3 863 | SR1_ADSB 0
404 | MOT PWM _FREQ 16 864 | SRI_EXT STAT 2
405 | MOT PWM _TYPE 0 865 | SRI_EXTRALI 4
406 | MOT SAFE DISARM 0 866 | SRI_EXTRA2 4
407 | MOT _SLEWRATE 100 867 | SRI_EXTRA3 2
408 | MOT_SPD SCA BASE 1 868 | SRI_PARAMS 10
409 | MOT _THR_MAX 100 869 | SRI_POSITION 2
410 | MOT_THR_MIN 4 870 | SRI_ RAW_CTRL 1
411 | MOT_THST_EXPO 0 871 | SRI_RAW_SENS 2
412 | MOT_VEC_THR_BASE 0 872 | SRI_RC_CHAN 2
413 | NAVL1_DAMPING 0.75 873 | SR2_ADSB 0

147

414 | NAVL1_PERIOD 11 874 | SR2_EXT STAT 1
415 | NAVL1_XTRACK I 0.02 875 | SR2_EXTRAI 1
416 | NTF_BUZZ ENABLE 1 876 | SR2_EXTRA2 1
417 | NTF_BUZZ ON_LVL 1 877 | SR2_EXTRA3 1
418 | NTF_BUZZ PIN 0 878 | SR2_ PARAMS 10
419 | NTF_BUZZ VOLUME 100 879 | SR2_POSITION 1
420 | NTF_DISPLAY TYPE 0 880 | SR2 RAW_CTRL 1
421 | NTF_LED BRIGHT 3 881 | SR2 RAW_SENS 1
422 | NTF_LED _OVERRIDE 0 882 | SR2 RC_CHAN 1
423 | NTF_LED_TYPES 199 883 | SR3_ADSB 0
424 | NTF_OREO_THEME 0 884 | SR3_EXT STAT 2
425 | OA_TYPE 0 885 | SR3_EXTRAI 4
426 | PILOT STEER TYPE 0 886 | SR3_EXTRA2 4
427 | PRX_IGN_ANGI 0 887 | SR3_EXTRA3 2
428 | PRX_IGN_ANG2 0 888 | SR3_PARAMS 10
429 | PRX_IGN_ANG3 0 889 | SR3_POSITION 2
430 | PRX_IGN_ANG4 0 890 | SR3_RAW_CTRL 1
431 | PRX_IGN_ANG5 0 891 | SR3 RAW _SENS 2
432 | PRX_IGN_ANG6 0 892 | SR3 RC_CHAN 2
433 | PRX_IGN_WIDI 0 893 | SRTL_ACCURACY 2
434 | PRX_IGN_WID2 0 894 | SRTL_POINTS 300
435 | PRX_IGN_WID3 0 895 | STAT BOOTCNT 17
436 | PRX_IGN_WID4 0 896 | STAT FLTTIME 2257
437 | PRX_IGN_WID5 0 897 | STAT RESET 160496500
438 | PRX_IGN_WID6 0 898 | STAT RUNTIME 156158
439 | PRX_ORIENT 0 899 | STICK MIXING 0
440 | PRX_TYPE 0 900 | SYSID_ENFORCE 0
441 | PRX_YAW_CORR 0 901 | SYSID MYGCS 255
442 | RALLY_INCL_HOME 1 902 | SYSID_THISMAV 1
443 | RALLY_LIMIT KM 0.5 903 | TELEM DELAY 0
444 | RALLY TOTAL 0 904 | TURN MAX G 0.6
445 | RC_OPTIONS 0 905 | TURN RADIUS 0.1
446 | RC_OVERRIDE_TIME 3 906 | VISO ORIENT 0
447 | RCI DZ 0 907 | VISO POS X 0
448 | RCI_MAX 1901 908 | VISO POS_Y 0
449 | RCI_MIN 1099 909 | VISO POS Z 0
450 | RCI_OPTION 0 910 | VISO TYPE 0
451 | RCI_REVERSED 0 911 | WENC_TYPE 0
452 | RC1_TRIM 1099 912 | WNDVN_TYPE 0
453 | RC10 DZ 0 913 | WP_OVERSHOOT 0.03
454 | RC10_ MAX 2000 914 | WP_PIVOT _ANGLE 60
455 | RC10_ MIN 1000 915 | WP_PIVOT RATE 90

148

149

150
Appendix B

Python Code

B.1 inline_pair_UGV01.py

This script generates a tab-delimited *.waypoints file compatible with Mission Planner.
Using the known locations of the orchard row end posts and the locations of the test track GCPs,
the script can generate waypoints for a mission in a given direction at a given spacing interval for
waypoints. Spacing options are 50% of a pass, 25% of a pass, or any fixed distance in feet. This

script was originally authored by Dr. H.J. Sommer and was later modified by Michael Pagan.

inline_pair_UGVOl.py - main for centerline between pair of rows
__author__ = "HJISIII, 21.01.27" # Modified by Michael Pagan

#HAHSHH R R
import

from math import *

import numpy as np

import csv

#
local constants
d2r = pi / 180.0

1 deg lat = 364813 feet,
1 deg lon = cos(lat)*d2f_lat, MATLAB spherical Earth model
d2f_lat = 364813.0

mission parameters

overshoot = 15.0 #tovershoot at begining/end of rows [ft]

spacing = 5.0 #in-line spacing between waypoints (fixed) [ft]
h=29 #AGL [ft]

spacing_option = '25%" #50% spacing = '50%',

#25% spacing = '25%"',
#fixed = 'fixed'

HEHHHHAHHH
open CSV file to write text

fn_csv = 'mission_plan.waypoints'

fid _csv = open(fn_csv, 'w')

write header with new line at end

header = 'QGC WPL 110\n'

fid_csv.write(header)

#write index @ line (home position)

fid _csv.write('%5.0f\t' % (@)) # index

fid_csv.write('@\t3\tl6\to\te\te\te\te\te\te\ti\n')
current_wp, coord_frame, command, paraml, param2, param3,
param4, lat, long, AGL, autocontinue

HH R S R
direction = 'FOR'

forward - apple rows Nlat, NLon, Slat, Slon - TEST Wlat Wlon Elat Elon
direction = 'REV' # reverse

select block row_a row_b direction

comment out either test track or apple rows

HoHHHHEH

#test track#
#tblock row a row b direction#

#babd = ['TEST', '1', '1', 'FOR',
#'TEST', '2', '2', 'REV',
#'TEST', '1', '1', 'FOR',
#'TEST', '2', '2', 'REV']

##apple rows#
##block row_a row_b direction##

babd = ['A3', 'AA', 'AB', 'FOR',

'A3', 'AB', 'AC', REV',

"A3', 'AC', 'AD', 'FOR',

'A3', 'AD', "BA', 'REV',

'A3', 'BA', 'BB', 'FOR',

'A3', 'BB', "CA', 'REV',

'A3', 'CA', 'CB', 'FOR']

size
n_babd = len(babd)
n_babd = int(n_babd / 4)

process one pass at a time
n_pass =1
for i_babd in range(n_babd):

rip
block = babd[i_babd*4] #tblock, row a, row b, direction
row_a = babd[i_babd*4 + 1]
row_b = babd[i_babd*4 + 2]
direction = babd[i_babd*4 + 3]

read CSV file with lat-lon for posts and find N-S ends
CSV contains - block row N_lat N_lon S_lat S_1lon
nlat_a = 0
nlat b = 0
fn_posts = '200305 rows cut.csv'
with open(fn_posts, newline='') as csvfile:
reader = csv.reader(csvfile)

151

152
for line in reader:
if line[@] == block and line[1] == row_a:
nlat_a = float(line[2])
nlon_a = float(line[3])
slat_a= float(line[4])
slon_a = float(line[5])
if line[@] == block and line[1] == row_b:
nlat_b = float(line[2])

nlon_b = float(line[3])
slat b = float(line[4])
slon_b = float(line[5])

if nlat_a ==

print('\nWARNING - Block', block, 'Row', row_a, 'not found\n')
if nlat_b == @:

print('\nWARNING - Block', block, 'Row', row_b, 'not found\n')

read CSV straight into numpy array like Matlab "load"
from numpy import genfromtxt
my_data = genfromtxt('my_file.csv', delimiter=',")

normally fly missions N to
latl = (nlat_a + nlat_b
lonl = (nlon_a + n
lat2 = (slat_a + slat b
lon2 = (slon_a +

apple, W to E for TEST

reverse direction

if direction == 'REV':
latl, lat2 = lat2, latl
lonl, lon2 = lon2, lonl

overall path - x East, y North
del lat = lat2 - latl
del _lon = 1lon2 - lonl

d2f_lon = cos(lati*d2r) * d2f_lat
del x = del _lon * d2f_lon
del y = del lat * d2f_lat

distance = sqrt(del_x*del x + del_y*del y)

theta = atan2(del_y, del_x)

theta_deg = theta / d2r

heading_path = fmod((90 - theta_deg + 360), 360)

Spacing
if spacing_option == 'fixed' and spacing > 0:
xloc = np.arange(-overshoot, #for fixed-distance waypoint spacing

((distance+2*overshoot)%spacing+distance+overshoot), spacing)
elif spacing option == '25%':
xloc = np.array([-overshoot, # for 25% waypoint spacing
(distance+2*overshoot)/4-overshoot,2*(distance+2*overshoot)/4-overshoot,
3*(distance+2*overshoot)/4 -overshoot, distance+overshoot])
else:

153
xloc = np.array([-overshoot, (distance+2*overshoot)/2-overshoot,
distance+overshoot]) #for 50% waypoint spacing

yloc = np.full(xloc.size, ©)
head_plan = np.full(xloc.size, heading_path)

rotate into global and convert to lat-lon
xyloc = np.vstack((xloc, yloc))
Amat = np.array([(cos(theta), -sin(theta)) ,
(sin(theta), cos(theta))])
xyglo = Amat @ xyloc

lat_plan = latl + xyglo[1]/d2f_lat
lon_plan = lonl + xyglo[@]/d2f_lon
n = len(lat_plan)

flat AGL
agl plan = np.full(lat_plan.size, h)

save lat-lon for each waypoint - tab delimited

n = len(lat_plan)

for i in range(n):
i_pass = n_pass + i
fid _csv.write('%5.0f\t' % (i_pass)) # index
fid_csv.write('@\t3\tle\to\te\te\te\t') # current_wp,

coord_frame, command, paraml, param2, param3, param4

fid_csv.write('%12.7f\t' % lat_plan[i]) # latitude
fid_csv.write('%12.7f\t' % lon_plan[i]) # longitude
fid_csv.write('%6.2f\t' % agl plan[i]) # AGL
fid_csv.write("1\n') # autocontinue and new line
print(i_pass)

finished with current pass
n_pass = n_pass + n

finished with all passes - close file
fid_csv.close()

bottom - inline_pair_UGVel

154
B.2 mission_update.py

This script uses MAVROS to update the mission on Pixhawk. This code was authored by

Michael Pagan and contains contributions from Dr. Sommer’s inline_pair UGVO01.py code.

__author__ = "MAP | HJSIII | 29 Jan 2021"

#Script intervenes during active mission to:

#1)Generate new mission 2)Activate HOLD mode 3)Clear current mission
#4)Download new mission 5)Reset home position 6)Reactivate AUTO mode
IMPORT LIBRARIES #it#Ht#t#it it R
import rospy #ROSS
import time #for sleeps
from math import * #for waypoint generation
import numpy as np #”
import csv # read file containing row coordinates
from std_msgs.msg import String #for sending MAVROS messages
from sensor_msgs.msg import NavSatFix #~
from mavros_msgs.msg import * #n
from mavros_msgs.srv import * #~

MISSION SETUP ##iitHtfHaHi it i

#####LOCAL CONSTANTSH####

d2r = pi / 180.0 #tdegrees to radians

d2f_lat = 364813.0 #1 deg lat = 364813 feet, 1 deg lon = cos(lat)*d2f_lat
#MATLAB spherical Earth model

H#HH#HHHMISSION PARAMETERSH####

overshoot = 15.0 #tovershoot at begining/end of rows [ft]

spacing = 5.0 #fixed in-line spacing between waypoints [ft]

h =0 #AGL [ft]

spacing_option = '50%' # 50% spacing = '50%', 25% spacing = '25%'

#fixed = 'fixed'

#treference '200305 rows cut.csv' to plan row passes

#- file must be in current directory

#direction = 'FOR' #forward - apple rows Nlat, NLon, Slat, Slon
#- TEST Wlat Wlon Elat Elon

direction = 'REV' #reverse

#test track#
#block row_a row_b direction#

babd = ['TEST', 1, '1', 'FOR',
'TEST', ‘'2', '2', 'REV',
‘TEST', '1', '1', 'FOR',
'"TEST', '2', '2', 'REV']

#tapple rows#

155
#block row_a row_b direction#
babd = ['A1', 'B', 'C', 'FOR',
‘A1, 'Cc', 'D', 'REV',
'Al', 'EE', 'F', "FOR"',
'Al', 'F', "FF', 'REV',
'A1', 'FF', 'G', 'FOR',
A1, 'G', '"GG', 'REV']

n_babd = len(babd) #find length of mission array
n_babd = int(n_babd / 4)#divide by number of columns to find number of passes

CHANGE MODE ########## #H#HHHHH
HEHHH#HOLD MODE#####
def activate_hold():
try:
HoldService = rospy.ServiceProxy('mavros/set mode', SetMode)
HoldService(base_mode=0, custom mode = 'HOLD') #call MAVROS set_mode
#service to set mode to HOLD
if HoldService.call(base_mode=0, custom_mode = 'HOLD').mode_sent:
print ("HOLD mode activated") #check that the mode_sent message
#is 'true' and print verification
else:
print("unable to activate HOLD mode")
except rospy.ServiceException as exc:
print ("Failed to call SetMode service for HOLD: " + str(exc))
#print error message if service call fails

HHHHEHAUTO MODE#H####
def reactivate_auto():
try:
AutoService = rospy.ServiceProxy('mavros/set mode', SetMode)
AutoService(base_mode=0, custom_mode = 'AUTO') #call MAVROS set_mode
#service to set mode to AUTO
if AutoService.call(base mode=0, custom_mode = 'AUTO').mode_sent:
print ("AUTO mode reactivated") #check that the mode_sent message
#is "true' and print verification
else:
print ("unable to activate AUTO, keeping HOLD mode")
except rospy.ServiceException as exc:
print ("Failed to call SetMode service for AUTO: " + str(exc))
#print error message if service call fails

RESET MISSION ####itHi#tfHtHaHf it i
#####CLEAR OLD WAYPOINTS#H####
def clear_mission():
try:
ClearService = rospy.ServiceProxy('mavros/mission/clear', WaypointClear)
ClearService() #call MAVROS clear service to clear waypoints
if ClearService.call().success:
print ("waypoint list cleared") #check that the success message
#is 'true' and print verification
else:
print("unable to clear waypoint list")
except rospy.ServiceException as exc:

156
print ("Failed to call WaypointClear service: " + str(exc))
#print error message if service call fails

return False

###H#HRESET CURRENT WAYPOINT#H####
def restart _wp sequence():
try:
SequenceService = rospy.ServiceProxy('mavros/mission/set_current’,
WaypointSetCurrent)
SequenceService(1l) #call MAVROS set_current service to set
#current waypoint to 1
if (SequenceService.call(l).success):
print ("waypoint sequence restarted") #check that the success
#tmessage is 'true' and print verification
else:
print("unable to restart waypoint sequence")
except rospy.ServiceException as exc:
print ("Failed to call WaypointSetCurrent service:
#print error message if service call fails

+ str(exc))

##H#HH#HRESET HOME POSITION#####
def current_GPS_home():
try:
HomeService = rospy.ServiceProxy('/mavros/cmd/set_home', CommandHome)
HomeService(current_gps = 1, yaw=0, latitude=0, longitude=0, altitude=0)
#call MAVROS CommandHome service to set current location as home
if (HomeService.call(current_gps = 1, yaw=0, latitude=0, longitude=0,
altitude=0).success):
print("home position set to current location")
else:
print("home position not set")
except rospy.ServiceException as exc:
print ("Failed to call CommandHome service:
#print error message if service call fails

+ str(exc))

CREATE MISSION #i########H###H S
def create_waypoint():
wl = [] #create waypoint list (wl)

####H#HOME POSITION PLACEHOLDER#####
#waypoint of index = © is home location i.e. not part of the mission
wp = Waypoint() #create object instance 'wp' of 'Waypoint'

#class to store each waypoint's data
wp.frame = 3
wp.command = 16
wp.is_current = False
wp.autocontinue = True
wp.paraml = 0
wp.param2
wp.param3
wp.paramé4
wp.x_lat = ©
wp.y_long = @
wp.z_alt = 0

(4]
(]
(]

157
wl.append(wp) #add home position placeholder to waypoint list (wl)

###H#HGENERATE WAYPOINTSH####

n_pass = 0
for i_babd in range(n_babd): #loop to process one pass at a time
#rip
block = babd[i_babd*4]
row_a = babd[i_babd*4 + 1]
row_b = babd[i_babd*4 + 2]
direction = babd[i_babd*4 + 3]

#read CSV file with lat-lon for posts and find N-S ends
#CSV contains - block row N_lat N_lon S_lat S_1lon
nlat_a = ©
nlat b = 0
fn_posts = '200305 rows cut.csv'
with open(fn_posts, newline='"') as csvfile:
reader = csv.reader(csvfile)
for line in reader:
if line[@] == block and line[1] == row_a:
nlat_a = float(line[2])
nlon_a = float(line[3])
slat_a= float(line[4])

slon_a = float(line[5])
if line[@] == block and line[1] == row_b:
nlat b = float(line[2])
nlon_b = float(line[3])
slat_b = float(line[4])
slon_ b = float(line[5])
if nlat_a ==
print('\nWARNING - Block', block, 'Row', row_a, 'not found\n')
if nlat_b == @:

print('\nWARNING - Block', block, 'Row', row_b, 'not found\n')

#normally fly missions N to S for apple, W to E for TEST

latl = (nlat_a + nlat. b) / 2
lonl = (nlon_a + nlon_b) / 2
lat2 = (slat_a + slat b) / 2
lon2 = (slon_a + slon b) / 2

#treverse direction

if direction == 'REV':
latl, lat2 = lat2, latl
lonl, lon2 = lon2, lonl

#overall path - x East, y North
del lat = lat2 - latl
del lon lon2 - lonl

d2f_lon = cos(latl*d2r) * d2f_lat
del_x = del_lon * d2f_lon
del y = del lat * d2f_lat

distance = sqrt(del_x*del x + del_y*del y)

theta = atan2(del_y, del x)
theta_deg = theta / d2r
heading_path = fmod((90 - theta_deg + 360), 360)

#plan path in local coordinates - +xloc forward, +yloc left,
#tzero at first point of interest (POI)
if spacing_option == 'fixed' and spacing > ©:
xloc = np.arange(
-overshoot,
((distance+2*overshoot)%spacing+distance+overshoot), spacing)
#for fixed-distance waypoint spacing
elif spacing_option == '25%":

xloc = np.array([-overshoot, (distance+2*overshoot)/4-overshoot,

2*(distance+2*overshoot)/4-overshoot,
3*(distance+2*overshoot)/4 -overshoot,
distance+overshoot]) # 25% waypoint spacing
else:

xloc = np.array([-overshoot, (distance+2*overshoot)/2-overshoot,

distance+overshoot]) #for 50% waypoint spacing

yloc = np.full(xloc.size, 0)
head_plan = np.full(xloc.size, heading_path)

#irotate into global and convert to lat-lon
xyloc = np.vstack((xloc, yloc))
Amat = np.array([(cos(theta), -sin(theta)) ,
(sin(theta), cos(theta))])
xyglo = Amat @ xyloc

lat_plan = latl + xyglo[1]/d2f_lat
lon_plan = lonl + xyglo[@]/d2f_lon

#flat AGL
agl plan = np.full(lat_plan.size, h)

#save lat-lon for each waypoint in current pass
n = len(lat_plan)
for i in range(n):
i pass = n_pass + 1
wp = Waypoint() #reset the object 'wp' to store new waypoint data
wp.frame = 3
wp.command = 16
wp.is_current = False
wp.autocontinue = True
wp.paraml = ©

wp.param2 = 0
wp.param3 = 0
wp.param4 = 0

wp.x_lat = lat _plan[i]
wp.y_long = lon_plan[i]
wp.z_alt = agl_plan[i]
wl.append(wp) #add waypoint to waypoint list (wl)
#finished with current pass
n_pass = n_pass + n

158

159
#finished with all passes
print ("finished generating new waypoints™)
print("downloading new mission...")

#####PUSH NEW WAYPOINT LIST TO PIXHAWK##it#i#
try:
PushService = rospy.ServiceProxy('mavros/mission/push', WaypointPush,
persistent=True)
PushService(start_index=0, waypoints=wl) #call MAVROS service to
#push new waypoint 1list
if PushService.call(start_index=0, waypoints=wl).success:
print ("new mission downloaded") #check that the success message is
#'true’' and print verification
else:
print("MISSION download ERROR. CHECK MAIN MAVROS TERMINAL.")

except rospy.ServiceException as exc:
print ("Failed to call WaypointPush service:
#print error message if service call fails

+ str(exc))

CALL FUNCTIONS #tHttttHHHt

activate_hold() #switch to HOLD mode

clear_mission() #clear the waypoint list

create_waypoint() #delete old mission, download new mission
restart_wp_sequence() #assign first waypoint as current
current_GPS_home() #set HOME to current location

time.sleep(1) #allow all messages to be accepted by Pixhawk

ans = input("Reactivate AUTO mode to begin mission? (y/n): ")
if ans == 'y':

reactivate_auto() #switch to AUTO mode, begin mission
else:

print("HOLD mode maintained")

bottom - mission_update.py

B.3 backup.py

This script works in tandem with the Arduino script HCSRO04.ino to achieve simple

160

object avoidance with ROS and the Pixhawk. The script creates a node to subscribe to the range

messages published by the Arduino. It checks the range and published R/C override messages if

an object is too close.

import rospy

from std_msgs.msg import String

from mavros_msgs.msg import OverrideRCIn
from sensor_msgs.msg import Range

def

callback(msg):
distance = msg.range #define distance as range component of Range message
#on ultrasound topic
msg = OverrideRCIn() #redefine msg as OverrideRCIn message published
#to the override topic
print(distance) #print the distance measured by the sensor
if (distance < 30): #if a distance <30 cm is read, override RC
msg.channels = (0, 1500, 1300, 0, 0, 0, 0, Q)
#ch2 in ArduPilot rover is steering, ch3 is throttle
else:
msg.channels = (0, 0, 0, 0, @0, 0, 0, 0) #don't override RC if >3@cm
pub.publish(msg) #publish OverrideRCIn message
rospy.loginfo(msg) #print message to screen

rospy.init_node('ultrasonic_value') #initiate node for publisher/subscriber

sub

pub

rospy.Subscriber('/ultrasound', Range, callback) #subscribe to the
#"ultrasound" topic created by Arduino. The message
#type of this topic is "Range"
rospy.Publisher('mavros/rc/override', OverrideRCIn, queue_size = 10)
#publish to the "override" topic with message type
#"0OverrideRCIn" while limiting the queue of messages
#not yet received by the subcriber to 10

rospy.spin() #keep nodes running until they have been shutdown

bottom - backup.py

161
Appendix C

Arduino Code

C.1 HCSR04

This script is used to publish range messages from an Arduino HCSR04 ultrasonic
sensor. It calculates the range based on delay in ultrasonic pulse and publishes the range to a self-

established topic. This script works in tandem with the backup.py script.

/*

* Michael Pagan

* 2.5.2021

* Sketch to report distance values from ultrasonic sensor
*/

#include <ros.h>
#include <ros/time.h>
#include <sensor_msgs/Range.h>

ros: :NodeHandle nh;

sensor_msgs: :Range range_msg;

ros::Publisher pub_range("ultrasound"”, &range_msg); //name of topic that messages
are published to

char frameid[] = "ultrasound";

//define pins
const int trigPin = 5;
const int echoPin = 6;

//define variable types

long pulselLength;

int dist; //quantize distances to integers

int distlLast; //used to filter out unreasonable distances

void setup()

pinMode(trigPin, OUTPUT); //set digital trigpin as an output
pinMode(echoPin, INPUT); //set digital echopin as an input

nh.initNode();
nh.advertise(pub_range);

range_msg.radiation_type = sensor_msgs::Range: :ULTRASOUND;
range_msg.header.frame_id = frameid;
range_msg.field of view = 0.1; // fake

}

range_msg.min_range = 0.09; // cm
range_msg.max_range = 400; // cm

digitalWrite(trigPin, LOW);
//Serial.begin(57600); %

void loop(){

}

//output ultrasonic burst @ 40000Hz for 10 microsends
digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

162

pulseLength = pulseIn(echoPin, HIGH); //times the duration of HIGH pulse received

dist = pulselLength * ©.034 / 2; //calculate distance based on speed of sound =
.034 cm/microsec

if (400 > dist) {
range_msg.range = dist;
range_msg.header.stamp = nh.now();
pub_range.publish(&range_msg);
distLast = dist;
//Serial.println(dist);

}

else if ((400 < dist) || (dist-distLast > 100)) {
range_msg.range = distlLast;
range_msg.header.stamp = nh.now();
pub_range.publish(&range_msg);
//Serial.print(distlLast);

}

nh.spinOnce();

//end HCSRO4.ino

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

163
BIBLIOGRAPHY

“Other Global Navigation Satellite Systems (GNSS),” GPS.gov [Online]. Available:
https://www.gps.gov/systems/gnss/. [Accessed: 04-Jan-2021].

US Air Force, 2017, “GPS Accuracy,” GPS.gov [Online]. Available:
https://www.gps.gov/systems/gps/performance/accuracy/. [Accessed: 04-Jan-2021].
Sickle, J. Van, 2020, “Two Types of Observables,” GEOG 862 GPS GNSS Geospatial
Prof. [Online]. Available: https://www.e-education.psu.edu/geog862/node/1752.
[Accessed: 04-Jan-2021].

Sickle, J. Van, 2020, “The One-Percent Rule of Thumb,” GEOG 862 GPS GNSS
Geospatial Prof. [Online]. Available: https://www.e-
education.psu.edu/geog862/node/1760. [Accessed: 04-Jan-2021].

Sickle, J. Van, 2020, “Real-Time Kinematic and Differential GPS,” GEOG 862 GPS
GNSS Geospatial Prof. [Online]. Available: https://www.e-
education.psu.edu/geog862/node/1828. [Accessed: 04-Jan-2021].

Gan-Mor, S., Clark, R. L., and Upchurch, B. L., 2007, “Implement Lateral Position
Accuracy under RTK-GPS Tractor Guidance,” Comput. Electron. Agric., 59(1-2), pp. 31—
38.

Grisetti, G., Kummerle, R., Stachniss, C., and Burgard, W., 2010, “A Tutorial on Graph-
Based SLAM,” IEEE Intell. Transp. Syst. Mag., 2(4), pp. 31-43.

NOAA, 2020, “What Is LIDAR?,” Natl. Ocean Serv. Website [Online]. Available:
https://oceanservice.noaa.gov/facts/lidar.html. [Accessed: 13-Apr-2020].

Davies, E. R., 2004, “The Nature of Vision,” Machine Vision: Theory, Algorithms,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

164
Practicalities, Elsevier, pp. 2—10.

Rawashdeh, N. A., and Jasim, H. T., 2013, “Mult-Sensor Input Path Planning for an
Autonomous Ground Vehicle,” 2013 9th International Symposium on Mechatronics and
Its Applications, ISMA 2013.

Anand, K., and R., G., 2019, “An Autonomous UAV for Pesticide Spraying,” Int. J. Trend
Sci. Res. Dev., Volume-3(Issue-3), pp. 986—990.

Bochtis, D. D., Vougioukas, S. G., and Griepentrog, H. W., 2009, “A Mission Planner for
an Autonomous Tractor,” Trans. ASABE, 52(5), pp. 1429-1440.

Bochtis, D., Griepentrog, H. W., Vougioukas, S., Busato, P., Berruto, R., and Zhou, K.,
2015, “Route Planning for Orchard Operations,” Comput. Electron. Agric., 113, pp. 51—
60.

Gomez-Gil, J., Ruiz-Gonzalez, R., Alonso-Garcia, S., and Gomez-Gil, F. J., 2013, “A
Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning
of Tractors,” Sensors (Switzerland), 13(11), pp. 15307-15323.

Moorehead, S. S. J., Wellington, C. K. C., Gilmore, B. J., and Vallespi, C., 2012,
“Automating Orchards: A System of Autonomous Tractors for Orchard Maintenance,”
Proc. IEEE Int. Conf. Intell. Robot. Syst. Work. Agric. Robot., (January), p. 632.
Barawid, O. C., Mizushima, A., Ishii, K., and Noguchi, N., 2007, “Development of an
Autonomous Navigation System Using a Two-Dimensional Laser Scanner in an Orchard
Application,” Biosyst. Eng., 96(2), pp. 139—149.

Hamner, B., Singh, S., and Bergerman, M., 2010, “Improving Orchard Efficiency with
Autonomous Utility Vehicles,” American Society of Agricultural and Biological

Engineers Annual International Meeting 2010, ASABE 2010, pp. 4670—4685.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

165
Bayar, G., Bergerman, M., Koku, A. B., and Konukseven, E. 1., 2015, “Localization and

Control of an Autonomous Orchard Vehicle,” Comput. Electron. Agric., 115, pp. 118—
128.

Radcliffe, J., Cox, J., and Bulanon, D. M., 2018, “Machine Vision for Orchard
Navigation,” Comput. Ind., 98, pp. 165-171.

2008, “R/C and Robotics Software for Linux/PXA255/PXA270” [Online]. Available:
http://www.pabr.org/pxarc/doc/pxarc.en.html. [Accessed: 21-Jan-2021].

ArduPilot Dev Team, 2020, “Rover Home” [Online]. Available:
https://ardupilot.org/rover/. [Accessed: 28-Aug-2020].

Flores, J., Solovey, G., and Gil, S., 2003, “Flow of Sand and a Variable Mass Atwood
Machine,” Am. J. Phys., 71(7), pp. 715-720.

U-blox, 2018, “ZED-F9P Datasheet” [Online]. Available:
https://cdn.sparkfun.com/assets/8/3/2/b/8/ZED-F9P_Data_ Sheet.pdf. [Accessed: 05-Nov-
2020].

Nathan Seidle, 2018, “GPS-RTK2 Hookup Guide,” SparkFun [Online]. Available:
https://learn.sparkfun.com/tutorials/gps-rtk2-hookup-guide. [Accessed: 05-Nov-2020].
Nathan Seidle, 2017, “GPS-RTK Hookup Guide,” SparkFun [Online]. Available:
https://learn.sparkfun.com/tutorials/gps-rtk-hookup-guide. [Accessed: 05-Nov-2020].
Nathan Seidle, 2020, “Setting up a Rover Base RTK System,” SparkFun [Online].
Available: https://learn.sparkfun.com/tutorials/setting-up-a-rover-base-rtk-system.
[Accessed: 05-Nov-2020].

Nathan Seidle, 2020, “How to Build a DIY GNSS Reference Station,” SparkFun [Online].

Available: https://learn.sparkfun.com/tutorials/how-to-build-a-diy-gnss-reference-station.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

166
[Accessed: 05-Nov-2020].

FieldBee, 2020, “FieldBee RTK GPS System” [Online]. Available:
https://www.fieldbee.com/product/rtk-gps-system/. [Accessed: 24-Feb-2021].
MAVLINK, 2021, “MAVLink Developer Guide” [Online]. Available:
https://mavlink.io/en/. [Accessed: 05-Jan-2021].

RFDesign, 2013, “RFD900 Radio Modem Data Sheet” [Online]. Available:
https:/files.rfdesign.com.au/Files/documents/RFD900 DataSheet.pdf. [Accessed: 12-Nov-
2020].

U-blox, 2021, “U-Center” [Online]. Available: https://www.u-blox.com/en/product/u-
center. [Accessed: 05-Nov-2020].

Support, 2017, “RTCM 3 Message List,” SNIP [Online]. Available: https://www.use-
snip.com/kb/knowledge-base/rtcm-3-message-
list/?gclid=CjwKCAiA4rGCBhAQEiwAel Vtio WGjecnnOVNSCkZISX1ZvH3vahS5-
5S0koG9qluKe343g3J0sZdqOUxoC1DsQAvD BwE. [Accessed: 10-Oct-2021].

Inc., S. T., 2007, “NMEA Reference Manual” [Online]. Available:
https://www.sparkfun.com/datasheets/GPS/NMEA Reference Manual-Rev2.1-Dec07.pdf.
[Accessed: 05-Nov-2020].

MathWorks, 2020, “EarthRadius” [Online]. Available:
https://www.mathworks.com/help/map/ref/earthradius.html. [Accessed: 11-May-2020].
ROS, 2021, “RxmRAWX Message” [Online]. Available:
http://docs.ros.org/en/kinetic/api/ublox msgs/html/msg/RxmRAWX.html.

Choy, S., 2018, “GNSS Precise Point Positioning” [Online]. Available:

https://www.unoosa.org/documents/pdf/icg/2018/ait-gnss/16_PPP.pdf.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

167
Rtkexplorer, 2021, “RTKLIB Code: Windows Executables” [Online]. Available:

http://rtkexplorer.com/downloads/rtklib-code/.

Canada, G. of, 2021, “Precise Point Positioning” [Online]. Available:
https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en. [Accessed: 24-Dec-
2021].

Google, 2020, “Download Google Earth Pro for PC or Mac” [Online]. Available:
https://www.google.com/earth/download/gep/agree.html?hl=en-GB. [Accessed: 28-Dec-
2021].

Takeshi, 1., “Laptop Computer Isolated on a White Background with a Blank Screen”
[Online]. Available: https://www.vecteezy.com/vector-art/376614-laptop-computer-
isolated-on-a-white-background-with-a-blank-screen. [Accessed: 18-Jan-2021].

ROS, 2021, “Ubuntu Installation of ROS Noetic” [Online]. Available:
http://wiki.ros.org/noetic/Installation/Ubuntu. [Accessed: 05-Nov-2021].

ROS, 2021, “ROS Concepts” [Online]. Available: http://wiki.ros.org/ROS/Concepts.
[Accessed: 05-Nov-2021].

MAVLINK, 2020, “Mission Protocol” [Online]. Available:
https://mavlink.io/en/services/mission.html. [Accessed: 05-Jan-2021].

Ermakov, V., 2021, “MAVROS” [Online]. Available: http://wiki.ros.org/mavros.
[Accessed: 05-Jan-2021].

Cadet, C., 2012, “Cub Cadet RZT-S Zero Professional Shop Manual” [Online]. Available:
https://www.manualslib.com/manual/1065738/Cub-Cadet-Rzt-S-Zero.html. [Accessed:
26-Feb-2016].

Inc., A. S., “BAC1000 Product Brochure” [Online]. Available:

168
https://www.tecknowledgey.com/amfilerating/file/download/file id/569/. [Accessed: 26-

Feb-2016].

[47] Kunze, M., and Accelerated Systems Inc., 2018, “ASI Modbus Protocol,” (Personal Email
Communication w/ H.J. Sommer).

[48] Kunze, M., and Accelerated Systems Inc., 2018, “ASI Object Dictionary,” (Personal

Email Communication w/ H.J. Sommer).

ACADEMIC VITA OF MICHAEL PAGAN

EDUCATION

The Pennsylvania State University, Schreyer Honors College * Class of 2021 University Park, PA
College of Engineering ¢ Bachelor of Science, Mechanical Engineering

College of Engineering * Minor, Engineering Leadership Development

TECHNICAL EXPERIENCE
Mechatronics Engineering Intern Jun 2020-Aug 2020
JLG Industries Hagerstown Maryland

¢ Independently managed a complex trade study project and successfully delivered results

e Utilized MATLAB to model and analyze steering cylinder forces throughout a static steer

e Acquired fluency with hydraulic schematics and technical drawings through critical review

e Culminated technical findings into Decision Analysis and Resolution to produce design solutions

Undergraduate Thesis Author Sept 2019-Apr 2021

Penn State Department of Mechanical Engineering State College, PA
e Developing autonomous all-electric zero-turn mower for an apple orchard

R&D Engineering Intern Feb 2019-Dec 2020

Penn State Applied Research Lab State College, PA

e Analyzed and repaired inoperable electronic lab equipment

e Collected, collated, and reported data on furnace temperature profiles

e Worked extensively with electric controllers and vacuum systems for furnaces

e Designed and built high temperature wet oxidation system

e Applied fundamental automation skills to furnace systems via PID control
LEADERSHIP EXPERIENCE
President May 2020-May 2021
Penn State Men’s Club Volleyball University Park, PA

Leads the 28-player club by heading all administrative relations and coaching

Commits 10+ hours per week for club duties

Supervises club team members and other executive officers

Served as Vice President for the preceding year coordinating travel and assisting the President

INTERNATIONAL EXPERIENCE
Engineering Design Student May 2018-June 2018
Tecnun Universidad de Navarra San Sebastian, Spain
e Studied identification and resolution of global/cross cultural engineering problems
e Led design team that aimed to improve urban cycling in San Sebastian, Spain

ACTIVITIES AND HONORS SKILLS

The President Sparks Award (4.0 GPA) Jan 2019 Tech: SolidWorks, Creo, MATLAB,
Louis A. Harding Memorial Scholarship (4.0 GPA) Jan 2019 EES, Linux, RTK GPS, Python, Arduino,
The President’s Freshman Award (4.0 GPA) Jan 2018 ROS

Penn State Dean’s List Dec 2017-present Engineering: Electrical troubleshooting;

Penn State Men’s Club Volleyball Team Aug 2017-present Mechatronics; Data collection and analysis;
Schematic fluency; Hands-on fabrication

	Pagan_HonorsThesis_Draft6.pdf
	Pagan_HonorsThesis_Draft6_AckRev.pdf
	Pagan_HonorsThesis_Draft6

