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ABSTRACT 
 

 The economics of climate change combines research from a wide range of physical 

sciences and economic theory into complex mathematical models called integrated assessment 

models. This study analyzes the impact of parametric uncertainty in these models as they calculate 

the social cost of carbon, a vital tool for policymaking. Uncertainty in total factor productivity 

growth, population growth, and equilibrium climate sensitivity are addressed for three prominent 

integrated assessment models, DICE, FUND, and PAGE. Through regression analysis, uncertainty 

in the equilibrium climate sensitivity parameter is shown to influence the social cost of carbon 

more than other inputs. The results of this study also support the use of a recently developed 

method of analyzing uncertainty in integrated assessment modeling of climate change.  

 

Keywords: economics, climate change, integrated assessment modeling, uncertainty, social cost 

of carbon 
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Introduction 

The economics of climate change involves a vast array of research and theory from both 

the physical sciences as well as economics. Studying such a large-scale phenomenon as climate 

change requires bringing together this broad range of knowledge into mathematical models 

called integrated assessment models (IAMs). The function of these models is to estimate future 

climate impacts, including outcomes such as emissions, temperature, sea level rise, damages, and 

the social cost of carbon, a measure of the marginal external cost of an additional ton of 

greenhouse gas emissions. The social cost of carbon (SCC) is an extremely useful policymaking 

tool, as it can be used to set prices or evaluate the costs and benefits of competing policy 

proposals. A major issue with calculating outcomes within integrated assessment models is the 

uncertainty involved. Economic forecasts of future growth, emissions, and population all have a 

degree of uncertainty based on how well economists understand the determinants of each 

outcome. Climate models are also a simplification of reality and rely on an incomplete 

knowledge of how these systems will react to extreme levels of greenhouse gas concentrations. 

The Intergovernmental Panel on Climate Change (IPCC) defined the uncertainty associated with 

IAMs to be a key research priority in the most recent assessment report (Edenhofer et al., 2014).  

A recent paper by Gillingham et al. (2018) has begun the study of parametric uncertainty 

in major integrated assessment models. This paper analyzes the impacts of uncertainty in three 

key input parameters on outcomes for six IAMs by creating a three-dimensional grid of 

calibration runs, fitting response functions, and defining distributions for each input parameter. 

The present study is inspired by the Gillingham et al. methods and seeks to build upon its work 
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by completing a more focused study on the calculation of the social cost of carbon. This paper 

will study the same three uncertain parameters, utilizing the same distribution functions and 

following a similar methodology. These uncertain parameters are total factor productivity 

growth, population growth, and equilibrium climate sensitivity. The set of IAMs analyzed were 

chosen to be three of the most cited models in the literature on climate change economics. These 

prominent models, DICE, FUND, and PAGE, are the primary IAMs used by the US Interagency 

Working Group on the Social Cost of Carbon (IWG, 2013).  

This study will produce a grid of values based on estimated probability distributions for 

each uncertain input and use this to complete a set of calibration runs on the baseline scenarios 

for each integrated assessment model. The resulting dataset will be analyzed using regression to 

study the impact of parametric uncertainty on the social cost of carbon. While the social cost of 

carbon is extremely sensitive to the choice of discount rate, this analysis will take the default 

discount rate for each model as a given, instead comparing the relative impact of three chosen 

uncertainties. One major finding is that the equilibrium climate sensitivity parameter seems to 

have the largest impact on the SCC across all three models. This important uncertainty has 

implications for further research in climate change modeling. A more general contribution of this 

paper is evidence of the replicability and modification of the Gillingham et al. approach. This 

approach can usher in a series of research opportunities that improve the overall understanding 

and evaluation of parametric uncertainty in integrated assessment modeling for climate change. 

Ultimately, this approach can be used to emphasize the value of certain uncertainties to 

researchers and show where reducing uncertainty would have the highest payoff.  

This paper will be organized as follows. An important background to studying the 

economics of climate change is understanding the underlying physical processes that cause 



3 
 

climate change. The next chapter begins with a description of the greenhouse effect and how 

human emissions affect the climate and can cause significant impacts in the future. It also 

describes how economists study climate change, defining the issue of greenhouse gas emissions 

as a negative externality and describing the social cost of carbon. The following section explains 

the need and purpose for integrated assessment models, as well as their shortcomings. Chapter 4 

will discuss in detail the three IAMs used in this paper, highlighting major studies as well as 

critiques of each model. The fifth chapter characterizes the methodology used for this analysis 

and Chapter 6 will present results and a summary of major findings, which will be followed by 

final remarks. Appendices include a set of useful definitions found in this paper as well as a 

complete record of the regression results.  
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Carbon and Climate Change 

It is important to begin this study with a common understanding of the various factors 

involved in order to build up to the necessity of uncertainty analysis in integrated assessment 

modeling. A primary purpose of these models is to analyze policies for mitigating the effects of 

climate change, a phenomenon that itself sparked debate when researchers first described the 

adverse effects of humankind on the planet. As scientists of many disciplines collected data, 

peer-reviewed research, and developed a better understanding of humanity’s environmental 

impact, it has been helpful to aggregate this research to establish a scientific consensus. Broad 

research synthesis is necessary for educating the public on important issues that could affect their 

lives as well as government and international policymaking institutions that need to be informed 

to create the best policies.  

One such group is the Intergovernmental Panel on Climate Change, or the IPCC. This 

premier international organization was created in 1988 “to provide policymakers with regular 

assessments of the scientific basis of climate change, its impacts and future risks, and options for 

adaptation and mitigation” (IPCC, n.d.). The IPCC releases reports created by hundreds of 

leading scientists and contributing authors that convey the scientific consensus at the time of its 

publication. The most recent report, the fifth assessment report, was released in 2013 (IPCC, 

2013a). Selections from this work will be referenced several times throughout this chapter to 

convey the scientific consensus as accurately as possible. This chapter will be separated into two 

sections. The first focuses on the background scientific knowledge required to discuss climate 

change. It will include descriptions of the greenhouse effect and evidence of anthropogenic 
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climate change as well as the expected future impacts on humans and the environment. The 

chapter will then pivot to the economics surrounding this scientific issue, describing how the 

field can uniquely address climate change.  

2.1 Overview of the Physical Science 

The Greenhouse Effect 

The Earth is heated by radiation from the sun in the forms of visible light and other 

invisible energy waves, such as ultraviolet radiation. When this energy reaches Earth, around 

30% of it is reflected back out into space. The energy is reflected by gases in the atmosphere, 

clouds, or the Earth’s surface. The other 70% of the energy is absorbed by the planet or the 

atmosphere. To stay in equilibrium as an energy system, the planet releases the same amount of 

energy in the form of infrared waves (Denchak, 2019). The most complex gases in the 

atmosphere, called greenhouse gases (GHGs), can absorb this type of energy before releasing it 

again in a random direction. The energy may then get absorbed and rereleased by other 

greenhouse gas molecules as the pattern repeats. Essentially, some of the infrared heat released 

by the Earth escapes to space while some is trapped and sent back, heating the planet. This 

process of trapping energy within the planet’s atmosphere is called the greenhouse effect (Shaftel 

et al., 2008b).  

By itself, the greenhouse effect is good for the Earth. This effect is what holds heat in at 

night and helps distribute energy across all latitudes. Otherwise, the planet would be below 

freezing and even colder after the sun sets (UCAR, n.d.). The issue arises when the concentration 
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of greenhouse gases in the atmosphere increases. To keep the Earth’s temperature at equilibrium, 

the amount of energy entering the system must be the same as the amount escaping. As the sun’s 

energy does not change rapidly, the majority of fluctuations in the planet’s energy system come 

from changes in albedo, a measurement of reflectivity, or shifts in outgoing radiation. As humans 

emit more greenhouse gases into the atmosphere, infrared radiation passing through is more 

likely to be stopped and trapped within the atmosphere. This reduces the amount of energy 

leaving the planetary system and thus increases the temperature (Cubasch et al., 2013; UCAR, 

n.d.).  

There are several different gases considered to be greenhouse gases. The most well-

known is carbon dioxide (CO2). This gas is one of the least potent of the greenhouse gases but 

accounts for the majority of the greenhouse effect because of its abundance compared to other 

GHGs. In many cases, the total effect of greenhouse gases in the atmosphere is converted to its 

CO2-equivalent, which is the amount of carbon dioxide that would have the same impact as the 

given mixture of GHGs. Carbon dioxide is notably released through the burning of fossil fuels, 

in addition to deforestation and cement processing (Rodhe, 1990; Shaftel et al., 2008b). Other 

greenhouse gases include methane (CH4), water vapor (H2O), nitrous oxide (N2O), ozone (O3), 

and chlorofluorocarbons. Some of these are much more potent than carbon dioxide. One 

molecule of methane contributes 25 times more to atmospheric warming than carbon dioxide and 

nitrous oxide contributes 200 times as much. Nitrous oxide also decays more slowly than carbon 

dioxide, meaning that its effect last even longer (Rodhe, 1990). Methane is released into the 

atmosphere by landfills, agriculture, and livestock digestion. Nitrous oxide is most commonly 

found in fertilizers (Shaftel et al., 2008b).  
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Rising Emissions and Temperature 

Since the beginning of the industrial revolution, human activities that release greenhouse 

gases into the atmosphere have expanded rapidly. Much of this occurs in tandem with the 

burning of fossil fuels that are used to run engines, power machinery, and generate electricity. 

Atmospheric CO2 concentrations are currently at 415ppm, 47% higher than the year 1850 

(Shaftel et al., 2008a). Carbon dioxide is the most common driver of the greenhouse effect, 

making up 76% of human-caused emissions globally. Coal power plants are one of the largest 

culprits of producing the gas, but it is also produced by transportation, industry, agriculture, and 

land use changes like deforestation. Countless facets of modern human civilization currently rely 

on processes that emit carbon dioxide. The largest and most developed countries contribute the 

most to global emissions, with China, the United States, the European Union, and India 

combining for nearly 60% of all carbon dioxide emissions. Individually, China produces 27% of 

CO2 emissions while the United States is responsible for 15% (Denchak, 2019).  

Concentrations of carbon dioxide are much higher than they have ever been according to 

scientific assessments of historical levels. Figure 1 displays historical CO2 concentrations across 

the past 800 thousand years through indirect measurement. This data is reconstructed by the 

NOAA by studying ice cores, which can contain bubbles of gas and preserve matter from 

freezing seasons long ago. There is clearly a sharp and sudden spike in atmospheric carbon 

dioxide concentrations which surpasses any historical precedent. This is indicative of human 

impacts, not simply coincidental natural processes (Shaftel et al., 2008a). Similarly, Figure 2 

shows the direct measurements of atmospheric CO2 for about 50 years since 1960. This graph 

depicts the steady upward trend of emissions due to human production. The red line shows 
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measurements from Mauna Loa, while the black line is measured from the South Pole, where the 

seasonal variation due to vegetation growth is less extensive (IPCC, 2013b). The direct 

measurements of atmospheric carbon dioxide validate and support the data taken indirectly 

through ice cores. Both point to a significant upswing in the concentration of greenhouse gases in 

the atmosphere as a result of human emissions.  

 

 

 

Figure 1: Historical CO2 concentrations, constructed from ice cores 

Source: Shaftel et al. (2008a) 
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Figure 2: Atmospheric CO2 concentrations, direct measurements 

Source: IPCC (2013b) 

 

There is already evidence that greenhouse gas emissions have caused global temperature 

increases in the past 100 years. The most recent report by the IPCC documents the average 

global land and ocean temperature since 1850, which shows a sharp increase in recent decades 

(IPCC, 2013b). This data is presented in Figure 3. Close to 1850, near the start of the industrial 

revolution and before human GHG emissions were growing at high rates, the average 

temperature anomaly was relatively low and steady. As time passes and industrial production 

booms, emissions translate to increases in average surface temperature across the planet (IPCC, 

2013b). Such anthropogenic effects have been documented by scientists at least since the 

influential “hockey stick” graph was published by climatologist Michael Mann (Mann et al., 

1998). The IPCC reports that the average temperature anomaly between 1880 and 2012 is 

0.85°C. More specifically, the scientists and contributing authors write, “Warming of the climate 
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system is unequivocal, and since the 1950s, many of the observed changes are unprecedented 

over decades to millennia. The atmosphere and ocean have warmed … and the concentrations of 

greenhouse gases have increased” (IPCC, 2013b). 

 

 

Figure 3: Average surface temperature anomaly (1850-2012) 

Source: IPCC (2013b) 
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Future Impacts 

On a global scale, temperatures have already begun to rise because of climate change. 

The IPCC estimates that there is more than a 90% chance that the number of warm days and 

nights has increased globally since 1950 (IPCC, 2013b). However, temperature is not the only 

way in which the climate is expected to change. Glaciers and sea ice will melt, changing habitats 

and adding water to the oceans. With more water in general, and due to thermal expansion as the 

temperature increases, the sea level will rise, which can cause major problems in coastal cities 

and communities. In addition to this, extreme weather is expected to become more intense and 

more frequent. This means there could be more and/or larger hurricanes, longer droughts and 

heatwaves, and more flooding. Weather patterns will also change, forcing ecosystems to adapt 

quickly or migrate. Many of these impacts have already begun to take hold today (Denchak, 

2019). For example, the IPCC states it is “virtually certain” that the upper ocean warmed from 

1971 to 2010. Looking forward, the estimated probability of heavy precipitation events 

increasing in either frequency or intensity is over 90%. The estimated likelihood of increased 

incidence and magnitude of extreme high sea level in the 21st century is also over 90% (IPCC, 

2013b). Another global impact of climate change is ocean acidification. This occurs when the 

ocean absorbs carbon dioxide from the atmosphere, upsetting the pH balance. Ocean 

acidification is accelerated when there are high concentrations of CO2 in the atmosphere and can 

threaten vulnerable ecosystems like coral reefs (Rhein et al., 2013).  

NASA has documented the most dramatic impacts in the United States by region. These 

are currently happening and are expected to continue. In the Northeast, heat waves, heavy 

downpours, and sea level rise are expected to have lasting effects on infrastructure, agriculture, 
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and ecosystems. The Northwest is experiencing reduced access to water and increases in 

wildfires and insect outbreaks. The Southeast is most affected by sea level rise and extreme heat, 

much like the Southwest, which is additionally exposed to drought and reduced agricultural 

yields. The Midwest has experienced a significant increase in flooding that affects infrastructure 

and agriculture, among other things (Shaftel et al., 2008c).  

While most impacts of anthropogenic climate change are continuous, increasing steadily 

with emissions, this is not always the case. There are some impacts called “tipping points,” 

which are like thresholds after which dramatic changes might occur. A tipping point could be 

analogous to a roller coaster hill. When the car reaches the top, a critical point, it only takes a 

small push to release the potential energy and create a dramatic change as the car rushes down its 

coaster. In a similar way, climatic tipping points are self-reinforcing; once the system is past its 

critical point and the process has begun, taking away the initial push cannot stop the motion 

(Lenton, 2012; McSweeney, 2020). One of the most straightforward positive feedback loops in 

climate change is ice melting. As the atmosphere warms and the Greenland ice sheet experiences 

melting, the surface becomes darker in color. Water is not as bright or reflective as ice, and 

foliage is even more light absorbing. When the surface gets darker, it absorbs even more heat 

from sunlight and the ice melts faster (McSweeney, 2020).  

In addition to being self-reinforcing to the point of often being irreversible, climatic 

tipping points are dangerous because it is difficult to know where the critical point occurs. 

Another illustrative analogy for tipping points is an avalanche. When the conditions are just 

right, only a small perturbation can cause a mountain of snow to collapse. Unfortunately, it is not 

obvious when these are conditions are right, or how close it might be to the point of no return. 

Some potential tipping points that could occur in the future include the collapse of the Greenland 
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ice sheet, melting of arctic permafrost, and a breakdown of major ocean currents (Lenton, 2012). 

If the Greenland ice sheet were to collapse due to warming, returning the climate to preindustrial 

conditions would not be enough for the ice to come back. Barring a new ice age, losing the 

Greenland ice sheet would mean losing it permanently. This dramatic change would deposit 

large amounts of fresh water into the ocean, raising the sea level, changing water density 

patterns, and having the potential to disrupt global ocean currents that help keep northern 

regional climates warm. Losing a major Atlantic Ocean current could cause widespread cooling 

in northern regions of as much as 5°C (McSweeney, 2020). Another major climate feedback 

occurs through the melting of permafrost. The long-frozen ground traps vast amounts of carbon 

as well as methane, so a significant thaw would accelerate the rate of warming as these GHGs 

are released. This is only a sample of the potential nonlinear impacts of climate change. Others 

include a die-off of coral reefs, disintegration of the West Antarctic ice sheet, and a boreal forest 

shift (McSweeney, 2020). Anthropogenic climate change is capable of significant widespread, 

and at times unexpected, effects on the planet and its ecosystems. These impacts are already 

happening in some cases. The science is thorough and well defined, leaving only the question of 

how to react to this reality.  

2.2 Application in Economics 

Greenhouse Gas Emissions as a Negative Externality 

In a typical economic decision, an individual makes their optimal choice based on the 

direct costs and benefits (or profits). Traditionally, they do not consider the effects that this 
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decision may have on others because this does not apply a direct cost or benefit in their utility 

optimization. A cost or benefit to an individual decision-maker is called a private cost/benefit, 

while the total effect including others is called the social cost or benefit. While individuals only 

weigh the private costs and benefits, the welfare maximizing choice from society’s standpoint 

must weigh the total social costs and social benefits. This outside effect is called an externality. 

Positive externalities occur when someone’s decision has a larger social benefit than private 

benefit. Negative externalities are the opposite; the societal cost is larger than the private cost 

(Helbling, 2020). These situations are called market failures because private decision makers, 

though acting rationally, do not make optimal decisions for society. Such a market failure does 

not correct on its own and so a third party, usually a government, must step in to help individuals 

internalize their external costs (Helbling, 2020).  

As human society produces greenhouse gas emissions through the burning of fossil fuels, 

deforestation, and other means, no one is paying for the future harm it will cause. Climate 

change will have negative net effects throughout society that are not taken into account by 

producers today, which is why GHG emissions are considered to be a negative externality. The 

standard economic theory shows that positive externalities lead to underproduction and negative 

externalities lead to overproduction. This would suggest that from a total welfare perspective, the 

current level of greenhouse gas emissions is much higher than optimal (Rezai et al., 2012; 

Helbling, 2020). Rezai et al. (2012) find that there is a large potential for Pareto improvements 

through investment in climate change mitigation. Based on standard economic models by 

Keynes and Ramsey, the authors show that society would benefit from reduced emissions to 

prevent climate damages. This includes benefits to current as well as future generations (Rezai, 

et al., 2012). 
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The next step is to determine how to prevent this sort of negative externality. One 

perspective is that intervention by governments or international organizations is the best way to 

prevent market failure. Economist Arthur Pigou is famous for his suggestion that governments 

should apply taxes equal to the difference between the social and private cost. This type of tax on 

a negative externality would raise the good’s price to the level it would be if all costs were 

considered, thus forcing private individuals to internalize the externality. The overproduction 

would be corrected, generating welfare gains across society (Helbling, 2020). Another potential 

solution to a negative externality would be to allow all affected parties to negotiate, so that an 

agreed upon payment is made to correct the market failure. This view was promoted by Ronald 

Coase, but it is reliant upon the costs of bargaining being low. In a situation like global climate 

change, people from across continents and across generations cannot all meet to negotiate 

collectively (Helbling, 2020).  

The Social Cost of Carbon 

In order for policies to be created to solve the negative externality of global greenhouse 

gas emissions, the value of climate change’s impact needs to be known. The amount of action 

needed to correct the externality depends on the difference between the social and private costs. 

Economists use a term called the social cost of carbon to describe the total impact of climate 

change. Like other economic valuations, the social cost of carbon (SCC) is usually calculated as 

a net present value with discounting for each year in the future. This immediately introduces the 

problem of how to discount future costs. Sometimes, discount rates are determined by the 

interest rate on alternative investments. Other times, this level of discounting is considered too 
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harsh of a tradeoff from a perspective of intergenerational equity. An individual might be able to 

invest at a high rate, but that rate might not accurately reflect the value put on future generations. 

Regardless, the choice of discount rate makes a large impact on estimates of the SCC (Watkiss, 

2005).  

The job of calculating the social cost of carbon comes from an estimate of the marginal 

costs associated with emitting one additional ton of carbon dioxide. As time passes and more 

emissions are already in the atmosphere, the marginal cost increases because damages become 

more dramatic. Though this cost measure has carbon in its name, it explains the costs of either 

carbon dioxide or an equivalent amount of other greenhouse gas emissions (Nordhaus, 2017b). 

There are many complex factors that affect the social cost of carbon. Emissions change the 

climate through the greenhouse effect, but exact rates and processes are difficult to measure 

directly. Even if these calculations are not precise to a high degree, it is extremely useful to have 

a close estimate of what the social cost of carbon should be. Calculations of the SCC can be used 

for cost-benefit analyses within projects and government regulations, setting specific levels for 

economic taxes and similar instruments, and for broader sustainability targets. For these 

purposes, the SCC is sometimes reported as a range of likely values, more accurately 

communicating knowledge about the true value (Nordhaus, 2017b; Watkiss, 2005). The present 

study analyzes the climate economy models that are intricately designed to calculate, among 

other results, the social cost of carbon.  
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Modeling Climate Change 

Estimating outcomes for the future climate requires the efforts of numerous scientific 

models. The global climate has many moving parts which are often intricate and interconnected. 

Years of scientific research and models run using supercomputers have combined to form our 

current understanding of how the planet responds to changes in emissions. Emissions, on the 

other hand, are primarily created by humans. Understanding potential future emissions relies on 

economic models, using ideas such as growth and productivity. Also, the real effect of future 

climate change is calculated by economists, who can take outcomes and convert them into cost 

values in units that can be compared. In order to do these types of calculations that involve both 

scientific and economic models, modelers use Integrated Assessment Models (Auffhammer, 

2018).  

3.1 Integrated Assessment Models 

Integrated Assessment Models (IAMs) are the complex mathematical models that 

scientists and economists use to study the future effects of climate change. They are named in 

this way because they combine models from multiple disciplines. IAMs integrate equations that 

model energy systems, economic systems, and climate science. Though integrated assessment 

models are a broad category that include many types of models unrelated to climate change, this 

paper addresses those IAMs of climate change (Hare et al., 2018). A typical IAM has several 

compartmentalized modules which are used to calculate its output. For example, a growing 
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population might increase demand for energy, but this increases prices and feeds back into the 

economy by decreasing the amount of energy demanded and improving demand for alternative 

sources. All of this helps determine the amount of emissions, which in turn determines the 

temperature increase across the globe. While a complete IAM has many more equations than just 

these, the same process of interactions and feedback apply. Each module feeds into others to 

reflect the many aspects of the real world that are interconnected (Evans & Hausfather, 2018).  

Models may be structured very differently from one another. Some are built as extensions 

to existing climate models and have smaller supplemental economic components. Others are 

designed specifically to cover the economics in detail, with these modules being the most 

detailed ones. An economic model could study specific sectors apart from the rest to isolate 

specific factors that may be relevant to climate change, such as in the energy production sector. 

All IAMs start with a number of assumptions, such as the ways in which the population will 

grow in different regions of the world, how weather patterns will react to initial warming, or 

sometimes specific values of GDP and productivity growth (Edenhofer et al., 2014; Evans & 

Hausfather, 2018). These are like the inputs to a model. The IAM then computes values by time 

– often by year or even longer periods – for its several outputs. Rates and concentrations of 

greenhouse gas emissions, population, global (or regional) income, industrial production, land-

use changes, energy use, and climate damages are all useful outcomes that modelers study. 

Integrated assessment models are also vital for calculating the social cost of carbon. The models 

must calculate all of the future damages given its initial conditions, and then discount these 

impacts to find a single cost value for the desired reference year. The result, with major policy 

implications, is the external cost of a marginal ton of greenhouse gas emissions (Evans & 

Hausfather, 2018; Auffhammer, 2018).  
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3.2 Uncertainties and Shortcomings 

Like other scientific and economic models, IAMs at their core are simplifications of 

reality. They are limited by the understanding of researchers and the power of computers to solve 

complex equations. When a modeler creates an IAM, they make their own decisions about which 

components to emphasize and which to allocate less computing power to. For these reasons, 

integrated assessment models cannot capture every nuance of the climate-economy that it 

attempts to represent. For example, coupling a more accurate model of temperature changes in 

the ocean could change IAM results by more than double (Marten, 2011). There are also major 

impacts of the choice of damage function, despite this choice sometimes being arbitrarily up to 

the researcher (Bretschger & Pattakou, 2019). At other times, integrated assessment models lag 

behind the most recent scientific or economic research. This is an area where improvements in 

accuracy could be made without significant increases in computational cost (Dietz et al., 2020).  

A modeler must make their own decisions about how to model each segment of the 

climate-economy and which parametric values to use. This can be quite impactful on the output 

of the IAM. One example is the choice of discount rate, useful for determining the social cost of 

carbon in the same way that it is used in a simple net present value calculation. It is often 

standard to use a discount rate based on the return from an alternative investment, such as 

financial assets. However, a standard rate depends greatly on the time frame being studied. There 

are no substitutable assets that cover the next century or more. For a short-term investment, 

substituting yields from financial markets is reasonable, but when assessing intergenerational 

costs, this argument becomes shaky. Discounting a future that contains different generations can 

be equated to valuing those generations less, bringing up moral arguments for a much lower 



20 
 

discount rate. Due to the long time span of integrated assessment models, the choice of a high or 

low discount rate has a large impact on the social cost of carbon (Stern, 2015).  

The significance of a researcher’s seemingly arbitrary choice of input parameters and 

model specifications can be disheartening. In his article “Climate Change Policy: What Do the 

Models Tell Us?,” Robert Pindyck (2013) simply answers, “Very little.” Pindyck points out the 

issues with the way IAMs appear to present precise results when they are sensitive to many 

unknowns. He believes instead that more accurate method to assess the social cost of carbon 

would be through surveying experts about potential values and ranges of the SCC (Pindyck, 

2019). This does not entirely remove the role of the IAM; the climate change experts are the ones 

using integrated assessment models to better understand values like the SCC. Many critiques of 

IAMs in general acknowledge their inherent importance, advocating for improvements in certain 

components or details rather than against the models altogether (Marten, 2011; Espagne et al., 

2018). 

Many of the inputs to integrated assessment models come with notable uncertainty. 

Equilibrium climate sensitivity, a parameter that represents the increase in global temperature 

due to a doubling of CO2 in the atmosphere, is clearly a relevant input for climate-economy 

models. It has a direct impact on the amount of warming that comes in response to increases in 

emissions. At the same time, its true value is very difficult to forecast, introducing uncertainty 

into the model’s results. Many other forward-looking inputs are estimates, nearly guesses, such 

as GDP and population growth rates. Further uncertainty comes from the choice of integrated 

assessment model. Some models tend to produce low damages and call for minimal mitigation. 

Others value future damages highly and calculate a much larger SCC (Marten, 2011; Gillingham 

et al., 2018). Several works have called for extensive sensitivity analyses for within-model and 
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cross-model comparison. This type of analysis could elucidate model uncertainty and quantify 

where parametric uncertainty is most impactful, directing researchers towards the most 

productive avenues for improvement (Anderson et al., 2014; Rose et al., 2017; Gillingham et al., 

2018).  

3.3 Modeling Applications 

Integrated assessment models are increasingly relied upon by policymaking 

organizations. IAMs can be used to run policy simulations to answer a variety of questions, 

showing how much change would need to happen to reach certain climate targets, quantifying 

the impact of delaying action, and more. IAMs can be used to construct feasible pathways into 

the future of emissions and mitigation with a particular goal of keeping warming below a certain 

level or sticking to a carbon budget, a predetermined emissions limit that is undesirable to 

exceed. Data from these pathways can also act as milestones for short-term mitigation goals 

(Evans & Hausfather, 2018). When presenting a policy in a political setting, important analysis 

can be done with the help of IAMs. The models are often used to compare the costs and benefits 

of multiple proposed policies. The Intergovernmental Panel on Climate Change relies on IAMs 

to generate long-term pathways for policy assessment (Edenhofer et al., 2014). The Working 

Group III of the IPCC specifically uses IAM scenarios in analyses of climate change mitigation, 

socioeconomic impacts, risk and uncertainty, land use changes, and several other topics. Because 

of the importance of the IPCC and its reports, many integrated assessment models use their 

published scenarios, called Representative Concentration Pathways, for baseline calibration runs 

of the model. This allows the IAMs to be easily peer-reviewed and vetted by outside experts. 
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Baseline scenarios are more stable and consistent across models because of these forces 

(Edenhofer et al., 2014; Evans & Hausfather, 2018).  
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Widely Used Integrated Assessment Models of Climate Change 

This chapter will discuss several prominent IAMs that are used to study the climate 

economy at global and regional levels. The three models included are DICE, FUND, and PAGE. 

Each model includes similar basic structures, including representations of the economy, 

emissions, climate systems, and their interactions. All contain ways to connect climate costs back 

to the economy, being able to compute an estimate of climate damages and the SCC. There are 

significant variations in other parts of these models, such as regional disaggregation, 

macroeconomic modules, and damage functions. The following sections of this chapter will 

discuss each of the three models separately and in detail, describing works by the model creators 

as well as significant studies by others using these models. It will also discuss critiques of each 

model individually and some studies critiquing all three integrated assessment models together.  

4.1 DICE Model  

General Information  

The Dynamic Integrated model of Climate and the Economy (DICE) is a global general 

equilibrium model created by William Nordhaus without any disaggregation, or only one region. 

With original versions documented in 1992, there have been several updates to the model as 

additional research has been done throughout the past quarter century. The most recent version is 

the 2016 update. DICE is primarily based on a neoclassical economic growth model, similar to 

work by Frank Ramsey and Robert Solow. In a simple multi-period version of neoclassical 
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growth, a firm or a social planner might choose to take some portion of the labor force away 

from production and assign them to do research and development. Research would lead to the 

discovery or invention of new technologies which increases the efficiency of production. 

Investing in research and development reduces consumption today but increases consumption in 

future periods. If the society is forward-looking, it will be beneficial to sacrifice some happiness 

today for additional prosperity in the future.  

Nordhaus addresses the climate system like a “natural capital” where reducing GHG 

concentrations reduce damages and lead to higher levels of consumption in the future. Like 

research and development generally, it is therefore beneficial to invest in climate change 

mitigation in order to improve the future wellbeing of society (Nordhaus & Sztorc, 2013). The 

economic variables are standard to neoclassical economics with adjustments made to account for 

climate feedback. For example, production has additional components that account for damages 

and abatement costs, reducing the amount of output that can be apportioned to consumption or 

traditional economic investment (Nordhaus & Sztorc, 2013). 

The climate system depicted by DICE focuses only on CO2, taking other greenhouse 

gases to be exogenous (or possibly, controlled through outside means such as the Montreal 

Protocol for CFCs). It is based on a three-reservoir model which tracks carbon accumulation in 

the atmosphere, upper oceans, and in the deep ocean. This model uses an equilibrium climate 

sensitivity measure of 3.1 °C per equilibrium CO2 doubling (Nordhaus, 2017a). DICE also has a 

regional model variation called RICE (Regional Integrated model of Climate and the Economy), 

which divides the global equilibrium into 12 subregions, each having their own values for each 

variable. This can be very helpful for other applications, such as policy analysis, but this study 

will focus on the better known and documented DICE model (Nordhaus & Sztorc, 2013).  
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With a model that has had so many different iterations, it is worthwhile to note that 

different versions of the same model may produce a wide variety of results. Between the 2013 

and 2016 revisions to the DICE model, updates were made to the estimation of damages, 

projected future population, equilibrium climate sensitivity, and major updates to the 

representations of economic activity and the carbon cycle. These updates caused many output 

variables to change drastically, such as the SCC which increased by 80% (Nordhaus, 2017a). 

While an 80% change may be surprising, the five named modifications account for the vast 

majority of output changes. These adjustments are all reasonable updates that have been made to 

increase the accuracy of the DICE model as new research is completed in the many areas 

spanned by the IAM.  

Nordhaus (2017b) published an analysis of the changes in DICE from 1992 to the most 

recent model from 2016, and the differences are even more significant. Estimates of the global 

output in 2100 have increased to 3½ times the 1992 prediction. The estimate of the social cost of 

carbon in 2015 increased from $5 in DICE1992 to $31 per ton of CO2 in the most recent 

iteration. The most major revisions throughout this period were to the economic components of 

the IAM, such as the damage function, utility function, and measurements of output. Most 

environmental variables, such as emissions, temperature change, or CO2 concentrations, have not 

seen major changes in their predictions. In the conclusion to this paper, Nordhaus discusses the 

importance of studying the uncertainty of IAM predictions alongside the results themselves 

(Nordhaus, 2017b).  
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Major Studies and Critiques 

DICE is a prominent integrated assessment model that has been useful both in the 

literature on the economics of climate change as well as in reference for government and policy 

makers. Unsurprisingly, the model has been referenced countless times in the literature and is 

central to many studies that seek to create extensions, provide adjustments, or check the 

robustness of the model. Often, modifications to DICE are used to critique the model by 

illustrating its sensitivity to some change that the authors wish to advocate for. One example of 

this is Ackerman and Finlayson (2006). This article modifies DICE with an adjusted lower 

discount rate, reduced assumptions of the benefits of moderate warming, and more 

considerations for the most recent (at the time) climate science, resulting in a much higher social 

cost of carbon. Many critique articles of this type have been written and have likely been heard 

throughout the numerous revisions to the DICE model.  

A few studies have examined the role of uncertainty in the outputs of the DICE model. 

One of these studies is by Hu et al. (2012), which uses normal distributions to model each of the 

eight main uncertain parameters in DICE. By assessing policy proposals in relation to this 

method, Hu et al. conclude very similar results to Nordhaus’ (2013, for example) direct work 

with DICE. Crost and Traeger (2011) use a modified recursive version of DICE to examine the 

impacts of risk and uncertainty within the model. Cai et al. (2013) investigate a more formal 

stochastic extension of DICE called DSICE to determine how much uncertainty effects the 

outcomes described in the original model. Both studies conclude that DICE2007 may understate 

the potential costs of climate change due to uncertainty, or put differently, understate the benefits 

of mitigation as a result of input uncertainty. It is possible that some of this was made up for by 
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the upward revisions of the SCC for DICE2016, but the overall conclusion is still important. 

There is room for additional research on how uncertainty effects the relevant results in IAMs 

such as DICE.  

4.2 FUND Model 

General Information 

The Climate Framework for Uncertainty, Negotiation and Distribution (FUND) is an 

integrated assessment model that focuses on specific areas of welfare impacts across 16 regions 

of the world. The model was originally created by Richard Tol and is now co-developed by 

David Anthoff as well as Tol. The current version, FUND 3.9, is operated using the 

programming language Julia and its code is available in an open-source format. Different from 

the DICE model, the economic components of FUND are based on exogenous scenarios. This 

means that rather than defining functions to model economic growth and related measures, 

FUND uses predetermined values that are fed into the rest of the model. There are five economic 

scenario sets with varying population growth rates and economic growth rates for each region by 

year (Anthoff & Tol, 2010). These exogenous scenarios are based on standard scenarios used by 

the IPCC, the Intergovernmental Panel on Climate Change, as described by Leggett et al. (1992). 

While data for these scenarios are thoroughly researched, they remain constant assumptions and 

may not be as dynamic as the endogenous economic modules in other IAMs. Specifically, FUND 

makes exogenous assumptions about population growth rates, economic growth, energy 
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efficiency, and the rate of change of the carbon intensity of energy use. The central scenarios of 

FUND are not automatically updated as new research estimates are made (Waldhoff et al., 2014).  

One of the most unique features of FUND is the level of detail regarding the welfare 

impacts of climate change. Among other topics, the model addresses changes in agriculture, 

effects of sea level rise, increases in extreme weather, and changes to morbidity rates due to 

specific prevalent diseases. For each of its regions, FUND tracks and predicts rates of dengue 

fever, malaria, and diarrhea, as well as cardiovascular and respiratory disorders caused by the 

changing climate. It uses these predictions to model the incidence of premature deaths and 

shocks due to climate migration (Anthoff & Tol, 2010). All of these welfare effects set FUND 

apart from similar models by having useful insights into the true impacts of future climate 

change on humanity.  

The agricultural module within the FUND model is known for its treatment of carbon 

fertilization on crop yields and how this changes the resulting social cost of carbon. Because 

plants take in CO2 from the air during photosynthesis, higher concentrations of the greenhouse 

gas in the atmosphere are beneficial for world crop production. Plants, such as those cultivated 

by humans for sustenance, grow more quickly and can ultimately produce more food (McGrath 

& Lobell, 2013; Reiny, 2016). Holding all other effects constant, more CO2 in the atmosphere 

leads to greater food production and increased welfare across humanity, particularly for 

subsistence economies that rely heavily on seasonal yields. In the FUND model, climate change 

produces a strong net benefit in agricultural sectors for this very reason. Compared to other 

concurrent climate change impacts, it is unclear whether this effect would dominate. Waldhoff et 

al. (2014) find that the inclusion of this effect in the FUND model has a substantial impact on 

SCC results for the model as a whole.  
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Major Studies and Critiques 

The authors have used their FUND model to test and research many topics related to the 

economics of climate change since the IAM’s creation. These include dozens of papers written 

with contributions by Anthoff and/or Tol and cover important ideas such as changes to the 

discount rate, equity weighting, and uncertainty. Using an earlier version of the same model, 

FUND 2.8, Guo et al. (2006) study the effects of using a declining discount rate in addressing 

policy decisions. The literature posits that a constant discount rate may apply well for individuals 

but does not consider future generations. By “over-discounting” with a constant discount factor, 

models may greatly undervalue the welfare of future generations, a substantial problem for 

integrated assessment models due to their longer time horizons (Weitzman, 1998). The results of 

their study found that applying this type of discounting does in fact increase estimates of the 

SCC, in some cases by as much as 40 times (Guo et al., 2006).  

Equity weighting is a similar type of suggestion often applied to IAMs. When comparing 

the welfare across a large group of people the way the FUND model does, equity and 

income/wealth disparity are important topics to address. The properties of decreasing marginal 

utility mathematically model this by showing how the same absolute increase or decrease in 

income creates a much larger welfare change for a poor person than a rich person. Equity 

weighting is one way to account for the damage inequality not addressed by traditional methods 

of summing up welfare to compare climate change scenarios. This is especially significant 

because climate change is expected to have the worst effects in the poorest regions of the world. 

Anthoff et al. (2009) test the effects of equity weighting within the FUND model. This study 

shows that calculating the damages of climate change is significantly impacted by the use of 
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equity weighting and its specifications, and thus it is an important topic to better model and 

understand (Anthoff et al., 2009).  

Anthoff and Tol (2013) have also studied uncertainty in relation to their FUND model. 

Using FUND 3.7, the authors investigate the effects that parametric uncertainty have on the 

estimated social cost of carbon. They find that the most important uncertain parameters are 

energy demand due to climate change and the equilibrium climate sensitivity, the latter of which 

is addressed in the present study (Anthoff & Tol, 2013). The importance of equilibrium climate 

sensitivity is also notable because it can affect how the model reacts to changes in other 

parameters synergistically. For example, Dayaratna et al. (2020) cite studies with a very low 

climate sensitivity parameter. In combination with an increased rate of agricultural productivity 

gains, the authors find SCC estimates using FUND 3.8 to be low or even negative up to the year 

2050 (Dayaratna et al., 2020).  

The FUND model is known for estimating the SCC to be lower than most other 

prominent integrated assessment models. Ackerman and Munitz (2012; 2016) provide research 

and critiques on the FUND model, pointing out certain aspects that contribute to its low SCC 

estimates. As of FUND 3.5, many modules of the IAM were still relying on older research which 

may understate the costs of certain climate impacts. The authors show that FUND finds extreme 

weather events and sea level rise to be negligible to the calculation of the SCC. In addition, some 

mathematical damage corrections could raise the estimated SCC by nearly a factor of three 

(Ackerman & Munitz, 2012). Similar results were found using a more recent version of the 

model, FUND 3.8. In this study, 12 out of the 15 damage categories showed nearly insignificant 

costs. In addition, carbon fertilization plays a very large role in offsetting climate damages and 

reducing the SCC, primarily from the assumed productivity benefits in China. The authors also 
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critique FUND’s assessment of adaptation reducing vulnerability to climate impacts over time 

(Ackerman & Munitz, 2016).  

4.3 PAGE Model 

General Information 

The Policy Analysis of the Greenhouse Effect (PAGE) model is another well-established 

integrated assessment model. It was originally developed in 1993 by Chris Hope and was 

updated several times before reaching its current version, PAGE09. This IAM disaggregates the 

world into 8 regions with a timespan from 2008 to 2200. It models the emissions and climatic 

effects of four greenhouse gases, CO2, CH4, N2O, and a grouping called Linear Gases (dubbed 

‘linear’ because of their relationship between concentrations and radiative forcing). (Moore et 

al., 2018). Like the FUND model, PAGE uses exogenous inputs for some of the economic 

factors of its model, such as economic growth, emissions growth, and population growth. 

Damages are modelled across four categories, including market damages, nonmarket damages, 

sea level rise, and discontinuous impacts, which include tipping point scenarios (Hope, n.d.). The 

IAM is more policy focused than others by seeking to match and respond to data put out by 

international policy organizations. Specifically, the PAGE model is closely aligned with the 

science coming out of the Intergovernmental Panel on Climate Change. Most of its exogenous 

parameters and inputs come from IPCC reports and baseline scenarios (Hope, 2006; Hope & 

Alberth, 2007).  
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Compared to other major IAMs, PAGE estimates damages and the SCC to be relatively 

high. The most recent iteration of the model calculates the SCC in 2009 to be around $100. 

While this is much larger of an estimate than some other climate-economy models, some of the 

discrepancy is explained by a difference in discount rate. This model uses a discount rate near 

1%, while the Nordhaus model uses 2%. If the PAGE model used the same discount rate as the 

DICE model, resulting SCC calculations would be quite similar (Hope, 2011).  

Updates and changes to the PAGE model are well documented. Particularly because of 

the widespread use of the former PAGE2002, Hope (2013) describes the specific adjustments 

that were made to create the current PAGE09. One of the major changes was the adoption of a 

different exogenous scenario, the IPCC scenario A1B. This consists of different socioeconomic 

variables that are most favored by the policymaking institution. Instead of directly using a 

climate sensitivity parameter, PAGE09 uses a transient climate response value with a warming 

half-life variable to calculate climate sensitivity within the model. Though this does not change 

the baseline value for climate sensitivity, it allows for a larger right tail probability which more 

accurately reflects the current scientific understanding (Hope, 2013, 2011). This update also 

decreased the rate of adaptation in response to critiques that it was too optimistic. In total, the 

changes from 2002 to 2009 increased the social cost of carbon by around $25 (Hope, 2013).  

Major Studies and Critiques 

Hope has been involved in many studies using the PAGE model, especially after the IAM 

became well known in 2006. One significant paper investigates the sensitivities of the 2002 

model, finding that the SCC calculation reacts the most to the climate sensitivity parameter and 
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the choice of PTP (discount) rate. It is also sensitive to parameters for non-economic impacts and 

equity weighting, as well as the half-life of global warming (Hope & Newbery, 2008). This paper 

also shows how the social cost of carbon is less responsive to changes in emissions growth than 

purely economic or purely scientific models would suggest. Through the interactions of 

nonlinear warming, discounting over time, and other factors, the resulting SCC does not change 

very much in different emissions scenarios (Hope & Newbery, 2008). Still using the 2002 

version of the PAGE model, Hope (2008) follows the study of SCC sensitivities by analyzing the 

effects of equity weighting. As discussed previously, equity weights are a way to address the 

inequality of climate damages based on wealth. Due to decreasing marginal utility, a dollar is 

much more valuable to a poor person than a rich person. It follows that climate costs will be 

more impactful in poor communities, especially because climate change is expected to have the 

worst effects in the poorest regions of the world. Surprisingly, analysis of the PAGE model finds 

that the social cost of carbon has a negative relationship with equity weights. Using equity 

weights in this model effects the application of discount rates, which leads to an offsetting 

change in the SCC. The increase in cost from using equity weights is smaller than the impact of 

discounting (Hope, 2008).  

After the update to PAGE 2009, another unique study used the model to show how the 

social cost of carbon changes based on the length of the time horizon. Some IAMs model the 

climate and economy to the year 2100 while others extend for another 100 years or more. 

Determining the SCC requires what is essentially a net present value calculation, and so adding 

several years of data may change the result. The authors show this result and use it to argue for a 

consensus time horizon across other IAMs, near either 200 or 300 years (Wong et al., 2015). The 

PAGE model has also been used to bring attention to some of the more impactful tipping point 
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scenarios. One of these is the melting of arctic permafrost. Some researchers have shown 

positive effects, such as the benefits to global trade by opening shipping routes and the potential 

for untapped oil and gas reserves (Whiteman et al., 2013). Despite these, multiple studies have 

used the PAGE model to show that the melting of arctic permafrost could have dire global 

consequences. Permafrost soils in the East Siberian Arctic Shelf are estimated to contain around 

50 gigatonnes of methane and 1700 gigatonnes of carbon. It is unknown whether this permafrost 

will melt slowly as the global temperature rises or all at once (Whiteman et al., 2013; Hope & 

Schaefer, 2016). A study using the PAGE model and IPCC emissions scenario A1B estimated 

the potential impact of the carbon dioxide and methane released from arctic permafrost to have a 

net present cost of $43 trillion. These emissions would increase the global mean temperature by 

0.17°C, leading to higher damages across the world. In addition, there would be a higher 

likelihood of other tipping point events, such as the melting of the Greenland ice sheet or the 

West Antarctic ice sheet (Hope & Schaefer, 2016).  

In addition to the numerous analyses already mentioned, one of the most well-known 

economic studies of climate change is closely associated with the PAGE model. This study is the 

Stern Review. Sir Nicholas Stern, then Head of the Government Economic Service in the UK 

and Advisor to the British Government on the economics of climate change, was commissioned 

to do an independent review on the economics of climate change. Stern and his team used the 

PAGE integrated assessment model as the basis for their analysis. The final report was over 550 

pages and was released in October 2006 (Stern, 2007). The Stern Review was one of the first 

major studies to recommend immediate and drastic measures to mitigate the effects of climate 

change and it received widespread attention, both in the form of praise and scrutiny. The viral 

nature of the Review led to sharp critiques, ranging from general denial of anthropogenic climate 
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change to specific disagreements about the input parameters used to get their results (Carter et 

al., 2006). One of the most substantial arguments against the methodology of the Stern Review is 

the choice of discount rate. While PAGE selected its PTP rate, a component of the discount rate, 

to be 2% in baseline scenarios, Stern used a value of 0.1%. This resulted in a much lower 

discount rate in the model (Hope & Alberth, 2007). A low discount rate for an individual means 

that they generally value the future more and weight utility then similar to utility now. A high 

discount rate is the opposite; the future is less valuable to them and they greatly prefer utility 

now. Costs due to climate change are expected to increase over time, and a high discount rate 

lowers the valuation of those costs. Stern’s use of a particularly low PTP rate led many to claim 

that his research greatly exaggerated climate damage costs (Carter et al., 2006).  

As some of the controversy over the Stern Review led back to the model it relied on, 

PAGE2002 underwent many revisions and sensitivity analyses shortly after the Review was 

published. This model helped researchers to actually check the claims both for and against 

Stern’s conclusions. Ackerman et al. (2009) studied the results of the Stern Review along with 

the most recent climate and economic science in order to revise the PAGE model. This group of 

researchers found several adjustments to make, such as relaxing the optimistic values for 

adaptation costs and modifying the shape of the damage functions. Scientists now know a little 

more about the likelihood of certain catastrophic tipping points, and so the thresholds for these 

were also changed to reflect recent research. As a result, the PAGE model determined that the 

Stern Review may have underestimated the true future damage costs from climate change. The 

updated PAGE2002 found damages in 2100 to be as high as 2.6% of GDP in the United States 

and 10.8% of total GDP in the world (Ackerman et al., 2009).  
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4.4 Synthesis Studies 

The best-known IAMs have a plethora of works and analyses – including critiques – in 

the literature. Peer review and a diversity of insights have led to refined and further improved 

models over time. Integrated assessment models are certainly a place for continuous research and 

advancement to better understand the impacts of global climate change. While the literature 

related to individual well-known models has expanded over time, there remains one area that has 

received limited attention. Among all of the prominent integrated assessment models used today, 

few have studied the benefits of choosing one model over another. If, for example, the results in 

the FUND model hinged on the equilibrium climate sensitivity being within a narrow range of 

values while DICE did not, it would be beneficial to run a scenario with a very high ECS on the 

DICE model instead of FUND. Otherwise, the results might not be valuable. It could also be true 

that the choice of such parameters has a far greater impact than the choice of IAM. When making 

policies based on the results that come from these models, it is imperative that they are not 

misunderstood. One of the ways to prevent this is through analysis of integrated assessment 

models collectively, not just individually. There are a handful of papers that compare multiple 

models or address further research related to IAMs as a whole.  

It is first worthwhile to address some of the analyses of integrated assessment models that 

focus on their limitations. Negatively connotated research is legitimate, and it offers insights into 

the most productive ways to improve upon the models of today. One of the critiques of IAMs in 

general addresses the lack of precision and abundance of uncertainty in their forecasted 

outcomes. Robert Pindyck (2013) concludes in his research that the models “are of little or no 

value for evaluating alternative climate change policies and evaluating the SCC.” Part of his 
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support for this vivid argument is the degree to which outcomes can be affected by a potentially 

“arbitrary” choice of input parameters. In addition to this, Pindyck finds that modelers do not 

know enough about damage functions or the likelihood of catastrophic outcomes to come up 

with reliable estimates of costs (Pindyck, 2013). Despite the claims against the usefulness of 

IAMs, the author writes that he does not suggest ignoring the climate issue altogether out of 

uncertainty. He even goes so far as to recommend using the US Interagency Working Group’s 

estimate of $33, a value for the SCC found by using several integrated assessment models, as a 

baseline SCC for policymaking (Pindyck, 2013). This shows that Pindyck’s goal in this paper is 

not to discredit IAMs, but rather to demonstrate the need for improvement. If researchers focus 

more efforts on the factors that make these models less reliable, they could soon become nearly 

as precise as they sometimes appear. The more climate scientists learn about how the Earth 

responds to temperature increases and the more economists learn about how to correctly model 

these climate damages, the more precise the leading integrated assessment models will become.  

A 2014 paper by Bonen et al. goes into some depth on one area pointed out by Pindyck, 

the damage functions. This paper is meant to shed light on the damage functions used in the 

DICE, FUND, and PAGE integrated assessment models. Bonen et al. (2014) explain, in detail, 

just how each model portrays climate damages and how this relates to the calculation of the 

social cost of carbon. This determines which features may be more or less reliable than others. 

For example, the FUND model’s use of the willingness-to-pay approach is found to create 

downward bias in the SCC calculation. The authors conclude by calling for several 

improvements in damage functions of IAMs, including a method which accounts for nonlinear 

climatic tipping point scenarios (Bonen et al., 2014). In a similar style, Alex Marten (2011) 

shows the limitations of the same three models in their temperature response specifications. 
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Marten finds that the function(s) used to model temperature response have a significant impact 

on the SCC outcomes of each model by comparing the temperature responses to two more 

detailed models meant to accurately represent the diffusion of energy in the deep oceans. These 

errors occur most commonly with high values for the equilibrium climate sensitivity parameter 

(Marten, 2011). In this study, it is determined that FUND underestimates the SCC by 10-75%, 

while DICE overestimates by 10-110% and PAGE by 40-260%. Marten suggests that these 

models update their models to reflect the most recent climate research on temperature response. 

Though IAMs cannot use the most complex models for each component due to computational 

costs, the author suggests that these changes are necessary and achievable because of 

technological improvements in computing power (Marten, 2011).  

Diverging from analyses of a single component of several IAMs, one could also look at 

the entire group of uncertain inputs and seek to understand which are most impactful. A study by 

Anderson et al. (2014) takes this approach by analyzing uncertainty in the DICE model. There 

are several controversial input parameters in integrated assessment models that must be chosen at 

the discretion of the modeler, but in some cases, not knowing much about the correct value to 

select has no bearing on the model’s outcome. A global sensitivity analysis is a way to determine 

the most relevant uncertainties. The authors’ results are primarily meant to emphasize the 

importance of this type of analysis for IAMs. Sensitivity studies such as this one can establish a 

deeper understanding of these integrated assessment models and provide a path forward with 

which to focus further research (Anderson et al., 2014).  

One of the only studies to conduct global sensitivity analyses across multiple integrated 

assessment models is the Rose et al. paper (2017). This study breaks down the components of the 

DICE, FUND, and PAGE models in order to study their similarities and differences. The authors 
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determined the key drivers of model variation and how these affected resulting SCC estimations. 

The FUND model was found to have a lower incremental response to temperature and damage 

than DICE and PAGE. DICE was most sensitive to emissions, while PAGE was most sensitive 

to equilibrium climate sensitivity and temperature (Rose et al., 2017). The authors show that 

uncertainty causes PAGE to have the largest spread of calculations and a higher probability of 

catastrophic outcomes, while DICE and FUND have less spread. The temperature and damage 

response in FUND is partially responsible for its low estimation of the SCC relative to the others. 

To define uncertainty in these models more concretely, the authors recommend future 

researchers work to define distributions for input parameters. Doing so would facilitate a method 

for explicitly defining sensitivity to uncertain parameters in IAMs. This is strongly encouraged 

by the authors as a way of furthering the work of integrated assessment modeling and the 

economic study of climate change (Rose et al., 2017).  

The literature surrounding integrated assessment models is growing quickly around the 

most prominent IAMs but lacks in cross-model comparisons and analyses. The studies that have 

been done on these three models or IAMs in general reveal the need for much more research and 

understanding. While these models do not create precise forecasts of the future climate-economy, 

they are still instructive as modelers continue to adjust to the newest research developments. One 

major step in this direction is through uncertainty analysis. The knowledge of which uncertain 

parameters are most influential in integrated assessment models allows researchers to 

concentrate efforts on understanding these factors. This in turn can make IAMs more accurate 

and increasingly beneficial for policymaking. The method of quantifying uncertainty for key 

input parameters as suggested by Rose et al. (2017) is the subject of the remainder of this paper.  
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Methodology 

5.1 Purpose and Models Included 

The overall goal of this research is to study the effect of uncertain input parameters on 

estimates of the social cost of carbon within well-established integrated assessment models. 

While there has been plenty of debate surrounding choices of the discount rate, clearly a 

significant factor in net present value calculations, this parameter is primarily determined by 

preferences and the objectives of the modeler (Stern, 2007; Hope & Alberth, 2007; Carter et al., 

2006). Rather than discussing further the merits of a higher or lower discount rate, this paper 

seeks to elucidate the impacts of observable parameters on the SCC. There are many parametric 

values used as inputs for integrated assessment models, and their forward-looking nature 

produces considerable uncertainty in their forecasts. However, if varying one unknown 

parameter within its feasible domain produces nearly constant output results, the uncertainty in 

this parameter might not be very important. On the other hand, if varying a parameter just 

slightly changes the output by a lot, uncertainty in that parameter should become a much higher 

research priority.  

This analysis involves three prominent integrated assessment models, DICE, FUND, and 

PAGE. These IAMs are among the most cited models in the literature and are the three main 

models used by the US Interagency Working Group for estimating the social cost of carbon 

(IWG, 2013). Each model includes the necessary exogenous parameters for this study and a full 

range of output values typical to integrated assessment models. These outputs include annual 
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results for temperature, CO2 emissions and concentrations, population, per capita consumption, 

economic output, damages, and the social cost of carbon. These three models have many 

distinctions, assessing different levels of global or regional aggregation, taking unique 

approaches to the economy, and differing in their models of climate damages. These details, as 

well as influential studies and critiques of each model are examined more fully in chapter 4.  

DICE, FUND, and PAGE were also chosen for this analysis because of their 

accessibility. Each model has a complete open-source implementation in the Julia programming 

language, which can be freely accessed online. This makes it possible to run each model 

repeatedly with code and efficiently conduct sensitivity analyses. While these models are known 

to produce very different evaluations of the social cost of carbon, this study abstracts from these 

differences to assess within-model variations based on a grid of calibration runs for each IAM. 

The resulting outputs can be analyzed to determine the significance of changes in uncertain 

inputs on the specific outcome of the social cost of carbon. Due to the policy significance of SCC 

estimates, these results will be beneficial for directing future research and narrowing the focus on 

the actual social cost of carbon.  

5.2 Primary Approach and Grid Design 

The first portion of this analysis involves using all three integrated assessment models to 

produce a dataset of several important outputs by variations in input parameters and by model. In 

their Julia implementations, the command to run each model passes in an optional parameter 

designating which file or directory to read as inputs for the model. By creating copies of input 

files and editing the desired parameters, a model can be run with identical baseline values except 
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for changes in a select number of inputs. Each uncertain parameter is given five values centered 

around the default value from the model’s baseline scenario. The baseline scenarios are reliable 

for assessment because they are thoroughly scrutinized and checked by peer-reviewers as well as 

organizations like the Stanford Energy Modeling Forum and the IPCC (Gillingham et al., 2018). 

Therefore, each model’s baseline scenario is a dependable standard upon which to conduct 

sensitivity tests. Output values for each IAM are time-dependent, so this study measures results 

for temperature, CO2 emissions and concentrations, population, per capita consumption, 

economic output, and damages as their respective values in 2100. The social cost of carbon is 

assessed as its value in 2020.  

The grid design for this study was constructed to match the method used by Gillingham 

et al. (2018) in a similar sensitivity analysis of six IAMs. With a set of three uncertain 

parameters and five values per parameter, the complete domain for our study becomes 

5 × 5 × 5 = 125 individual calibration runs for every IAM. Increments for the parameter grid 

were chosen to span most of the probable parameter space without pushing too far into 

distribution tails as to create unreliable outcomes. The Gillingham et al. study analyzed 

distributions for all three uncertain parameters in order to determine the best choices for this 

parameter grid (2018). The authors found that the growth rates of both population and total factor 

productivity closely resemble normal distributions. The equilibrium climate sensitivity was well 

approximated by a log-normal distribution (Gillingham et al., 2018). The points for calibration 

runs are all derived from these approximate distributions and centered around the default 

scenarios. The adjustments to baseline values are treated identically for each model. When 

analyzing results for this study, it is important to recognize that there is more uncertainty 

surrounding some parameters compared to others. A change of 1% in total factor productivity is 
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much more likely than a change of 1% in population growth, for example. Therefore, standard 

deviations of each parameter will be used to compare the impact of a consistent amount of 

uncertainty in each input. Research by Gillingham et al. (2018) found the standard deviations to 

be 1.12%, 0.22%, and 0.843 for total factor productivity growth, population growth, and climate 

sensitivity, respectively.  

5.3 Choice of Uncertain Parameters 

The uncertain parameters selected for this study are the growth rate of total factor 

productivity, the population growth rate, and the equilibrium climate sensitivity parameter. 

Gillingham et al. (2018) selected these same parameters for uncertainty analysis because they 

can be changed without significantly altering the mechanics of the models and because each 

uncertain parameter can be easily represented by an estimated probability distribution, which 

was another component of that study. These were also good choices because they represent some 

of the most important uncertainties in climate change economics. Per capita GDP growth impacts 

the total welfare for individuals in the world economy and is also related to emissions rates in the 

short run. Population growth affects energy and land use, migration, and has many other 

implications surrounding development and welfare. Equilibrium climate sensitivity determines 

the increase in temperature in response to emissions. Each of these has a large role in the impacts 

of climate change as well as the estimation of the social cost of carbon.  

Total factor productivity (TFP) growth is the rate at which economic productivity grows 

over time. Not every economic growth model separates growth based on total factor 

productivity, but TFP is a major driver of the total growth rate. For these situations, the uncertain 
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parameter was replaced with GDP growth. The grid for TFP growth first takes the baseline value 

for each model, and then makes four additional assumptions to create a five-point set for 

calibration runs. These adjustments add −1%, −0.5%, 0%, 0.5%, and 1% to the baseline value 

of TFP growth. If a model were to have a constant default GDP growth rate of 1.6%, the five 

values would become 0.6%, 1.1%, 1.6%, 2.1%, and 2.6%. The actual models included in this 

study do not have constant growth rates over time. All three models’ baseline scenarios include 

an entire set of growth rates that vary by year and by region, if applicable. To create the 

calibration runs, the same values (0%, ±0.5%, ±1%) were added to each annual and regional 

growth value. Each default path of growth was shifted up or down by a constant amount for each 

assumption.  

The population growth rates were treated similarly to the TFP growth rates. Each value 

was adjusted by adding −1%, −0.5%, 0%, 0.5%, or 1% to the baseline scenario to create a set 

of five different population growth paths. DICE, FUND, and PAGE all use non-constant 

population growth rates, so the values were adjusted individually for each time period and 

region. One intricacy for both growth rate adjustments is that the DICE model does not use 

annualized rates. This model runs in five-year timesteps and uses one rate to calculate the change 

between each period. To achieve consistency between analyses of all models, the assumptions 

were converted for the DICE model to adjustments of ±5.101% and ±2.525% to the baseline 

five-year rates. All modifications to baseline scenarios were only made to the period between 

2010 and 2100 in order for transformations to be consistent across models. Population and TFP 

growth rates after 2100 (and before 2010, if applicable) are the same as the modeler’s base 

scenario for every calibration run. 
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The equilibrium climate sensitivity (ECS) is a single parametric input to climate models 

that represents the increase in global temperature in response to a doubling of CO2 (or CO2-

equivalent) in the Earth’s atmosphere. It is also sometimes called the temperature sensitivity 

coefficient, or more simply, climate sensitivity. A high value of the ECS means that as emissions 

increase, temperature will increase by larger amounts, while a low ECS means emissions are not 

quite as potent. The grid of calibration runs for this parameter adds −3, −1.5, 0, 1.5, and 3 to the 

baseline value in each model. Note that this value represents the constant level, not a set of 

annual rates like previous uncertain parameters, so the assumptions create a set of five one-

dimensional parameters for calibration runs. In the FUND model, the baseline value for the 

climate sensitivity is small enough to make the lowest assumption negative. This lowest value 

was replaced with 0.001 to produce similar results without violating assumptions in the 

mathematical components of the model which require a non-negative value.  

5.4 Regression Specification 

After collecting data by running each model using the three-dimensional grid of 

calibration runs, the next step is to evaluate the results. The impacts of parametric uncertainty on 

the social cost of carbon can be studied in general terms by determining a closely fitted model 

for the dataset. Gillingham et al. (2018) analyze several different regression specifications for 

modeling the impacts of the same uncertain parameters, focusing on outputs other than the social 

cost of carbon. They find that the ideal approach is a linear quadratic interactions, or LQI 

specification, because it produces a high R-squared value without becoming too complex or 
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overfitted (Gillingham et al., 2018). The present study briefly assessed and confirmed that this 

model provides a strong fit for the data. Linear quadratic interactions takes the form: 

𝑌𝑌 = 𝛼𝛼 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

3

𝑖𝑖=1

+ ��𝛾𝛾𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑗𝑗

𝑖𝑖=1
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+ 𝜖𝜖 

In this model specification, 𝑌𝑌 represents an outcome variable such as the social cost of 

carbon. It would similarly represent temperature increase, CO2 concentrations, climate damages, 

or another variable if these were the outcomes of interest. The uncertain parameters 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are 

inputs to the model. The constants 𝛼𝛼�, 𝛽̂𝛽𝑖𝑖, and 𝛾𝛾�𝑖𝑖𝑖𝑖  are the estimators from regression. Subscripts 

for the model are suppressed. This specification states that the social cost of carbon is a function 

of each uncertain parameter individually, their squares, and interaction terms between each input. 

By expanding the equation, this specification could also be written as:  

𝑆𝑆𝑆𝑆𝑆𝑆� = 𝛼𝛼� + 𝛽̂𝛽1𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽̂𝛽2𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽̂𝛽3𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛾𝛾�1,1𝑇𝑇𝑇𝑇𝑃𝑃2 + 𝛾𝛾�2,1(𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇) + 𝛾𝛾�2,2𝑃𝑃𝑃𝑃𝑃𝑃2

+ 𝛾𝛾�3,1(𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇) + 𝛾𝛾�3,2(𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃) + 𝛾𝛾�3,3𝐸𝐸𝐸𝐸𝑆𝑆2 

In this case, SCC is the social cost of carbon, TFP is the growth rate of total factor 

productivity, POP is the population growth rate, and ECS is the equilibrium climate sensitivity 

parameter. Separate regressions are completed for each model, thus controlling for other 

significant factors like the discount rate, which cause substantial differences in SCC results 

across models.  

The dataset created for this analysis normalizes each uncertain parameter to its baseline 

values. This is done in order to study the impact of changes to each parameter rather than the 

specific values that the parameter takes on. With two parameters representing growth scenarios 

for 90 years, recording a single value for a nonconstant growth path is infeasible. Since constant 
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adjustments were made for each calibration run, these delta values can be recorded and 

accurately represent the data. As such, setting a parameter in the regression equal to zero does 

not mean that this variable is actually zero. Instead, it means that the parameter is unchanged 

from its baseline state. This is useful for analyzing changes in one uncertainty at a time; setting 

two parameters to zero produces a quadratic equation for the SCC. This process also gives 

meaning to the constant term 𝛼𝛼, which is equal to the social cost of carbon when all parameters 

are zero. If all parameters are equal to their baseline scenarios, then 𝛼𝛼� is the estimated baseline 

SCC for that model.  
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Results and Analysis 

The LQI model specification fits the social cost of carbon results well, with a R-squared 

value that is greater than 0.96 for all three models, though it is important to note that this result is 

expected. The output SCC relies solely on the three chosen inputs by construction, so the only 

error in the model comes from the choice in model specification. A high R-squared result shows 

that the LQI model specification is a suitable choice. This chapter will present selected results 

from the regression analyses of each integrated assessment model. The reader is encouraged to 

reference the complete regression results, which are presented in Appendix B. Nearly all 

coefficients for the model are significant at a high level, with the exception of the quadratic term 

on total factor productivity growth. Linear terms, which tend to dominate the quadratic 

components of each parameter, move in the same direction for each IAM. The following analysis 

of each uncertain parameter takes the other two as given to create a simple quadratic model with 

one independent variable. This exercise is the equivalent of analyzing one uncertain parameter 

while setting the other parameters equal to zero, an action that is economically reasonable 

because the regressors are defined as changes from the baseline value.  

In general, higher rates of total factor productivity growth lead to decreases in the social 

cost of carbon. Elevated population growth rates cause increases in the calculated SCC, and high 

values for the equilibrium climate sensitivity parameter also raise the social cost of carbon. There 

are differences in concavity across integrated assessment models. Sometimes, the effect of an 

uncertain parameter becomes stronger as it increases further. For other IAMs, the impact of the 

same parameter decreases as it grows. This can be inferred directly from the coefficients on the 
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quadratic regressors. In analyzing the magnitude of each parameter’s impacts on the SCC, this 

study weighs the extent of current uncertainty against the impact of a deviation from the 

baseline. Using the standard deviations referenced by Gillingham et al. (2018), uncertainty in the 

equilibrium climate sensitivity parameter is found to be the most influential on the social cost of 

carbon, though all three parameters impact the SCC calculation substantially.  

6.1 Outcomes from the DICE Model 

The regression for the DICE model has the best fit of the three IAMs, with an R-squared 

of 0.9745. All estimators are significant except for the squared term on total factor productivity 

growth, which is not found to be significantly different from zero. The baseline DICE model 

produces a social cost of carbon estimate of 24.51 dollars. By varying one uncertain parameter at 

a time and holding the other two constant at their predicted baseline values, the following 

estimates of the SCC are created using the DICE model:  

𝑆𝑆𝑆𝑆𝑆𝑆� 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 24.51− 6.024 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇 − 0.148 ∗ 𝑇𝑇𝑇𝑇𝑃𝑃2 

𝑆𝑆𝑆𝑆𝑆𝑆� 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 24.51 + 22.278 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 + 8.573 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃2 

𝑆𝑆𝑆𝑆𝑆𝑆� 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 24.51 + 11.629 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 + 0.494 ∗ 𝐸𝐸𝐸𝐸𝑆𝑆2 

If baseline predictions are accurate about population growth and climate sensitivity, then 

the impact of total factor productivity on the SCC is nearly linear. TFP growth that is higher than 

the baseline path by one standard deviation (1.12 percent per year) will reduce the social cost of 

carbon by 6.933 dollars, and if it is one standard deviation lower each year, the cost will increase 

by 6.561 dollars. In contrast, the population growth rate and the ECS have a positive correlation 

with the SCC estimate. Though the estimators are larger for population growth, the uncertainty is 



50 
 

not as substantial, so one standard deviation (0.22 percent) in either direction affects the SCC 

slightly less for population growth than for TFP growth. The positive sign on the squared term 

indicates that larger increases in population growth over the baseline scenario increasingly inflate 

costs. This accurately reflects the expectation that significant warming of the atmosphere can 

lead to more catastrophic climate impacts in a nonlinear fashion. The equilibrium climate 

sensitivity parameter is much more potent than both TFP growth and population growth. If the 

current estimate of ECS is too low by one standard deviation (0.843), the true SCC would be 

10.154 dollars larger than predicted by the baseline scenario. Uncertainty in equilibrium climate 

sensitivity in the DICE model, holding the other parameters constant, is the most impactful of the 

three uncertainties.  

Both estimators for the interaction terms involving total factor productivity are negative 

and significant. The simplest conclusion to draw from this is that positive changes to population 

growth and the ECS reinforce movements in TFP growth. When population growth is high, an 

increase in TFP growth drops the SCC by even more and a decrease in TFP growth increases the 

SCC further. The same applies to larger than expected climate sensitivity parameters. However, 

low values for population growth and ECS lead to a smaller impact from changes to TFP growth. 

The estimator for the population growth and climate sensitivity interaction term is positive and 

highly significant. This can be described as a synergistic relationship. If both parameters are 

greater than expected, the growth in the social cost of carbon would be higher than the combined 

impact of each being increased separately. The opposite is true for low values of climate 

sensitivity and population growth. If these two uncertain parameters move in opposite directions, 

each limits the impact of the other.  
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6.2 Outcomes from the FUND Model 

The regression for the FUND model is similarly well fit, producing an R-squared value of 

0.9616. Like the DICE model, all estimators are statistically significant except for the squared 

term on TFP growth. The FUND model has a baseline social cost of carbon that is much lower 

than the DICE model, estimating the 2020 cost to be a relatively low 2.14 dollars. By varying 

one uncertain parameter at a time and holding the other two constant at their predicted baseline 

values, the following quadratic models are fit to predict the SCC in the FUND model:  

𝑆𝑆𝑆𝑆𝑆𝑆� 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2.14 − 0.898 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇 + 0.230 ∗ 𝑇𝑇𝑇𝑇𝑃𝑃2 

𝑆𝑆𝑆𝑆𝑆𝑆� 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2.14 + 1.720 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 + 0.711 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃2 

𝑆𝑆𝑆𝑆𝑆𝑆� 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2.14 + 1.299 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 − 0.290 ∗ 𝐸𝐸𝐸𝐸𝑆𝑆2 

With the assumption that population growth and climate sensitivity are equal to their 

baseline values, and thus zero in this model, total factor productivity has a negative relationship 

with the social cost of carbon. An increase in TFP growth reduces the SCC, but due to the 

positive coefficient on the squared term, there is a diminishing marginal benefit to high levels of 

growth. Population growth impacts the FUND model in the same way that it affects the DICE 

model. The quadratic model is positively sloped near zero and increasing faster for higher rates 

of population growth. The impact of uncertainty in climate sensitivity, all else equal, is similar to 

that of uncertainty in growth of total factor productivity, but with the opposite sign. A higher 

level of ECS increases the social cost of carbon but does so at a diminishing rate due to the 

negative quadratic term. This means the FUND model estimates that a lower climate sensitivity 

causes a more dramatic change than a higher value. As the ECS increases, it raises the social cost 

of carbon less and less per unit of sensitivity increase. The FUND model is known to value the 
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agricultural benefits of high atmospheric carbon concentrations and increasing temperatures, but 

the existence of nonlinear and discontinuous damages suggests that these benefits would at some 

point be surpassed by the growing costs for high levels of ECS. The impact of potential climate 

tipping points at high levels of temperature anomaly further indicate that the model of 

equilibrium climate sensitivity should have a positive concavity. Increasing the climate 

sensitivity parameter above the baseline value should cause more extreme damages the more it is 

increased. The FUND model does not seem to do this, which may be a fault in its method of 

calculating damages. This observation is similar to other studies that have critiqued the 

calculation of damages in this integrated assessment model. It is possible that the same issues 

pointed out by Ackerman and Munitz (2012; 2016) are the root cause of the diminishing effect of 

high climate sensitivity. Even though the IAM might underestimate damages in response to high 

levels of the ECS, the uncertainties in total factor productivity and equilibrium climate sensitivity 

have the largest impacts on the FUND model’s estimation of the social cost of carbon. 

Estimators for all three interaction terms are significant and of the same sign as those in 

the DICE model results. Scenarios with higher levels of population growth and equilibrium 

climate sensitivity are reinforcing for TFP growth and make changes in this parameter more 

impactful. Low population growth and ECS lead to total factor productivity growth being less 

important in determining the SCC. These interaction estimators also mean that high levels of 

TFP growth make changes in population growth and climate sensitivity less significant, while 

low TFP growth reinforces the other two parameters. Population growth and equilibrium climate 

sensitivity once again are synergistic; their combined impact on the SCC increases when they 

both move in the same direction.  
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6.3 Outcomes from the PAGE Model 

The LQI specification is a good fit for the PAGE model as well. The regression results in 

an R-squared value of 0.9606, just slightly below the FUND model’s result. However, the 

model’s estimators are not uniformly significant. All four coefficients for terms that include total 

factor productivity are found to not be statistically different from zero at a reasonably high level. 

This is particularly the case for the estimator for the quadratic term on TFP, which is to be 

expected after being the least significant value on the previous two models. PAGE produces the 

highest baseline estimate of the social cost of carbon, generating a value of 56.47 dollars. By 

varying one uncertain parameter at a time and holding the other two constant at their predicted 

baseline values, the following representations of the SCC are created using the PAGE model: 

𝑆𝑆𝑆𝑆𝑆𝑆� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 56.47− 7.560 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇 + 0.817 ∗ 𝑇𝑇𝑇𝑇𝑃𝑃2 

𝑆𝑆𝑆𝑆𝑆𝑆� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 56.47 + 133.357 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 + 56.266 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃2 

𝑆𝑆𝑆𝑆𝑆𝑆� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 56.47 + 89.039 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 + 20.876 ∗ 𝐸𝐸𝐸𝐸𝑆𝑆2 

Total factor productivity growth clearly has smaller estimators than population growth or 

climate sensitivity, but the overall effect of the parameter still moves in the expected direction. 

Much like the FUND model, a high level of TFP growth reduces the SCC, but by smaller 

amounts as it increases more. Population growth increases the social cost of carbon when it is 

higher than expected and reduces the cost when it is lower than expected. High levels of 

population growth have a particularly potent effect on the SCC. If the population growth rate is 

one standard deviation lower each year than predicted, the social cost of carbon will be 26.615 

dollars lower. If population growth is one standard deviation larger than the baseline scenario, 

the cost increases by 32.062 dollars to 88.53. Despite the population growth having such a large 
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effect on the social cost of carbon within the PAGE model, uncertainty in the equilibrium climate 

sensitivity parameter is more impactful. The ECS is increasing around zero and concave upward 

as expected. An increase in this uncertain parameter by one standard deviation, with the other 

two parameters set to their baseline values, increases the social cost of carbon to 146.37 dollars. 

According to the PAGE model, the climate sensitivity parameter is the most important 

uncertainty by a large margin.  

All three interaction terms behave in the same fashion as in the other IAMs. Estimators 

for TFP’s interactions with population growth and climate sensitivity are both negative so high 

values for these two parameters reinforce impacts of TFP growth while low values dampen them. 

High values for TFP growth reduce the effect of population growth changes and ECS changes, 

and low total factor productivity growth increases the impact of population growth and climate 

sensitivity. It is important to note that these two interaction terms are relatively small and are not 

as significant as in other models, but they still move in the same direction. The estimated 

coefficient on the interaction term between population growth and equilibrium climate sensitivity 

is 66.055, a value that is significant and comparable to the values found in the analysis of both 

DICE and FUND models. This supports the conclusion that population growth and ECS 

reinforce each other in their impacts on the social cost of carbon, raising it dramatically when 

they are both above baseline scenarios and reducing it more quickly when they are both low.  
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6.4 Discussion 

Many of the results found in this study support expectations of how the social cost of 

carbon would behave in response to changes in the three uncertain parameters. In general, high 

rates of TFP growth lead to greater welfare in the future, welfare that can theoretically be used to 

offset costs from climate change. If society has more wealth, some of it can be spent on 

adaptation to high temperatures or rising sea levels. Some of this wealth could also potentially be 

redistributed to those who experience the highest costs, creating the potential for Pareto 

improvements in response to total factor productivity growth. In theory, high TFP growth should 

lower costs, but looking at past data may appear to indicate the opposite relationship. Rates of 

economic growth and greenhouse gas emissions growth have both grown exponentially. 

However, economic growth is not coupled with emissions growth in the long run. This is 

particularly the case because of total factor productivity growth, which is sometimes described as 

improvements in technology. Such technological advancements are why mitigating climate 

change does not require stunting economic growth. By these arguments, it should be expected 

that higher rates of TFP growth will cause the SCC to decrease, and vice versa.  

Similarly, logic would suggest that high rates of population growth increase the costs of 

climate change. Many of the densely populated regions of the planet are near coastlines, places 

that are most at risk to sea level rise and extreme weather events like hurricanes. Poorer 

populations tend to have higher fertility rates, so increased population growth might unequally 

impact these regions and groups who do not have the means for as much climate change 

adaptation. In a general sense, high rates of population growth means that there will be more 

people, and so the same effects of climate change will impact more humans. This suggests that 
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population growth will be positively associated with the social cost of carbon. The logical 

connection between costs and the equilibrium climate sensitivity parameter is even more 

straightforward. ECS represents the amount of global temperature increase for a doubling of 

carbon dioxide in the atmosphere. Given a single level of greenhouse gas emissions, this 

parameter determines how much hotter the planet gets in response. For the most part, higher 

temperatures will have a negative impact, leading to higher sea levels, increases in extreme 

weather, and many other types of climate damages. A large value for the ECS leads to a higher 

temperature, which leads to more damages. Thus, changes in climate sensitivity should be 

positively associated with the social cost of carbon.  

Across all three IAMs, the sign of the relationship between each uncertain parameter and 

the social cost of carbon was the same, matching the expected result. For population growth, 

each model also produced the same concavity. Changes in the population growth rate caused 

more extreme increases in the SCC as they moved further from the baseline population growth 

scenario, regardless of which integrated assessment model is analyzed. The concavity was more 

ambiguous for total factor productivity growth. Two models showed a positive coefficient on the 

quadratic term, while one IAM had a negative one. All three coefficients were found to not be 

statistically different from zero, so it is possible that the relationship between total factor 

productivity and the social cost of carbon is nearly linear. Otherwise, a larger sample size might 

lead to more consistent and significant results. In fitting a quadratic approximation to the effect 

of the ECS, the models were again split between a positive and negative concavity. In this case, 

however, there is strong theoretical support for the relationship to have a positive second 

derivative. As pointed out in section 6.2 and described in detail in Chapter 2, higher temperatures 

are expected to cause damages at increasing rates. There are many climate feedback systems in 
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which temperature increases cause further emissions and subsequently amplify the existing 

climate change. Scientists also understand there to be several major tipping points regarding 

climate change where passing an unknown threshold leads to a significant increase in costs, often 

irreversibly so. The DICE and PAGE models both found this to be the case in our analysis, but 

the FUND model did not.  

The dissimilarity of the FUND model from other IAMs in this case becomes one of the 

most noteworthy consequences of this study. In all likelihood, FUND’s misrepresentation of 

social cost of carbon sensitivity to the ECS parameter is a result of faulty calculations of climate 

damages. The FUND model, which has already been criticized for over-discounting and 

producing too low an estimate for the social cost of carbon (Guo et al., 2006; Weitzman, 1998), 

may not be correctly calculating damages in the first place before any discounting. The present 

study provides supporting evidence for the arguments of Ackerman and Munitz (2012; 2016), 

who found that many of the damages categories within the FUND model produced particularly 

small cost estimates. If damages in several relevant categories like sea level rise and extreme 

weather are overshadowed by benefits in the agricultural category, then increases in global 

temperature could show limited changes to the social cost of carbon where they should show 

increasing impacts. Regardless of how carbon fertilization is expected to impact the agricultural 

sector, nonlinearities in climate damages through feedbacks and tipping points should increase in 

magnitude faster than the former benefit. A negative quadratic coefficient on the equilibrium 

climate sensitivity parameter does not accurately reflect the current state of scientific knowledge 

and theory about the impacts of future climate change.  
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6.5 Application for Climate Change Research 

This study finds two major results that affect the need for future research on the 

economics of climate change. The first is a potential inaccuracy in the FUND model’s 

calculation of damages as described above. This integrated assessment model is integral to the 

study of climate change and is referenced by the IPCC and the US IWG for research on the 

social cost of carbon. Therefore, the model needs to be continually updated to reflect recent 

research and critiques in order to most accurately reflect economists’ best forecasts of future 

climate change. Specifically, further research into the IAM’s damages components could 

determine where the model can be adjusted to increase the plausibility of its calculations. A more 

accurate damages model would heed the suggestions made by Ackerman and Munitz (2012; 

2016) and be able to produce a social cost of carbon with a positive slope and concavity near the 

baseline scenario.  

In addition, our sensitivity analysis found that the equilibrium climate sensitivity 

parameter is the most important uncertain input of the three in determining the social cost of 

carbon. Variation due to uncertainty in the ECS leads to larger changes in the SCC than variation 

in the growth rates of both total factor productivity and population. Of course, any reduction in 

uncertainty will increase the accuracy of the social cost of carbon calculation. This analysis finds 

that the marginal benefit of uncertainty reduction is largest with respect to climate sensitivity. If 

researchers were to focus on this problem with more intensity, future calculations of the SCC 

would become more accurate at a faster rate. The uncertainty in total factor productivity may 

have the second-most room for improvement, but at this point it is worth clarifying that the 

uncertainty in all three chosen parameters is quite significant and relevant to the social cost of 
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carbon. Limiting the uncertainty in social cost of carbon estimates helps policymakers to focus in 

on a feasible range of true social costs upon which to create policies for climate change 

mitigation. The ultimate purpose of integrated assessment modeling is to serve policymakers and 

mitigate the impacts of future climate change, so making adjustments with this goal in mind is 

conscientious and welfare-improving for both current and future generations.   
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Conclusion 

Uncertainty is one of the most significant issues faced by economists when modeling 

climate change. There have been relatively few studies on the effects of parametric uncertainty 

on integrated assessment models. This analysis aims to build upon the work by Gillingham et al. 

(2018) to explore uncertainty and its effects on the calculation of the social cost of carbon within 

integrated assessment models. Beginning from a background description of the processes and 

impacts of climate change, this paper has demonstrated the importance of integrated assessment 

modeling as a means for quantifying the costs of climate change and comparing the implications 

of mitigation policies. Government and international policymaking organizations such as the 

IPCC rely on integrated assessment models for their climate change assessments. One of the 

major issues with IAMs is the uncertainty involved in their calculations. These models rely upon 

many simplifying assumptions which make the models bounded and solvable, but some of which 

also introduce uncertainty to the results. One of the primary goals of this paper is to seek out the 

most influential uncertainties among three major integrated assessment models, DICE, FUND, 

and PAGE.  

By creating a three-dimensional grid of calibration runs for each IAM, this study has 

modeled the impacts of total factor productivity growth, population growth, and the equilibrium 

climate sensitivity parameter. The findings include some intuitive results, such as the overall 

direction of the relationship between each parameter and the social cost of carbon. Key results 

include a critique of the FUND model and the determination of the ECS parameter as the more 

impactful uncertainty across all three IAMs. The quadratic fit to the climate sensitivity parameter 
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in FUND is found to be concave downward when there is significant theoretical support for a 

positive second derivative. The model does not seem to accurately represent nonlinearities in 

climate damages or the increased likelihood of catastrophic tipping point events given high 

temperature increases, which would indicate that a quadratic representation of the data should be 

concave upward. The DICE and PAGE models follow this expected trend. This assessment of 

the FUND model supports other critiques of the damages module in the IAM, described by 

Ackerman and Munitz (2012; 2016).  

By comparing regression results normalized by pre-determined distributions for each 

uncertain parameter, this paper shows that uncertainty in the climate sensitivity parameter has a 

larger impact per standard deviation than the other two parameters. This result lends itself to a 

call for further research. The significance of the ECS on the social cost of carbon across three 

major integrated assessment models shows how crucial understanding of this climate feature is to 

accurately assess future warming and costs. At the same time, the uncertainties in all three 

parameters are substantial in regard to the SCC, so better understanding and forecasting their true 

values will prove invaluable for future analysis of climate change. This analysis has assessed 

significant uncertainties across three major integrated assessment models used to calculate the 

social cost of carbon. In doing so, this paper has contributed to the understanding of uncertainty 

in the economics of climate change and provided groundwork for future uncertainty analyses to 

come.  



62 
 

Appendix A 
 

Definitions 

Carbon Dioxide (CO2) – A common gas which makes up the majority of greenhouse gas 

emissions. Global emissions are often calculated in terms of total CO2-equivalent emissions 

instead of each GHG separately. This is referenced in the term “social cost of carbon.” [See 

Chapter 2, Section 1]  

 

DICE Model – The Dynamic Integrated model of Climate and the Economy, an integrated 

assessment model created by William Nordhaus. DICE is known for estimating a middle-ground 

level of the social cost of carbon at $24.51 for the baseline scenario. [See Chapter 4, Section 1] 

 

Discount Rate – The rate of interest used when calculating the present value of future earnings or 

costs. The discount rate is influential in calculating the social cost of carbon, where a high 

discount rate produces a lower estimate of the SCC. [See Chapter 2, Section 2]  

 

Equilibrium Climate Sensitivity (ECS) – The increase in global temperature due to a doubling of 

carbon dioxide in the atmosphere. This is one of the key uncertain parameters in this study. [See 

Chapter 5, Section 3] 

 

Externality – A positive or negative effect of an economic decision on an uninvolved third party, 

which is not considered as part of the decision maker’s judgement. Climate change is the 

negative externality of greenhouse gas emissions because the future damages and social costs of 

climate change are not accounted for in the emissions decision. [See Chapter 2, Section 2] 

 

FUND Model – The Climate Framework for Uncertainty, Negotiation and Distribution, an 

integrated assessment model created by Richard Tol and co-developed by David Anthoff. FUND 

is known for estimating the social cost of carbon to be very low, at $2.14 in the baseline 

scenario. [See Chapter 4, Section 2] 
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Integrated Assessment Model (IAM) – Complex mathematical models that scientists and 

economists use to study the effects of climate change. They combine models of energy systems, 

economic systems, and climate science to study climate change outcomes such as the social cost 

of carbon. Examples include DICE, FUND, and PAGE. [See Chapter 3, Section 1] 

 

Intergovernmental Panel on Climate Change (IPCC) – International organization committed to 

assessing the “science of climate change, its impacts and future risks, and options for adaptation 

and mitigation.” The IPCC released its fifth assessment report in 2013. [See Chapter 2] 

 

PAGE Model – The Policy Analysis of the Greenhouse Effect, an integrated assessment model 

created by Chris Hope. PAGE is known for estimating a high value for the social cost of carbon, 

at $56.47 in the baseline scenario. [See Chapter 4, Section 3] 

 

Social Cost of Carbon (SCC) – A calculation that estimates the marginal impact of an additional 

ton of carbon dioxide emissions (or equivalent) through climate change damages. This is the 

primary outcome variable studied in this analysis. [See Chapter 2, Section 2]  

 

Stern Review – Famous report led by Sir Nicholas Stern near the end of 2006. This review used a 

very low discount rate and outcomes determined by the PAGE model. [See Chapter 4, Section 3]  

 

Tipping Point – Nonlinear, unknown, and often dramatic impacts of climate change. Examples 

include the collapse of the Greenland ice sheet, melting of arctic permafrost, and a breakdown of 

major ocean currents. [See Chapter 2, Section 2]  

 

Total Factor Productivity (TFP) – The rate at which economic productivity grows over time. 

This is one of the key uncertain parameters in this study. [See Chapter 5, Section 3]  

  



64 
 

Appendix B 
 

Full Regression Results 

The following results come from OLS regression analysis of the dataset created through 

the aforementioned calibration grid. These results are discussed in Chapter 6 but presented in full 

detail in this appendix. Each integrated assessment model is considered separately for analysis. 

Relative regression outcomes can be compared across models despite the exogenous differences 

in discount rates which cause each IAM to generate different relative values for the SCC. It is 

important to not directly compare coefficients across models, as each is starting from a different 

base-case social cost of carbon.  

In each regression, the base scenario occurs when 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑃𝑃𝑃𝑃𝑃𝑃, and 𝐸𝐸𝐸𝐸𝐸𝐸 are all set to zero. 

Then the SCC is equivalent to the constant coefficient at the bottom of each table. The three 

terms above the constant row represent the interaction terms in this analysis. Much like a single 

variable squared, the interaction terms measure the impact of two parameters multiplied together, 

searching for impacts of a parameter that differ in response to the levels of other parameters. The 

coefficient on each regressor represents the change in the social cost of carbon if that parameter 

were to increase by one, while holding all other regressors steady. Of course, this cannot easily 

be done with the variables in this regression because increasing 𝑇𝑇𝑇𝑇𝑇𝑇 would also increase 𝑇𝑇𝑇𝑇𝑃𝑃2, 

and possibly the 𝑇𝑇𝑇𝑇𝑇𝑇:𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑇𝑇𝑇𝑇𝑇𝑇:𝐸𝐸𝐸𝐸𝐸𝐸 as well. The standard error values reflect the 

uncertainty or potential error in each coefficient estimator. A regressor is most influential on the 

dependent variable when the standard error is small relative to the estimated coefficient.  

The significance of each regressor is shown through the values in the last two columns. 

The T-statistic and the values under “𝑃𝑃 > |𝑡𝑡|” are both interpreted as measures of significance in 
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opposite ways. For a regressor to be considered statistically significant, the T-statistic should be 

large, usually greater than two in magnitude. On the other hand, the P value should be as small as 

possible, preferably less than 0.05. For this analysis, the significant regressors meet these criteria 

by a large margin so that the P values are displayed as 0.000. Analysis finds that 𝑇𝑇𝑇𝑇𝑃𝑃2 is not 

significant for any of the three integrated assessment models. For the PAGE model, 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑃𝑃2, 

𝑇𝑇𝑇𝑇𝑇𝑇:𝑃𝑃𝑃𝑃𝑃𝑃, and 𝑇𝑇𝑇𝑇𝑇𝑇:𝐸𝐸𝐸𝐸𝐸𝐸 are all insignificant. All other regressors across each IAM are found to 

be statistically significant.  

 

Table 1: Regression Results for DICE Model 

Variable Coefficient Standard Error T-statistic 𝑷𝑷 > |𝒕𝒕| 
𝑻𝑻𝑻𝑻𝑻𝑻  -6.024104 0.7030274 -8.57 0.000 
𝑻𝑻𝑻𝑻𝑷𝑷𝟐𝟐  -0.1482225 1.188333 -0.12 0.901 
𝑷𝑷𝑷𝑷𝑷𝑷  22.27839 0.7030274 31.69 0.000 
𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐  8.573349 1.188333 7.21 0.000 
𝑬𝑬𝑬𝑬𝑬𝑬  11.62927 0.2343425 49.63 0.000 
𝑬𝑬𝑬𝑬𝑺𝑺𝟐𝟐  0.4935531 0.132037 3.74 0.000 
𝑻𝑻𝑻𝑻𝑻𝑻:𝑷𝑷𝑷𝑷𝑷𝑷  -5.616793 0.9942309 -5.65 0.000 
𝑻𝑻𝑻𝑻𝑻𝑻:𝑬𝑬𝑬𝑬𝑬𝑬  -2.306667 0.3314103 -6.96 0.000 
𝑷𝑷𝑷𝑷𝑷𝑷:𝑬𝑬𝑬𝑬𝑬𝑬  8.829605 0.3314103 26.64 0.000 
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  24.5054 1.142902 21.44 0.000 
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Table 2: Regression Results for FUND Model 

Variable Coefficient Standard Error T-statistic 𝑷𝑷 > |𝒕𝒕| 
𝑻𝑻𝑻𝑻𝑻𝑻  -0.8976221 0.0959679 -9.35 0.000 
𝑻𝑻𝑻𝑻𝑷𝑷𝟐𝟐  0.2304702 0.1622154 1.42 0.158 
𝑷𝑷𝑷𝑷𝑷𝑷  1.720409 0.0959679 17.93 0.000 
𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐  0.7113182 0.1622154 4.39 0.000 
𝑬𝑬𝑬𝑬𝑬𝑬  1.298618 0.0319893 40.60 0.000 
𝑬𝑬𝑬𝑬𝑺𝑺𝟐𝟐  -0.290293 0.0180239 -16.11 0.000 
𝑻𝑻𝑻𝑻𝑻𝑻:𝑷𝑷𝑷𝑷𝑷𝑷  -0.8625371 0.1357192 -6.36 0.000 
𝑻𝑻𝑻𝑻𝑻𝑻:𝑬𝑬𝑬𝑬𝑬𝑬  -0.5592701 0.0452397 -12.36 0.000 
𝑷𝑷𝑷𝑷𝑷𝑷:𝑬𝑬𝑬𝑬𝑬𝑬  0.8444657 0.0452397 18.67 0.000 
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  2.144765 0.1560138 13.75 0.000 

 

 

Table 3: Regression Results for PAGE Model 

Variable Coefficient Standard Error T-statistic 𝑷𝑷 > |𝒕𝒕| 
𝑻𝑻𝑻𝑻𝑻𝑻  -7.559675 6.602651 -1.14 0.255 
𝑻𝑻𝑻𝑻𝑷𝑷𝟐𝟐  0.8173658 11.16052 0.07 0.942 
𝑷𝑷𝑷𝑷𝑷𝑷  133.3574 6.602651 20.20 0.000 
𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐  56.26644 11.16052 5.04 0.000 
𝑬𝑬𝑬𝑬𝑬𝑬  89.03861 2.200884 40.46 0.000 
𝑬𝑬𝑬𝑬𝑺𝑺𝟐𝟐  20.87633 1.240057 16.83 0.000 
𝑻𝑻𝑻𝑻𝑻𝑻:𝑷𝑷𝑷𝑷𝑷𝑷  -8.182604 9.337558 -0.88 0.383 
𝑻𝑻𝑻𝑻𝑻𝑻:𝑬𝑬𝑬𝑬𝑬𝑬  -3.718723 3.112519 -1.19 0.235 
𝑷𝑷𝑷𝑷𝑷𝑷:𝑬𝑬𝑬𝑬𝑬𝑬  66.05533 3.112519 21.22 0.000 
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  56.47268 10.73384 5.26 0.000 
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