
THE PENNSYLVANIA STATE UNIVERSITY  
SCHREYER HONORS COLLEGE  

 
 
 

DEPARTMENT OF MECHANICAL ENGINEERING 
 
 
 

Determining Human Performance Given Robot-Provided Explanations Through Task-Based 
Interaction 

 
 

SYDNEY HANNAH 
SPRING 2021 

 
 

A thesis  
submitted in partial fulfillment 

of the requirements  
for baccalaureate degrees 

in Mechanical Engineering and International Politics 
with honors in Mechanical Engineering  

 
 
 

Reviewed and approved* by the following:  
 

Alan Wagner 
Assistant Professor of Aerospace Engineering 

Thesis Supervisor  
 

Bo Cheng 
Associate Professor of Mechanical Engineering 

Honors Adviser  
 

Katie Fitzsimons 
Assistant Professor of Mechanical Engineering 

Faculty Reader 
 

* Electronic approvals are on file. 



i 
 

ABSTRACT 
 

As the applications and abilities of robots in society continue to progress, a thorough 

understanding of a robot’s interaction with humans is critical. In practice, human-robot teams 

will need to communicate effectively in order to accomplish tasks and larger goals. Task-based 

goals that involve decision-making from one entity often require explanations to justify actions 

or ensure understanding among team members. This study investigates human performance 

based on the explanations provided by a robot that are intended to describe how the robot sorted 

a series of blocks and based on participant-created explanations. In this study, explanation is 

defined as communicating with the intention of describing information, which is in this case how 

a series of blocks was sorted into a pattern. Participants were guided by a robot in a simulation in 

which they were asked to identify the correct pattern based off the robot-provided explanation 

and rate quality of the robot’s explanation in order to analyze participant performance. 

Participants were also asked to create their own pattern of blocks and explain it to the robot to 

measure matching of communication style.  

Our findings indicate that participants were able to consistently distinguish between 

good, medium, and poor explanations, and rated the quality of explanations in the expected 

order. Surprisingly, we find that participants correctly identified patterns explained by the robot 

when the type of explanation provided was poor, and misidentify the pattern the most often when 

the type of explanation provided was of medium quality, which can be explained in part by the 

number of factors by which the patterns were sorted. Such findings cannot explicitly determine 

the relationship between human performance and quality of explanation, but still provide 

valuable insight into human performance in task-based interactions. Additionally, participant-
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generated patterns and explanations offer insight on the convergence of linguistic and 

communication style and present ample opportunities for future work in human-robot 

communication on a psychological level. The findings from this experiment present important 

considerations for future research and utilization of robots in applied settings in which 

comprehensible explanation is pertinent.  
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Chapter 1  
 

Introduction 

Explanation is a fundamental aspect of communication. Explanation allows for facilitated 

understanding of a topic, accomplishment of task-based goals, and deeper insight into a person. 

As application and abilities of robots continue to progress, human-robot interaction and 

communication in everyday life will become more commonplace. Robot utilization will 

increasingly involve decision-making or explanation capabilities that will have a direct impact on 

a person. Even more important than a robot’s ability to explain is a person’s ability to apply the 

information contained within the robot’s explanation such as through completion of a task. 

Understanding how a person uses robot-provided explanations to perform tasks or answer related 

questions is valuable and provides guidance as to how to design robots in the future to maximize 

human performance of tasks. Such designs can vastly expand the applications of robots in 

various industries such as the medical or defense industries. Existent research has studied aspects 

of human-robot explanation including trust, adaptive behavior, and common ground [1]–[3]. This 

study aims to add to the literature by studying human performance given robot-provided 

explanations. This study also directs attention to the possibility of convergence or matching of 

communication styles between humans and robots, a phenomenon that is common in human-

human communication.  

This study first analyzes related works in the field to provide context for the experiment. 

The design and methods of the experiment are then expounded upon, explaining the specifics of 
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the interactive simulation created to test a series of hypotheses. These hypotheses were produced 

to address human performance given robot-provided explanations:  

H1: Participants will rate the level of the robot’s explanation higher for better patterns. 

The notion behind this hypothesis is that explanations that are categorized by the 

researchers as better will also be categorized by participants as higher quality 

explanations. The accuracy of this hypothesis shapes the interpretation of the 

participants’ responses to the rest of the experiment.  

H2: Participants will be more likely to guess the correct pattern the better the 

explanation is. Quality of explanations were categorized with respect to the amount and 

quality of information contained within them, and it would track that a better explanation 

provided by the robot would result in higher performance in pattern identification among 

participants.  

H3A: Participants will match their communication style with the robot when explaining 

their pattern to the robot. This hypothesis has the implication that participants will treat 

communication with and explaining something to a robot as similar or equivalent to 

communicating with or explaining something to another human.  

H3B: Participants will prefer to explain their pattern in such a way that it matches the 

best explanation level the robot provided. Such a response would mean that participants 

are able to analyze the various levels of explanations provided by the robot and explain 

their own pattern matching the highest quality of explanation the robot used to explain to 

them.  
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In the simulation, a robot led the participant through a series of rooms as it presented pre-

sorted patterns of blocks and explained the patterns to the participant. The participant was asked 

to rate the quality of the robot’s explanations, to identify the correct pattern based off the robot’s 

provided explanation, and to create their own pattern and explain it to the robot following a 

series of iterations of robot-provided explanations. The results from the experiment are then 

described and discussed in greater detail. Main findings from the experiment reveal that 

participants were able to consistently rate the quality of different levels of explanations, and that 

participants performance was not higher the better the robot-provided explanation was. An 

additional inconsistent component, the number of factors used to sort the pattern, which could 

include color, letter, size, or a combination of these factors, prevented determination of a 

connection between quality of explanation and participant performance. Participant generated 

explanations generally agreed with the robot-provided explanations, laying the groundwork for 

future experiments to study turn-taking and explanation-providing between a robot and 

participants over longer intervals in order to determine convergence over time. Applications of 

robots designed to maximize human performance are then discussed. Finally, future work and 

suggestions are outlined.  

 

 

 

  



4 
Chapter 2  

 
Literature Review 

Research by Wang et al. [4] focused on human to human interaction in a virtual setting 

and brought to light critical factors to consider when two entities, whether they are both human 

or a human and a robot, are conversing. In the study, participants either communicated just 

verbally, verbally and with haptics, or just with haptics. Haptics is a form of communication 

based on the sense of touch, just as speaking verbally is a form of communication based on the 

sense of sound. Results found that participants preferred to communicate verbally and that using 

just haptics to communicate will not be nearly as efficient between participants in a conversation 

where any information is being shared. In the scenario where both verbal communication and 

haptics were available to use during the interaction, verbal communication was heavily preferred 

over haptics. Such findings are imperative because they identify a more efficient and preferred 

mode of communication, task management, and explanation. Studies surrounding robots that 

have the ability to both speak and use haptics when communicating with a human can apply this 

knowledge to enhance interaction between a human and a robot to make it as fluid as possible. 

Niederhoffer and Pennebaker [5] introduced a widely used method for analyzing 

communication known as linguistic style matching through a software package Pennebaker 

created known as Linguistic Inquiry and Word Count. This method analyzes similar utilization 

rates of certain words and parts of speech in conversation; it also produces scores that 

summarizes the speakers’ attitudes and self-assurance. They found that individuals in 

conversation converged in linguistic style as iterations or time engaged increased. An experiment 

that studied communication accommodation in instant messaging conversation between strangers 

and between friends found a convergence in message length and duration, but found less 
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convergence between strangers [6]. Studies such as these initially created for human to human 

interaction are critical to consider in human-robot interaction if the goal is to have a robot 

simulate the role of a human as closely as possible. Notably when it comes to verbal 

communication, convergence or divergence in speech acts as a way of interpreting what role an 

entity, either a robot or human, takes in conversation. Assessing utilization of certain types of 

words or attitudes while conversing also provides invaluable qualitative information to better 

understand how a human feels during the interaction. It is also imperative to keep in mind that 

while patterns can be determined from interactions, human explanation and understanding is 

subjective. As Keil [7] found, preferred types of explanations are individual and often based on 

preference. In essence, individuals may understand certain explanations from another better if 

they prefer that type of explanation; conversely, they may have a more difficult time 

understanding a conversation partner if the partner chooses to respond in a manner that is not the 

other individual’s preferred method of explanation.  

Movement and Understanding in Human-Robot Interaction 

Following the study of verbal communication and adaptation in conversation between 

humans and artificial intelligence, studies surrounding movements and characteristics of robots 

during interaction became prominent. In a study conducted by Yamazaki et al. [8], a robot with a 

female voice guided the participant through a poster with information and shared facts about the 

subject being discussed. The robot’s head moved during breaks in the conversation toward and 

away from the poster to which it referred. The study found that when the robot turned its head 

during a logical transition or break in the conversation, the participant was more likely to also 
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turn their head in coordination with the robot. In order to determine how the robot should move 

its head during conversation and while speaking, the researchers first studied human to human 

conversation. Head nods, gazes, and gestures helped determine the appropriate movements the 

robot should make during its interaction with a human. It is critical to study humans interacting 

with other humans because these movements can be applied to a robot, simulating similar body 

movement to humans in conversation. Replicating movements humans make during human to 

human interaction may help promote more fluid and effective conversations between robots and 

humans [9], [10].  

Robot-Provided Explanation in Human-Robot Interaction 

Recent work in the field of human-robot interaction reflects a shift in the role artificial 

intelligence plays as learning improves and robotics become more capable to perform a variety 

of tasks. An increase in robotic abilities expands the usage of robotics and industries in which 

robots will be implemented alongside humans to collaborate and perform tasks. Human 

performance based on robotic action and decision-making is a critical step in the field, the 

understanding of which will enhance robotic capabilities and applications in situations involving 

human contact. In a study conducted by Nikolaidis et al. [1], a robot and human attempted to 

move a table through a doorway in order to test human-robot teamwork and human response to 

robot instruction and suggestion. The findings proved that when it came to adapting behavior, 

individuals responded more positively when robots communicated with action statements and 

factual information rather than what is perceived by a human as reasoning or beliefs. Statements 
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uttered by the robot that humans recognized as self-doubt such as “I think” provided decreased 

trust levels of the robot regardless of its accuracy.  

Studies have also concentrated on the human perception that robots have the capability to 

act with intention and explain that intention in ways that are comprehensible. Graaf and Malle 

[11] highlighted this need for robotic explanation capabilities to match those of humans in order 

to elevate human-robot interaction. Pulling from human psychology and human-robot 

interaction, the study dissected human tendencies to explain the conversation, their thought 

process, and their speech based on the context of the scenario. Robotic ability to follow this 

thought process and to apply it in conversation with a human enhances the interaction and allows 

the human to perceive the robot as a true participant. The ability to view a robot as an active 

participant with similar thought processes can have a positive impact on overall human 

perception of robots, but studies require a more sophisticated way of analyzing human perception 

of robots before and after the robot interaction in order to empirically understand these effects.  

Nomura et al. [12] addressed the need for an applicable measurement scale with the 

creation of the Negative Attitudes Toward Robots Scale (NARS) and the Robot Anxiety Scale 

(RAS). Emotions play a role in human communication with others and will continue to play a 

role in communication with another entity, even if that entity is a robot in place of a human. The 

NARS and RAS tools represented the participant’s anxiety and overall uneasiness while 

interacting and communicating with a robot, choosing to focus on negative feelings toward 

robots rather than neutral or positive feelings. Applying a form of these scales to a study both 

before and after human-robot interaction is useful to assess prior participant assumptions and 

feelings about robots and the information gathered from these scales can have broad impacts on 

analysis of the study. Furthermore, these scales have aided the design of future iterations of 
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robots in experiments in order to decrease anxiety and willingness to communicate. A primary 

goal in human-robot interaction is to cultivate conversation equivalent to conversation held 

human to human. The work just discussed made strides in this area and allowed for focus on the 

more minute aspects of conversation that would enhance human-robot conversation, specifically 

creating a sense of common ground between the participants.  

Kiesler [13] explicates how shared understanding and knowledge produce more efficient 

conversations. Humans tend to assign human attributes and characteristics to robots and will 

therefore respond similarly to a robot as they would to a human in conversation the more they 

understand the robot and its knowledge. Combining tools such as RAS with the theory posited by 

Kiesler will allow for the design of robots that have the ability to tailor how it presents itself to 

the human with which it interacts in order to create positive, efficient, and productive 

conversations.  

Other studies in common ground discovered that humans use fewer words to explain 

topics of shared knowledge or background with the other conversation participant [2]. Powers et 

al. took this study a step farther into human-robot interaction by additionally assessing the types 

of responses of the participants prompted by the robot. To produce a longer and more thorough 

explanation from the participant, the robot appeared to have less understanding about the topic at 

hand, eliminating common ground from the conversation. An understanding of these human 

responses to robot queues provides a foundation to build upon in giving and receiving 

explanations between a robot and human in conversation.  

 Maaike et al. [14] expounded upon the preferences of explanation during conversation 

between a human and robot. The study, conducted specifically for the use of enhancing 

emergency preparedness training systems, asked trainers and instructors to measure the 
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usefulness of explanations provided by the AI system tasked with training them on a subject. By 

including instructors in this study, the effectiveness of the explanations provided by the system 

could be tailored to the specific task at hand, while also limiting the scope of the findings to 

situations that are similar to a teaching-based interaction. The instructors were first faced with a 

scenario and asked to give their own explanation that they would give to a trainee. After this, the 

instructors were asked to select the best explanation out of a bank of explanations provided by 

the AI system. The method applied here not only betters the understanding of what types of 

explanations make the most sense for the emergency scenario, but also builds the bank of useful 

explanations that the AI can use, matching what actual instructors would use to explain to a 

trainee. The study found that being detailed and intentional in explanations is seen by instructors 

as favorable and indicates that the other participant in conversation will be more responsive to 

these types of explanations.  

 The quality of explanations often impacts trust. Wang et al. [3] analyzed the relationship 

between different types of explanation and trust. In the study, the participant and a robot were 

assigned as a team to check the safety of buildings in a city. Robots assigned to participants 

could assess the safety at either a high or low accuracy and not all the robots had the ability to 

explain the assessment. The robot could either explain using statistics, such as a confidence 

percentage, or observations. In this study, trust was measured by observing whether the 

participant listened to the robot. The study found that the participants trusted the robot more 

when the robot provided an explanation, even when it was less accurate. However, different 

types of explanations did not change the trust level of the participants. Participants reported that 

they understood the decision-making process of the robot even when only statistics were given 

and no observations were given. Another study developed a framework of trust based on 
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extensive studies into scenario-based trustworthiness and found that humans over-trusted robots 

even after mistakes were made [15]. This study directed attention to future research that explores 

more of the human dimension of human-robot trust and interaction, as this can provide critical 

insight into the field and advance future studies.  

Other studies have explored methods for creating explanations in unfamiliar scenarios. 

Hanheide et al. [16] created and tested a method to explain failure of a task up to seven different 

ways. The robot explained task failure by combining its baseline knowledge and situation 

specific information. Their findings determined that the robot’s explanation must include specific 

references to the individual scenario in order to properly explain the failure. This experiment did 

not evaluate the participants’ understanding of the derived explanations. Determining how a 

robot should explain a task or failure to a human is critical, but just as critical is a human’s 

ability to understand the explanation the robot is providing.  
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Chapter 3  

 
Methods 

Simulation Setup 

The Unity simulation environment was used for these experiments. Unity allows 

developers to create simulations that can be experienced through web browsers. Unity was used 

to create a first-person simulation in which the participant could interact with a robot, follow a 

robot through rooms, answer questions, and create a unique pattern within the simulation. The 

necessary robot behaviors in the simulation were first defined, depicted in Table 1. The robot 

needed to be able to guide participants through the simulation and present patterns while 

providing explanations as to how the patterns were sorted. The final experimental design 

consisted of a series of rooms through which the robot guided each participant.  

Table 1. Robot Behaviors 

Required Behavior Simulation Design 
The robot must walk in fluid motion.  The robot was animated to walk as a human 

walks.  
The robot must be aware of the objects in the 
simulation and not run into or through them.  

The robot was programmed to have mass and 
navigate around objects in the simulation.  

The robot must only walk to the next portion 
of the experiment when the participant is 
ready.  

A series of interactive buttons and surveys 
appeared on the screen to guide the 
participant and indicated to the robot when it 
was appropriate to guide the participant into 
the next room.  

 

 Selection of the robot was influenced by the desire to make the simulation appear realistic 

and not overly similar to a video game. This led to the selection of the Unity Asset called Kyle 

the robot, pictured in Figure 2.  
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Figure 1. Kyle the Robot 
The robot could be animated to walk, run, turn, or stand idle in organic, human-like 

motions, which encompassed the main requirements of the robot for this experiment. Available 

animations allowed the robot to guide participants to patterns, walk and stop when it arrived at 

its destinations, and interact with participants by facing them when it spoke via the chat function. 

Another important factor to consider during the design of the robot was the robot’s linguistic 

style and disposition. Due to its functionality as a sorting and explanation-providing robot, the 

robot spoke in a formal tone. To maintain a formal syntax throughout the entirety of the 

experiment, the robot did not communicate using contractions. The robot’s communication did 

not include extraneous information or conversational topics; its role was limited to guiding 

participants through the rooms and explaining its patterns. 

Participants were recruited using Amazon Mechanical Turk and the entirety of the 

experiment was completed by participants through this platform. Amazon Mechanical Turk is a 

website in which researchers and businesses outsource tasks to be completed remotely by site-

approved workers. A total of 27 participants completed this 10 minute experiment and were 
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compensated $3.00. Participants for the experiment had an average age between 25-34 and were 

85.2% male.  

 

Figure 2. Instruction Screen 

 

Figure 3. Introduction and Practice Room 
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The simulation began with an instruction screen (Figure 2) followed by the robot 

introducing itself and introducing the participant to the environment. The participant was then 

given an opportunity to practice navigating through the environment in a practice room with 

visible directions indicating how to use keys to move in the simulation (Figure 3). Once the 

participant was comfortable navigating within the simulation, the robot guided the participant to 

the first pattern in a new room. In every room, the robot presented the participant with a set of 

blocks that were sorted using a predetermined criteria. The robot then attempted to explain the 

criteria used to sort the pattern. The robot used a chat feature on the screen to communicate with 

the participant. The participant was then prompted to provide feedback in the form of a survey 

asking the participant to rate the quality of the robot’s explanation using a five point Likert scale 

from very poor to excellent. Additionally, the participants were presented with a list of possible 

patterns to choose from and prompted to select the accurate pattern. The robot’s explanation was 

provided to influence the participant’s guess related to the correct pattern (Figure 4). This 

selection measured the participants’ performance in pattern identification given the robot’s 

explanations.  
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Figure 4. Survey Presented to Participants Following the Viewing of the Pattern and 
Robot's Explanation 

 

Figure 5. Featured Pattern of Blocks Utilized in the Experiment, Sorted by Size 

The robot guided participants through six different rooms with six different patterns 

created using blocks (Figure 5). Patterns were selected using blocks based on color, size, and 

letter, and could be either a single factor pattern, such as being sorted by color or in alphabetical 

order, or a two factor pattern, such as sorting by both color and letter. In order to determine 
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whether participants could distinguish between different qualities of explanation, a guideline was 

established for the creation of good, medium, and poor explanations. These guidelines were 

based on the idea that the more information the explanation provided, the better the explanation 

was. Using this logic, a good explanation provided complete information about the pattern; if the 

pattern was sorted by color and letter, the explanation would be, “I sorted by color and letter”. A 

medium level explanation provided some information about how the pattern was sorted, but not 

complete information. An explanation of this type either gave partial information about how the 

blocks were sorted by explaining one of the sorting factors but not both, or provided information 

about how the blocks were not sorted. In other words, a medium explanation for a pattern sorted 

by color and letter could be, “One of the attributes I sorted by was color”, or, “I did not sort by 

size”. Finally, a poor explanation provided no pertinent information about the pattern, but instead 

shared an irrelevant opinion or fact. For example, a poor explanation for a pattern sorted by letter 

would be, “Q is my least favorite letter”, or, “Q is the least used letter in the English alphabet”. 

This logic was applied to the six patterns used in the experiment, including two patterns for each 

level of explanation (see Table 5 in Discussion). The patterns and the level of explanation the 

robot used to explain the patterns were randomly selected. The order in which the patterns were 

presented were also randomly generated, and every participant encountered the same patterns 

and explanations in the same order.  
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Figure 6. Participant View of Available Blocks for Pattern Creation 

 

Figure 7. Example of a Drag-and-Drop Pattern 
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Figure 8. Chat Feature for Participants to Explain Pattern to the Robot 

After the robot led the participants through the six rooms containing the presorted 

patterns, the robot led the participants into a final room with a bank of blocks of various sizes, 

colors, and letters. Participants were asked to create their own pattern using a drag and drop 

technique and then explain it to the robot using a chat feature (Figure 6, 7, 8). The data collected 

from this final room provided information about possibility of an explanatory convergence 

between the human participants and the robot. Participant-provided explanations were compared 

with the six robot-provided explanations and analyzed using the Linguistic Inquiry and Word 

Count software, developed by Pennebaker [5]. The software package analyzes text inputs and 

outputs word count, part of speech, categories of conversation touched upon, and four overall 

output variables that provide data on linguistic and communication style of the speaker. In this 

case, participant explanation inputs were run through the software and averaged, as were the 

robot’s explanations. The four main variables produced by the Linguistic Inquiry and Word 
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Count software are analytical thinking, clout, authenticity, and emotional tone. Analytical 

thinking is a dimension that interprets the speaker’s level of formality and logical thinking. Clout 

quantifies the confidence or leadership status of the speaker, and should not be confused with the 

power dynamic of the speaker in conversation. Authenticity reflects the speaker’s tendency to 

communicate in a more humble, personal manner, and emotional tone conveys the speaker’s 

positive or negative tone in communication. These four variables provide insight as to the 

participants’ demeanor and attitude during the experiment and whether participants displayed 

any convergence or similarity in their method of generating explanations. Such an analysis 

provides a baseline for understanding how humans may convergence with a robot’s linguistic 

style and opens the door to future studies of linguistic accommodation.  

Participant-provided explanations were analyzed and labeled as good, medium, or poor 

using the same criteria used for the robot’s explanations. Participant’s patterns were also divided 

into single factor and two factor patterns. Distinguishable patterns were identified according to 

the factors of the pattern and matched back to the explanations provided by the robot and the 

patterns the robot featured. Analyzing participants’ explanations and chosen patterns allows for a 

better understanding of participant’s comprehension, retention, and decision-making regarding 

how to best communicate a pattern to the robot so that the robot will understand the pattern. The 

experiment concluded with impressions of the robot using five point Likert scales on likeability 

and intelligence followed by demographic information.  
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Chapter 4  

 
Results 

Ratings of Robot-Provided Explanation 

Participants followed the robot through each room and received six explanations from the 

robot describing six different patterns and rated the quality of the robot-provided explanations 

using a five point Likert scale. As time went on, participants were better at distinguishing 

between different levels of explanations. The results of the ratings of the six explanations are 

summarized in Table 2.  

Table 2. Five Point Liker Scale Ratings of Explanations Presented by the Robot 

Explanation 
 95% Confidence Interval 

Mean Std. Error Lower Bound Upper Bound 
1 4.370 .186 3.988 4.753 
2 3.444 .284 2.860 4.028 
3 3.000 .239 2.509 3.491 
4 3.815 .207 3.389 4.240 
5 2.963 .331 2.282 3.644 
6 4.630 .121 4.381 4.879 

 

Grouping the explanation ratings for each level of explanation, there is a significant 

difference in means of good explanations (M= 4.500, SD= .111), medium explanations (M= 

3.407, SD= .166), and poor explanations (M= 3.204, SD= .219), F(1.652, 1.449)= 21.927, 

p<.001, determined through a repeated measures ANOVA test. An ad hoc paired t-test applying 

the Bonferroni correction reveal that there is a significant mean difference between good and 

medium explanations, t(27)= 6.076, p<.001, and good and poor explanations t(27)= 5.041, 

p<.001, but not between medium and poor explanations, t(27)= 1.097, p= 0.833.  
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Table 3. Pairwise Comparisons of Levels of Explanation 

(I) Explanation (J) Explanation Mean Difference (I – J) t Significance 
1 2 1.093* 6.076 .000 

3 1.296* 5.041 .000 
2 
 

1 -1.093* 6.076 .000 
3 .204 1.097 .833 

3 1 -1.296* 5.041 .000 
2 -.204 1.097 .833 

1= good explanation, 2= medium explanation, 3= poor explanation 

 

 

Figure 9. Participant Ratings of Explanations from 1 (very poor) to 5 (excellent) 

Pattern Identification 

In addition to rating the robot’s explanations, participants were asked to select the correct 

pattern based off of the robot’s given explanation and the assortment of blocks presented. Such a 

selection provides a means of measuring the participants’ performance in identifying the correct 

pattern given the robot’s explanation. Unexpectedly, participants were able to most accurately 

select the correct pattern when the robot-provided explanation was poor and least accurately 
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select the correct pattern when the robot provided medium level explanations, χ2 (2) = 29.400, 

p<.001.  

 

Figure 10. Correct Pattern Identification by Explanation Level 

Throughout the experiment, the robot sorted four single factor and two two-factor 

patterns. A single factor pattern has only one component to it, whereas a two-factor pattern has 

two components to it that a participant must accurately identify. The number of factors in the 

pattern significantly impacted the pattern identification accuracy, t(161)= 2.279, p= .024. The 

findings are presented in Table 5.  

Table 4. Participant Identification of Patterns 

 No Yes Total 
 

Count 

% within 
Type of 

Explanation Count 

% within 
Type of 

Explanation Count 

% within 
Type of 

Explanation 
Type of 
Explanation 

Good 18 33.3% 36 66.7% 54 100.0% 
Medium 30 74.1% 24 25.9% 54 100.0% 
Poor 14 25.9% 40 74.1% 54 100.0% 

Total 72 38.3% 90 55.6% 162 100.0% 
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Communication and Linguistic Style  

A total of 23 participants completed the pattern creation and participant-generated 

explanation portion of the experiment, with the average age between 25-34 and 87.0% male. 

Participant-provided explanations (M= 7.22) were approximately the equivalent length to the 

robot-provided explanations (M= 7.50), resulting in a percent difference of 3.80%. According to 

analytical thinking, participant explanations (74.63 out of 100) were rated as very high, and the 

robot-provided explanations were also rated as high (58.43 out of 100). Participant explanations 

(50.49 out of 100) were rated as relatively low in clout, while the robot-provided explanations 

were rated even lower in clout (28.00 out of 100). In terms of authenticity, participant 

explanations (29.60 out of 100) were rated as very low, as were the robot-provided explanations 

(19.80 out of 100). In emotional tone, participants received a score of 37.42, while the robot 

received a score of 50.18, neither ranking highly for a positive tone while providing 

explanations. Participant explanations (37.42 out of 100) were rated as low for emotional tone, 

while the robot-provided explanations (50.18 out of 100) were rated as low but higher than the 

participant explanations. Of the participants’ explanations, 69.57% of the explanations were 

good, 21.74% were medium, and 8.70% were poor (Figure 11). 60.87% of the participant-

provided explanations explained single factor patterns, 30.43% were sorted by color, 21.74% 

were sorted by letter, and 8.70% were sorted by size. 21.75% of the patterns were sorted using 

two factors, with 8.70% sorted by letter and size, 8.70% sorted by letter and color, and 4.35% 

sorted by color and size. Selected pattern-types are summarized in Figure 12.  
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Figure 11. Participant Provided Explanations 

 

 

Figure 12. Participant-Created Patterns 
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Chapter 5  
 

Discussion 

Ratings of Robot-Provided Explanation 

We found that participants rated the three levels of explanation differently. Good 

explanations were rated the highest (see Figure 9), followed by medium explanations, and poor 

explanations were rated the lowest. This supports H1, that the better the explanation, the higher 

the participants rated explanation provided by the robot. We also find that the levels of 

explanations match the ratings given by the participants, indicating that participants are in 

agreement with the level of explanations determined by the research team to be provided by the 

robot. Had the participants rated the three levels of explanations as of similar quality or of 

quality that did not reflect our predetermined levels, it would have been impossible to interpret 

the validity of the comprehension given a flawed rating of explanation quality. Furthermore, 

these results convey that participants were cognizant of quality of the explanations provided to 

them and could thus use the information contained in that explanation to identify the correct 

pattern.  

Pattern Identification 

We now explore how participants’ used the explanations to evaluate the patterns. Our 

data here does not support H2, which stated that participants will be more likely to identify the 

correct pattern the better the explanation is. We find that participants better explanations do not 
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lead to more accurate pattern guessing. Surprisingly, poor explanations resulted in the most 

accurate pattern identification. A poor explanation contained no hints or direct information 

related to the actual pattern, and provided irrelevant information. We therefore examined how 

the number of factors contained in the patterns impacted the correct identification of the patterns 

when poor explanations were provided. We found that that there was a significant difference 

between correct identification and number of factors in the pattern. It seems that the more factors 

contained within the pattern, the lower the pattern identification accuracy. As presented in Table 

4, there were zero two-factor patterns in the poor explanation condition, aligning with this 

finding. The patterns were randomly generated and predetermined for the experiment. Hence, 

there was no assurance that each level of explanation would have the same number of single and 

two-factor patterns. The two poor explanations were both single factor patterns and, while they 

were poor explanations, were easy enough to determine the correct pattern despite the poor 

explanations provided by the robot. The good explanation and medium explanation conditions, 

however, had one single factor and one two-factor pattern, but the correct identification of the 

pattern was significantly higher for the good explanations. The good explanations condition 

provided explicit statements of the pattern containing complete information, while the medium 

patterns contained only partial information about the pattern. Despite having the same 

breakdown of single and two-factor patterns, the information in the good explanations condition 

allows for a person to more accurately identify the pattern than the partial information included 

in the medium explanations.  
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Table 5. Robot-Provided Explanations 

Room Explanation Level of Explanation Number of Factors 
in Pattern 

1 
I am sorting by size 

and letter. Good 2 

2 
My favorite color is 

red. Poor 1 

3 
I do not like to sort by 

color. Medium 1 

4 
One of the attributes I 
am sorting by is size. Medium 2 

5 

E is the most 
commonly used letter 

in the English 
alphabet. Poor 1 

6 I am sorting by size. Good 1 
 

 Preferred explanation types are unique and frequently preference-based [7]. Providing 

any explanation at all as to how the patterns were sorted, whether grounded in factual statements 

or observations, builds common ground between the robot and participant and allows for 

increased trust and engagement with the robot [3], [13].  These results reveal that for 

explanations in which partial or incomplete information is given, a person’s understanding of the 

pattern is lower. However, the inconsistency in number of single factor and two-factor patterns 

used for each explanation level is evidence of a flaw in the experiment and at this time a 

connection between explanation quality and participant performance cannot be determined. To 

amend this, the experiment should be rerun being sure to include one single-factor and one two-



28 
factor pattern for each type of explanation. Doing so would allow for a more complete 

understanding of the relationship between explanation quality and performance of participants.  

Communication and Linguistic Style 

The final part of the experiment asked participants to generate explanations. This portion 

of the experiment was meant to provide insight into the possible matching of communication 

style between the robot and participants at the end of the experiment. The average word counts 

of explanations from both the participants and the robot were very similar, possibly conveying 

that participants felt they were able to adequately explain their pattern with the same number of 

words that the robot used. It may be the case that such a response indicates a convergence in 

communication style based on the type of information needed to be shared. In terms of analytical 

thinking, participants scored relatively similarly to the robot, potentially indicating that 

participants matched the robot in formality. By providing various explanations and giving a 

person the chance to familiarize themselves with the communication style of the robot, it may be 

the case that the person identified (presumably subconsciously) the robot’s preferred style of 

communication and then applied the style to their communication with the robot when asked to 

generate an explanation of the robot.   

Emotional tone scores for both the robot and the participants can be categorized as not 

outwardly positive, which was not surprising due to the fact that the communication between the 

robot and participant was an explanation about a pattern of blocks. Similarly to emotional tone, 

the robot and participants received a low score in authenticity. Neither were vulnerable nor 

revealed personal information during communication, likely once again reflecting the task of 
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explaining a pattern of blocks. In this case, vulnerability is not necessary to explain a pattern, but 

rather facts and informational statements should be used, aligning with the higher analytical 

thinking scores. Among all of the linguistic style indicators, clout was the category that resulted 

in the largest difference in scores between the robot and participants. Participants scored much 

higher in this category, suggesting that the person portrays more confidence when explaining. 

Additionally, this higher score may imply that the person prefers to take on a more dominant role 

when communicating with a robot.  

Across linguistic categories, there was generally a level of matching in communication 

styles between the robot and participants. This supports H3A, as participants generally matched 

communication styles while explaining their pattern to the robot. However, convergence over 

time could not be determined due to the limited participant inputs and subsequent data available. 

Future work studying longer conversations and increased turn taking would more definitively 

determine convergence in a person’s communication style based off the robot’s speech. For 

instance, allowing the robot and the participant to take turns explaining patterns rather than 

having the robot present all of its patterns first would provide more data to find significant 

results.  

The majority of participants explained their patterns using good explanations, indicating a 

preference for complete information when explaining to an unfamiliar robot. This finding 

supports H3B, meaning that participants preferred to explain their pattern in such a way that it 

matched the best explanation level the robot provided. Interestingly, more participants explained 

their patterns with a medium explanation than a poor explanation, which does not match the 

comprehension of participants during the pattern identification portion of the experiment. 

However, these results do agree with the participants’ ratings of the robot-provided explanations. 
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This indicates that there may be inconsistencies in how a person prefers to give an explanation 

and how a person prefers to receive an explanation. Participants’ pattern selection and 

explanation to the robot may reveal insight into their own preferences when conversing with a 

robot. Participants preferred to explain single-factor patterns, specifically patterns sorted by color 

and patterns sorted by letter, conveying a preference for explaining simpler patterns. The person 

may believe that communicating with a new individual, in this case a robot, warrants a simpler 

pattern with a more information-based explanation in order to facilitate the greatest 

understanding. Future work with rounds of turn-taking and explaining between the robot and 

participant may deliver intriguing results regarding the convergence between a person and robot 

during conversation. In addition, deeper insight into human preferences of communication styles 

when speaking with a robot may also be found in such studies.  
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Chapter 6 
 

Conclusion 

The intention of this experiment was to gain a better understanding of human 

performance given robot-provided explanations. The main findings from the experiment are that 

participants were able to consistently rate the quality of different levels of explanations. 

Additionally, participants had the highest performance in pattern identification accuracy when 

the explanation level was poor and the lowest pattern identification accuracy when the 

explanation level was medium. This can partially be explained by the number of factors in the 

pattern, either single-factor or two-factor, and by the amount of information provided in the 

explanations. Due to an inconsistency in single factor and two-factor patterns presented and 

explained by the robot, a connection between quality of explanation and participant performance 

cannot be determined.  

Participants generally matched communication styles when providing their own 

explanations, but convergence over time could not be determined due to limited turn taking. In 

addition, participants preferred to explain their patterns using good explanations and single-

factor patterns. As can be seen by these results, there may be inconsistencies in how a person 

prefers to give an explanation and how a person prefers to receive an explanation. The thought 

process and decision-making that goes into a person choosing how to sort a pattern and then how 

to explain it to the robot is beyond the scope of this experiment but still an important factor to 

consider in the future.  
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The results from this thesis presents important lessons learned for robot designers. When 

designing a robot with the ability to explain tasks or decision-making, explanations should 

contain full information and avoid instances where pertinent information is omitted, if possible. 

Additionally, simplifying the information that needs to be shared when possible can facilitate a 

higher level of performance.  

The application of robots that can explain tasks and decision-making in a way that 

maximizes human performance is vast. For instance, the applicability of robots with this 

capability has the ability to transform the healthcare industry. Physician offices, outpatient 

centers, and hospitals can be streamlined through the utilization of task-based robots with 

explanation capabilities. Such robots could receive tasks from medical professionals, convey 

information to patients, refill prescriptions, or answer questions that patients have in a fashion 

that maximizes the chances of the patients’ performance, which in this case may include 

following directions given by the robot such as taking a prescription at a certain time and 

following specific steps. Knowing how to best explain to humans to maximize performance 

expands the capabilities of robots can also be applied to future experiments in human-robot 

interaction were robot-provided explanation is necessary. Similarly, in the defense industry, it is 

critical that task-based information explained by a robot to a person is presented in a way that 

maximizes the person’s performance of a certain order. Incomplete information or unclear 

explanations cannot be afforded in situations of national security or building and deployment of 

weapons systems. More generally, any application of robots with the ability to explain must aim 

for the highest human performance possible, as that will fulfill its purpose in task-based 

situations.  
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Future experiments can build upon the findings from this experiment. For instance, 

rerunning this experiment and including one single-factor pattern and one two-factor pattern for 

each level of explanation may gain a fuller understanding of which level of explanation leads to 

the highest performance in pattern identification among participants. Another possibility in terms 

of determining how to maximize human performance could be to present participants with a 

more challenging pattern or puzzle and have the robot explain in a series of randomized fashions, 

surveying participants after each explanation until the participant identifies the correct answer. In 

addition, this experiment has only just touched the surface of human-robot communication 

styles. Future projects could facilitate turn-taking between the participant and robot in creating 

and explaining patterns to determine if there is convergence over time in communication style. 

There is still a great deal to be uncovered in the study of the human dimension of robot-provided 

explanation in human-robot interaction, but these results provide a good basis to build upon.  
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