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ABSTRACT 

 

The purpose of this thesis is to introduce a new model for predicting social behavioral 

tipping points. Information theory, first introduced by Claude E. Shannon, suggested that 

analogies can be drawn between chemical phenomena and social actions observed in the physical 

world. This model will integrate concepts from social psychologists such as Sakoda, Schelling, 

and Granovetter, with the chemical phenomena of micellization and cooperative binding. These 

concepts were applied to the mask-wearing problem that has developed since the beginning of 

the SARS-CoV2 pandemic. Mask-wearing data was processed to analyze how people make 

decisions based on their surroundings, analogous to how molecules interact based on 

surroundings. Additional data about the perceptions of the population in question was used to 

test the stability and versatility of the model. It was found that this mask-wearing model was able 

to accurately predict the outcome of mask-wearing decisions 74.68 ± 0.48% of the time with a 

90% confidence interval, and was most effective when the group size was larger than 2. Further 

extensions and refinements of the model are also discussed to evaluate how this model can be 

used to provide insight into different populations.  
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Chapter 1  
 

Introduction 

Econochemistry is a framework centered around using chemical engineering ideas to 

model economic concepts, such as human social behavior, decision making, and game theory.  

Econochemistry hypothesizes that humans behave like chemical systems, and make 

decisions similar to how chemical species react in a reactor. Previous work in the field has 

utilized a Chemical Game Theory model to predict how players will solve strategic games, such 

as Prisoner's Dilemma-type games1. The Chemical Game Theory model seeks to offer an 

alternative solution from Classical Game Theory, which solves the strategic game for how the 

players should act, assuming they are rational players. Instead, the Chemical Game Theory 

model does not assume players are rational, and considers player pre-biases, existing 

relationships, and affinities towards certain outcomes in order to predict how players will act. 

Additionally, a process control learning model of Chemical Game Theory has been analyzed to 

model how players update their strategies when playing repetitive games2.  

This framework has been used to hypothesize human behavior in a game setting, but has 

yet to address how people may act in a real-life setting, when other factors are at play. The key 

question that will be analyzed in this thesis is:  

 

 Does cooperative binding, as seen in the micellization of surfactant molecules, explain 

human decision making related to mask-wearing during the SARS-CoV-2 Pandemic? 
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This question will be answered by using a predictive model derived from the spontaneous 

interactions between surfactants to form a micelle. This model will then be compared to 

observed mask-wearing data collected over a period of several weeks, to determine if the 

chemical model accurately predicts the outcomes of the data collection. Further applications and 

implications will also be discussed to recommend and predict how the Econochemistry 

framework can be used to answer similar questions in the future.  
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Chapter 2  
 

Background Chemistry 

2.1 Surfactant and Micelle Chemistry 

On the atomic level, a surfactant is an amphiphilic molecule with a hydrophilic head 

group and a non-polar hydrocarbon tail group, or chain. When placed in water or any polar 

solvent, these molecules spontaneously interact and form sealed bubbles, such that the 

hydrophobic tails are on the inside, away from the water, and the hydrophilic heads are 

interacting with water. This is due to the hydrophobic effect. These sealed bubbles are called 

micelles.  

 

 
Figure 1. Depiction of surfactant to micelle formation 

 

Initially, at a low enough concentration of surfactants, micelles do not form, because 

there is not enough interaction between the individual surfactants. However, at or above a 

specific concentration, called the critical micelle concentration (CMC), the micelles 

spontaneously form. Micellization is affected by several factors including surfactant chain length 
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and the degree of polarity of the surfactant’s head groups. The following are examples of 

surfactants and their corresponding CMCs3.    

 

Table 1. Surfactant and CMC Examples 

Compound Name Compound Structure Description CMC 

(mM) 

Sodium 

dodecylsulfate 

 

Anionic 

12-C chain 

8.20 
 

Tetradecyltrimethyl 

ammonium bromide 

 

Cationic 

14-C chain 

 

3.60-3.72 

Triton X-100 

 

Non-polar 

Short, bulky 

chain 

0.24-0.27 
 

 

The CMC varies due to the type of surfactant in question, as well as other salts or binding 

agents dissolved in solution. A longer chain length will decrease the CMC, as well as the 

addition of electrolytes to ionic surfactants. A longer hydrocarbon chain on a surfactant would 

decrease the CMC because it is more favorable to form a micelle when the hydrophobicity is 

higher.  
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2.2 Cooperative Binding 

Cooperative binding occurs when the number of binding sites for a ligand is a nonlinear 

function of its concentration, where at a specific concentration of ligands, binding occurs more 

rapidly4. This phenomenon is observed when the affinity of a ligand to a binding site is 

dependent on the amount of ligand already bound.  

 

 

Figure 2. Independent vs Cooperative Binding 

 

During independent binding, as seen in the ligands binding to sites 1 and 4 in Figure 2, 

binding site saturation is a linear function of ligand concentration, such that a larger 

concentration of ligands will yield a proportionally larger saturation of bound sites. During 

cooperative binding, the binding of one ligand increases the affinity for the next ligand to bind, 

as seen in the ligand in Figure 2 binding to site 5 assisting the ligand binding to site 6.  

The cooperative nature of ligand binding can be positive or negative, where a bound 

ligand can increase or decrease the affinity for an adjacent ligand to bind. Cooperative binding is 

most commonly observed in proteins, which by chemical nature has numerous possible binding 
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sites within the quaternary structure. It is a transfer of information from one ligand to another, 

and the transfer of knowledge is done energetically through Gibbs free energy, G.  

The binding of hemoglobin to oxygen is a common example of cooperative binding, 

studied by Christian Bohr in the early 1900s. Bohr found that when the hemoglobin saturation 

with oxygen was plotted against the partial pressure, or concentration by relation, of oxygen, an 

“S-shaped”, or sigmoidal, plot was observed. Essentially, this observation states that as more 

oxygen binds to hemoglobin, it becomes easier for even more oxygen to bind. The curve then 

plateaus as all binding sites are saturated.  

 

 
Figure 3. Sigmoidal relationship between hemoglobin binding to oxygen as a function of partial 

pressure of oxygen 

 

This figure reveals the “S-shaped” curve as observed by Bohr5, and shows that the 

binding of the ligand, oxygen, to the receptor molecule, hemoglobin, scales nonlinearly as ligand 
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concentration increases5,6. The fractional occupancy,𝜃, is defined as the quantity of binding sites 

that are bound by ligands divided by the total number of binding sites, which is made up of both 

bound and unbound sites.  

 

𝜃 =
[𝑏𝑜𝑢𝑛𝑑 𝑠𝑖𝑡𝑒𝑠]

[𝑏𝑜𝑢𝑛𝑑 𝑠𝑖𝑡𝑒𝑠] + [𝑢𝑛𝑏𝑜𝑢𝑛𝑑 𝑠𝑖𝑡𝑒𝑠]
          (1) 

 

A fractional occupancy of 0 indicates the receptor molecule has no ligands bound to it 

and is completely unbound, while a fractional occupancy of 1 indicates complete saturation of 

ligands4.  

Cooperative binding operates under the assumption that ligand binding to one site 

directly affects the binding of a different ligand to another site. If this is not the case, then the 

interaction is referred to as noncooperative binding.  

Cooperativity in ligand-receptor binding can be due to three-dimensional interactions, 

known as allosteric cooperativity. Binding sites are shaped in such a way that only certain 

ligands can fit properly into the site, and therefore the ligand is thermodynamically drawn to the 

site. Allosteric cooperative binding can be regulated positively or negatively by effector 

molecules that bind to the ligand and alter its conformation.  
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Figure 4. Positive and Negative Regulation  

 

Positive regulation occurs when the effector molecule increases the activity of the ligand, 

or changes the conformation of the receptor in such a way that it is more thermodynamically 

favorable for the ligand to bind to the receptor. Negative regulation occurs when the effector 

molecule acts as an inhibitor, and changes the shape of the binding site such that the ligand 

cannot bind to the receptor.   
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Chapter 3  
 

Social Behavior and Tipping Points 

3.1 Collective Behavior and Social Tipping Points 

In sociology, collective behavior is used to describe the set of actions taken within large 

groups of people. A “tipping point” describes a point in time when a series of smaller actions is 

able to cause a larger overall change. Socially, a tipping point occurs when enough individuals 

are engaging in a certain action to cause the rest of the population to change and engage in that 

same action. 

Over the past few decades, models have been developed to describe collective behaviors 

and tipping points analytically. One of the first classical behavioral network models was 

introduced by Sakoda in the 1940s. Sakoda analyzed the behavior and movement within a 

network of individuals who have different attitudes of attraction, repulsion, and neutrality in 

relation to one another. The individual evaluates the positive or negative information provided 

from its surroundings and moves to a more preferential location in the network, such that it is 

closer to more positive/attractive attitudes7.  

Thomas Schelling described the world as a two-dimensional checkerboard in his 1971 

paper Dynamic Models of Segregation8. He discussed how inhabitants of communities perceive 

their communities based on its racial composition, and move to locations on that checkerboard 

that meet their satisfactory composition. Schelling’s model analyzes the social behavior that 

people attempt to avoid the minority status, and that even moderate mindsets can result in 

massive community segregation. This is a type of social tipping point that a population can 
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reach, where a certain level of minority status can cause a dramatic shift. Schelling’s model has 

become a foundational source in many research fields such as clustering, social phase transitions, 

and spontaneous order and structure9. 

Social tipping point models were further developed by sociologist Mark Granovetter. His 

model states that people behave with a certain threshold for action, and are influenced by the 

number of people already acting around them. Granovetter also discusses the importance of 

recognizing relationships and social networks as factors that influence social tipping points. In 

his 1978 paper Threshold Models of Collective Behavior10, the “action” in question was 

participation in a riot. This threshold is defined as a distribution, f(x), with a cumulative 

distribution function, F(x), for a population of N. The distribution function can vary based on the 

population at hand.  

 

 
Figure 5.  Depiction of three potential distribution curves (a) uniform, (b) linear increasing, and (c) 

linear decreasing 

 

As seen in figure 5a, a uniform threshold distribution implies that there is an equal 

fraction of each threshold in the population. In a population of 100 people, the fraction is 0.01 

each for a threshold of 0, 1, 2, all the way to 99. Figure 5b, a linear distribution, describes a 
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population with a higher fraction of people that have a higher threshold, meaning it will take 

more people rioting to cause the population to tip. Figure 5c, inversely, has a higher fraction of 

people with a lower threshold, meaning this population would riot sooner, as it takes less rioters 

to cause the population to tip.  

Granovetter further defines the threshold model to include R(t), or the number of rioters 

at time t. The number of rioters at the next time period, or t+1, then depends on the cumulative 

threshold of the previous time period as well as the population size, yielding the equation:  

 

∆𝑅(𝑡 + 1) = 𝑁𝐹[𝑅(𝑡)]     (2) 

 

Equation 2 yields the change in the number of rioters over each time period, R(t), and 

when aggregated it reveals the overall collective behavior of a population, defined by a given 

threshold distribution F(x). The following figures display the equilibrium outcome for the 

populations previously defined in figure 5. These equilibriums occur when the threshold 

functions in figure 5 are substituted into equation 2 and solved. The slope of the distributions in 

figure 5b and 5c depend on the population size N.  
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Figure 6. Equilibrium outcome for Granovetter's uniform threshold distribution 

  

 Figure 6 above that shows the equilibrium solution for the uniform threshold distribution 

shows a sigmoidal accumulation of riot participants over 10 time periods. It shows a relatively 

gradual tipping point, since there is not a singular time period that yields an overwhelming 

majority of rioters.  
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Figure 7. Equilibrium outcome for Granovetter's positive linear threshold distribution 

 

 The equilibrium for the positive linear threshold distribution reveals that it takes a 

significantly longer amount of time - almost 20 times as long - for this population to begin to 

accumulate rioters. This is because in this population, there are more people with a higher 

threshold, which equates to a higher resistance to riot.  
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Figure 8. Equilibrium outcome for Granovetter's negative linear threshold distribution 

 

 Lastly the equilibrium for the negative linear distribution shows that a majority of the 

population joins riot in the first 10 time periods out of 60. However, it takes longer for the entire 

population to join in on the riot compared to the uniform distribution because there is still a small 

portion of people with a high threshold.  

More recent research in the field of social tipping points analyzes tipping points in social 

convention. This research, done by Centola et al., uses experimental data to observe how groups 

of people initiate social change to establish a new equilibrium11. The study used actors as a 

portion of their participants, who acted as a “committed minority” that attempted to overthrow a 

previously defined social convention by introducing a new alternative. The size of this 

committed minority varied from about 15%-35% of the population and the equilibrium that the 

group reached was altered as a result. The “critical mass”, which is the fraction of people in the 
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group that were a part of this committed minority that caused the entire group to “tip” and 

choose the alternative convention, was found to be about 25%. This shows that it actually 

doesn’t take a simple majority to have an entire population change ideas. Instead, people’s 

actions can be influenced by a smaller committed minority.  

 Sakoda, Schelling, Granovetter and Centola et al. have made huge strides in the field of 

social tipping points and threshold models, but certain elements can be added to these threshold 

models to help further define each population. Sakoda first introduced the idea of social and 

spatial organization, and how the attitudes surrounding an individual can impact their decision, 

but didn’t find a tipping point within these social interactions. The threshold models have loose 

definitions of the makeup of each population, such as a simple uniform or linear threshold 

distribution as Granovetter defines, or the positive, negative, and neutral attitudes that Sakoda 

defines. The calculation of the social tipping points can be refined to include more information 

about the population such as external factors and details about the population demographics, all 

of which can influence decision making but have not yet been considered.  

3.2 Chemical Tipping Points 

Similar to a social tipping point, a chemical tipping point occurs when a chemical species 

reaches a certain threshold of temperature, pressure, concentration, etc., for it to spontaneously 

change states or configurations. A state change is an example of a tipping point because once a 

substance receives or loses enough energy in the form of heat, the intermolecular forces of its 

molecules are altered and change configuration. The critical micelle concentration (CMC) is 
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considered a tipping point for micellization. At or above this concentration of surfactants, 

micelles spontaneously form.  

The Hill-Langmuir equation is a biochemical model to describe cooperative binding as 

the fraction of binding sites on a macromolecule that are bound by ligands as a function of free 

ligands in solution12. It can be derived by first setting up an equilibrium equation for a receptor, 

P, with n number of binding sites for ligands, L, to bind.  

 

Figure 9. Receptor molecule with binding sites 

 

𝑛𝐿 + 𝑃 → 𝑃𝐿𝑛         (3) 

Next, the association equilibrium constant, K, can be written as 

𝐾 =
[𝑃𝐿𝑛]

[𝑃][𝐿]𝑛        (4) 

The Hill-Langmuir equation evaluates the fraction of binding sites that are occupied by 

ligands, so this is expressed as a ratio of the number of bound sites to the total number of sites, as 

described previously in equation 1.  

𝜃 =
[𝑃𝐿𝑛]

[𝑃𝐿𝑛]+[𝑃]
         (5) 
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 When [PLn] in equation 5 is replaced with the rearranged form of equation 4 and reduced 

by [P], the following is found: 

𝜃 =
𝐾[𝐿]𝑛

𝐾[𝐿]𝑛+1
         (6) 

 Finally, the dissociation constant, Kd, which is simply the inverse of the association 

constant, K, is substituted into equation 6 when the entire equation is divided through by k. 

 

The final form of the Hill -Langmuir equation is expressed as: 

 

𝜃 =
[𝐿]𝑛

𝐾𝑑+[𝐿]𝑛          (7) 

 

Where is the fraction of sites bound by the ligand, [L] is the concentration of free, 

unbound ligand, Kd is the dissociation constant, and n is the Hill coefficient. The Hill-Langmuir 

equation reveals that cooperative binding of ligands experience a tipping point, which varies 

depending on the dissociation constant. An equivalent form of the Hill equation can be written 

with the association constant. 

 

𝜃 =
𝐾[𝐿]𝑛

1+𝐾[𝐿]𝑛         (8) 

 

 Positive cooperativity is observed when n>1, and negative cooperativity is observed 

when n<1. The Hill equation also assumes that cooperativity is fixed4.  
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Figure 10. Graphical representation of the Hill equation with varying Hill coefficients 

  

 As seen in the plot above, as n increases, the tipping point, or the point at which θ 

increases the most dramatically with increasing [L], also increases. If n is increased to a certain 

extent, then the tipping point could be achieved almost instantaneously.  

3.3 Shannon Entropy and Information Theory  

The model proposed in this paper aims to further define threshold models in social 

science by introducing a new definition in chemical terms. The idea that the physical world can 

be described by chemical phenomena was first introduced by Claude Shannon, an American 

mathematician known as “the father of information theory”. Information theory is the study of 

the storage and communication of information and messages. Shannon states that the semantic 

aspects of a message are irrelevant, and that the fact that a message is selected from a group of 
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possible messages is much more significant in an engineering mindset. The Shannon 

Information, or Shannon Entropy, of a piece of information, or message, is:  

𝑆𝑆 = −𝑘 ∑ 𝑝𝑖𝑙𝑜𝑔(𝑝𝑖)𝑖         (9) 

 Where pi  is the probability that a message will be sent, and k is a constant to adjust for 

the unit of measure. This value represents how much “choice” there is in the random selection of 

a message with probability pi
13

 .  

 Chemical entropy, as defined in thermodynamics, is associated with the molecular 

disorder or randomness of a system. Gibbs entropy, which describes the entropy of a system with 

a finite number of states, is defined as: 

𝑆𝐺 = −𝑘𝐵 ∑ 𝑃𝑖𝑙𝑛(𝑃𝑖)𝑖         (10) 

 Where kB is a thermodynamic constant also used for the unit of measurement, and Pi is 

the entropy of each individual microstate. The similarity between Shannon entropy in 

information theory and Gibbs entropy in thermodynamics is the foundational principle behind a 

new emerging field. There is a clear connection between phenomena that occur on an atomic 

scale and social interactions that involve communication and the transmittal of messages. This 

thesis applies the idea of information theory by using chemical phenomena to quantify and 

predict social behaviors.  
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Chapter 4  
 

The Model and the Hypothesis 

4.1 The Analogy 

The formation of a micelle can be treated as a chemical reaction, with a varying number 

of surfactants acting as the reactants, and the micelle representing the product. This micellization 

can be written as a chemical equation, where reactants are driven by some equilibrium constant, 

k, to form products. In this form, it is written as: 

 

nS → M        (11) 

 

 Where n represents n number of surfactants, S, that form the micelle, or product, M. In a 

similar form, the formation of ligand-receptor complexes via cooperative binding can also be 

treated as a chemical reaction, with a receptor molecule, P, and the corresponding number of 

ligands, X, representing the reactants, and the fully saturated ligand-receptor molecule 

representing the product.  

 

nX + P → PXn.       (12) 

 

4.2 The Mask Wearing Model 

This model hypothesizes that people behave like ligands in social decision-making 

situations. The surfactant-micelle model implies a certain level of spontaneity and self-assembly, 

where a micelle suddenly forms when the surfactant concentration reaches a certain point. The 
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cooperative binding model instead offers a leader-follower approach, where the “decision” of 

one ligand affects the “decision” of the next. As studied by Granovetter and Centola et al, 

people’s behavior reaches a “tipping point” when enough people initiate a certain action, such 

that the entire group agrees to cooperate. This is much like how surfactants behave, as seen in the 

Hill equation and corresponding plots. At a certain concentration of ligands, the fraction of 

bound ligands reaches a tipping point, and the remaining ligands quickly bind until saturation is 

reached.  

This same type of thinking was applied to the mask-wearing problem at the forefront of 

the SARS-CoV-2 pandemic. Although current guidelines and research encourage and often 

mandate wearing facial coverings in public spaces, it has been seen that not everyone complies 

with these regulations14. When individuals are alone or in small groups, they tend to wear masks 

much less frequently, but at a certain threshold, they are much more inclined to put their masks 

on. If people are treated as ligands, then what is it that causes someone to wear a mask?  

In this analogy, non-mask wearers are unbound ligands, and mask-wearers are fully 

formed ligand-receptor complexes. The number of binding sites on the receptor molecule is 

equivalent to the number of people in each observed group. There are allosteric modulators, or 

effector molecules, that exist in solution with these ligands in the form of social and internal 

“reminders” such as trust in those surrounding the individual, general health and well-being of 

the individual, the location of the individual, and other verbal reminders and consequences that 

could increase the likelihood that a person will make the decision to put on their mask. These 

allosteric modulators are a key part of the analogy and model because in a high enough 

concentration of reminders, the modulators will bind to their activation site, which then changes 
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the conformation of the binding sites. The altered conformation allows the ligand to bind, which 

represents a person putting on their mask. This is analogous to an individual receiving enough 

information to change their decision from not wearing a mask to wearing a mask. When the 

concentration of allosteric modulators is low, there are not enough in solution to locate and bind 

to their activation sites, so the conformation of the binding sites is not changed and the ligands 

cannot bind. This is analogous to an individual not receiving enough information to change their 

decision from not wearing a mask to wearing a mask, and therefore they continue to not wear a 

mask.  

      

 

Figure 11. Allosteric regulation analogy to mask wearing 
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For cooperative binding, the Hill equation states that: 

 

𝜃 =
𝐾[𝐿]𝑛

1+𝐾[𝐿]𝑛        (13)  

 

The concentration of unbound ligand, [L], refers to the concentration of ligand that can 

bind to the binding site. These ligands can only bind to sites that have already been altered by 

allosteric modulators. The concentration of ligands that are able to bind is directly related to the 

concentration of allosteric modulators, or reminders. As the concentration of allosteric 

modulators increases, the concentration of bound ligand increases as well. In the model, the 

concentration of the unbound ligand is replaced by the concentration of reminders in solution.  

The Hill equation calculates  𝜃, which is the fraction of the sites on the receptor protein 

that are bound by the ligand. In the analogy of mask wearing, this is replaced by the 

concentration of people in each group who end up wearing a mask, cM, because a bound ligand 

represents an individual that decides to put on a mask. The new equation with the replaced 

variables is: 

𝑐𝑀 =
𝐾[𝑐𝑅]𝑛

1+𝐾[𝑐𝑅]𝑛
        (14) 
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Chapter 5  
 

Experimental Methodology 

5.1 Data Collection Methodology 

In order to test the accuracy of the cooperative binding tipping point model, experimental 

data was collected. This data that was recorded included whether or not individuals wore masks, 

as well as group size, location, and approximate age group of the acting individuals (child, 

college student, adult, or elderly). Although this study includes human participants, it did not fall 

under the requirements for an International Review Board (IRB) application, because no 

identifying information for the participants was recorded. Confirmation of compliance with the 

IRB human study policies can be found in Appendix B.  

About 600 pieces of data were collected, including individuals who were observed alone 

and those who were observed in groups. Sites of data collection include various locations on 

Penn State University’s campus, as well as the surrounding areas of State College. Examples of 

locations include Penn State’s Paterno Library, outside on College Avenue in State College, the 

HUB-Robeson Center, Trader Joe’s, Sam’s Club, and more. An extensive list of data collection 

sites can be found in the appendix. Those also involved in data collection include Tim Schmitt 

and Darrell Velegol.  
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5.2 Parameter Matrix 

The four parameters extracted from the experimental data along with justification for 

impact on the model are as follows: 

1. Level of trust between individuals. This factor was noted as the type of relationship 

between individuals. The types of relationships were broken down into strangers, 

acquaintances, friends, and family. A larger value for the trust parameter indicates a 

lower level of trust.  

2. The number of external reminders. External reminders include signs or posters telling 

individuals to wear masks, verbal reminders from store or restaurant employees, 

requirements by law or state ordinances, as well as enforcement by police or other 

officials. This category is additive, meaning the number of external reminders aggregates 

and that value is used in the final calculation. More external reminders result in a higher 

parameter value.  

3. Indoor vs outdoor spaces. This factor greatly affects a person’s decision to wear a mask, 

especially after CDC guidelines stated that the SARS-CoV-2 virus is more easily spread 

indoors15. This category includes small spaces, such as small rooms or shops, medium 

spaces, such as a restaurant or bigger store, and large spaces, such as warehouses. A 

smaller space is given a larger parameter value, since someone in this type of space is 

likely more inclined to put on a mask. 

4. General health of each individual. Because no identifying information about the study 

participants was recorded, this parameter was roughly estimated based on age and any 

outwardly appearing signs of health such as weight and observed physical aids. Those 
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with greater health risks are likely more inclined to wear a mask for self-protection, so 

the value for this parameter increased as health risk increased.  

 

These four parameters were used in the calculation for the concentration of reminders, or 

cR. A higher parameter value indicates a stronger reminder to wear a mask. Parameter values 

were assigned by asking individuals to rank each of the following scenarios from 0 to 10 for how 

likely they were to put on a mask, with 0 being not at all likely and 10 being extremely likely. 

The following scenarios were presented16: 

1. You see a sign or poster reminding you to wear a mask. 

2. Somebody (e.g. an employee) tells you to wear a mask. 

3. You are aware that masks are required at your location (either by the government or the 

store/location). 

4. You are aware that mask wearing is being actively enforced at your location (e.g. fines). 

5. You are in a large, warehouse-like space (e.g. Costco). 

6. You are in a medium sized space (e.g. a restaurant or store). 

7. You are in a small space (e.g. a small shop). 

8. You are around strangers. 

9. You are around people you know, but that you are not close friends with. 

10. You are around friends. 

11. You are around family. 

12. You are around someone who is young (<30 years old). 

13. You are around someone who is middle-aged (30-60 years old). 

14. You are around someone who is elderly (>60 years old). 
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15. You are around a seemingly healthy person (healthy weight, no visible disabilities or 

aids). 

16. You are around someone of an unhealthy weight (underweight or overweight). 

17. You are around someone with a visible aid or disability (e.g. wheelchair, oxygen tank) 

 

Scenarios 1 through 4 are a subcategory of the external reminders parameter, scenarios 5 

to 7 address the indoors/outdoors parameters, scenarios 8 to 11 address the trust parameter, and 

scenarios 12 to 17 cover the health parameter. Preliminary data for the parameter values were 

taken from members of the Econochemistry lab. A further advancement of this matrix would 

include obtaining IRB permissions for human subject research to survey a larger population. 

These initial data points were used to calculate the mean and standard deviation for each 

subcategory. Once these were calculated, a parameter matrix was constructed to obtain random 

values for each subcategory that fall within the mean and standard deviation for each. An 

example of one iteration is shown below. 
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Figure 12. Parameter Matrix 

 

The parameter matrix was used to test the stability of the model by addressing variations 

in the strengths of the parameters. The model was run several times, and each time a new set of 

parameter values were updated within the model. This is a place for improvement in future 

iterations of the proposed cooperative binding model. Additional data points can be collected to 

solidify the parameters and reduce the standard deviation, and ultimately reduce any fluctuations 

in the model. By collecting the appropriate data from people in different populations and 

communities, this model can be applied to more populations than just State College.  
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Chapter 6  
 

Results and Discussion 

6.1 Data Organization 

The first step in the analysis of the collected data was to calculate the concentration of 

people in each observed group wearing masks, cM, and not wearing masks, cN. Those wearing 

masks incorrectly, such as under their nose, were counted in the calculation for cM, since these 

individuals had the intention of wearing a mask.  

The second step involved the calculation of the concentration of each of the four 

parameters for each data point collected. This was found through the parameter matrix. The 

value for trust was found by defining the individuals as friends, family, acquaintances, or 

strangers, and then assigning the value from the parameter matrix for the corresponding 

subcategory. The external reminders parameter was additive, which meant adding the values 

from the parameter matrix for each additional reminder. The external reminders that were 

considered were signs/posters, verbal reminders, required but not actively enforced, and required 

and actively enforced. The health concentration was found by taking an average of the relative 

health levels of those in each group. Health levels were determined by age and any observed 

visual aids. Since this study was completely anonymous and no identifiable information was 

recorded, this category was intentionally vague to comply with IRB regulations. A further 

progression of this study could include more accurate health information. Lastly, the value for 

the indoor/outdoor parameter was found from the parameter matrix and observing where each 

data point was collected.  
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Next, the concentration of total reminders, cR, was calculated. This value was calculated 

using the group contribution method. This method is used in chemistry to predict thermodynamic 

properties by using the common properties of atoms or groups of atoms in molecules. The total 

reminder calculation includes all four parameters described in section 5.2. The following 

equation was used, where [T] is the concentration/parameter value for trust, [E] is external 

reminders, [IO] is indoors vs outdoors, [H] is health, M is the number of people in each group 

wearing masks, and W is the number of people in each group not wearing masks.  

 

𝑐𝑅 =
1

𝑐0
(

𝑀−1

𝑁
∗ [𝑇] −

𝑊−1

𝑁
∗ [𝑇] + [𝐸] + [𝐼𝑂] + [𝐻])        (15) 

 

The trust parameter is scaled by the number of surrounding individuals wearing a mask, 

M-1, which positively encourages someone to put on a mask, as well as the number of 

surrounding individuals not wearing a mask, W-1, which negatively impacts someone’s decision 

to put on a mask.  

Once the concentration of total reminders, cR, was calculated for each data point, the 

model was applied to predict cM for each calculated cR. Data points where N<2 were excluded 

from the calculations because the cooperative binding model hypothesizes how people will 

behave in larger groups. Then, cM predict was calculated: 

 

𝑐𝑀 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =
𝐾𝑐𝑅𝑛

1+𝐾𝑐𝑅𝑛      (16) 
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6.2 Data Evaluation 

To evaluate the data, the experimental cM, which was found by dividing the number of 

individuals in each group wearing masks divided by the total number of people in each group, 

was compared to cM predict, as calculated by the model. The goal was to determine if the 

model’s predictions were close in value to the experimental data, and to fit the parameters K and 

n to reduce the error as much as possible. The following figure shows an example of five data 

entries and the corresponding calculations by the model. The first four green columns are the raw 

data of what was observed, the next four blue columns are the calculations of the individual 

parameters based on the parameter matrix, and the remaining white columns are the application 

of the model and error calculation.  

 

 
Figure 13. Example of 5 data entries and application of the model 

 

The error was determined by finding the difference between cM experimental and cM 

predict for each data point, and then finding a cumulative error by adding each individual error 

together. This would allow for parameters K and n to be fit to the data by looking at one overall 

error rather than hundreds of individual errors.  

Extraneous data points were excluded and not counted towards the overall error. This was 

due to the fact that several data points were skewed due to individual circumstances or 

exceptions to some mask-wearing rules. These points were manually screened. For example, 

someone eating would result in an extremely large error. All reminders may lead to the person 
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putting on their mask, but they don’t because they are eating and cannot wear the mask. 

Otherwise they likely would, and this model doesn’t account for this type of circumstance. This 

should be considered in the refinement of this model. 

 

 

Figure 14. Example of large error within the model 

  

 In this example line of data, according to the high concentration of reminders, cR, the 

model predicts that the concentration of people in this group that will wear masks is 1, which is 

that everyone will wear a mask. However, as seen by the high error of 0.9999, the model was 

completely wrong and this group of people were not wearing masks at all. This is because the 

people in this group were actively eating, and therefore could not put on their masks. Even 

though there was a high level of reminders, the exception of eating completely outweighed 

anything that the model could have predicted, and scenarios like this were not accounted for in 

this model. If these errors were completely removed, the accuracy of this model would increase 

significantly, however they were included in the error analysis to note the shortcomings of the 

model. 

To determine the accuracy of the model, an error threshold of 0.2 was applied, meaning 

that any time the model predicted the concentration of masks, cM predict, and was within 0.2 of 

the experimental cM, that prediction was considered to be correct. On average, the model was 

correct 74.68 ± 0.48% of the time with a 90% confidence interval.  
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The optimal value for K was found to be about 1.11, and the optimal value for n was 15. 

These parameters were optimized manually. The tipping point occurs when the denominator of 

equation 16 is equal to 2, otherwise written as: 

 

𝑐𝑅𝑡𝑖𝑝 = exp [
− ln(𝑘)

𝑛
]         (17) 

 

 The tipping point was found to occur when cR=0.993. Contextually, this means that 

when the concentration of reminders reaches 0.993 (for this population), the concentration of 

people who decide to put on their masks increases dramatically. 

 

 

Figure 15. Effect of total reminders on concentration of mask-wearers 
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 The graph shows that a concentration of reminders from 0 to about 0.8 results in a 

concentration of mask-wearers of 0. This means that this low of a concentration does not have a 

large enough effect on the population to cause them to put on their mask. Instead of the number 

of people wearing a mask increasing linearly with increasing concentration of reminders, there is 

a sigmoidal relationship, as seen with cooperative binding. After the tipping point of 0.993, the 

concentration of mask wearers increases dramatically. Once the concentration of reminders 

reaches 1.3, cM is essentially 1, meaning everyone in the group is wearing a mask. The existence 

of this tipping point suggests that there is a specific number of reminders necessary to 

significantly persuade a population to change their action.  

6.3 Stability of the Model 

 The stability of the model was tested by inputting random numbers into the parameter 

matrix. These random numbers were calculated using a generator in excel that would generate a 

number within the mean and standard deviation for each category of parameter. Each time the 

spreadsheet was reset, a new cR and cM value would be calculated for each data point, and 

ultimately a new total error (sum of the individual errors) would be found. This process was run 

several times such that a variety of errors was collected to be compared across trials. The results 

are as follows.  
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Figure 16. Stability of the model 

 

 The model is relatively stable, considering the low sample size of data taken to calculate 

the parameter matrix. Figure 15 shows minor fluctuations in the percentage of errors less than 

0.2, which is how the model was defined as being “correct”. The cumulative error saw slightly 

more fluctuations but overall only ranged from 9.25 to 15.78. The stability will be strengthened 

as the parameter matrix is further defined. Collecting data with a larger sample size will decrease 

the standard deviations of the parameter values and therefore reduce how widely the parameter 

values vary.  
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6.4 Future Extensions of the Model 

 This model operated under the assumption that the particles in question (the reminders) 

were well mixed. This means that the “concentration” of reminders was constant in each scenario 

that was analyzed. For example, in a restaurant, it was assumed that the concentration of 

reminders for someone getting up to use the restroom was the same as someone seated at a table, 

and was the same as someone in the door. In real chemical systems, however, this is not always 

the case, especially when systems have fewer particles. Take for example, a large box divided 

into smaller, equal sized boxes. The particles are free to move around the large box, such that on 

average, the mean number of particles in each smaller box is equal. This is depicted below.  

 

Figure 17. Particles evenly distributed within a box 

 

 On average, the compartment shown in Figure 16a has 1020 particles in each individual 

box, and the compartment shown in Figure 16b has 100 particles in each individual box. Since 

the particles roam freely throughout the entire space, this means that the contents of each smaller 
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box will vary slightly from the mean at any given time. This variance is found from the 

following equation: 

𝑠. 𝑑. =
1

√𝑚𝑒𝑎𝑛
        (18) 

 

 The following table compares the relationship between the mean number of 

particles in each individual box with the corresponding variance.  

Table 2. Variances of Particles in a Box 

Mean (particles) Variance 

1020 10-10 

1015 3.16x10-8 

1010 0.00001 

105 0.00316 

1000 0.0316 

100 0.1 

10 0.316 

1 1 

0.1 3.16 
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 A large mean of 1020 has such a small variance that there is essentially a constant number 

of particles in each box at all times, which can be described as a well-mixed solution. However, 

as the mean number of particles decreases, the variance increases substantially. This shows that 

as there are less particles overall, the number of particles in any one section of the box at a given 

time is not constant. This is analogous to saying that someone standing in the doorway of a 

restaurant does not experience the same concentration of reminders as someone sitting in the 

back of the restaurant, since the variance is unknown. A future extension of this model could be 

to assume the solution is not well-mixed, and to consider how variations in concentration would 

affect the formation of ligand-receptor complexes in different locations throughout the solution.  
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Chapter 7  
 

Conclusions 

 The findings of the model presented in this thesis reveal an alternative method to 

determine how surroundings and the environment affect the way people make decisions. This 

model takes mathematical concepts of social tipping points and chemical concepts of 

micellization and cooperative binding and combines them to provide further insight into how 

external and internal reminders affect people’s decision making. The cooperative binding model 

was able to accurately predict the outcome of mask-wearing decisions 74.68 ± 0.48% of the time 

with a 90% confidence interval, and was found to be most effective when group size, n, was 

larger than 2.  

 This model has the potential to be adapted to fit various different populations. The 

parameter matrix was designed such that any population could be surveyed to determine 

parameter values, and the concentration of reminders would be calculated accordingly for that 

population. Further advancements of this research could include surveying populations with 

varying demographics and comparing the corresponding tipping points to analyze the effect of 

demographic on tipping point.  

 In addition to applying this model to different populations, it can also be used to address 

decisions other than mask wearing. Relating to the SARS-CoV2 pandemic, the next question 

after whether or not someone wears a mask is whether or not they get vaccinated against the 

disease. How does the number of people around you that have been vaccinated change your 

decision to get vaccinated? By defining a new set of reminders relating to vaccinations, a new 
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tipping point can be calculated. The “reminders” in this scenario could include cost, availability, 

effectiveness, ethical beliefs, and overall health of the patient.  

 This model is the start of an exciting new field for the combination of social and chemical 

sciences. The findings of this thesis present a foundational model that can be further developed 

and adapted to fit new populations and answer new questions. 
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Appendix A 

 
Figure 18. Parameter matrix average values 

 

 

 
Figure 19. Parameter matrix standard deviation values 
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List of data collection sites 

 

1. Thomas Building, Penn State University Park Campus 

2. Pattee and Paterno Libraries, Penn State University Park Campus 

3. HUB-Robeson Center, Penn State University Park Campus 

4. Penn State University Park Campus, general 

5. Pattee Library Bus Stop, Penn State University Park Campus 

6. Trader Joe’s Grocery Store, State College PA 

7. Bellefonte Park, Bellefonte PA 

8. Big Spring, Bellefonte PA 

9. Rothrock Coffee, State College PA 

10. Wegmans Grocery Store, State College PA 

11. College Avenue, Downtown State College 

12. Allen Street, Downtown State College 

13. Sam’s Club, State College PA 
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Appendix B  

IRB Requirements and Exemption 

 

 

Figure 20. Attributes of human subject research that would require an IRB 

 

 

Figure 21. Communication with Review Board to show exemption 
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